1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * hosting IBM Z kernel virtual machines (s390x) 4 * 5 * Copyright IBM Corp. 2008, 2020 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 * Christian Borntraeger <borntraeger@de.ibm.com> 9 * Christian Ehrhardt <ehrhardt@de.ibm.com> 10 * Jason J. Herne <jjherne@us.ibm.com> 11 */ 12 13 #define KMSG_COMPONENT "kvm-s390" 14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 15 16 #include <linux/compiler.h> 17 #include <linux/err.h> 18 #include <linux/fs.h> 19 #include <linux/hrtimer.h> 20 #include <linux/init.h> 21 #include <linux/kvm.h> 22 #include <linux/kvm_host.h> 23 #include <linux/mman.h> 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/random.h> 27 #include <linux/slab.h> 28 #include <linux/timer.h> 29 #include <linux/vmalloc.h> 30 #include <linux/bitmap.h> 31 #include <linux/sched/signal.h> 32 #include <linux/string.h> 33 #include <linux/pgtable.h> 34 #include <linux/mmu_notifier.h> 35 36 #include <asm/asm-offsets.h> 37 #include <asm/lowcore.h> 38 #include <asm/stp.h> 39 #include <asm/gmap.h> 40 #include <asm/nmi.h> 41 #include <asm/switch_to.h> 42 #include <asm/isc.h> 43 #include <asm/sclp.h> 44 #include <asm/cpacf.h> 45 #include <asm/timex.h> 46 #include <asm/ap.h> 47 #include <asm/uv.h> 48 #include <asm/fpu/api.h> 49 #include "kvm-s390.h" 50 #include "gaccess.h" 51 #include "pci.h" 52 53 #define CREATE_TRACE_POINTS 54 #include "trace.h" 55 #include "trace-s390.h" 56 57 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */ 58 #define LOCAL_IRQS 32 59 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \ 60 (KVM_MAX_VCPUS + LOCAL_IRQS)) 61 62 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 63 KVM_GENERIC_VM_STATS(), 64 STATS_DESC_COUNTER(VM, inject_io), 65 STATS_DESC_COUNTER(VM, inject_float_mchk), 66 STATS_DESC_COUNTER(VM, inject_pfault_done), 67 STATS_DESC_COUNTER(VM, inject_service_signal), 68 STATS_DESC_COUNTER(VM, inject_virtio), 69 STATS_DESC_COUNTER(VM, aen_forward), 70 STATS_DESC_COUNTER(VM, gmap_shadow_reuse), 71 STATS_DESC_COUNTER(VM, gmap_shadow_create), 72 STATS_DESC_COUNTER(VM, gmap_shadow_r1_entry), 73 STATS_DESC_COUNTER(VM, gmap_shadow_r2_entry), 74 STATS_DESC_COUNTER(VM, gmap_shadow_r3_entry), 75 STATS_DESC_COUNTER(VM, gmap_shadow_sg_entry), 76 STATS_DESC_COUNTER(VM, gmap_shadow_pg_entry), 77 }; 78 79 const struct kvm_stats_header kvm_vm_stats_header = { 80 .name_size = KVM_STATS_NAME_SIZE, 81 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 82 .id_offset = sizeof(struct kvm_stats_header), 83 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 84 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 85 sizeof(kvm_vm_stats_desc), 86 }; 87 88 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 89 KVM_GENERIC_VCPU_STATS(), 90 STATS_DESC_COUNTER(VCPU, exit_userspace), 91 STATS_DESC_COUNTER(VCPU, exit_null), 92 STATS_DESC_COUNTER(VCPU, exit_external_request), 93 STATS_DESC_COUNTER(VCPU, exit_io_request), 94 STATS_DESC_COUNTER(VCPU, exit_external_interrupt), 95 STATS_DESC_COUNTER(VCPU, exit_stop_request), 96 STATS_DESC_COUNTER(VCPU, exit_validity), 97 STATS_DESC_COUNTER(VCPU, exit_instruction), 98 STATS_DESC_COUNTER(VCPU, exit_pei), 99 STATS_DESC_COUNTER(VCPU, halt_no_poll_steal), 100 STATS_DESC_COUNTER(VCPU, instruction_lctl), 101 STATS_DESC_COUNTER(VCPU, instruction_lctlg), 102 STATS_DESC_COUNTER(VCPU, instruction_stctl), 103 STATS_DESC_COUNTER(VCPU, instruction_stctg), 104 STATS_DESC_COUNTER(VCPU, exit_program_interruption), 105 STATS_DESC_COUNTER(VCPU, exit_instr_and_program), 106 STATS_DESC_COUNTER(VCPU, exit_operation_exception), 107 STATS_DESC_COUNTER(VCPU, deliver_ckc), 108 STATS_DESC_COUNTER(VCPU, deliver_cputm), 109 STATS_DESC_COUNTER(VCPU, deliver_external_call), 110 STATS_DESC_COUNTER(VCPU, deliver_emergency_signal), 111 STATS_DESC_COUNTER(VCPU, deliver_service_signal), 112 STATS_DESC_COUNTER(VCPU, deliver_virtio), 113 STATS_DESC_COUNTER(VCPU, deliver_stop_signal), 114 STATS_DESC_COUNTER(VCPU, deliver_prefix_signal), 115 STATS_DESC_COUNTER(VCPU, deliver_restart_signal), 116 STATS_DESC_COUNTER(VCPU, deliver_program), 117 STATS_DESC_COUNTER(VCPU, deliver_io), 118 STATS_DESC_COUNTER(VCPU, deliver_machine_check), 119 STATS_DESC_COUNTER(VCPU, exit_wait_state), 120 STATS_DESC_COUNTER(VCPU, inject_ckc), 121 STATS_DESC_COUNTER(VCPU, inject_cputm), 122 STATS_DESC_COUNTER(VCPU, inject_external_call), 123 STATS_DESC_COUNTER(VCPU, inject_emergency_signal), 124 STATS_DESC_COUNTER(VCPU, inject_mchk), 125 STATS_DESC_COUNTER(VCPU, inject_pfault_init), 126 STATS_DESC_COUNTER(VCPU, inject_program), 127 STATS_DESC_COUNTER(VCPU, inject_restart), 128 STATS_DESC_COUNTER(VCPU, inject_set_prefix), 129 STATS_DESC_COUNTER(VCPU, inject_stop_signal), 130 STATS_DESC_COUNTER(VCPU, instruction_epsw), 131 STATS_DESC_COUNTER(VCPU, instruction_gs), 132 STATS_DESC_COUNTER(VCPU, instruction_io_other), 133 STATS_DESC_COUNTER(VCPU, instruction_lpsw), 134 STATS_DESC_COUNTER(VCPU, instruction_lpswe), 135 STATS_DESC_COUNTER(VCPU, instruction_pfmf), 136 STATS_DESC_COUNTER(VCPU, instruction_ptff), 137 STATS_DESC_COUNTER(VCPU, instruction_sck), 138 STATS_DESC_COUNTER(VCPU, instruction_sckpf), 139 STATS_DESC_COUNTER(VCPU, instruction_stidp), 140 STATS_DESC_COUNTER(VCPU, instruction_spx), 141 STATS_DESC_COUNTER(VCPU, instruction_stpx), 142 STATS_DESC_COUNTER(VCPU, instruction_stap), 143 STATS_DESC_COUNTER(VCPU, instruction_iske), 144 STATS_DESC_COUNTER(VCPU, instruction_ri), 145 STATS_DESC_COUNTER(VCPU, instruction_rrbe), 146 STATS_DESC_COUNTER(VCPU, instruction_sske), 147 STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock), 148 STATS_DESC_COUNTER(VCPU, instruction_stsi), 149 STATS_DESC_COUNTER(VCPU, instruction_stfl), 150 STATS_DESC_COUNTER(VCPU, instruction_tb), 151 STATS_DESC_COUNTER(VCPU, instruction_tpi), 152 STATS_DESC_COUNTER(VCPU, instruction_tprot), 153 STATS_DESC_COUNTER(VCPU, instruction_tsch), 154 STATS_DESC_COUNTER(VCPU, instruction_sie), 155 STATS_DESC_COUNTER(VCPU, instruction_essa), 156 STATS_DESC_COUNTER(VCPU, instruction_sthyi), 157 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense), 158 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running), 159 STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call), 160 STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency), 161 STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency), 162 STATS_DESC_COUNTER(VCPU, instruction_sigp_start), 163 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop), 164 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status), 165 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status), 166 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status), 167 STATS_DESC_COUNTER(VCPU, instruction_sigp_arch), 168 STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix), 169 STATS_DESC_COUNTER(VCPU, instruction_sigp_restart), 170 STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset), 171 STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset), 172 STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown), 173 STATS_DESC_COUNTER(VCPU, instruction_diagnose_10), 174 STATS_DESC_COUNTER(VCPU, instruction_diagnose_44), 175 STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c), 176 STATS_DESC_COUNTER(VCPU, diag_9c_ignored), 177 STATS_DESC_COUNTER(VCPU, diag_9c_forward), 178 STATS_DESC_COUNTER(VCPU, instruction_diagnose_258), 179 STATS_DESC_COUNTER(VCPU, instruction_diagnose_308), 180 STATS_DESC_COUNTER(VCPU, instruction_diagnose_500), 181 STATS_DESC_COUNTER(VCPU, instruction_diagnose_other), 182 STATS_DESC_COUNTER(VCPU, pfault_sync) 183 }; 184 185 const struct kvm_stats_header kvm_vcpu_stats_header = { 186 .name_size = KVM_STATS_NAME_SIZE, 187 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 188 .id_offset = sizeof(struct kvm_stats_header), 189 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 190 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 191 sizeof(kvm_vcpu_stats_desc), 192 }; 193 194 /* allow nested virtualization in KVM (if enabled by user space) */ 195 static int nested; 196 module_param(nested, int, S_IRUGO); 197 MODULE_PARM_DESC(nested, "Nested virtualization support"); 198 199 /* allow 1m huge page guest backing, if !nested */ 200 static int hpage; 201 module_param(hpage, int, 0444); 202 MODULE_PARM_DESC(hpage, "1m huge page backing support"); 203 204 /* maximum percentage of steal time for polling. >100 is treated like 100 */ 205 static u8 halt_poll_max_steal = 10; 206 module_param(halt_poll_max_steal, byte, 0644); 207 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling"); 208 209 /* if set to true, the GISA will be initialized and used if available */ 210 static bool use_gisa = true; 211 module_param(use_gisa, bool, 0644); 212 MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it."); 213 214 /* maximum diag9c forwarding per second */ 215 unsigned int diag9c_forwarding_hz; 216 module_param(diag9c_forwarding_hz, uint, 0644); 217 MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off"); 218 219 /* 220 * allow asynchronous deinit for protected guests; enable by default since 221 * the feature is opt-in anyway 222 */ 223 static int async_destroy = 1; 224 module_param(async_destroy, int, 0444); 225 MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests"); 226 227 /* 228 * For now we handle at most 16 double words as this is what the s390 base 229 * kernel handles and stores in the prefix page. If we ever need to go beyond 230 * this, this requires changes to code, but the external uapi can stay. 231 */ 232 #define SIZE_INTERNAL 16 233 234 /* 235 * Base feature mask that defines default mask for facilities. Consists of the 236 * defines in FACILITIES_KVM and the non-hypervisor managed bits. 237 */ 238 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM }; 239 /* 240 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL 241 * and defines the facilities that can be enabled via a cpu model. 242 */ 243 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL }; 244 245 static unsigned long kvm_s390_fac_size(void) 246 { 247 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64); 248 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64); 249 BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) > 250 sizeof(stfle_fac_list)); 251 252 return SIZE_INTERNAL; 253 } 254 255 /* available cpu features supported by kvm */ 256 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 257 /* available subfunctions indicated via query / "test bit" */ 258 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc; 259 260 static struct gmap_notifier gmap_notifier; 261 static struct gmap_notifier vsie_gmap_notifier; 262 debug_info_t *kvm_s390_dbf; 263 debug_info_t *kvm_s390_dbf_uv; 264 265 /* Section: not file related */ 266 /* forward declarations */ 267 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 268 unsigned long end); 269 static int sca_switch_to_extended(struct kvm *kvm); 270 271 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta) 272 { 273 u8 delta_idx = 0; 274 275 /* 276 * The TOD jumps by delta, we have to compensate this by adding 277 * -delta to the epoch. 278 */ 279 delta = -delta; 280 281 /* sign-extension - we're adding to signed values below */ 282 if ((s64)delta < 0) 283 delta_idx = -1; 284 285 scb->epoch += delta; 286 if (scb->ecd & ECD_MEF) { 287 scb->epdx += delta_idx; 288 if (scb->epoch < delta) 289 scb->epdx += 1; 290 } 291 } 292 293 /* 294 * This callback is executed during stop_machine(). All CPUs are therefore 295 * temporarily stopped. In order not to change guest behavior, we have to 296 * disable preemption whenever we touch the epoch of kvm and the VCPUs, 297 * so a CPU won't be stopped while calculating with the epoch. 298 */ 299 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, 300 void *v) 301 { 302 struct kvm *kvm; 303 struct kvm_vcpu *vcpu; 304 unsigned long i; 305 unsigned long long *delta = v; 306 307 list_for_each_entry(kvm, &vm_list, vm_list) { 308 kvm_for_each_vcpu(i, vcpu, kvm) { 309 kvm_clock_sync_scb(vcpu->arch.sie_block, *delta); 310 if (i == 0) { 311 kvm->arch.epoch = vcpu->arch.sie_block->epoch; 312 kvm->arch.epdx = vcpu->arch.sie_block->epdx; 313 } 314 if (vcpu->arch.cputm_enabled) 315 vcpu->arch.cputm_start += *delta; 316 if (vcpu->arch.vsie_block) 317 kvm_clock_sync_scb(vcpu->arch.vsie_block, 318 *delta); 319 } 320 } 321 return NOTIFY_OK; 322 } 323 324 static struct notifier_block kvm_clock_notifier = { 325 .notifier_call = kvm_clock_sync, 326 }; 327 328 static void allow_cpu_feat(unsigned long nr) 329 { 330 set_bit_inv(nr, kvm_s390_available_cpu_feat); 331 } 332 333 static inline int plo_test_bit(unsigned char nr) 334 { 335 unsigned long function = (unsigned long)nr | 0x100; 336 int cc; 337 338 asm volatile( 339 " lgr 0,%[function]\n" 340 /* Parameter registers are ignored for "test bit" */ 341 " plo 0,0,0,0(0)\n" 342 " ipm %0\n" 343 " srl %0,28\n" 344 : "=d" (cc) 345 : [function] "d" (function) 346 : "cc", "0"); 347 return cc == 0; 348 } 349 350 static __always_inline void __insn32_query(unsigned int opcode, u8 *query) 351 { 352 asm volatile( 353 " lghi 0,0\n" 354 " lgr 1,%[query]\n" 355 /* Parameter registers are ignored */ 356 " .insn rrf,%[opc] << 16,2,4,6,0\n" 357 : 358 : [query] "d" ((unsigned long)query), [opc] "i" (opcode) 359 : "cc", "memory", "0", "1"); 360 } 361 362 #define INSN_SORTL 0xb938 363 #define INSN_DFLTCC 0xb939 364 365 static void __init kvm_s390_cpu_feat_init(void) 366 { 367 int i; 368 369 for (i = 0; i < 256; ++i) { 370 if (plo_test_bit(i)) 371 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7); 372 } 373 374 if (test_facility(28)) /* TOD-clock steering */ 375 ptff(kvm_s390_available_subfunc.ptff, 376 sizeof(kvm_s390_available_subfunc.ptff), 377 PTFF_QAF); 378 379 if (test_facility(17)) { /* MSA */ 380 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *) 381 kvm_s390_available_subfunc.kmac); 382 __cpacf_query(CPACF_KMC, (cpacf_mask_t *) 383 kvm_s390_available_subfunc.kmc); 384 __cpacf_query(CPACF_KM, (cpacf_mask_t *) 385 kvm_s390_available_subfunc.km); 386 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *) 387 kvm_s390_available_subfunc.kimd); 388 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *) 389 kvm_s390_available_subfunc.klmd); 390 } 391 if (test_facility(76)) /* MSA3 */ 392 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *) 393 kvm_s390_available_subfunc.pckmo); 394 if (test_facility(77)) { /* MSA4 */ 395 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *) 396 kvm_s390_available_subfunc.kmctr); 397 __cpacf_query(CPACF_KMF, (cpacf_mask_t *) 398 kvm_s390_available_subfunc.kmf); 399 __cpacf_query(CPACF_KMO, (cpacf_mask_t *) 400 kvm_s390_available_subfunc.kmo); 401 __cpacf_query(CPACF_PCC, (cpacf_mask_t *) 402 kvm_s390_available_subfunc.pcc); 403 } 404 if (test_facility(57)) /* MSA5 */ 405 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *) 406 kvm_s390_available_subfunc.ppno); 407 408 if (test_facility(146)) /* MSA8 */ 409 __cpacf_query(CPACF_KMA, (cpacf_mask_t *) 410 kvm_s390_available_subfunc.kma); 411 412 if (test_facility(155)) /* MSA9 */ 413 __cpacf_query(CPACF_KDSA, (cpacf_mask_t *) 414 kvm_s390_available_subfunc.kdsa); 415 416 if (test_facility(150)) /* SORTL */ 417 __insn32_query(INSN_SORTL, kvm_s390_available_subfunc.sortl); 418 419 if (test_facility(151)) /* DFLTCC */ 420 __insn32_query(INSN_DFLTCC, kvm_s390_available_subfunc.dfltcc); 421 422 if (MACHINE_HAS_ESOP) 423 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP); 424 /* 425 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow), 426 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing). 427 */ 428 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao || 429 !test_facility(3) || !nested) 430 return; 431 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2); 432 if (sclp.has_64bscao) 433 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO); 434 if (sclp.has_siif) 435 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF); 436 if (sclp.has_gpere) 437 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE); 438 if (sclp.has_gsls) 439 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS); 440 if (sclp.has_ib) 441 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB); 442 if (sclp.has_cei) 443 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI); 444 if (sclp.has_ibs) 445 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS); 446 if (sclp.has_kss) 447 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS); 448 /* 449 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make 450 * all skey handling functions read/set the skey from the PGSTE 451 * instead of the real storage key. 452 * 453 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make 454 * pages being detected as preserved although they are resident. 455 * 456 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will 457 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY. 458 * 459 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and 460 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be 461 * correctly shadowed. We can do that for the PGSTE but not for PTE.I. 462 * 463 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We 464 * cannot easily shadow the SCA because of the ipte lock. 465 */ 466 } 467 468 static int __init __kvm_s390_init(void) 469 { 470 int rc = -ENOMEM; 471 472 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); 473 if (!kvm_s390_dbf) 474 return -ENOMEM; 475 476 kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long)); 477 if (!kvm_s390_dbf_uv) 478 goto err_kvm_uv; 479 480 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) || 481 debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view)) 482 goto err_debug_view; 483 484 kvm_s390_cpu_feat_init(); 485 486 /* Register floating interrupt controller interface. */ 487 rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); 488 if (rc) { 489 pr_err("A FLIC registration call failed with rc=%d\n", rc); 490 goto err_flic; 491 } 492 493 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 494 rc = kvm_s390_pci_init(); 495 if (rc) { 496 pr_err("Unable to allocate AIFT for PCI\n"); 497 goto err_pci; 498 } 499 } 500 501 rc = kvm_s390_gib_init(GAL_ISC); 502 if (rc) 503 goto err_gib; 504 505 gmap_notifier.notifier_call = kvm_gmap_notifier; 506 gmap_register_pte_notifier(&gmap_notifier); 507 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier; 508 gmap_register_pte_notifier(&vsie_gmap_notifier); 509 atomic_notifier_chain_register(&s390_epoch_delta_notifier, 510 &kvm_clock_notifier); 511 512 return 0; 513 514 err_gib: 515 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 516 kvm_s390_pci_exit(); 517 err_pci: 518 err_flic: 519 err_debug_view: 520 debug_unregister(kvm_s390_dbf_uv); 521 err_kvm_uv: 522 debug_unregister(kvm_s390_dbf); 523 return rc; 524 } 525 526 static void __kvm_s390_exit(void) 527 { 528 gmap_unregister_pte_notifier(&gmap_notifier); 529 gmap_unregister_pte_notifier(&vsie_gmap_notifier); 530 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, 531 &kvm_clock_notifier); 532 533 kvm_s390_gib_destroy(); 534 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 535 kvm_s390_pci_exit(); 536 debug_unregister(kvm_s390_dbf); 537 debug_unregister(kvm_s390_dbf_uv); 538 } 539 540 /* Section: device related */ 541 long kvm_arch_dev_ioctl(struct file *filp, 542 unsigned int ioctl, unsigned long arg) 543 { 544 if (ioctl == KVM_S390_ENABLE_SIE) 545 return s390_enable_sie(); 546 return -EINVAL; 547 } 548 549 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 550 { 551 int r; 552 553 switch (ext) { 554 case KVM_CAP_S390_PSW: 555 case KVM_CAP_S390_GMAP: 556 case KVM_CAP_SYNC_MMU: 557 #ifdef CONFIG_KVM_S390_UCONTROL 558 case KVM_CAP_S390_UCONTROL: 559 #endif 560 case KVM_CAP_ASYNC_PF: 561 case KVM_CAP_SYNC_REGS: 562 case KVM_CAP_ONE_REG: 563 case KVM_CAP_ENABLE_CAP: 564 case KVM_CAP_S390_CSS_SUPPORT: 565 case KVM_CAP_IOEVENTFD: 566 case KVM_CAP_DEVICE_CTRL: 567 case KVM_CAP_S390_IRQCHIP: 568 case KVM_CAP_VM_ATTRIBUTES: 569 case KVM_CAP_MP_STATE: 570 case KVM_CAP_IMMEDIATE_EXIT: 571 case KVM_CAP_S390_INJECT_IRQ: 572 case KVM_CAP_S390_USER_SIGP: 573 case KVM_CAP_S390_USER_STSI: 574 case KVM_CAP_S390_SKEYS: 575 case KVM_CAP_S390_IRQ_STATE: 576 case KVM_CAP_S390_USER_INSTR0: 577 case KVM_CAP_S390_CMMA_MIGRATION: 578 case KVM_CAP_S390_AIS: 579 case KVM_CAP_S390_AIS_MIGRATION: 580 case KVM_CAP_S390_VCPU_RESETS: 581 case KVM_CAP_SET_GUEST_DEBUG: 582 case KVM_CAP_S390_DIAG318: 583 case KVM_CAP_IRQFD_RESAMPLE: 584 r = 1; 585 break; 586 case KVM_CAP_SET_GUEST_DEBUG2: 587 r = KVM_GUESTDBG_VALID_MASK; 588 break; 589 case KVM_CAP_S390_HPAGE_1M: 590 r = 0; 591 if (hpage && !kvm_is_ucontrol(kvm)) 592 r = 1; 593 break; 594 case KVM_CAP_S390_MEM_OP: 595 r = MEM_OP_MAX_SIZE; 596 break; 597 case KVM_CAP_S390_MEM_OP_EXTENSION: 598 /* 599 * Flag bits indicating which extensions are supported. 600 * If r > 0, the base extension must also be supported/indicated, 601 * in order to maintain backwards compatibility. 602 */ 603 r = KVM_S390_MEMOP_EXTENSION_CAP_BASE | 604 KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG; 605 break; 606 case KVM_CAP_NR_VCPUS: 607 case KVM_CAP_MAX_VCPUS: 608 case KVM_CAP_MAX_VCPU_ID: 609 r = KVM_S390_BSCA_CPU_SLOTS; 610 if (!kvm_s390_use_sca_entries()) 611 r = KVM_MAX_VCPUS; 612 else if (sclp.has_esca && sclp.has_64bscao) 613 r = KVM_S390_ESCA_CPU_SLOTS; 614 if (ext == KVM_CAP_NR_VCPUS) 615 r = min_t(unsigned int, num_online_cpus(), r); 616 break; 617 case KVM_CAP_S390_COW: 618 r = MACHINE_HAS_ESOP; 619 break; 620 case KVM_CAP_S390_VECTOR_REGISTERS: 621 r = MACHINE_HAS_VX; 622 break; 623 case KVM_CAP_S390_RI: 624 r = test_facility(64); 625 break; 626 case KVM_CAP_S390_GS: 627 r = test_facility(133); 628 break; 629 case KVM_CAP_S390_BPB: 630 r = test_facility(82); 631 break; 632 case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE: 633 r = async_destroy && is_prot_virt_host(); 634 break; 635 case KVM_CAP_S390_PROTECTED: 636 r = is_prot_virt_host(); 637 break; 638 case KVM_CAP_S390_PROTECTED_DUMP: { 639 u64 pv_cmds_dump[] = { 640 BIT_UVC_CMD_DUMP_INIT, 641 BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE, 642 BIT_UVC_CMD_DUMP_CPU, 643 BIT_UVC_CMD_DUMP_COMPLETE, 644 }; 645 int i; 646 647 r = is_prot_virt_host(); 648 649 for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) { 650 if (!test_bit_inv(pv_cmds_dump[i], 651 (unsigned long *)&uv_info.inst_calls_list)) { 652 r = 0; 653 break; 654 } 655 } 656 break; 657 } 658 case KVM_CAP_S390_ZPCI_OP: 659 r = kvm_s390_pci_interp_allowed(); 660 break; 661 case KVM_CAP_S390_CPU_TOPOLOGY: 662 r = test_facility(11); 663 break; 664 default: 665 r = 0; 666 } 667 return r; 668 } 669 670 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 671 { 672 int i; 673 gfn_t cur_gfn, last_gfn; 674 unsigned long gaddr, vmaddr; 675 struct gmap *gmap = kvm->arch.gmap; 676 DECLARE_BITMAP(bitmap, _PAGE_ENTRIES); 677 678 /* Loop over all guest segments */ 679 cur_gfn = memslot->base_gfn; 680 last_gfn = memslot->base_gfn + memslot->npages; 681 for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) { 682 gaddr = gfn_to_gpa(cur_gfn); 683 vmaddr = gfn_to_hva_memslot(memslot, cur_gfn); 684 if (kvm_is_error_hva(vmaddr)) 685 continue; 686 687 bitmap_zero(bitmap, _PAGE_ENTRIES); 688 gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr); 689 for (i = 0; i < _PAGE_ENTRIES; i++) { 690 if (test_bit(i, bitmap)) 691 mark_page_dirty(kvm, cur_gfn + i); 692 } 693 694 if (fatal_signal_pending(current)) 695 return; 696 cond_resched(); 697 } 698 } 699 700 /* Section: vm related */ 701 static void sca_del_vcpu(struct kvm_vcpu *vcpu); 702 703 /* 704 * Get (and clear) the dirty memory log for a memory slot. 705 */ 706 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 707 struct kvm_dirty_log *log) 708 { 709 int r; 710 unsigned long n; 711 struct kvm_memory_slot *memslot; 712 int is_dirty; 713 714 if (kvm_is_ucontrol(kvm)) 715 return -EINVAL; 716 717 mutex_lock(&kvm->slots_lock); 718 719 r = -EINVAL; 720 if (log->slot >= KVM_USER_MEM_SLOTS) 721 goto out; 722 723 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot); 724 if (r) 725 goto out; 726 727 /* Clear the dirty log */ 728 if (is_dirty) { 729 n = kvm_dirty_bitmap_bytes(memslot); 730 memset(memslot->dirty_bitmap, 0, n); 731 } 732 r = 0; 733 out: 734 mutex_unlock(&kvm->slots_lock); 735 return r; 736 } 737 738 static void icpt_operexc_on_all_vcpus(struct kvm *kvm) 739 { 740 unsigned long i; 741 struct kvm_vcpu *vcpu; 742 743 kvm_for_each_vcpu(i, vcpu, kvm) { 744 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu); 745 } 746 } 747 748 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) 749 { 750 int r; 751 752 if (cap->flags) 753 return -EINVAL; 754 755 switch (cap->cap) { 756 case KVM_CAP_S390_IRQCHIP: 757 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP"); 758 kvm->arch.use_irqchip = 1; 759 r = 0; 760 break; 761 case KVM_CAP_S390_USER_SIGP: 762 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP"); 763 kvm->arch.user_sigp = 1; 764 r = 0; 765 break; 766 case KVM_CAP_S390_VECTOR_REGISTERS: 767 mutex_lock(&kvm->lock); 768 if (kvm->created_vcpus) { 769 r = -EBUSY; 770 } else if (MACHINE_HAS_VX) { 771 set_kvm_facility(kvm->arch.model.fac_mask, 129); 772 set_kvm_facility(kvm->arch.model.fac_list, 129); 773 if (test_facility(134)) { 774 set_kvm_facility(kvm->arch.model.fac_mask, 134); 775 set_kvm_facility(kvm->arch.model.fac_list, 134); 776 } 777 if (test_facility(135)) { 778 set_kvm_facility(kvm->arch.model.fac_mask, 135); 779 set_kvm_facility(kvm->arch.model.fac_list, 135); 780 } 781 if (test_facility(148)) { 782 set_kvm_facility(kvm->arch.model.fac_mask, 148); 783 set_kvm_facility(kvm->arch.model.fac_list, 148); 784 } 785 if (test_facility(152)) { 786 set_kvm_facility(kvm->arch.model.fac_mask, 152); 787 set_kvm_facility(kvm->arch.model.fac_list, 152); 788 } 789 if (test_facility(192)) { 790 set_kvm_facility(kvm->arch.model.fac_mask, 192); 791 set_kvm_facility(kvm->arch.model.fac_list, 192); 792 } 793 r = 0; 794 } else 795 r = -EINVAL; 796 mutex_unlock(&kvm->lock); 797 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s", 798 r ? "(not available)" : "(success)"); 799 break; 800 case KVM_CAP_S390_RI: 801 r = -EINVAL; 802 mutex_lock(&kvm->lock); 803 if (kvm->created_vcpus) { 804 r = -EBUSY; 805 } else if (test_facility(64)) { 806 set_kvm_facility(kvm->arch.model.fac_mask, 64); 807 set_kvm_facility(kvm->arch.model.fac_list, 64); 808 r = 0; 809 } 810 mutex_unlock(&kvm->lock); 811 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s", 812 r ? "(not available)" : "(success)"); 813 break; 814 case KVM_CAP_S390_AIS: 815 mutex_lock(&kvm->lock); 816 if (kvm->created_vcpus) { 817 r = -EBUSY; 818 } else { 819 set_kvm_facility(kvm->arch.model.fac_mask, 72); 820 set_kvm_facility(kvm->arch.model.fac_list, 72); 821 r = 0; 822 } 823 mutex_unlock(&kvm->lock); 824 VM_EVENT(kvm, 3, "ENABLE: AIS %s", 825 r ? "(not available)" : "(success)"); 826 break; 827 case KVM_CAP_S390_GS: 828 r = -EINVAL; 829 mutex_lock(&kvm->lock); 830 if (kvm->created_vcpus) { 831 r = -EBUSY; 832 } else if (test_facility(133)) { 833 set_kvm_facility(kvm->arch.model.fac_mask, 133); 834 set_kvm_facility(kvm->arch.model.fac_list, 133); 835 r = 0; 836 } 837 mutex_unlock(&kvm->lock); 838 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s", 839 r ? "(not available)" : "(success)"); 840 break; 841 case KVM_CAP_S390_HPAGE_1M: 842 mutex_lock(&kvm->lock); 843 if (kvm->created_vcpus) 844 r = -EBUSY; 845 else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm)) 846 r = -EINVAL; 847 else { 848 r = 0; 849 mmap_write_lock(kvm->mm); 850 kvm->mm->context.allow_gmap_hpage_1m = 1; 851 mmap_write_unlock(kvm->mm); 852 /* 853 * We might have to create fake 4k page 854 * tables. To avoid that the hardware works on 855 * stale PGSTEs, we emulate these instructions. 856 */ 857 kvm->arch.use_skf = 0; 858 kvm->arch.use_pfmfi = 0; 859 } 860 mutex_unlock(&kvm->lock); 861 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s", 862 r ? "(not available)" : "(success)"); 863 break; 864 case KVM_CAP_S390_USER_STSI: 865 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI"); 866 kvm->arch.user_stsi = 1; 867 r = 0; 868 break; 869 case KVM_CAP_S390_USER_INSTR0: 870 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0"); 871 kvm->arch.user_instr0 = 1; 872 icpt_operexc_on_all_vcpus(kvm); 873 r = 0; 874 break; 875 case KVM_CAP_S390_CPU_TOPOLOGY: 876 r = -EINVAL; 877 mutex_lock(&kvm->lock); 878 if (kvm->created_vcpus) { 879 r = -EBUSY; 880 } else if (test_facility(11)) { 881 set_kvm_facility(kvm->arch.model.fac_mask, 11); 882 set_kvm_facility(kvm->arch.model.fac_list, 11); 883 r = 0; 884 } 885 mutex_unlock(&kvm->lock); 886 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s", 887 r ? "(not available)" : "(success)"); 888 break; 889 default: 890 r = -EINVAL; 891 break; 892 } 893 return r; 894 } 895 896 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 897 { 898 int ret; 899 900 switch (attr->attr) { 901 case KVM_S390_VM_MEM_LIMIT_SIZE: 902 ret = 0; 903 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes", 904 kvm->arch.mem_limit); 905 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr)) 906 ret = -EFAULT; 907 break; 908 default: 909 ret = -ENXIO; 910 break; 911 } 912 return ret; 913 } 914 915 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 916 { 917 int ret; 918 unsigned int idx; 919 switch (attr->attr) { 920 case KVM_S390_VM_MEM_ENABLE_CMMA: 921 ret = -ENXIO; 922 if (!sclp.has_cmma) 923 break; 924 925 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support"); 926 mutex_lock(&kvm->lock); 927 if (kvm->created_vcpus) 928 ret = -EBUSY; 929 else if (kvm->mm->context.allow_gmap_hpage_1m) 930 ret = -EINVAL; 931 else { 932 kvm->arch.use_cmma = 1; 933 /* Not compatible with cmma. */ 934 kvm->arch.use_pfmfi = 0; 935 ret = 0; 936 } 937 mutex_unlock(&kvm->lock); 938 break; 939 case KVM_S390_VM_MEM_CLR_CMMA: 940 ret = -ENXIO; 941 if (!sclp.has_cmma) 942 break; 943 ret = -EINVAL; 944 if (!kvm->arch.use_cmma) 945 break; 946 947 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states"); 948 mutex_lock(&kvm->lock); 949 idx = srcu_read_lock(&kvm->srcu); 950 s390_reset_cmma(kvm->arch.gmap->mm); 951 srcu_read_unlock(&kvm->srcu, idx); 952 mutex_unlock(&kvm->lock); 953 ret = 0; 954 break; 955 case KVM_S390_VM_MEM_LIMIT_SIZE: { 956 unsigned long new_limit; 957 958 if (kvm_is_ucontrol(kvm)) 959 return -EINVAL; 960 961 if (get_user(new_limit, (u64 __user *)attr->addr)) 962 return -EFAULT; 963 964 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT && 965 new_limit > kvm->arch.mem_limit) 966 return -E2BIG; 967 968 if (!new_limit) 969 return -EINVAL; 970 971 /* gmap_create takes last usable address */ 972 if (new_limit != KVM_S390_NO_MEM_LIMIT) 973 new_limit -= 1; 974 975 ret = -EBUSY; 976 mutex_lock(&kvm->lock); 977 if (!kvm->created_vcpus) { 978 /* gmap_create will round the limit up */ 979 struct gmap *new = gmap_create(current->mm, new_limit); 980 981 if (!new) { 982 ret = -ENOMEM; 983 } else { 984 gmap_remove(kvm->arch.gmap); 985 new->private = kvm; 986 kvm->arch.gmap = new; 987 ret = 0; 988 } 989 } 990 mutex_unlock(&kvm->lock); 991 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit); 992 VM_EVENT(kvm, 3, "New guest asce: 0x%pK", 993 (void *) kvm->arch.gmap->asce); 994 break; 995 } 996 default: 997 ret = -ENXIO; 998 break; 999 } 1000 return ret; 1001 } 1002 1003 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu); 1004 1005 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm) 1006 { 1007 struct kvm_vcpu *vcpu; 1008 unsigned long i; 1009 1010 kvm_s390_vcpu_block_all(kvm); 1011 1012 kvm_for_each_vcpu(i, vcpu, kvm) { 1013 kvm_s390_vcpu_crypto_setup(vcpu); 1014 /* recreate the shadow crycb by leaving the VSIE handler */ 1015 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1016 } 1017 1018 kvm_s390_vcpu_unblock_all(kvm); 1019 } 1020 1021 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr) 1022 { 1023 mutex_lock(&kvm->lock); 1024 switch (attr->attr) { 1025 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 1026 if (!test_kvm_facility(kvm, 76)) { 1027 mutex_unlock(&kvm->lock); 1028 return -EINVAL; 1029 } 1030 get_random_bytes( 1031 kvm->arch.crypto.crycb->aes_wrapping_key_mask, 1032 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1033 kvm->arch.crypto.aes_kw = 1; 1034 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support"); 1035 break; 1036 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 1037 if (!test_kvm_facility(kvm, 76)) { 1038 mutex_unlock(&kvm->lock); 1039 return -EINVAL; 1040 } 1041 get_random_bytes( 1042 kvm->arch.crypto.crycb->dea_wrapping_key_mask, 1043 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1044 kvm->arch.crypto.dea_kw = 1; 1045 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support"); 1046 break; 1047 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 1048 if (!test_kvm_facility(kvm, 76)) { 1049 mutex_unlock(&kvm->lock); 1050 return -EINVAL; 1051 } 1052 kvm->arch.crypto.aes_kw = 0; 1053 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0, 1054 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1055 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support"); 1056 break; 1057 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 1058 if (!test_kvm_facility(kvm, 76)) { 1059 mutex_unlock(&kvm->lock); 1060 return -EINVAL; 1061 } 1062 kvm->arch.crypto.dea_kw = 0; 1063 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0, 1064 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1065 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support"); 1066 break; 1067 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 1068 if (!ap_instructions_available()) { 1069 mutex_unlock(&kvm->lock); 1070 return -EOPNOTSUPP; 1071 } 1072 kvm->arch.crypto.apie = 1; 1073 break; 1074 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 1075 if (!ap_instructions_available()) { 1076 mutex_unlock(&kvm->lock); 1077 return -EOPNOTSUPP; 1078 } 1079 kvm->arch.crypto.apie = 0; 1080 break; 1081 default: 1082 mutex_unlock(&kvm->lock); 1083 return -ENXIO; 1084 } 1085 1086 kvm_s390_vcpu_crypto_reset_all(kvm); 1087 mutex_unlock(&kvm->lock); 1088 return 0; 1089 } 1090 1091 static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu) 1092 { 1093 /* Only set the ECB bits after guest requests zPCI interpretation */ 1094 if (!vcpu->kvm->arch.use_zpci_interp) 1095 return; 1096 1097 vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI; 1098 vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI; 1099 } 1100 1101 void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm) 1102 { 1103 struct kvm_vcpu *vcpu; 1104 unsigned long i; 1105 1106 lockdep_assert_held(&kvm->lock); 1107 1108 if (!kvm_s390_pci_interp_allowed()) 1109 return; 1110 1111 /* 1112 * If host is configured for PCI and the necessary facilities are 1113 * available, turn on interpretation for the life of this guest 1114 */ 1115 kvm->arch.use_zpci_interp = 1; 1116 1117 kvm_s390_vcpu_block_all(kvm); 1118 1119 kvm_for_each_vcpu(i, vcpu, kvm) { 1120 kvm_s390_vcpu_pci_setup(vcpu); 1121 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1122 } 1123 1124 kvm_s390_vcpu_unblock_all(kvm); 1125 } 1126 1127 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req) 1128 { 1129 unsigned long cx; 1130 struct kvm_vcpu *vcpu; 1131 1132 kvm_for_each_vcpu(cx, vcpu, kvm) 1133 kvm_s390_sync_request(req, vcpu); 1134 } 1135 1136 /* 1137 * Must be called with kvm->srcu held to avoid races on memslots, and with 1138 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration. 1139 */ 1140 static int kvm_s390_vm_start_migration(struct kvm *kvm) 1141 { 1142 struct kvm_memory_slot *ms; 1143 struct kvm_memslots *slots; 1144 unsigned long ram_pages = 0; 1145 int bkt; 1146 1147 /* migration mode already enabled */ 1148 if (kvm->arch.migration_mode) 1149 return 0; 1150 slots = kvm_memslots(kvm); 1151 if (!slots || kvm_memslots_empty(slots)) 1152 return -EINVAL; 1153 1154 if (!kvm->arch.use_cmma) { 1155 kvm->arch.migration_mode = 1; 1156 return 0; 1157 } 1158 /* mark all the pages in active slots as dirty */ 1159 kvm_for_each_memslot(ms, bkt, slots) { 1160 if (!ms->dirty_bitmap) 1161 return -EINVAL; 1162 /* 1163 * The second half of the bitmap is only used on x86, 1164 * and would be wasted otherwise, so we put it to good 1165 * use here to keep track of the state of the storage 1166 * attributes. 1167 */ 1168 memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms)); 1169 ram_pages += ms->npages; 1170 } 1171 atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages); 1172 kvm->arch.migration_mode = 1; 1173 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION); 1174 return 0; 1175 } 1176 1177 /* 1178 * Must be called with kvm->slots_lock to avoid races with ourselves and 1179 * kvm_s390_vm_start_migration. 1180 */ 1181 static int kvm_s390_vm_stop_migration(struct kvm *kvm) 1182 { 1183 /* migration mode already disabled */ 1184 if (!kvm->arch.migration_mode) 1185 return 0; 1186 kvm->arch.migration_mode = 0; 1187 if (kvm->arch.use_cmma) 1188 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION); 1189 return 0; 1190 } 1191 1192 static int kvm_s390_vm_set_migration(struct kvm *kvm, 1193 struct kvm_device_attr *attr) 1194 { 1195 int res = -ENXIO; 1196 1197 mutex_lock(&kvm->slots_lock); 1198 switch (attr->attr) { 1199 case KVM_S390_VM_MIGRATION_START: 1200 res = kvm_s390_vm_start_migration(kvm); 1201 break; 1202 case KVM_S390_VM_MIGRATION_STOP: 1203 res = kvm_s390_vm_stop_migration(kvm); 1204 break; 1205 default: 1206 break; 1207 } 1208 mutex_unlock(&kvm->slots_lock); 1209 1210 return res; 1211 } 1212 1213 static int kvm_s390_vm_get_migration(struct kvm *kvm, 1214 struct kvm_device_attr *attr) 1215 { 1216 u64 mig = kvm->arch.migration_mode; 1217 1218 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS) 1219 return -ENXIO; 1220 1221 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig))) 1222 return -EFAULT; 1223 return 0; 1224 } 1225 1226 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod); 1227 1228 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1229 { 1230 struct kvm_s390_vm_tod_clock gtod; 1231 1232 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod))) 1233 return -EFAULT; 1234 1235 if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx) 1236 return -EINVAL; 1237 __kvm_s390_set_tod_clock(kvm, >od); 1238 1239 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx", 1240 gtod.epoch_idx, gtod.tod); 1241 1242 return 0; 1243 } 1244 1245 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1246 { 1247 u8 gtod_high; 1248 1249 if (copy_from_user(>od_high, (void __user *)attr->addr, 1250 sizeof(gtod_high))) 1251 return -EFAULT; 1252 1253 if (gtod_high != 0) 1254 return -EINVAL; 1255 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high); 1256 1257 return 0; 1258 } 1259 1260 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1261 { 1262 struct kvm_s390_vm_tod_clock gtod = { 0 }; 1263 1264 if (copy_from_user(>od.tod, (void __user *)attr->addr, 1265 sizeof(gtod.tod))) 1266 return -EFAULT; 1267 1268 __kvm_s390_set_tod_clock(kvm, >od); 1269 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod); 1270 return 0; 1271 } 1272 1273 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1274 { 1275 int ret; 1276 1277 if (attr->flags) 1278 return -EINVAL; 1279 1280 mutex_lock(&kvm->lock); 1281 /* 1282 * For protected guests, the TOD is managed by the ultravisor, so trying 1283 * to change it will never bring the expected results. 1284 */ 1285 if (kvm_s390_pv_is_protected(kvm)) { 1286 ret = -EOPNOTSUPP; 1287 goto out_unlock; 1288 } 1289 1290 switch (attr->attr) { 1291 case KVM_S390_VM_TOD_EXT: 1292 ret = kvm_s390_set_tod_ext(kvm, attr); 1293 break; 1294 case KVM_S390_VM_TOD_HIGH: 1295 ret = kvm_s390_set_tod_high(kvm, attr); 1296 break; 1297 case KVM_S390_VM_TOD_LOW: 1298 ret = kvm_s390_set_tod_low(kvm, attr); 1299 break; 1300 default: 1301 ret = -ENXIO; 1302 break; 1303 } 1304 1305 out_unlock: 1306 mutex_unlock(&kvm->lock); 1307 return ret; 1308 } 1309 1310 static void kvm_s390_get_tod_clock(struct kvm *kvm, 1311 struct kvm_s390_vm_tod_clock *gtod) 1312 { 1313 union tod_clock clk; 1314 1315 preempt_disable(); 1316 1317 store_tod_clock_ext(&clk); 1318 1319 gtod->tod = clk.tod + kvm->arch.epoch; 1320 gtod->epoch_idx = 0; 1321 if (test_kvm_facility(kvm, 139)) { 1322 gtod->epoch_idx = clk.ei + kvm->arch.epdx; 1323 if (gtod->tod < clk.tod) 1324 gtod->epoch_idx += 1; 1325 } 1326 1327 preempt_enable(); 1328 } 1329 1330 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1331 { 1332 struct kvm_s390_vm_tod_clock gtod; 1333 1334 memset(>od, 0, sizeof(gtod)); 1335 kvm_s390_get_tod_clock(kvm, >od); 1336 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1337 return -EFAULT; 1338 1339 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx", 1340 gtod.epoch_idx, gtod.tod); 1341 return 0; 1342 } 1343 1344 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1345 { 1346 u8 gtod_high = 0; 1347 1348 if (copy_to_user((void __user *)attr->addr, >od_high, 1349 sizeof(gtod_high))) 1350 return -EFAULT; 1351 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high); 1352 1353 return 0; 1354 } 1355 1356 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1357 { 1358 u64 gtod; 1359 1360 gtod = kvm_s390_get_tod_clock_fast(kvm); 1361 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1362 return -EFAULT; 1363 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod); 1364 1365 return 0; 1366 } 1367 1368 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1369 { 1370 int ret; 1371 1372 if (attr->flags) 1373 return -EINVAL; 1374 1375 switch (attr->attr) { 1376 case KVM_S390_VM_TOD_EXT: 1377 ret = kvm_s390_get_tod_ext(kvm, attr); 1378 break; 1379 case KVM_S390_VM_TOD_HIGH: 1380 ret = kvm_s390_get_tod_high(kvm, attr); 1381 break; 1382 case KVM_S390_VM_TOD_LOW: 1383 ret = kvm_s390_get_tod_low(kvm, attr); 1384 break; 1385 default: 1386 ret = -ENXIO; 1387 break; 1388 } 1389 return ret; 1390 } 1391 1392 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1393 { 1394 struct kvm_s390_vm_cpu_processor *proc; 1395 u16 lowest_ibc, unblocked_ibc; 1396 int ret = 0; 1397 1398 mutex_lock(&kvm->lock); 1399 if (kvm->created_vcpus) { 1400 ret = -EBUSY; 1401 goto out; 1402 } 1403 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1404 if (!proc) { 1405 ret = -ENOMEM; 1406 goto out; 1407 } 1408 if (!copy_from_user(proc, (void __user *)attr->addr, 1409 sizeof(*proc))) { 1410 kvm->arch.model.cpuid = proc->cpuid; 1411 lowest_ibc = sclp.ibc >> 16 & 0xfff; 1412 unblocked_ibc = sclp.ibc & 0xfff; 1413 if (lowest_ibc && proc->ibc) { 1414 if (proc->ibc > unblocked_ibc) 1415 kvm->arch.model.ibc = unblocked_ibc; 1416 else if (proc->ibc < lowest_ibc) 1417 kvm->arch.model.ibc = lowest_ibc; 1418 else 1419 kvm->arch.model.ibc = proc->ibc; 1420 } 1421 memcpy(kvm->arch.model.fac_list, proc->fac_list, 1422 S390_ARCH_FAC_LIST_SIZE_BYTE); 1423 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1424 kvm->arch.model.ibc, 1425 kvm->arch.model.cpuid); 1426 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1427 kvm->arch.model.fac_list[0], 1428 kvm->arch.model.fac_list[1], 1429 kvm->arch.model.fac_list[2]); 1430 } else 1431 ret = -EFAULT; 1432 kfree(proc); 1433 out: 1434 mutex_unlock(&kvm->lock); 1435 return ret; 1436 } 1437 1438 static int kvm_s390_set_processor_feat(struct kvm *kvm, 1439 struct kvm_device_attr *attr) 1440 { 1441 struct kvm_s390_vm_cpu_feat data; 1442 1443 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data))) 1444 return -EFAULT; 1445 if (!bitmap_subset((unsigned long *) data.feat, 1446 kvm_s390_available_cpu_feat, 1447 KVM_S390_VM_CPU_FEAT_NR_BITS)) 1448 return -EINVAL; 1449 1450 mutex_lock(&kvm->lock); 1451 if (kvm->created_vcpus) { 1452 mutex_unlock(&kvm->lock); 1453 return -EBUSY; 1454 } 1455 bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1456 mutex_unlock(&kvm->lock); 1457 VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1458 data.feat[0], 1459 data.feat[1], 1460 data.feat[2]); 1461 return 0; 1462 } 1463 1464 static int kvm_s390_set_processor_subfunc(struct kvm *kvm, 1465 struct kvm_device_attr *attr) 1466 { 1467 mutex_lock(&kvm->lock); 1468 if (kvm->created_vcpus) { 1469 mutex_unlock(&kvm->lock); 1470 return -EBUSY; 1471 } 1472 1473 if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr, 1474 sizeof(struct kvm_s390_vm_cpu_subfunc))) { 1475 mutex_unlock(&kvm->lock); 1476 return -EFAULT; 1477 } 1478 mutex_unlock(&kvm->lock); 1479 1480 VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1481 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1482 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1483 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1484 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1485 VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1486 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1487 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1488 VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1489 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1490 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1491 VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1492 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1493 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1494 VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx", 1495 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1496 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1497 VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1498 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1499 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1500 VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1501 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1502 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1503 VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1504 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1505 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1506 VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1507 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1508 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1509 VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1510 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1511 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1512 VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1513 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1514 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1515 VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1516 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1517 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1518 VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1519 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1520 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1521 VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1522 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1523 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1524 VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1525 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1526 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1527 VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1528 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1529 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1530 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1531 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1532 VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1533 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1534 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1535 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1536 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1537 1538 return 0; 1539 } 1540 1541 #define KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK \ 1542 ( \ 1543 ((struct kvm_s390_vm_cpu_uv_feat){ \ 1544 .ap = 1, \ 1545 .ap_intr = 1, \ 1546 }) \ 1547 .feat \ 1548 ) 1549 1550 static int kvm_s390_set_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1551 { 1552 struct kvm_s390_vm_cpu_uv_feat __user *ptr = (void __user *)attr->addr; 1553 unsigned long data, filter; 1554 1555 filter = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; 1556 if (get_user(data, &ptr->feat)) 1557 return -EFAULT; 1558 if (!bitmap_subset(&data, &filter, KVM_S390_VM_CPU_UV_FEAT_NR_BITS)) 1559 return -EINVAL; 1560 1561 mutex_lock(&kvm->lock); 1562 if (kvm->created_vcpus) { 1563 mutex_unlock(&kvm->lock); 1564 return -EBUSY; 1565 } 1566 kvm->arch.model.uv_feat_guest.feat = data; 1567 mutex_unlock(&kvm->lock); 1568 1569 VM_EVENT(kvm, 3, "SET: guest UV-feat: 0x%16.16lx", data); 1570 1571 return 0; 1572 } 1573 1574 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1575 { 1576 int ret = -ENXIO; 1577 1578 switch (attr->attr) { 1579 case KVM_S390_VM_CPU_PROCESSOR: 1580 ret = kvm_s390_set_processor(kvm, attr); 1581 break; 1582 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1583 ret = kvm_s390_set_processor_feat(kvm, attr); 1584 break; 1585 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1586 ret = kvm_s390_set_processor_subfunc(kvm, attr); 1587 break; 1588 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 1589 ret = kvm_s390_set_uv_feat(kvm, attr); 1590 break; 1591 } 1592 return ret; 1593 } 1594 1595 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1596 { 1597 struct kvm_s390_vm_cpu_processor *proc; 1598 int ret = 0; 1599 1600 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1601 if (!proc) { 1602 ret = -ENOMEM; 1603 goto out; 1604 } 1605 proc->cpuid = kvm->arch.model.cpuid; 1606 proc->ibc = kvm->arch.model.ibc; 1607 memcpy(&proc->fac_list, kvm->arch.model.fac_list, 1608 S390_ARCH_FAC_LIST_SIZE_BYTE); 1609 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1610 kvm->arch.model.ibc, 1611 kvm->arch.model.cpuid); 1612 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1613 kvm->arch.model.fac_list[0], 1614 kvm->arch.model.fac_list[1], 1615 kvm->arch.model.fac_list[2]); 1616 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc))) 1617 ret = -EFAULT; 1618 kfree(proc); 1619 out: 1620 return ret; 1621 } 1622 1623 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr) 1624 { 1625 struct kvm_s390_vm_cpu_machine *mach; 1626 int ret = 0; 1627 1628 mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT); 1629 if (!mach) { 1630 ret = -ENOMEM; 1631 goto out; 1632 } 1633 get_cpu_id((struct cpuid *) &mach->cpuid); 1634 mach->ibc = sclp.ibc; 1635 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask, 1636 S390_ARCH_FAC_LIST_SIZE_BYTE); 1637 memcpy((unsigned long *)&mach->fac_list, stfle_fac_list, 1638 sizeof(stfle_fac_list)); 1639 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx", 1640 kvm->arch.model.ibc, 1641 kvm->arch.model.cpuid); 1642 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx", 1643 mach->fac_mask[0], 1644 mach->fac_mask[1], 1645 mach->fac_mask[2]); 1646 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1647 mach->fac_list[0], 1648 mach->fac_list[1], 1649 mach->fac_list[2]); 1650 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach))) 1651 ret = -EFAULT; 1652 kfree(mach); 1653 out: 1654 return ret; 1655 } 1656 1657 static int kvm_s390_get_processor_feat(struct kvm *kvm, 1658 struct kvm_device_attr *attr) 1659 { 1660 struct kvm_s390_vm_cpu_feat data; 1661 1662 bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1663 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1664 return -EFAULT; 1665 VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1666 data.feat[0], 1667 data.feat[1], 1668 data.feat[2]); 1669 return 0; 1670 } 1671 1672 static int kvm_s390_get_machine_feat(struct kvm *kvm, 1673 struct kvm_device_attr *attr) 1674 { 1675 struct kvm_s390_vm_cpu_feat data; 1676 1677 bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1678 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1679 return -EFAULT; 1680 VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1681 data.feat[0], 1682 data.feat[1], 1683 data.feat[2]); 1684 return 0; 1685 } 1686 1687 static int kvm_s390_get_processor_subfunc(struct kvm *kvm, 1688 struct kvm_device_attr *attr) 1689 { 1690 if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs, 1691 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1692 return -EFAULT; 1693 1694 VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1695 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1696 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1697 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1698 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1699 VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1700 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1701 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1702 VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1703 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1704 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1705 VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1706 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1707 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1708 VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx", 1709 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1710 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1711 VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1712 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1713 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1714 VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1715 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1716 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1717 VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1718 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1719 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1720 VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1721 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1722 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1723 VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1724 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1725 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1726 VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1727 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1728 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1729 VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1730 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1731 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1732 VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1733 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1734 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1735 VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1736 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1737 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1738 VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1739 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1740 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1741 VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1742 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1743 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1744 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1745 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1746 VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1747 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1748 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1749 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1750 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1751 1752 return 0; 1753 } 1754 1755 static int kvm_s390_get_machine_subfunc(struct kvm *kvm, 1756 struct kvm_device_attr *attr) 1757 { 1758 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc, 1759 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1760 return -EFAULT; 1761 1762 VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1763 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0], 1764 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1], 1765 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2], 1766 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]); 1767 VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx", 1768 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0], 1769 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]); 1770 VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx", 1771 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0], 1772 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]); 1773 VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx", 1774 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0], 1775 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]); 1776 VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx", 1777 ((unsigned long *) &kvm_s390_available_subfunc.km)[0], 1778 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]); 1779 VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx", 1780 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0], 1781 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]); 1782 VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx", 1783 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0], 1784 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]); 1785 VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx", 1786 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0], 1787 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]); 1788 VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx", 1789 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0], 1790 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]); 1791 VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx", 1792 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0], 1793 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]); 1794 VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx", 1795 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0], 1796 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]); 1797 VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx", 1798 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0], 1799 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]); 1800 VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx", 1801 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0], 1802 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]); 1803 VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx", 1804 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0], 1805 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]); 1806 VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx", 1807 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0], 1808 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]); 1809 VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1810 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0], 1811 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1], 1812 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2], 1813 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]); 1814 VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1815 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0], 1816 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1], 1817 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2], 1818 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]); 1819 1820 return 0; 1821 } 1822 1823 static int kvm_s390_get_processor_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1824 { 1825 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; 1826 unsigned long feat = kvm->arch.model.uv_feat_guest.feat; 1827 1828 if (put_user(feat, &dst->feat)) 1829 return -EFAULT; 1830 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); 1831 1832 return 0; 1833 } 1834 1835 static int kvm_s390_get_machine_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1836 { 1837 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; 1838 unsigned long feat; 1839 1840 BUILD_BUG_ON(sizeof(*dst) != sizeof(uv_info.uv_feature_indications)); 1841 1842 feat = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; 1843 if (put_user(feat, &dst->feat)) 1844 return -EFAULT; 1845 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); 1846 1847 return 0; 1848 } 1849 1850 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1851 { 1852 int ret = -ENXIO; 1853 1854 switch (attr->attr) { 1855 case KVM_S390_VM_CPU_PROCESSOR: 1856 ret = kvm_s390_get_processor(kvm, attr); 1857 break; 1858 case KVM_S390_VM_CPU_MACHINE: 1859 ret = kvm_s390_get_machine(kvm, attr); 1860 break; 1861 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1862 ret = kvm_s390_get_processor_feat(kvm, attr); 1863 break; 1864 case KVM_S390_VM_CPU_MACHINE_FEAT: 1865 ret = kvm_s390_get_machine_feat(kvm, attr); 1866 break; 1867 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1868 ret = kvm_s390_get_processor_subfunc(kvm, attr); 1869 break; 1870 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1871 ret = kvm_s390_get_machine_subfunc(kvm, attr); 1872 break; 1873 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 1874 ret = kvm_s390_get_processor_uv_feat(kvm, attr); 1875 break; 1876 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: 1877 ret = kvm_s390_get_machine_uv_feat(kvm, attr); 1878 break; 1879 } 1880 return ret; 1881 } 1882 1883 /** 1884 * kvm_s390_update_topology_change_report - update CPU topology change report 1885 * @kvm: guest KVM description 1886 * @val: set or clear the MTCR bit 1887 * 1888 * Updates the Multiprocessor Topology-Change-Report bit to signal 1889 * the guest with a topology change. 1890 * This is only relevant if the topology facility is present. 1891 * 1892 * The SCA version, bsca or esca, doesn't matter as offset is the same. 1893 */ 1894 static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val) 1895 { 1896 union sca_utility new, old; 1897 struct bsca_block *sca; 1898 1899 read_lock(&kvm->arch.sca_lock); 1900 sca = kvm->arch.sca; 1901 do { 1902 old = READ_ONCE(sca->utility); 1903 new = old; 1904 new.mtcr = val; 1905 } while (cmpxchg(&sca->utility.val, old.val, new.val) != old.val); 1906 read_unlock(&kvm->arch.sca_lock); 1907 } 1908 1909 static int kvm_s390_set_topo_change_indication(struct kvm *kvm, 1910 struct kvm_device_attr *attr) 1911 { 1912 if (!test_kvm_facility(kvm, 11)) 1913 return -ENXIO; 1914 1915 kvm_s390_update_topology_change_report(kvm, !!attr->attr); 1916 return 0; 1917 } 1918 1919 static int kvm_s390_get_topo_change_indication(struct kvm *kvm, 1920 struct kvm_device_attr *attr) 1921 { 1922 u8 topo; 1923 1924 if (!test_kvm_facility(kvm, 11)) 1925 return -ENXIO; 1926 1927 read_lock(&kvm->arch.sca_lock); 1928 topo = ((struct bsca_block *)kvm->arch.sca)->utility.mtcr; 1929 read_unlock(&kvm->arch.sca_lock); 1930 1931 return put_user(topo, (u8 __user *)attr->addr); 1932 } 1933 1934 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1935 { 1936 int ret; 1937 1938 switch (attr->group) { 1939 case KVM_S390_VM_MEM_CTRL: 1940 ret = kvm_s390_set_mem_control(kvm, attr); 1941 break; 1942 case KVM_S390_VM_TOD: 1943 ret = kvm_s390_set_tod(kvm, attr); 1944 break; 1945 case KVM_S390_VM_CPU_MODEL: 1946 ret = kvm_s390_set_cpu_model(kvm, attr); 1947 break; 1948 case KVM_S390_VM_CRYPTO: 1949 ret = kvm_s390_vm_set_crypto(kvm, attr); 1950 break; 1951 case KVM_S390_VM_MIGRATION: 1952 ret = kvm_s390_vm_set_migration(kvm, attr); 1953 break; 1954 case KVM_S390_VM_CPU_TOPOLOGY: 1955 ret = kvm_s390_set_topo_change_indication(kvm, attr); 1956 break; 1957 default: 1958 ret = -ENXIO; 1959 break; 1960 } 1961 1962 return ret; 1963 } 1964 1965 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1966 { 1967 int ret; 1968 1969 switch (attr->group) { 1970 case KVM_S390_VM_MEM_CTRL: 1971 ret = kvm_s390_get_mem_control(kvm, attr); 1972 break; 1973 case KVM_S390_VM_TOD: 1974 ret = kvm_s390_get_tod(kvm, attr); 1975 break; 1976 case KVM_S390_VM_CPU_MODEL: 1977 ret = kvm_s390_get_cpu_model(kvm, attr); 1978 break; 1979 case KVM_S390_VM_MIGRATION: 1980 ret = kvm_s390_vm_get_migration(kvm, attr); 1981 break; 1982 case KVM_S390_VM_CPU_TOPOLOGY: 1983 ret = kvm_s390_get_topo_change_indication(kvm, attr); 1984 break; 1985 default: 1986 ret = -ENXIO; 1987 break; 1988 } 1989 1990 return ret; 1991 } 1992 1993 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1994 { 1995 int ret; 1996 1997 switch (attr->group) { 1998 case KVM_S390_VM_MEM_CTRL: 1999 switch (attr->attr) { 2000 case KVM_S390_VM_MEM_ENABLE_CMMA: 2001 case KVM_S390_VM_MEM_CLR_CMMA: 2002 ret = sclp.has_cmma ? 0 : -ENXIO; 2003 break; 2004 case KVM_S390_VM_MEM_LIMIT_SIZE: 2005 ret = 0; 2006 break; 2007 default: 2008 ret = -ENXIO; 2009 break; 2010 } 2011 break; 2012 case KVM_S390_VM_TOD: 2013 switch (attr->attr) { 2014 case KVM_S390_VM_TOD_LOW: 2015 case KVM_S390_VM_TOD_HIGH: 2016 ret = 0; 2017 break; 2018 default: 2019 ret = -ENXIO; 2020 break; 2021 } 2022 break; 2023 case KVM_S390_VM_CPU_MODEL: 2024 switch (attr->attr) { 2025 case KVM_S390_VM_CPU_PROCESSOR: 2026 case KVM_S390_VM_CPU_MACHINE: 2027 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 2028 case KVM_S390_VM_CPU_MACHINE_FEAT: 2029 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 2030 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 2031 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: 2032 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 2033 ret = 0; 2034 break; 2035 default: 2036 ret = -ENXIO; 2037 break; 2038 } 2039 break; 2040 case KVM_S390_VM_CRYPTO: 2041 switch (attr->attr) { 2042 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 2043 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 2044 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 2045 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 2046 ret = 0; 2047 break; 2048 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 2049 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 2050 ret = ap_instructions_available() ? 0 : -ENXIO; 2051 break; 2052 default: 2053 ret = -ENXIO; 2054 break; 2055 } 2056 break; 2057 case KVM_S390_VM_MIGRATION: 2058 ret = 0; 2059 break; 2060 case KVM_S390_VM_CPU_TOPOLOGY: 2061 ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO; 2062 break; 2063 default: 2064 ret = -ENXIO; 2065 break; 2066 } 2067 2068 return ret; 2069 } 2070 2071 static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 2072 { 2073 uint8_t *keys; 2074 uint64_t hva; 2075 int srcu_idx, i, r = 0; 2076 2077 if (args->flags != 0) 2078 return -EINVAL; 2079 2080 /* Is this guest using storage keys? */ 2081 if (!mm_uses_skeys(current->mm)) 2082 return KVM_S390_GET_SKEYS_NONE; 2083 2084 /* Enforce sane limit on memory allocation */ 2085 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2086 return -EINVAL; 2087 2088 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2089 if (!keys) 2090 return -ENOMEM; 2091 2092 mmap_read_lock(current->mm); 2093 srcu_idx = srcu_read_lock(&kvm->srcu); 2094 for (i = 0; i < args->count; i++) { 2095 hva = gfn_to_hva(kvm, args->start_gfn + i); 2096 if (kvm_is_error_hva(hva)) { 2097 r = -EFAULT; 2098 break; 2099 } 2100 2101 r = get_guest_storage_key(current->mm, hva, &keys[i]); 2102 if (r) 2103 break; 2104 } 2105 srcu_read_unlock(&kvm->srcu, srcu_idx); 2106 mmap_read_unlock(current->mm); 2107 2108 if (!r) { 2109 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys, 2110 sizeof(uint8_t) * args->count); 2111 if (r) 2112 r = -EFAULT; 2113 } 2114 2115 kvfree(keys); 2116 return r; 2117 } 2118 2119 static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 2120 { 2121 uint8_t *keys; 2122 uint64_t hva; 2123 int srcu_idx, i, r = 0; 2124 bool unlocked; 2125 2126 if (args->flags != 0) 2127 return -EINVAL; 2128 2129 /* Enforce sane limit on memory allocation */ 2130 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2131 return -EINVAL; 2132 2133 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2134 if (!keys) 2135 return -ENOMEM; 2136 2137 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr, 2138 sizeof(uint8_t) * args->count); 2139 if (r) { 2140 r = -EFAULT; 2141 goto out; 2142 } 2143 2144 /* Enable storage key handling for the guest */ 2145 r = s390_enable_skey(); 2146 if (r) 2147 goto out; 2148 2149 i = 0; 2150 mmap_read_lock(current->mm); 2151 srcu_idx = srcu_read_lock(&kvm->srcu); 2152 while (i < args->count) { 2153 unlocked = false; 2154 hva = gfn_to_hva(kvm, args->start_gfn + i); 2155 if (kvm_is_error_hva(hva)) { 2156 r = -EFAULT; 2157 break; 2158 } 2159 2160 /* Lowest order bit is reserved */ 2161 if (keys[i] & 0x01) { 2162 r = -EINVAL; 2163 break; 2164 } 2165 2166 r = set_guest_storage_key(current->mm, hva, keys[i], 0); 2167 if (r) { 2168 r = fixup_user_fault(current->mm, hva, 2169 FAULT_FLAG_WRITE, &unlocked); 2170 if (r) 2171 break; 2172 } 2173 if (!r) 2174 i++; 2175 } 2176 srcu_read_unlock(&kvm->srcu, srcu_idx); 2177 mmap_read_unlock(current->mm); 2178 out: 2179 kvfree(keys); 2180 return r; 2181 } 2182 2183 /* 2184 * Base address and length must be sent at the start of each block, therefore 2185 * it's cheaper to send some clean data, as long as it's less than the size of 2186 * two longs. 2187 */ 2188 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *)) 2189 /* for consistency */ 2190 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX) 2191 2192 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2193 u8 *res, unsigned long bufsize) 2194 { 2195 unsigned long pgstev, hva, cur_gfn = args->start_gfn; 2196 2197 args->count = 0; 2198 while (args->count < bufsize) { 2199 hva = gfn_to_hva(kvm, cur_gfn); 2200 /* 2201 * We return an error if the first value was invalid, but we 2202 * return successfully if at least one value was copied. 2203 */ 2204 if (kvm_is_error_hva(hva)) 2205 return args->count ? 0 : -EFAULT; 2206 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2207 pgstev = 0; 2208 res[args->count++] = (pgstev >> 24) & 0x43; 2209 cur_gfn++; 2210 } 2211 2212 return 0; 2213 } 2214 2215 static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots, 2216 gfn_t gfn) 2217 { 2218 return ____gfn_to_memslot(slots, gfn, true); 2219 } 2220 2221 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots, 2222 unsigned long cur_gfn) 2223 { 2224 struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn); 2225 unsigned long ofs = cur_gfn - ms->base_gfn; 2226 struct rb_node *mnode = &ms->gfn_node[slots->node_idx]; 2227 2228 if (ms->base_gfn + ms->npages <= cur_gfn) { 2229 mnode = rb_next(mnode); 2230 /* If we are above the highest slot, wrap around */ 2231 if (!mnode) 2232 mnode = rb_first(&slots->gfn_tree); 2233 2234 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2235 ofs = 0; 2236 } 2237 2238 if (cur_gfn < ms->base_gfn) 2239 ofs = 0; 2240 2241 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs); 2242 while (ofs >= ms->npages && (mnode = rb_next(mnode))) { 2243 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2244 ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages); 2245 } 2246 return ms->base_gfn + ofs; 2247 } 2248 2249 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2250 u8 *res, unsigned long bufsize) 2251 { 2252 unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev; 2253 struct kvm_memslots *slots = kvm_memslots(kvm); 2254 struct kvm_memory_slot *ms; 2255 2256 if (unlikely(kvm_memslots_empty(slots))) 2257 return 0; 2258 2259 cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn); 2260 ms = gfn_to_memslot(kvm, cur_gfn); 2261 args->count = 0; 2262 args->start_gfn = cur_gfn; 2263 if (!ms) 2264 return 0; 2265 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2266 mem_end = kvm_s390_get_gfn_end(slots); 2267 2268 while (args->count < bufsize) { 2269 hva = gfn_to_hva(kvm, cur_gfn); 2270 if (kvm_is_error_hva(hva)) 2271 return 0; 2272 /* Decrement only if we actually flipped the bit to 0 */ 2273 if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms))) 2274 atomic64_dec(&kvm->arch.cmma_dirty_pages); 2275 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2276 pgstev = 0; 2277 /* Save the value */ 2278 res[args->count++] = (pgstev >> 24) & 0x43; 2279 /* If the next bit is too far away, stop. */ 2280 if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE) 2281 return 0; 2282 /* If we reached the previous "next", find the next one */ 2283 if (cur_gfn == next_gfn) 2284 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2285 /* Reached the end of memory or of the buffer, stop */ 2286 if ((next_gfn >= mem_end) || 2287 (next_gfn - args->start_gfn >= bufsize)) 2288 return 0; 2289 cur_gfn++; 2290 /* Reached the end of the current memslot, take the next one. */ 2291 if (cur_gfn - ms->base_gfn >= ms->npages) { 2292 ms = gfn_to_memslot(kvm, cur_gfn); 2293 if (!ms) 2294 return 0; 2295 } 2296 } 2297 return 0; 2298 } 2299 2300 /* 2301 * This function searches for the next page with dirty CMMA attributes, and 2302 * saves the attributes in the buffer up to either the end of the buffer or 2303 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found; 2304 * no trailing clean bytes are saved. 2305 * In case no dirty bits were found, or if CMMA was not enabled or used, the 2306 * output buffer will indicate 0 as length. 2307 */ 2308 static int kvm_s390_get_cmma_bits(struct kvm *kvm, 2309 struct kvm_s390_cmma_log *args) 2310 { 2311 unsigned long bufsize; 2312 int srcu_idx, peek, ret; 2313 u8 *values; 2314 2315 if (!kvm->arch.use_cmma) 2316 return -ENXIO; 2317 /* Invalid/unsupported flags were specified */ 2318 if (args->flags & ~KVM_S390_CMMA_PEEK) 2319 return -EINVAL; 2320 /* Migration mode query, and we are not doing a migration */ 2321 peek = !!(args->flags & KVM_S390_CMMA_PEEK); 2322 if (!peek && !kvm->arch.migration_mode) 2323 return -EINVAL; 2324 /* CMMA is disabled or was not used, or the buffer has length zero */ 2325 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX); 2326 if (!bufsize || !kvm->mm->context.uses_cmm) { 2327 memset(args, 0, sizeof(*args)); 2328 return 0; 2329 } 2330 /* We are not peeking, and there are no dirty pages */ 2331 if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) { 2332 memset(args, 0, sizeof(*args)); 2333 return 0; 2334 } 2335 2336 values = vmalloc(bufsize); 2337 if (!values) 2338 return -ENOMEM; 2339 2340 mmap_read_lock(kvm->mm); 2341 srcu_idx = srcu_read_lock(&kvm->srcu); 2342 if (peek) 2343 ret = kvm_s390_peek_cmma(kvm, args, values, bufsize); 2344 else 2345 ret = kvm_s390_get_cmma(kvm, args, values, bufsize); 2346 srcu_read_unlock(&kvm->srcu, srcu_idx); 2347 mmap_read_unlock(kvm->mm); 2348 2349 if (kvm->arch.migration_mode) 2350 args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages); 2351 else 2352 args->remaining = 0; 2353 2354 if (copy_to_user((void __user *)args->values, values, args->count)) 2355 ret = -EFAULT; 2356 2357 vfree(values); 2358 return ret; 2359 } 2360 2361 /* 2362 * This function sets the CMMA attributes for the given pages. If the input 2363 * buffer has zero length, no action is taken, otherwise the attributes are 2364 * set and the mm->context.uses_cmm flag is set. 2365 */ 2366 static int kvm_s390_set_cmma_bits(struct kvm *kvm, 2367 const struct kvm_s390_cmma_log *args) 2368 { 2369 unsigned long hva, mask, pgstev, i; 2370 uint8_t *bits; 2371 int srcu_idx, r = 0; 2372 2373 mask = args->mask; 2374 2375 if (!kvm->arch.use_cmma) 2376 return -ENXIO; 2377 /* invalid/unsupported flags */ 2378 if (args->flags != 0) 2379 return -EINVAL; 2380 /* Enforce sane limit on memory allocation */ 2381 if (args->count > KVM_S390_CMMA_SIZE_MAX) 2382 return -EINVAL; 2383 /* Nothing to do */ 2384 if (args->count == 0) 2385 return 0; 2386 2387 bits = vmalloc(array_size(sizeof(*bits), args->count)); 2388 if (!bits) 2389 return -ENOMEM; 2390 2391 r = copy_from_user(bits, (void __user *)args->values, args->count); 2392 if (r) { 2393 r = -EFAULT; 2394 goto out; 2395 } 2396 2397 mmap_read_lock(kvm->mm); 2398 srcu_idx = srcu_read_lock(&kvm->srcu); 2399 for (i = 0; i < args->count; i++) { 2400 hva = gfn_to_hva(kvm, args->start_gfn + i); 2401 if (kvm_is_error_hva(hva)) { 2402 r = -EFAULT; 2403 break; 2404 } 2405 2406 pgstev = bits[i]; 2407 pgstev = pgstev << 24; 2408 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT; 2409 set_pgste_bits(kvm->mm, hva, mask, pgstev); 2410 } 2411 srcu_read_unlock(&kvm->srcu, srcu_idx); 2412 mmap_read_unlock(kvm->mm); 2413 2414 if (!kvm->mm->context.uses_cmm) { 2415 mmap_write_lock(kvm->mm); 2416 kvm->mm->context.uses_cmm = 1; 2417 mmap_write_unlock(kvm->mm); 2418 } 2419 out: 2420 vfree(bits); 2421 return r; 2422 } 2423 2424 /** 2425 * kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to 2426 * non protected. 2427 * @kvm: the VM whose protected vCPUs are to be converted 2428 * @rc: return value for the RC field of the UVC (in case of error) 2429 * @rrc: return value for the RRC field of the UVC (in case of error) 2430 * 2431 * Does not stop in case of error, tries to convert as many 2432 * CPUs as possible. In case of error, the RC and RRC of the last error are 2433 * returned. 2434 * 2435 * Return: 0 in case of success, otherwise -EIO 2436 */ 2437 int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2438 { 2439 struct kvm_vcpu *vcpu; 2440 unsigned long i; 2441 u16 _rc, _rrc; 2442 int ret = 0; 2443 2444 /* 2445 * We ignore failures and try to destroy as many CPUs as possible. 2446 * At the same time we must not free the assigned resources when 2447 * this fails, as the ultravisor has still access to that memory. 2448 * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak 2449 * behind. 2450 * We want to return the first failure rc and rrc, though. 2451 */ 2452 kvm_for_each_vcpu(i, vcpu, kvm) { 2453 mutex_lock(&vcpu->mutex); 2454 if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) { 2455 *rc = _rc; 2456 *rrc = _rrc; 2457 ret = -EIO; 2458 } 2459 mutex_unlock(&vcpu->mutex); 2460 } 2461 /* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */ 2462 if (use_gisa) 2463 kvm_s390_gisa_enable(kvm); 2464 return ret; 2465 } 2466 2467 /** 2468 * kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM 2469 * to protected. 2470 * @kvm: the VM whose protected vCPUs are to be converted 2471 * @rc: return value for the RC field of the UVC (in case of error) 2472 * @rrc: return value for the RRC field of the UVC (in case of error) 2473 * 2474 * Tries to undo the conversion in case of error. 2475 * 2476 * Return: 0 in case of success, otherwise -EIO 2477 */ 2478 static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2479 { 2480 unsigned long i; 2481 int r = 0; 2482 u16 dummy; 2483 2484 struct kvm_vcpu *vcpu; 2485 2486 /* Disable the GISA if the ultravisor does not support AIV. */ 2487 if (!uv_has_feature(BIT_UV_FEAT_AIV)) 2488 kvm_s390_gisa_disable(kvm); 2489 2490 kvm_for_each_vcpu(i, vcpu, kvm) { 2491 mutex_lock(&vcpu->mutex); 2492 r = kvm_s390_pv_create_cpu(vcpu, rc, rrc); 2493 mutex_unlock(&vcpu->mutex); 2494 if (r) 2495 break; 2496 } 2497 if (r) 2498 kvm_s390_cpus_from_pv(kvm, &dummy, &dummy); 2499 return r; 2500 } 2501 2502 /* 2503 * Here we provide user space with a direct interface to query UV 2504 * related data like UV maxima and available features as well as 2505 * feature specific data. 2506 * 2507 * To facilitate future extension of the data structures we'll try to 2508 * write data up to the maximum requested length. 2509 */ 2510 static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info) 2511 { 2512 ssize_t len_min; 2513 2514 switch (info->header.id) { 2515 case KVM_PV_INFO_VM: { 2516 len_min = sizeof(info->header) + sizeof(info->vm); 2517 2518 if (info->header.len_max < len_min) 2519 return -EINVAL; 2520 2521 memcpy(info->vm.inst_calls_list, 2522 uv_info.inst_calls_list, 2523 sizeof(uv_info.inst_calls_list)); 2524 2525 /* It's max cpuid not max cpus, so it's off by one */ 2526 info->vm.max_cpus = uv_info.max_guest_cpu_id + 1; 2527 info->vm.max_guests = uv_info.max_num_sec_conf; 2528 info->vm.max_guest_addr = uv_info.max_sec_stor_addr; 2529 info->vm.feature_indication = uv_info.uv_feature_indications; 2530 2531 return len_min; 2532 } 2533 case KVM_PV_INFO_DUMP: { 2534 len_min = sizeof(info->header) + sizeof(info->dump); 2535 2536 if (info->header.len_max < len_min) 2537 return -EINVAL; 2538 2539 info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len; 2540 info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len; 2541 info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len; 2542 return len_min; 2543 } 2544 default: 2545 return -EINVAL; 2546 } 2547 } 2548 2549 static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd, 2550 struct kvm_s390_pv_dmp dmp) 2551 { 2552 int r = -EINVAL; 2553 void __user *result_buff = (void __user *)dmp.buff_addr; 2554 2555 switch (dmp.subcmd) { 2556 case KVM_PV_DUMP_INIT: { 2557 if (kvm->arch.pv.dumping) 2558 break; 2559 2560 /* 2561 * Block SIE entry as concurrent dump UVCs could lead 2562 * to validities. 2563 */ 2564 kvm_s390_vcpu_block_all(kvm); 2565 2566 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2567 UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc); 2568 KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x", 2569 cmd->rc, cmd->rrc); 2570 if (!r) { 2571 kvm->arch.pv.dumping = true; 2572 } else { 2573 kvm_s390_vcpu_unblock_all(kvm); 2574 r = -EINVAL; 2575 } 2576 break; 2577 } 2578 case KVM_PV_DUMP_CONFIG_STOR_STATE: { 2579 if (!kvm->arch.pv.dumping) 2580 break; 2581 2582 /* 2583 * gaddr is an output parameter since we might stop 2584 * early. As dmp will be copied back in our caller, we 2585 * don't need to do it ourselves. 2586 */ 2587 r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len, 2588 &cmd->rc, &cmd->rrc); 2589 break; 2590 } 2591 case KVM_PV_DUMP_COMPLETE: { 2592 if (!kvm->arch.pv.dumping) 2593 break; 2594 2595 r = -EINVAL; 2596 if (dmp.buff_len < uv_info.conf_dump_finalize_len) 2597 break; 2598 2599 r = kvm_s390_pv_dump_complete(kvm, result_buff, 2600 &cmd->rc, &cmd->rrc); 2601 break; 2602 } 2603 default: 2604 r = -ENOTTY; 2605 break; 2606 } 2607 2608 return r; 2609 } 2610 2611 static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd) 2612 { 2613 const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM); 2614 void __user *argp = (void __user *)cmd->data; 2615 int r = 0; 2616 u16 dummy; 2617 2618 if (need_lock) 2619 mutex_lock(&kvm->lock); 2620 2621 switch (cmd->cmd) { 2622 case KVM_PV_ENABLE: { 2623 r = -EINVAL; 2624 if (kvm_s390_pv_is_protected(kvm)) 2625 break; 2626 2627 /* 2628 * FMT 4 SIE needs esca. As we never switch back to bsca from 2629 * esca, we need no cleanup in the error cases below 2630 */ 2631 r = sca_switch_to_extended(kvm); 2632 if (r) 2633 break; 2634 2635 mmap_write_lock(current->mm); 2636 r = gmap_mark_unmergeable(); 2637 mmap_write_unlock(current->mm); 2638 if (r) 2639 break; 2640 2641 r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc); 2642 if (r) 2643 break; 2644 2645 r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc); 2646 if (r) 2647 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy); 2648 2649 /* we need to block service interrupts from now on */ 2650 set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2651 break; 2652 } 2653 case KVM_PV_ASYNC_CLEANUP_PREPARE: 2654 r = -EINVAL; 2655 if (!kvm_s390_pv_is_protected(kvm) || !async_destroy) 2656 break; 2657 2658 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2659 /* 2660 * If a CPU could not be destroyed, destroy VM will also fail. 2661 * There is no point in trying to destroy it. Instead return 2662 * the rc and rrc from the first CPU that failed destroying. 2663 */ 2664 if (r) 2665 break; 2666 r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc); 2667 2668 /* no need to block service interrupts any more */ 2669 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2670 break; 2671 case KVM_PV_ASYNC_CLEANUP_PERFORM: 2672 r = -EINVAL; 2673 if (!async_destroy) 2674 break; 2675 /* kvm->lock must not be held; this is asserted inside the function. */ 2676 r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc); 2677 break; 2678 case KVM_PV_DISABLE: { 2679 r = -EINVAL; 2680 if (!kvm_s390_pv_is_protected(kvm)) 2681 break; 2682 2683 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2684 /* 2685 * If a CPU could not be destroyed, destroy VM will also fail. 2686 * There is no point in trying to destroy it. Instead return 2687 * the rc and rrc from the first CPU that failed destroying. 2688 */ 2689 if (r) 2690 break; 2691 r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc); 2692 2693 /* no need to block service interrupts any more */ 2694 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2695 break; 2696 } 2697 case KVM_PV_SET_SEC_PARMS: { 2698 struct kvm_s390_pv_sec_parm parms = {}; 2699 void *hdr; 2700 2701 r = -EINVAL; 2702 if (!kvm_s390_pv_is_protected(kvm)) 2703 break; 2704 2705 r = -EFAULT; 2706 if (copy_from_user(&parms, argp, sizeof(parms))) 2707 break; 2708 2709 /* Currently restricted to 8KB */ 2710 r = -EINVAL; 2711 if (parms.length > PAGE_SIZE * 2) 2712 break; 2713 2714 r = -ENOMEM; 2715 hdr = vmalloc(parms.length); 2716 if (!hdr) 2717 break; 2718 2719 r = -EFAULT; 2720 if (!copy_from_user(hdr, (void __user *)parms.origin, 2721 parms.length)) 2722 r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length, 2723 &cmd->rc, &cmd->rrc); 2724 2725 vfree(hdr); 2726 break; 2727 } 2728 case KVM_PV_UNPACK: { 2729 struct kvm_s390_pv_unp unp = {}; 2730 2731 r = -EINVAL; 2732 if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm)) 2733 break; 2734 2735 r = -EFAULT; 2736 if (copy_from_user(&unp, argp, sizeof(unp))) 2737 break; 2738 2739 r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak, 2740 &cmd->rc, &cmd->rrc); 2741 break; 2742 } 2743 case KVM_PV_VERIFY: { 2744 r = -EINVAL; 2745 if (!kvm_s390_pv_is_protected(kvm)) 2746 break; 2747 2748 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2749 UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc); 2750 KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc, 2751 cmd->rrc); 2752 break; 2753 } 2754 case KVM_PV_PREP_RESET: { 2755 r = -EINVAL; 2756 if (!kvm_s390_pv_is_protected(kvm)) 2757 break; 2758 2759 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2760 UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc); 2761 KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x", 2762 cmd->rc, cmd->rrc); 2763 break; 2764 } 2765 case KVM_PV_UNSHARE_ALL: { 2766 r = -EINVAL; 2767 if (!kvm_s390_pv_is_protected(kvm)) 2768 break; 2769 2770 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2771 UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc); 2772 KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x", 2773 cmd->rc, cmd->rrc); 2774 break; 2775 } 2776 case KVM_PV_INFO: { 2777 struct kvm_s390_pv_info info = {}; 2778 ssize_t data_len; 2779 2780 /* 2781 * No need to check the VM protection here. 2782 * 2783 * Maybe user space wants to query some of the data 2784 * when the VM is still unprotected. If we see the 2785 * need to fence a new data command we can still 2786 * return an error in the info handler. 2787 */ 2788 2789 r = -EFAULT; 2790 if (copy_from_user(&info, argp, sizeof(info.header))) 2791 break; 2792 2793 r = -EINVAL; 2794 if (info.header.len_max < sizeof(info.header)) 2795 break; 2796 2797 data_len = kvm_s390_handle_pv_info(&info); 2798 if (data_len < 0) { 2799 r = data_len; 2800 break; 2801 } 2802 /* 2803 * If a data command struct is extended (multiple 2804 * times) this can be used to determine how much of it 2805 * is valid. 2806 */ 2807 info.header.len_written = data_len; 2808 2809 r = -EFAULT; 2810 if (copy_to_user(argp, &info, data_len)) 2811 break; 2812 2813 r = 0; 2814 break; 2815 } 2816 case KVM_PV_DUMP: { 2817 struct kvm_s390_pv_dmp dmp; 2818 2819 r = -EINVAL; 2820 if (!kvm_s390_pv_is_protected(kvm)) 2821 break; 2822 2823 r = -EFAULT; 2824 if (copy_from_user(&dmp, argp, sizeof(dmp))) 2825 break; 2826 2827 r = kvm_s390_pv_dmp(kvm, cmd, dmp); 2828 if (r) 2829 break; 2830 2831 if (copy_to_user(argp, &dmp, sizeof(dmp))) { 2832 r = -EFAULT; 2833 break; 2834 } 2835 2836 break; 2837 } 2838 default: 2839 r = -ENOTTY; 2840 } 2841 if (need_lock) 2842 mutex_unlock(&kvm->lock); 2843 2844 return r; 2845 } 2846 2847 static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags) 2848 { 2849 if (mop->flags & ~supported_flags || !mop->size) 2850 return -EINVAL; 2851 if (mop->size > MEM_OP_MAX_SIZE) 2852 return -E2BIG; 2853 if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) { 2854 if (mop->key > 0xf) 2855 return -EINVAL; 2856 } else { 2857 mop->key = 0; 2858 } 2859 return 0; 2860 } 2861 2862 static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2863 { 2864 void __user *uaddr = (void __user *)mop->buf; 2865 enum gacc_mode acc_mode; 2866 void *tmpbuf = NULL; 2867 int r, srcu_idx; 2868 2869 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION | 2870 KVM_S390_MEMOP_F_CHECK_ONLY); 2871 if (r) 2872 return r; 2873 2874 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 2875 tmpbuf = vmalloc(mop->size); 2876 if (!tmpbuf) 2877 return -ENOMEM; 2878 } 2879 2880 srcu_idx = srcu_read_lock(&kvm->srcu); 2881 2882 if (kvm_is_error_gpa(kvm, mop->gaddr)) { 2883 r = PGM_ADDRESSING; 2884 goto out_unlock; 2885 } 2886 2887 acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE; 2888 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 2889 r = check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key); 2890 goto out_unlock; 2891 } 2892 if (acc_mode == GACC_FETCH) { 2893 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2894 mop->size, GACC_FETCH, mop->key); 2895 if (r) 2896 goto out_unlock; 2897 if (copy_to_user(uaddr, tmpbuf, mop->size)) 2898 r = -EFAULT; 2899 } else { 2900 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 2901 r = -EFAULT; 2902 goto out_unlock; 2903 } 2904 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2905 mop->size, GACC_STORE, mop->key); 2906 } 2907 2908 out_unlock: 2909 srcu_read_unlock(&kvm->srcu, srcu_idx); 2910 2911 vfree(tmpbuf); 2912 return r; 2913 } 2914 2915 static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2916 { 2917 void __user *uaddr = (void __user *)mop->buf; 2918 void __user *old_addr = (void __user *)mop->old_addr; 2919 union { 2920 __uint128_t quad; 2921 char raw[sizeof(__uint128_t)]; 2922 } old = { .quad = 0}, new = { .quad = 0 }; 2923 unsigned int off_in_quad = sizeof(new) - mop->size; 2924 int r, srcu_idx; 2925 bool success; 2926 2927 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION); 2928 if (r) 2929 return r; 2930 /* 2931 * This validates off_in_quad. Checking that size is a power 2932 * of two is not necessary, as cmpxchg_guest_abs_with_key 2933 * takes care of that 2934 */ 2935 if (mop->size > sizeof(new)) 2936 return -EINVAL; 2937 if (copy_from_user(&new.raw[off_in_quad], uaddr, mop->size)) 2938 return -EFAULT; 2939 if (copy_from_user(&old.raw[off_in_quad], old_addr, mop->size)) 2940 return -EFAULT; 2941 2942 srcu_idx = srcu_read_lock(&kvm->srcu); 2943 2944 if (kvm_is_error_gpa(kvm, mop->gaddr)) { 2945 r = PGM_ADDRESSING; 2946 goto out_unlock; 2947 } 2948 2949 r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old.quad, 2950 new.quad, mop->key, &success); 2951 if (!success && copy_to_user(old_addr, &old.raw[off_in_quad], mop->size)) 2952 r = -EFAULT; 2953 2954 out_unlock: 2955 srcu_read_unlock(&kvm->srcu, srcu_idx); 2956 return r; 2957 } 2958 2959 static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2960 { 2961 /* 2962 * This is technically a heuristic only, if the kvm->lock is not 2963 * taken, it is not guaranteed that the vm is/remains non-protected. 2964 * This is ok from a kernel perspective, wrongdoing is detected 2965 * on the access, -EFAULT is returned and the vm may crash the 2966 * next time it accesses the memory in question. 2967 * There is no sane usecase to do switching and a memop on two 2968 * different CPUs at the same time. 2969 */ 2970 if (kvm_s390_pv_get_handle(kvm)) 2971 return -EINVAL; 2972 2973 switch (mop->op) { 2974 case KVM_S390_MEMOP_ABSOLUTE_READ: 2975 case KVM_S390_MEMOP_ABSOLUTE_WRITE: 2976 return kvm_s390_vm_mem_op_abs(kvm, mop); 2977 case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG: 2978 return kvm_s390_vm_mem_op_cmpxchg(kvm, mop); 2979 default: 2980 return -EINVAL; 2981 } 2982 } 2983 2984 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 2985 { 2986 struct kvm *kvm = filp->private_data; 2987 void __user *argp = (void __user *)arg; 2988 struct kvm_device_attr attr; 2989 int r; 2990 2991 switch (ioctl) { 2992 case KVM_S390_INTERRUPT: { 2993 struct kvm_s390_interrupt s390int; 2994 2995 r = -EFAULT; 2996 if (copy_from_user(&s390int, argp, sizeof(s390int))) 2997 break; 2998 r = kvm_s390_inject_vm(kvm, &s390int); 2999 break; 3000 } 3001 case KVM_CREATE_IRQCHIP: { 3002 struct kvm_irq_routing_entry routing; 3003 3004 r = -EINVAL; 3005 if (kvm->arch.use_irqchip) { 3006 /* Set up dummy routing. */ 3007 memset(&routing, 0, sizeof(routing)); 3008 r = kvm_set_irq_routing(kvm, &routing, 0, 0); 3009 } 3010 break; 3011 } 3012 case KVM_SET_DEVICE_ATTR: { 3013 r = -EFAULT; 3014 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3015 break; 3016 r = kvm_s390_vm_set_attr(kvm, &attr); 3017 break; 3018 } 3019 case KVM_GET_DEVICE_ATTR: { 3020 r = -EFAULT; 3021 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3022 break; 3023 r = kvm_s390_vm_get_attr(kvm, &attr); 3024 break; 3025 } 3026 case KVM_HAS_DEVICE_ATTR: { 3027 r = -EFAULT; 3028 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3029 break; 3030 r = kvm_s390_vm_has_attr(kvm, &attr); 3031 break; 3032 } 3033 case KVM_S390_GET_SKEYS: { 3034 struct kvm_s390_skeys args; 3035 3036 r = -EFAULT; 3037 if (copy_from_user(&args, argp, 3038 sizeof(struct kvm_s390_skeys))) 3039 break; 3040 r = kvm_s390_get_skeys(kvm, &args); 3041 break; 3042 } 3043 case KVM_S390_SET_SKEYS: { 3044 struct kvm_s390_skeys args; 3045 3046 r = -EFAULT; 3047 if (copy_from_user(&args, argp, 3048 sizeof(struct kvm_s390_skeys))) 3049 break; 3050 r = kvm_s390_set_skeys(kvm, &args); 3051 break; 3052 } 3053 case KVM_S390_GET_CMMA_BITS: { 3054 struct kvm_s390_cmma_log args; 3055 3056 r = -EFAULT; 3057 if (copy_from_user(&args, argp, sizeof(args))) 3058 break; 3059 mutex_lock(&kvm->slots_lock); 3060 r = kvm_s390_get_cmma_bits(kvm, &args); 3061 mutex_unlock(&kvm->slots_lock); 3062 if (!r) { 3063 r = copy_to_user(argp, &args, sizeof(args)); 3064 if (r) 3065 r = -EFAULT; 3066 } 3067 break; 3068 } 3069 case KVM_S390_SET_CMMA_BITS: { 3070 struct kvm_s390_cmma_log args; 3071 3072 r = -EFAULT; 3073 if (copy_from_user(&args, argp, sizeof(args))) 3074 break; 3075 mutex_lock(&kvm->slots_lock); 3076 r = kvm_s390_set_cmma_bits(kvm, &args); 3077 mutex_unlock(&kvm->slots_lock); 3078 break; 3079 } 3080 case KVM_S390_PV_COMMAND: { 3081 struct kvm_pv_cmd args; 3082 3083 /* protvirt means user cpu state */ 3084 kvm_s390_set_user_cpu_state_ctrl(kvm); 3085 r = 0; 3086 if (!is_prot_virt_host()) { 3087 r = -EINVAL; 3088 break; 3089 } 3090 if (copy_from_user(&args, argp, sizeof(args))) { 3091 r = -EFAULT; 3092 break; 3093 } 3094 if (args.flags) { 3095 r = -EINVAL; 3096 break; 3097 } 3098 /* must be called without kvm->lock */ 3099 r = kvm_s390_handle_pv(kvm, &args); 3100 if (copy_to_user(argp, &args, sizeof(args))) { 3101 r = -EFAULT; 3102 break; 3103 } 3104 break; 3105 } 3106 case KVM_S390_MEM_OP: { 3107 struct kvm_s390_mem_op mem_op; 3108 3109 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 3110 r = kvm_s390_vm_mem_op(kvm, &mem_op); 3111 else 3112 r = -EFAULT; 3113 break; 3114 } 3115 case KVM_S390_ZPCI_OP: { 3116 struct kvm_s390_zpci_op args; 3117 3118 r = -EINVAL; 3119 if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3120 break; 3121 if (copy_from_user(&args, argp, sizeof(args))) { 3122 r = -EFAULT; 3123 break; 3124 } 3125 r = kvm_s390_pci_zpci_op(kvm, &args); 3126 break; 3127 } 3128 default: 3129 r = -ENOTTY; 3130 } 3131 3132 return r; 3133 } 3134 3135 static int kvm_s390_apxa_installed(void) 3136 { 3137 struct ap_config_info info; 3138 3139 if (ap_instructions_available()) { 3140 if (ap_qci(&info) == 0) 3141 return info.apxa; 3142 } 3143 3144 return 0; 3145 } 3146 3147 /* 3148 * The format of the crypto control block (CRYCB) is specified in the 3 low 3149 * order bits of the CRYCB designation (CRYCBD) field as follows: 3150 * Format 0: Neither the message security assist extension 3 (MSAX3) nor the 3151 * AP extended addressing (APXA) facility are installed. 3152 * Format 1: The APXA facility is not installed but the MSAX3 facility is. 3153 * Format 2: Both the APXA and MSAX3 facilities are installed 3154 */ 3155 static void kvm_s390_set_crycb_format(struct kvm *kvm) 3156 { 3157 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb; 3158 3159 /* Clear the CRYCB format bits - i.e., set format 0 by default */ 3160 kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK); 3161 3162 /* Check whether MSAX3 is installed */ 3163 if (!test_kvm_facility(kvm, 76)) 3164 return; 3165 3166 if (kvm_s390_apxa_installed()) 3167 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2; 3168 else 3169 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1; 3170 } 3171 3172 /* 3173 * kvm_arch_crypto_set_masks 3174 * 3175 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3176 * to be set. 3177 * @apm: the mask identifying the accessible AP adapters 3178 * @aqm: the mask identifying the accessible AP domains 3179 * @adm: the mask identifying the accessible AP control domains 3180 * 3181 * Set the masks that identify the adapters, domains and control domains to 3182 * which the KVM guest is granted access. 3183 * 3184 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3185 * function. 3186 */ 3187 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm, 3188 unsigned long *aqm, unsigned long *adm) 3189 { 3190 struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb; 3191 3192 kvm_s390_vcpu_block_all(kvm); 3193 3194 switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) { 3195 case CRYCB_FORMAT2: /* APCB1 use 256 bits */ 3196 memcpy(crycb->apcb1.apm, apm, 32); 3197 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx", 3198 apm[0], apm[1], apm[2], apm[3]); 3199 memcpy(crycb->apcb1.aqm, aqm, 32); 3200 VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx", 3201 aqm[0], aqm[1], aqm[2], aqm[3]); 3202 memcpy(crycb->apcb1.adm, adm, 32); 3203 VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx", 3204 adm[0], adm[1], adm[2], adm[3]); 3205 break; 3206 case CRYCB_FORMAT1: 3207 case CRYCB_FORMAT0: /* Fall through both use APCB0 */ 3208 memcpy(crycb->apcb0.apm, apm, 8); 3209 memcpy(crycb->apcb0.aqm, aqm, 2); 3210 memcpy(crycb->apcb0.adm, adm, 2); 3211 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x", 3212 apm[0], *((unsigned short *)aqm), 3213 *((unsigned short *)adm)); 3214 break; 3215 default: /* Can not happen */ 3216 break; 3217 } 3218 3219 /* recreate the shadow crycb for each vcpu */ 3220 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3221 kvm_s390_vcpu_unblock_all(kvm); 3222 } 3223 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks); 3224 3225 /* 3226 * kvm_arch_crypto_clear_masks 3227 * 3228 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3229 * to be cleared. 3230 * 3231 * Clear the masks that identify the adapters, domains and control domains to 3232 * which the KVM guest is granted access. 3233 * 3234 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3235 * function. 3236 */ 3237 void kvm_arch_crypto_clear_masks(struct kvm *kvm) 3238 { 3239 kvm_s390_vcpu_block_all(kvm); 3240 3241 memset(&kvm->arch.crypto.crycb->apcb0, 0, 3242 sizeof(kvm->arch.crypto.crycb->apcb0)); 3243 memset(&kvm->arch.crypto.crycb->apcb1, 0, 3244 sizeof(kvm->arch.crypto.crycb->apcb1)); 3245 3246 VM_EVENT(kvm, 3, "%s", "CLR CRYCB:"); 3247 /* recreate the shadow crycb for each vcpu */ 3248 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3249 kvm_s390_vcpu_unblock_all(kvm); 3250 } 3251 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks); 3252 3253 static u64 kvm_s390_get_initial_cpuid(void) 3254 { 3255 struct cpuid cpuid; 3256 3257 get_cpu_id(&cpuid); 3258 cpuid.version = 0xff; 3259 return *((u64 *) &cpuid); 3260 } 3261 3262 static void kvm_s390_crypto_init(struct kvm *kvm) 3263 { 3264 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb; 3265 kvm_s390_set_crycb_format(kvm); 3266 init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem); 3267 3268 if (!test_kvm_facility(kvm, 76)) 3269 return; 3270 3271 /* Enable AES/DEA protected key functions by default */ 3272 kvm->arch.crypto.aes_kw = 1; 3273 kvm->arch.crypto.dea_kw = 1; 3274 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 3275 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 3276 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 3277 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 3278 } 3279 3280 static void sca_dispose(struct kvm *kvm) 3281 { 3282 if (kvm->arch.use_esca) 3283 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block)); 3284 else 3285 free_page((unsigned long)(kvm->arch.sca)); 3286 kvm->arch.sca = NULL; 3287 } 3288 3289 void kvm_arch_free_vm(struct kvm *kvm) 3290 { 3291 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3292 kvm_s390_pci_clear_list(kvm); 3293 3294 __kvm_arch_free_vm(kvm); 3295 } 3296 3297 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 3298 { 3299 gfp_t alloc_flags = GFP_KERNEL_ACCOUNT; 3300 int i, rc; 3301 char debug_name[16]; 3302 static unsigned long sca_offset; 3303 3304 rc = -EINVAL; 3305 #ifdef CONFIG_KVM_S390_UCONTROL 3306 if (type & ~KVM_VM_S390_UCONTROL) 3307 goto out_err; 3308 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN))) 3309 goto out_err; 3310 #else 3311 if (type) 3312 goto out_err; 3313 #endif 3314 3315 rc = s390_enable_sie(); 3316 if (rc) 3317 goto out_err; 3318 3319 rc = -ENOMEM; 3320 3321 if (!sclp.has_64bscao) 3322 alloc_flags |= GFP_DMA; 3323 rwlock_init(&kvm->arch.sca_lock); 3324 /* start with basic SCA */ 3325 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags); 3326 if (!kvm->arch.sca) 3327 goto out_err; 3328 mutex_lock(&kvm_lock); 3329 sca_offset += 16; 3330 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE) 3331 sca_offset = 0; 3332 kvm->arch.sca = (struct bsca_block *) 3333 ((char *) kvm->arch.sca + sca_offset); 3334 mutex_unlock(&kvm_lock); 3335 3336 sprintf(debug_name, "kvm-%u", current->pid); 3337 3338 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long)); 3339 if (!kvm->arch.dbf) 3340 goto out_err; 3341 3342 BUILD_BUG_ON(sizeof(struct sie_page2) != 4096); 3343 kvm->arch.sie_page2 = 3344 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); 3345 if (!kvm->arch.sie_page2) 3346 goto out_err; 3347 3348 kvm->arch.sie_page2->kvm = kvm; 3349 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list; 3350 3351 for (i = 0; i < kvm_s390_fac_size(); i++) { 3352 kvm->arch.model.fac_mask[i] = stfle_fac_list[i] & 3353 (kvm_s390_fac_base[i] | 3354 kvm_s390_fac_ext[i]); 3355 kvm->arch.model.fac_list[i] = stfle_fac_list[i] & 3356 kvm_s390_fac_base[i]; 3357 } 3358 kvm->arch.model.subfuncs = kvm_s390_available_subfunc; 3359 3360 /* we are always in czam mode - even on pre z14 machines */ 3361 set_kvm_facility(kvm->arch.model.fac_mask, 138); 3362 set_kvm_facility(kvm->arch.model.fac_list, 138); 3363 /* we emulate STHYI in kvm */ 3364 set_kvm_facility(kvm->arch.model.fac_mask, 74); 3365 set_kvm_facility(kvm->arch.model.fac_list, 74); 3366 if (MACHINE_HAS_TLB_GUEST) { 3367 set_kvm_facility(kvm->arch.model.fac_mask, 147); 3368 set_kvm_facility(kvm->arch.model.fac_list, 147); 3369 } 3370 3371 if (css_general_characteristics.aiv && test_facility(65)) 3372 set_kvm_facility(kvm->arch.model.fac_mask, 65); 3373 3374 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid(); 3375 kvm->arch.model.ibc = sclp.ibc & 0x0fff; 3376 3377 kvm->arch.model.uv_feat_guest.feat = 0; 3378 3379 kvm_s390_crypto_init(kvm); 3380 3381 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 3382 mutex_lock(&kvm->lock); 3383 kvm_s390_pci_init_list(kvm); 3384 kvm_s390_vcpu_pci_enable_interp(kvm); 3385 mutex_unlock(&kvm->lock); 3386 } 3387 3388 mutex_init(&kvm->arch.float_int.ais_lock); 3389 spin_lock_init(&kvm->arch.float_int.lock); 3390 for (i = 0; i < FIRQ_LIST_COUNT; i++) 3391 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]); 3392 init_waitqueue_head(&kvm->arch.ipte_wq); 3393 mutex_init(&kvm->arch.ipte_mutex); 3394 3395 debug_register_view(kvm->arch.dbf, &debug_sprintf_view); 3396 VM_EVENT(kvm, 3, "vm created with type %lu", type); 3397 3398 if (type & KVM_VM_S390_UCONTROL) { 3399 kvm->arch.gmap = NULL; 3400 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT; 3401 } else { 3402 if (sclp.hamax == U64_MAX) 3403 kvm->arch.mem_limit = TASK_SIZE_MAX; 3404 else 3405 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX, 3406 sclp.hamax + 1); 3407 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1); 3408 if (!kvm->arch.gmap) 3409 goto out_err; 3410 kvm->arch.gmap->private = kvm; 3411 kvm->arch.gmap->pfault_enabled = 0; 3412 } 3413 3414 kvm->arch.use_pfmfi = sclp.has_pfmfi; 3415 kvm->arch.use_skf = sclp.has_skey; 3416 spin_lock_init(&kvm->arch.start_stop_lock); 3417 kvm_s390_vsie_init(kvm); 3418 if (use_gisa) 3419 kvm_s390_gisa_init(kvm); 3420 INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup); 3421 kvm->arch.pv.set_aside = NULL; 3422 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid); 3423 3424 return 0; 3425 out_err: 3426 free_page((unsigned long)kvm->arch.sie_page2); 3427 debug_unregister(kvm->arch.dbf); 3428 sca_dispose(kvm); 3429 KVM_EVENT(3, "creation of vm failed: %d", rc); 3430 return rc; 3431 } 3432 3433 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 3434 { 3435 u16 rc, rrc; 3436 3437 VCPU_EVENT(vcpu, 3, "%s", "free cpu"); 3438 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id); 3439 kvm_s390_clear_local_irqs(vcpu); 3440 kvm_clear_async_pf_completion_queue(vcpu); 3441 if (!kvm_is_ucontrol(vcpu->kvm)) 3442 sca_del_vcpu(vcpu); 3443 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 3444 3445 if (kvm_is_ucontrol(vcpu->kvm)) 3446 gmap_remove(vcpu->arch.gmap); 3447 3448 if (vcpu->kvm->arch.use_cmma) 3449 kvm_s390_vcpu_unsetup_cmma(vcpu); 3450 /* We can not hold the vcpu mutex here, we are already dying */ 3451 if (kvm_s390_pv_cpu_get_handle(vcpu)) 3452 kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc); 3453 free_page((unsigned long)(vcpu->arch.sie_block)); 3454 } 3455 3456 void kvm_arch_destroy_vm(struct kvm *kvm) 3457 { 3458 u16 rc, rrc; 3459 3460 kvm_destroy_vcpus(kvm); 3461 sca_dispose(kvm); 3462 kvm_s390_gisa_destroy(kvm); 3463 /* 3464 * We are already at the end of life and kvm->lock is not taken. 3465 * This is ok as the file descriptor is closed by now and nobody 3466 * can mess with the pv state. 3467 */ 3468 kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc); 3469 /* 3470 * Remove the mmu notifier only when the whole KVM VM is torn down, 3471 * and only if one was registered to begin with. If the VM is 3472 * currently not protected, but has been previously been protected, 3473 * then it's possible that the notifier is still registered. 3474 */ 3475 if (kvm->arch.pv.mmu_notifier.ops) 3476 mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm); 3477 3478 debug_unregister(kvm->arch.dbf); 3479 free_page((unsigned long)kvm->arch.sie_page2); 3480 if (!kvm_is_ucontrol(kvm)) 3481 gmap_remove(kvm->arch.gmap); 3482 kvm_s390_destroy_adapters(kvm); 3483 kvm_s390_clear_float_irqs(kvm); 3484 kvm_s390_vsie_destroy(kvm); 3485 KVM_EVENT(3, "vm 0x%pK destroyed", kvm); 3486 } 3487 3488 /* Section: vcpu related */ 3489 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) 3490 { 3491 vcpu->arch.gmap = gmap_create(current->mm, -1UL); 3492 if (!vcpu->arch.gmap) 3493 return -ENOMEM; 3494 vcpu->arch.gmap->private = vcpu->kvm; 3495 3496 return 0; 3497 } 3498 3499 static void sca_del_vcpu(struct kvm_vcpu *vcpu) 3500 { 3501 if (!kvm_s390_use_sca_entries()) 3502 return; 3503 read_lock(&vcpu->kvm->arch.sca_lock); 3504 if (vcpu->kvm->arch.use_esca) { 3505 struct esca_block *sca = vcpu->kvm->arch.sca; 3506 3507 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3508 sca->cpu[vcpu->vcpu_id].sda = 0; 3509 } else { 3510 struct bsca_block *sca = vcpu->kvm->arch.sca; 3511 3512 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3513 sca->cpu[vcpu->vcpu_id].sda = 0; 3514 } 3515 read_unlock(&vcpu->kvm->arch.sca_lock); 3516 } 3517 3518 static void sca_add_vcpu(struct kvm_vcpu *vcpu) 3519 { 3520 if (!kvm_s390_use_sca_entries()) { 3521 phys_addr_t sca_phys = virt_to_phys(vcpu->kvm->arch.sca); 3522 3523 /* we still need the basic sca for the ipte control */ 3524 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3525 vcpu->arch.sie_block->scaol = sca_phys; 3526 return; 3527 } 3528 read_lock(&vcpu->kvm->arch.sca_lock); 3529 if (vcpu->kvm->arch.use_esca) { 3530 struct esca_block *sca = vcpu->kvm->arch.sca; 3531 phys_addr_t sca_phys = virt_to_phys(sca); 3532 3533 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3534 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3535 vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK; 3536 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3537 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3538 } else { 3539 struct bsca_block *sca = vcpu->kvm->arch.sca; 3540 phys_addr_t sca_phys = virt_to_phys(sca); 3541 3542 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3543 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3544 vcpu->arch.sie_block->scaol = sca_phys; 3545 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3546 } 3547 read_unlock(&vcpu->kvm->arch.sca_lock); 3548 } 3549 3550 /* Basic SCA to Extended SCA data copy routines */ 3551 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s) 3552 { 3553 d->sda = s->sda; 3554 d->sigp_ctrl.c = s->sigp_ctrl.c; 3555 d->sigp_ctrl.scn = s->sigp_ctrl.scn; 3556 } 3557 3558 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s) 3559 { 3560 int i; 3561 3562 d->ipte_control = s->ipte_control; 3563 d->mcn[0] = s->mcn; 3564 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++) 3565 sca_copy_entry(&d->cpu[i], &s->cpu[i]); 3566 } 3567 3568 static int sca_switch_to_extended(struct kvm *kvm) 3569 { 3570 struct bsca_block *old_sca = kvm->arch.sca; 3571 struct esca_block *new_sca; 3572 struct kvm_vcpu *vcpu; 3573 unsigned long vcpu_idx; 3574 u32 scaol, scaoh; 3575 phys_addr_t new_sca_phys; 3576 3577 if (kvm->arch.use_esca) 3578 return 0; 3579 3580 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3581 if (!new_sca) 3582 return -ENOMEM; 3583 3584 new_sca_phys = virt_to_phys(new_sca); 3585 scaoh = new_sca_phys >> 32; 3586 scaol = new_sca_phys & ESCA_SCAOL_MASK; 3587 3588 kvm_s390_vcpu_block_all(kvm); 3589 write_lock(&kvm->arch.sca_lock); 3590 3591 sca_copy_b_to_e(new_sca, old_sca); 3592 3593 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) { 3594 vcpu->arch.sie_block->scaoh = scaoh; 3595 vcpu->arch.sie_block->scaol = scaol; 3596 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3597 } 3598 kvm->arch.sca = new_sca; 3599 kvm->arch.use_esca = 1; 3600 3601 write_unlock(&kvm->arch.sca_lock); 3602 kvm_s390_vcpu_unblock_all(kvm); 3603 3604 free_page((unsigned long)old_sca); 3605 3606 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)", 3607 old_sca, kvm->arch.sca); 3608 return 0; 3609 } 3610 3611 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id) 3612 { 3613 int rc; 3614 3615 if (!kvm_s390_use_sca_entries()) { 3616 if (id < KVM_MAX_VCPUS) 3617 return true; 3618 return false; 3619 } 3620 if (id < KVM_S390_BSCA_CPU_SLOTS) 3621 return true; 3622 if (!sclp.has_esca || !sclp.has_64bscao) 3623 return false; 3624 3625 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm); 3626 3627 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS; 3628 } 3629 3630 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3631 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3632 { 3633 WARN_ON_ONCE(vcpu->arch.cputm_start != 0); 3634 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3635 vcpu->arch.cputm_start = get_tod_clock_fast(); 3636 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3637 } 3638 3639 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3640 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3641 { 3642 WARN_ON_ONCE(vcpu->arch.cputm_start == 0); 3643 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3644 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3645 vcpu->arch.cputm_start = 0; 3646 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3647 } 3648 3649 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3650 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3651 { 3652 WARN_ON_ONCE(vcpu->arch.cputm_enabled); 3653 vcpu->arch.cputm_enabled = true; 3654 __start_cpu_timer_accounting(vcpu); 3655 } 3656 3657 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3658 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3659 { 3660 WARN_ON_ONCE(!vcpu->arch.cputm_enabled); 3661 __stop_cpu_timer_accounting(vcpu); 3662 vcpu->arch.cputm_enabled = false; 3663 } 3664 3665 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3666 { 3667 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3668 __enable_cpu_timer_accounting(vcpu); 3669 preempt_enable(); 3670 } 3671 3672 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3673 { 3674 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3675 __disable_cpu_timer_accounting(vcpu); 3676 preempt_enable(); 3677 } 3678 3679 /* set the cpu timer - may only be called from the VCPU thread itself */ 3680 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm) 3681 { 3682 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3683 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3684 if (vcpu->arch.cputm_enabled) 3685 vcpu->arch.cputm_start = get_tod_clock_fast(); 3686 vcpu->arch.sie_block->cputm = cputm; 3687 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3688 preempt_enable(); 3689 } 3690 3691 /* update and get the cpu timer - can also be called from other VCPU threads */ 3692 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu) 3693 { 3694 unsigned int seq; 3695 __u64 value; 3696 3697 if (unlikely(!vcpu->arch.cputm_enabled)) 3698 return vcpu->arch.sie_block->cputm; 3699 3700 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3701 do { 3702 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount); 3703 /* 3704 * If the writer would ever execute a read in the critical 3705 * section, e.g. in irq context, we have a deadlock. 3706 */ 3707 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu); 3708 value = vcpu->arch.sie_block->cputm; 3709 /* if cputm_start is 0, accounting is being started/stopped */ 3710 if (likely(vcpu->arch.cputm_start)) 3711 value -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3712 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1)); 3713 preempt_enable(); 3714 return value; 3715 } 3716 3717 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3718 { 3719 3720 gmap_enable(vcpu->arch.enabled_gmap); 3721 kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING); 3722 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3723 __start_cpu_timer_accounting(vcpu); 3724 vcpu->cpu = cpu; 3725 } 3726 3727 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3728 { 3729 vcpu->cpu = -1; 3730 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3731 __stop_cpu_timer_accounting(vcpu); 3732 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING); 3733 vcpu->arch.enabled_gmap = gmap_get_enabled(); 3734 gmap_disable(vcpu->arch.enabled_gmap); 3735 3736 } 3737 3738 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 3739 { 3740 mutex_lock(&vcpu->kvm->lock); 3741 preempt_disable(); 3742 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch; 3743 vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx; 3744 preempt_enable(); 3745 mutex_unlock(&vcpu->kvm->lock); 3746 if (!kvm_is_ucontrol(vcpu->kvm)) { 3747 vcpu->arch.gmap = vcpu->kvm->arch.gmap; 3748 sca_add_vcpu(vcpu); 3749 } 3750 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0) 3751 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 3752 /* make vcpu_load load the right gmap on the first trigger */ 3753 vcpu->arch.enabled_gmap = vcpu->arch.gmap; 3754 } 3755 3756 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr) 3757 { 3758 if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) && 3759 test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo)) 3760 return true; 3761 return false; 3762 } 3763 3764 static bool kvm_has_pckmo_ecc(struct kvm *kvm) 3765 { 3766 /* At least one ECC subfunction must be present */ 3767 return kvm_has_pckmo_subfunc(kvm, 32) || 3768 kvm_has_pckmo_subfunc(kvm, 33) || 3769 kvm_has_pckmo_subfunc(kvm, 34) || 3770 kvm_has_pckmo_subfunc(kvm, 40) || 3771 kvm_has_pckmo_subfunc(kvm, 41); 3772 3773 } 3774 3775 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) 3776 { 3777 /* 3778 * If the AP instructions are not being interpreted and the MSAX3 3779 * facility is not configured for the guest, there is nothing to set up. 3780 */ 3781 if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76)) 3782 return; 3783 3784 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd; 3785 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA); 3786 vcpu->arch.sie_block->eca &= ~ECA_APIE; 3787 vcpu->arch.sie_block->ecd &= ~ECD_ECC; 3788 3789 if (vcpu->kvm->arch.crypto.apie) 3790 vcpu->arch.sie_block->eca |= ECA_APIE; 3791 3792 /* Set up protected key support */ 3793 if (vcpu->kvm->arch.crypto.aes_kw) { 3794 vcpu->arch.sie_block->ecb3 |= ECB3_AES; 3795 /* ecc is also wrapped with AES key */ 3796 if (kvm_has_pckmo_ecc(vcpu->kvm)) 3797 vcpu->arch.sie_block->ecd |= ECD_ECC; 3798 } 3799 3800 if (vcpu->kvm->arch.crypto.dea_kw) 3801 vcpu->arch.sie_block->ecb3 |= ECB3_DEA; 3802 } 3803 3804 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu) 3805 { 3806 free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo)); 3807 vcpu->arch.sie_block->cbrlo = 0; 3808 } 3809 3810 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu) 3811 { 3812 void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3813 3814 if (!cbrlo_page) 3815 return -ENOMEM; 3816 3817 vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page); 3818 return 0; 3819 } 3820 3821 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu) 3822 { 3823 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model; 3824 3825 vcpu->arch.sie_block->ibc = model->ibc; 3826 if (test_kvm_facility(vcpu->kvm, 7)) 3827 vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list); 3828 } 3829 3830 static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu) 3831 { 3832 int rc = 0; 3833 u16 uvrc, uvrrc; 3834 3835 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH | 3836 CPUSTAT_SM | 3837 CPUSTAT_STOPPED); 3838 3839 if (test_kvm_facility(vcpu->kvm, 78)) 3840 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2); 3841 else if (test_kvm_facility(vcpu->kvm, 8)) 3842 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED); 3843 3844 kvm_s390_vcpu_setup_model(vcpu); 3845 3846 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */ 3847 if (MACHINE_HAS_ESOP) 3848 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT; 3849 if (test_kvm_facility(vcpu->kvm, 9)) 3850 vcpu->arch.sie_block->ecb |= ECB_SRSI; 3851 if (test_kvm_facility(vcpu->kvm, 11)) 3852 vcpu->arch.sie_block->ecb |= ECB_PTF; 3853 if (test_kvm_facility(vcpu->kvm, 73)) 3854 vcpu->arch.sie_block->ecb |= ECB_TE; 3855 if (!kvm_is_ucontrol(vcpu->kvm)) 3856 vcpu->arch.sie_block->ecb |= ECB_SPECI; 3857 3858 if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi) 3859 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI; 3860 if (test_kvm_facility(vcpu->kvm, 130)) 3861 vcpu->arch.sie_block->ecb2 |= ECB2_IEP; 3862 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI; 3863 if (sclp.has_cei) 3864 vcpu->arch.sie_block->eca |= ECA_CEI; 3865 if (sclp.has_ib) 3866 vcpu->arch.sie_block->eca |= ECA_IB; 3867 if (sclp.has_siif) 3868 vcpu->arch.sie_block->eca |= ECA_SII; 3869 if (sclp.has_sigpif) 3870 vcpu->arch.sie_block->eca |= ECA_SIGPI; 3871 if (test_kvm_facility(vcpu->kvm, 129)) { 3872 vcpu->arch.sie_block->eca |= ECA_VX; 3873 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 3874 } 3875 if (test_kvm_facility(vcpu->kvm, 139)) 3876 vcpu->arch.sie_block->ecd |= ECD_MEF; 3877 if (test_kvm_facility(vcpu->kvm, 156)) 3878 vcpu->arch.sie_block->ecd |= ECD_ETOKENF; 3879 if (vcpu->arch.sie_block->gd) { 3880 vcpu->arch.sie_block->eca |= ECA_AIV; 3881 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3882 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3883 } 3884 vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC; 3885 vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb); 3886 3887 if (sclp.has_kss) 3888 kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS); 3889 else 3890 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; 3891 3892 if (vcpu->kvm->arch.use_cmma) { 3893 rc = kvm_s390_vcpu_setup_cmma(vcpu); 3894 if (rc) 3895 return rc; 3896 } 3897 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3898 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup; 3899 3900 vcpu->arch.sie_block->hpid = HPID_KVM; 3901 3902 kvm_s390_vcpu_crypto_setup(vcpu); 3903 3904 kvm_s390_vcpu_pci_setup(vcpu); 3905 3906 mutex_lock(&vcpu->kvm->lock); 3907 if (kvm_s390_pv_is_protected(vcpu->kvm)) { 3908 rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc); 3909 if (rc) 3910 kvm_s390_vcpu_unsetup_cmma(vcpu); 3911 } 3912 mutex_unlock(&vcpu->kvm->lock); 3913 3914 return rc; 3915 } 3916 3917 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 3918 { 3919 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id)) 3920 return -EINVAL; 3921 return 0; 3922 } 3923 3924 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 3925 { 3926 struct sie_page *sie_page; 3927 int rc; 3928 3929 BUILD_BUG_ON(sizeof(struct sie_page) != 4096); 3930 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT); 3931 if (!sie_page) 3932 return -ENOMEM; 3933 3934 vcpu->arch.sie_block = &sie_page->sie_block; 3935 vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb); 3936 3937 /* the real guest size will always be smaller than msl */ 3938 vcpu->arch.sie_block->mso = 0; 3939 vcpu->arch.sie_block->msl = sclp.hamax; 3940 3941 vcpu->arch.sie_block->icpua = vcpu->vcpu_id; 3942 spin_lock_init(&vcpu->arch.local_int.lock); 3943 vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm); 3944 seqcount_init(&vcpu->arch.cputm_seqcount); 3945 3946 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 3947 kvm_clear_async_pf_completion_queue(vcpu); 3948 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX | 3949 KVM_SYNC_GPRS | 3950 KVM_SYNC_ACRS | 3951 KVM_SYNC_CRS | 3952 KVM_SYNC_ARCH0 | 3953 KVM_SYNC_PFAULT | 3954 KVM_SYNC_DIAG318; 3955 kvm_s390_set_prefix(vcpu, 0); 3956 if (test_kvm_facility(vcpu->kvm, 64)) 3957 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB; 3958 if (test_kvm_facility(vcpu->kvm, 82)) 3959 vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC; 3960 if (test_kvm_facility(vcpu->kvm, 133)) 3961 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB; 3962 if (test_kvm_facility(vcpu->kvm, 156)) 3963 vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN; 3964 /* fprs can be synchronized via vrs, even if the guest has no vx. With 3965 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format. 3966 */ 3967 if (MACHINE_HAS_VX) 3968 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS; 3969 else 3970 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS; 3971 3972 if (kvm_is_ucontrol(vcpu->kvm)) { 3973 rc = __kvm_ucontrol_vcpu_init(vcpu); 3974 if (rc) 3975 goto out_free_sie_block; 3976 } 3977 3978 VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", 3979 vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 3980 trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 3981 3982 rc = kvm_s390_vcpu_setup(vcpu); 3983 if (rc) 3984 goto out_ucontrol_uninit; 3985 3986 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 3987 return 0; 3988 3989 out_ucontrol_uninit: 3990 if (kvm_is_ucontrol(vcpu->kvm)) 3991 gmap_remove(vcpu->arch.gmap); 3992 out_free_sie_block: 3993 free_page((unsigned long)(vcpu->arch.sie_block)); 3994 return rc; 3995 } 3996 3997 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 3998 { 3999 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 4000 return kvm_s390_vcpu_has_irq(vcpu, 0); 4001 } 4002 4003 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 4004 { 4005 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE); 4006 } 4007 4008 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu) 4009 { 4010 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 4011 exit_sie(vcpu); 4012 } 4013 4014 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu) 4015 { 4016 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 4017 } 4018 4019 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu) 4020 { 4021 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 4022 exit_sie(vcpu); 4023 } 4024 4025 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu) 4026 { 4027 return atomic_read(&vcpu->arch.sie_block->prog20) & 4028 (PROG_BLOCK_SIE | PROG_REQUEST); 4029 } 4030 4031 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu) 4032 { 4033 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 4034 } 4035 4036 /* 4037 * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running. 4038 * If the CPU is not running (e.g. waiting as idle) the function will 4039 * return immediately. */ 4040 void exit_sie(struct kvm_vcpu *vcpu) 4041 { 4042 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 4043 kvm_s390_vsie_kick(vcpu); 4044 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE) 4045 cpu_relax(); 4046 } 4047 4048 /* Kick a guest cpu out of SIE to process a request synchronously */ 4049 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) 4050 { 4051 __kvm_make_request(req, vcpu); 4052 kvm_s390_vcpu_request(vcpu); 4053 } 4054 4055 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 4056 unsigned long end) 4057 { 4058 struct kvm *kvm = gmap->private; 4059 struct kvm_vcpu *vcpu; 4060 unsigned long prefix; 4061 unsigned long i; 4062 4063 if (gmap_is_shadow(gmap)) 4064 return; 4065 if (start >= 1UL << 31) 4066 /* We are only interested in prefix pages */ 4067 return; 4068 kvm_for_each_vcpu(i, vcpu, kvm) { 4069 /* match against both prefix pages */ 4070 prefix = kvm_s390_get_prefix(vcpu); 4071 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) { 4072 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx", 4073 start, end); 4074 kvm_s390_sync_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 4075 } 4076 } 4077 } 4078 4079 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 4080 { 4081 /* do not poll with more than halt_poll_max_steal percent of steal time */ 4082 if (S390_lowcore.avg_steal_timer * 100 / (TICK_USEC << 12) >= 4083 READ_ONCE(halt_poll_max_steal)) { 4084 vcpu->stat.halt_no_poll_steal++; 4085 return true; 4086 } 4087 return false; 4088 } 4089 4090 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 4091 { 4092 /* kvm common code refers to this, but never calls it */ 4093 BUG(); 4094 return 0; 4095 } 4096 4097 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, 4098 struct kvm_one_reg *reg) 4099 { 4100 int r = -EINVAL; 4101 4102 switch (reg->id) { 4103 case KVM_REG_S390_TODPR: 4104 r = put_user(vcpu->arch.sie_block->todpr, 4105 (u32 __user *)reg->addr); 4106 break; 4107 case KVM_REG_S390_EPOCHDIFF: 4108 r = put_user(vcpu->arch.sie_block->epoch, 4109 (u64 __user *)reg->addr); 4110 break; 4111 case KVM_REG_S390_CPU_TIMER: 4112 r = put_user(kvm_s390_get_cpu_timer(vcpu), 4113 (u64 __user *)reg->addr); 4114 break; 4115 case KVM_REG_S390_CLOCK_COMP: 4116 r = put_user(vcpu->arch.sie_block->ckc, 4117 (u64 __user *)reg->addr); 4118 break; 4119 case KVM_REG_S390_PFTOKEN: 4120 r = put_user(vcpu->arch.pfault_token, 4121 (u64 __user *)reg->addr); 4122 break; 4123 case KVM_REG_S390_PFCOMPARE: 4124 r = put_user(vcpu->arch.pfault_compare, 4125 (u64 __user *)reg->addr); 4126 break; 4127 case KVM_REG_S390_PFSELECT: 4128 r = put_user(vcpu->arch.pfault_select, 4129 (u64 __user *)reg->addr); 4130 break; 4131 case KVM_REG_S390_PP: 4132 r = put_user(vcpu->arch.sie_block->pp, 4133 (u64 __user *)reg->addr); 4134 break; 4135 case KVM_REG_S390_GBEA: 4136 r = put_user(vcpu->arch.sie_block->gbea, 4137 (u64 __user *)reg->addr); 4138 break; 4139 default: 4140 break; 4141 } 4142 4143 return r; 4144 } 4145 4146 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, 4147 struct kvm_one_reg *reg) 4148 { 4149 int r = -EINVAL; 4150 __u64 val; 4151 4152 switch (reg->id) { 4153 case KVM_REG_S390_TODPR: 4154 r = get_user(vcpu->arch.sie_block->todpr, 4155 (u32 __user *)reg->addr); 4156 break; 4157 case KVM_REG_S390_EPOCHDIFF: 4158 r = get_user(vcpu->arch.sie_block->epoch, 4159 (u64 __user *)reg->addr); 4160 break; 4161 case KVM_REG_S390_CPU_TIMER: 4162 r = get_user(val, (u64 __user *)reg->addr); 4163 if (!r) 4164 kvm_s390_set_cpu_timer(vcpu, val); 4165 break; 4166 case KVM_REG_S390_CLOCK_COMP: 4167 r = get_user(vcpu->arch.sie_block->ckc, 4168 (u64 __user *)reg->addr); 4169 break; 4170 case KVM_REG_S390_PFTOKEN: 4171 r = get_user(vcpu->arch.pfault_token, 4172 (u64 __user *)reg->addr); 4173 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4174 kvm_clear_async_pf_completion_queue(vcpu); 4175 break; 4176 case KVM_REG_S390_PFCOMPARE: 4177 r = get_user(vcpu->arch.pfault_compare, 4178 (u64 __user *)reg->addr); 4179 break; 4180 case KVM_REG_S390_PFSELECT: 4181 r = get_user(vcpu->arch.pfault_select, 4182 (u64 __user *)reg->addr); 4183 break; 4184 case KVM_REG_S390_PP: 4185 r = get_user(vcpu->arch.sie_block->pp, 4186 (u64 __user *)reg->addr); 4187 break; 4188 case KVM_REG_S390_GBEA: 4189 r = get_user(vcpu->arch.sie_block->gbea, 4190 (u64 __user *)reg->addr); 4191 break; 4192 default: 4193 break; 4194 } 4195 4196 return r; 4197 } 4198 4199 static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu) 4200 { 4201 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI; 4202 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 4203 memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb)); 4204 4205 kvm_clear_async_pf_completion_queue(vcpu); 4206 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) 4207 kvm_s390_vcpu_stop(vcpu); 4208 kvm_s390_clear_local_irqs(vcpu); 4209 } 4210 4211 static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu) 4212 { 4213 /* Initial reset is a superset of the normal reset */ 4214 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 4215 4216 /* 4217 * This equals initial cpu reset in pop, but we don't switch to ESA. 4218 * We do not only reset the internal data, but also ... 4219 */ 4220 vcpu->arch.sie_block->gpsw.mask = 0; 4221 vcpu->arch.sie_block->gpsw.addr = 0; 4222 kvm_s390_set_prefix(vcpu, 0); 4223 kvm_s390_set_cpu_timer(vcpu, 0); 4224 vcpu->arch.sie_block->ckc = 0; 4225 memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr)); 4226 vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK; 4227 vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK; 4228 4229 /* ... the data in sync regs */ 4230 memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs)); 4231 vcpu->run->s.regs.ckc = 0; 4232 vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK; 4233 vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK; 4234 vcpu->run->psw_addr = 0; 4235 vcpu->run->psw_mask = 0; 4236 vcpu->run->s.regs.todpr = 0; 4237 vcpu->run->s.regs.cputm = 0; 4238 vcpu->run->s.regs.ckc = 0; 4239 vcpu->run->s.regs.pp = 0; 4240 vcpu->run->s.regs.gbea = 1; 4241 vcpu->run->s.regs.fpc = 0; 4242 /* 4243 * Do not reset these registers in the protected case, as some of 4244 * them are overlaid and they are not accessible in this case 4245 * anyway. 4246 */ 4247 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4248 vcpu->arch.sie_block->gbea = 1; 4249 vcpu->arch.sie_block->pp = 0; 4250 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 4251 vcpu->arch.sie_block->todpr = 0; 4252 } 4253 } 4254 4255 static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu) 4256 { 4257 struct kvm_sync_regs *regs = &vcpu->run->s.regs; 4258 4259 /* Clear reset is a superset of the initial reset */ 4260 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 4261 4262 memset(®s->gprs, 0, sizeof(regs->gprs)); 4263 memset(®s->vrs, 0, sizeof(regs->vrs)); 4264 memset(®s->acrs, 0, sizeof(regs->acrs)); 4265 memset(®s->gscb, 0, sizeof(regs->gscb)); 4266 4267 regs->etoken = 0; 4268 regs->etoken_extension = 0; 4269 } 4270 4271 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4272 { 4273 vcpu_load(vcpu); 4274 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs)); 4275 vcpu_put(vcpu); 4276 return 0; 4277 } 4278 4279 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4280 { 4281 vcpu_load(vcpu); 4282 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs)); 4283 vcpu_put(vcpu); 4284 return 0; 4285 } 4286 4287 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 4288 struct kvm_sregs *sregs) 4289 { 4290 vcpu_load(vcpu); 4291 4292 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs)); 4293 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs)); 4294 4295 vcpu_put(vcpu); 4296 return 0; 4297 } 4298 4299 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 4300 struct kvm_sregs *sregs) 4301 { 4302 vcpu_load(vcpu); 4303 4304 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs)); 4305 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs)); 4306 4307 vcpu_put(vcpu); 4308 return 0; 4309 } 4310 4311 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4312 { 4313 int ret = 0; 4314 4315 vcpu_load(vcpu); 4316 4317 vcpu->run->s.regs.fpc = fpu->fpc; 4318 if (MACHINE_HAS_VX) 4319 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs, 4320 (freg_t *) fpu->fprs); 4321 else 4322 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs)); 4323 4324 vcpu_put(vcpu); 4325 return ret; 4326 } 4327 4328 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4329 { 4330 vcpu_load(vcpu); 4331 4332 /* make sure we have the latest values */ 4333 save_fpu_regs(); 4334 if (MACHINE_HAS_VX) 4335 convert_vx_to_fp((freg_t *) fpu->fprs, 4336 (__vector128 *) vcpu->run->s.regs.vrs); 4337 else 4338 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs)); 4339 fpu->fpc = vcpu->run->s.regs.fpc; 4340 4341 vcpu_put(vcpu); 4342 return 0; 4343 } 4344 4345 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw) 4346 { 4347 int rc = 0; 4348 4349 if (!is_vcpu_stopped(vcpu)) 4350 rc = -EBUSY; 4351 else { 4352 vcpu->run->psw_mask = psw.mask; 4353 vcpu->run->psw_addr = psw.addr; 4354 } 4355 return rc; 4356 } 4357 4358 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 4359 struct kvm_translation *tr) 4360 { 4361 return -EINVAL; /* not implemented yet */ 4362 } 4363 4364 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \ 4365 KVM_GUESTDBG_USE_HW_BP | \ 4366 KVM_GUESTDBG_ENABLE) 4367 4368 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 4369 struct kvm_guest_debug *dbg) 4370 { 4371 int rc = 0; 4372 4373 vcpu_load(vcpu); 4374 4375 vcpu->guest_debug = 0; 4376 kvm_s390_clear_bp_data(vcpu); 4377 4378 if (dbg->control & ~VALID_GUESTDBG_FLAGS) { 4379 rc = -EINVAL; 4380 goto out; 4381 } 4382 if (!sclp.has_gpere) { 4383 rc = -EINVAL; 4384 goto out; 4385 } 4386 4387 if (dbg->control & KVM_GUESTDBG_ENABLE) { 4388 vcpu->guest_debug = dbg->control; 4389 /* enforce guest PER */ 4390 kvm_s390_set_cpuflags(vcpu, CPUSTAT_P); 4391 4392 if (dbg->control & KVM_GUESTDBG_USE_HW_BP) 4393 rc = kvm_s390_import_bp_data(vcpu, dbg); 4394 } else { 4395 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4396 vcpu->arch.guestdbg.last_bp = 0; 4397 } 4398 4399 if (rc) { 4400 vcpu->guest_debug = 0; 4401 kvm_s390_clear_bp_data(vcpu); 4402 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4403 } 4404 4405 out: 4406 vcpu_put(vcpu); 4407 return rc; 4408 } 4409 4410 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 4411 struct kvm_mp_state *mp_state) 4412 { 4413 int ret; 4414 4415 vcpu_load(vcpu); 4416 4417 /* CHECK_STOP and LOAD are not supported yet */ 4418 ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED : 4419 KVM_MP_STATE_OPERATING; 4420 4421 vcpu_put(vcpu); 4422 return ret; 4423 } 4424 4425 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 4426 struct kvm_mp_state *mp_state) 4427 { 4428 int rc = 0; 4429 4430 vcpu_load(vcpu); 4431 4432 /* user space knows about this interface - let it control the state */ 4433 kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm); 4434 4435 switch (mp_state->mp_state) { 4436 case KVM_MP_STATE_STOPPED: 4437 rc = kvm_s390_vcpu_stop(vcpu); 4438 break; 4439 case KVM_MP_STATE_OPERATING: 4440 rc = kvm_s390_vcpu_start(vcpu); 4441 break; 4442 case KVM_MP_STATE_LOAD: 4443 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4444 rc = -ENXIO; 4445 break; 4446 } 4447 rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD); 4448 break; 4449 case KVM_MP_STATE_CHECK_STOP: 4450 fallthrough; /* CHECK_STOP and LOAD are not supported yet */ 4451 default: 4452 rc = -ENXIO; 4453 } 4454 4455 vcpu_put(vcpu); 4456 return rc; 4457 } 4458 4459 static bool ibs_enabled(struct kvm_vcpu *vcpu) 4460 { 4461 return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS); 4462 } 4463 4464 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) 4465 { 4466 retry: 4467 kvm_s390_vcpu_request_handled(vcpu); 4468 if (!kvm_request_pending(vcpu)) 4469 return 0; 4470 /* 4471 * If the guest prefix changed, re-arm the ipte notifier for the 4472 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock. 4473 * This ensures that the ipte instruction for this request has 4474 * already finished. We might race against a second unmapper that 4475 * wants to set the blocking bit. Lets just retry the request loop. 4476 */ 4477 if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) { 4478 int rc; 4479 rc = gmap_mprotect_notify(vcpu->arch.gmap, 4480 kvm_s390_get_prefix(vcpu), 4481 PAGE_SIZE * 2, PROT_WRITE); 4482 if (rc) { 4483 kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 4484 return rc; 4485 } 4486 goto retry; 4487 } 4488 4489 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 4490 vcpu->arch.sie_block->ihcpu = 0xffff; 4491 goto retry; 4492 } 4493 4494 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) { 4495 if (!ibs_enabled(vcpu)) { 4496 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1); 4497 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS); 4498 } 4499 goto retry; 4500 } 4501 4502 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) { 4503 if (ibs_enabled(vcpu)) { 4504 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0); 4505 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS); 4506 } 4507 goto retry; 4508 } 4509 4510 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) { 4511 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 4512 goto retry; 4513 } 4514 4515 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) { 4516 /* 4517 * Disable CMM virtualization; we will emulate the ESSA 4518 * instruction manually, in order to provide additional 4519 * functionalities needed for live migration. 4520 */ 4521 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA; 4522 goto retry; 4523 } 4524 4525 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) { 4526 /* 4527 * Re-enable CMM virtualization if CMMA is available and 4528 * CMM has been used. 4529 */ 4530 if ((vcpu->kvm->arch.use_cmma) && 4531 (vcpu->kvm->mm->context.uses_cmm)) 4532 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA; 4533 goto retry; 4534 } 4535 4536 /* we left the vsie handler, nothing to do, just clear the request */ 4537 kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu); 4538 4539 return 0; 4540 } 4541 4542 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4543 { 4544 struct kvm_vcpu *vcpu; 4545 union tod_clock clk; 4546 unsigned long i; 4547 4548 preempt_disable(); 4549 4550 store_tod_clock_ext(&clk); 4551 4552 kvm->arch.epoch = gtod->tod - clk.tod; 4553 kvm->arch.epdx = 0; 4554 if (test_kvm_facility(kvm, 139)) { 4555 kvm->arch.epdx = gtod->epoch_idx - clk.ei; 4556 if (kvm->arch.epoch > gtod->tod) 4557 kvm->arch.epdx -= 1; 4558 } 4559 4560 kvm_s390_vcpu_block_all(kvm); 4561 kvm_for_each_vcpu(i, vcpu, kvm) { 4562 vcpu->arch.sie_block->epoch = kvm->arch.epoch; 4563 vcpu->arch.sie_block->epdx = kvm->arch.epdx; 4564 } 4565 4566 kvm_s390_vcpu_unblock_all(kvm); 4567 preempt_enable(); 4568 } 4569 4570 int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4571 { 4572 if (!mutex_trylock(&kvm->lock)) 4573 return 0; 4574 __kvm_s390_set_tod_clock(kvm, gtod); 4575 mutex_unlock(&kvm->lock); 4576 return 1; 4577 } 4578 4579 /** 4580 * kvm_arch_fault_in_page - fault-in guest page if necessary 4581 * @vcpu: The corresponding virtual cpu 4582 * @gpa: Guest physical address 4583 * @writable: Whether the page should be writable or not 4584 * 4585 * Make sure that a guest page has been faulted-in on the host. 4586 * 4587 * Return: Zero on success, negative error code otherwise. 4588 */ 4589 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable) 4590 { 4591 return gmap_fault(vcpu->arch.gmap, gpa, 4592 writable ? FAULT_FLAG_WRITE : 0); 4593 } 4594 4595 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token, 4596 unsigned long token) 4597 { 4598 struct kvm_s390_interrupt inti; 4599 struct kvm_s390_irq irq; 4600 4601 if (start_token) { 4602 irq.u.ext.ext_params2 = token; 4603 irq.type = KVM_S390_INT_PFAULT_INIT; 4604 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq)); 4605 } else { 4606 inti.type = KVM_S390_INT_PFAULT_DONE; 4607 inti.parm64 = token; 4608 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti)); 4609 } 4610 } 4611 4612 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 4613 struct kvm_async_pf *work) 4614 { 4615 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token); 4616 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token); 4617 4618 return true; 4619 } 4620 4621 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 4622 struct kvm_async_pf *work) 4623 { 4624 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token); 4625 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token); 4626 } 4627 4628 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 4629 struct kvm_async_pf *work) 4630 { 4631 /* s390 will always inject the page directly */ 4632 } 4633 4634 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 4635 { 4636 /* 4637 * s390 will always inject the page directly, 4638 * but we still want check_async_completion to cleanup 4639 */ 4640 return true; 4641 } 4642 4643 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu) 4644 { 4645 hva_t hva; 4646 struct kvm_arch_async_pf arch; 4647 4648 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4649 return false; 4650 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) != 4651 vcpu->arch.pfault_compare) 4652 return false; 4653 if (psw_extint_disabled(vcpu)) 4654 return false; 4655 if (kvm_s390_vcpu_has_irq(vcpu, 0)) 4656 return false; 4657 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) 4658 return false; 4659 if (!vcpu->arch.gmap->pfault_enabled) 4660 return false; 4661 4662 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr)); 4663 hva += current->thread.gmap_addr & ~PAGE_MASK; 4664 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8)) 4665 return false; 4666 4667 return kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch); 4668 } 4669 4670 static int vcpu_pre_run(struct kvm_vcpu *vcpu) 4671 { 4672 int rc, cpuflags; 4673 4674 /* 4675 * On s390 notifications for arriving pages will be delivered directly 4676 * to the guest but the house keeping for completed pfaults is 4677 * handled outside the worker. 4678 */ 4679 kvm_check_async_pf_completion(vcpu); 4680 4681 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14]; 4682 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15]; 4683 4684 if (need_resched()) 4685 schedule(); 4686 4687 if (!kvm_is_ucontrol(vcpu->kvm)) { 4688 rc = kvm_s390_deliver_pending_interrupts(vcpu); 4689 if (rc || guestdbg_exit_pending(vcpu)) 4690 return rc; 4691 } 4692 4693 rc = kvm_s390_handle_requests(vcpu); 4694 if (rc) 4695 return rc; 4696 4697 if (guestdbg_enabled(vcpu)) { 4698 kvm_s390_backup_guest_per_regs(vcpu); 4699 kvm_s390_patch_guest_per_regs(vcpu); 4700 } 4701 4702 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 4703 4704 vcpu->arch.sie_block->icptcode = 0; 4705 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags); 4706 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags); 4707 trace_kvm_s390_sie_enter(vcpu, cpuflags); 4708 4709 return 0; 4710 } 4711 4712 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu) 4713 { 4714 struct kvm_s390_pgm_info pgm_info = { 4715 .code = PGM_ADDRESSING, 4716 }; 4717 u8 opcode, ilen; 4718 int rc; 4719 4720 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction"); 4721 trace_kvm_s390_sie_fault(vcpu); 4722 4723 /* 4724 * We want to inject an addressing exception, which is defined as a 4725 * suppressing or terminating exception. However, since we came here 4726 * by a DAT access exception, the PSW still points to the faulting 4727 * instruction since DAT exceptions are nullifying. So we've got 4728 * to look up the current opcode to get the length of the instruction 4729 * to be able to forward the PSW. 4730 */ 4731 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1); 4732 ilen = insn_length(opcode); 4733 if (rc < 0) { 4734 return rc; 4735 } else if (rc) { 4736 /* Instruction-Fetching Exceptions - we can't detect the ilen. 4737 * Forward by arbitrary ilc, injection will take care of 4738 * nullification if necessary. 4739 */ 4740 pgm_info = vcpu->arch.pgm; 4741 ilen = 4; 4742 } 4743 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID; 4744 kvm_s390_forward_psw(vcpu, ilen); 4745 return kvm_s390_inject_prog_irq(vcpu, &pgm_info); 4746 } 4747 4748 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason) 4749 { 4750 struct mcck_volatile_info *mcck_info; 4751 struct sie_page *sie_page; 4752 4753 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d", 4754 vcpu->arch.sie_block->icptcode); 4755 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode); 4756 4757 if (guestdbg_enabled(vcpu)) 4758 kvm_s390_restore_guest_per_regs(vcpu); 4759 4760 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14; 4761 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15; 4762 4763 if (exit_reason == -EINTR) { 4764 VCPU_EVENT(vcpu, 3, "%s", "machine check"); 4765 sie_page = container_of(vcpu->arch.sie_block, 4766 struct sie_page, sie_block); 4767 mcck_info = &sie_page->mcck_info; 4768 kvm_s390_reinject_machine_check(vcpu, mcck_info); 4769 return 0; 4770 } 4771 4772 if (vcpu->arch.sie_block->icptcode > 0) { 4773 int rc = kvm_handle_sie_intercept(vcpu); 4774 4775 if (rc != -EOPNOTSUPP) 4776 return rc; 4777 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC; 4778 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode; 4779 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa; 4780 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb; 4781 return -EREMOTE; 4782 } else if (exit_reason != -EFAULT) { 4783 vcpu->stat.exit_null++; 4784 return 0; 4785 } else if (kvm_is_ucontrol(vcpu->kvm)) { 4786 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL; 4787 vcpu->run->s390_ucontrol.trans_exc_code = 4788 current->thread.gmap_addr; 4789 vcpu->run->s390_ucontrol.pgm_code = 0x10; 4790 return -EREMOTE; 4791 } else if (current->thread.gmap_pfault) { 4792 trace_kvm_s390_major_guest_pfault(vcpu); 4793 current->thread.gmap_pfault = 0; 4794 if (kvm_arch_setup_async_pf(vcpu)) 4795 return 0; 4796 vcpu->stat.pfault_sync++; 4797 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1); 4798 } 4799 return vcpu_post_run_fault_in_sie(vcpu); 4800 } 4801 4802 #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK) 4803 static int __vcpu_run(struct kvm_vcpu *vcpu) 4804 { 4805 int rc, exit_reason; 4806 struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block; 4807 4808 /* 4809 * We try to hold kvm->srcu during most of vcpu_run (except when run- 4810 * ning the guest), so that memslots (and other stuff) are protected 4811 */ 4812 kvm_vcpu_srcu_read_lock(vcpu); 4813 4814 do { 4815 rc = vcpu_pre_run(vcpu); 4816 if (rc || guestdbg_exit_pending(vcpu)) 4817 break; 4818 4819 kvm_vcpu_srcu_read_unlock(vcpu); 4820 /* 4821 * As PF_VCPU will be used in fault handler, between 4822 * guest_enter and guest_exit should be no uaccess. 4823 */ 4824 local_irq_disable(); 4825 guest_enter_irqoff(); 4826 __disable_cpu_timer_accounting(vcpu); 4827 local_irq_enable(); 4828 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4829 memcpy(sie_page->pv_grregs, 4830 vcpu->run->s.regs.gprs, 4831 sizeof(sie_page->pv_grregs)); 4832 } 4833 if (test_cpu_flag(CIF_FPU)) 4834 load_fpu_regs(); 4835 exit_reason = sie64a(vcpu->arch.sie_block, 4836 vcpu->run->s.regs.gprs); 4837 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4838 memcpy(vcpu->run->s.regs.gprs, 4839 sie_page->pv_grregs, 4840 sizeof(sie_page->pv_grregs)); 4841 /* 4842 * We're not allowed to inject interrupts on intercepts 4843 * that leave the guest state in an "in-between" state 4844 * where the next SIE entry will do a continuation. 4845 * Fence interrupts in our "internal" PSW. 4846 */ 4847 if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR || 4848 vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) { 4849 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 4850 } 4851 } 4852 local_irq_disable(); 4853 __enable_cpu_timer_accounting(vcpu); 4854 guest_exit_irqoff(); 4855 local_irq_enable(); 4856 kvm_vcpu_srcu_read_lock(vcpu); 4857 4858 rc = vcpu_post_run(vcpu, exit_reason); 4859 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc); 4860 4861 kvm_vcpu_srcu_read_unlock(vcpu); 4862 return rc; 4863 } 4864 4865 static void sync_regs_fmt2(struct kvm_vcpu *vcpu) 4866 { 4867 struct kvm_run *kvm_run = vcpu->run; 4868 struct runtime_instr_cb *riccb; 4869 struct gs_cb *gscb; 4870 4871 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb; 4872 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb; 4873 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask; 4874 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr; 4875 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 4876 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr; 4877 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp; 4878 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea; 4879 } 4880 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) { 4881 vcpu->arch.pfault_token = kvm_run->s.regs.pft; 4882 vcpu->arch.pfault_select = kvm_run->s.regs.pfs; 4883 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc; 4884 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4885 kvm_clear_async_pf_completion_queue(vcpu); 4886 } 4887 if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) { 4888 vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318; 4889 vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc; 4890 VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc); 4891 } 4892 /* 4893 * If userspace sets the riccb (e.g. after migration) to a valid state, 4894 * we should enable RI here instead of doing the lazy enablement. 4895 */ 4896 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) && 4897 test_kvm_facility(vcpu->kvm, 64) && 4898 riccb->v && 4899 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) { 4900 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)"); 4901 vcpu->arch.sie_block->ecb3 |= ECB3_RI; 4902 } 4903 /* 4904 * If userspace sets the gscb (e.g. after migration) to non-zero, 4905 * we should enable GS here instead of doing the lazy enablement. 4906 */ 4907 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) && 4908 test_kvm_facility(vcpu->kvm, 133) && 4909 gscb->gssm && 4910 !vcpu->arch.gs_enabled) { 4911 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)"); 4912 vcpu->arch.sie_block->ecb |= ECB_GS; 4913 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 4914 vcpu->arch.gs_enabled = 1; 4915 } 4916 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) && 4917 test_kvm_facility(vcpu->kvm, 82)) { 4918 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 4919 vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0; 4920 } 4921 if (MACHINE_HAS_GS) { 4922 preempt_disable(); 4923 __ctl_set_bit(2, 4); 4924 if (current->thread.gs_cb) { 4925 vcpu->arch.host_gscb = current->thread.gs_cb; 4926 save_gs_cb(vcpu->arch.host_gscb); 4927 } 4928 if (vcpu->arch.gs_enabled) { 4929 current->thread.gs_cb = (struct gs_cb *) 4930 &vcpu->run->s.regs.gscb; 4931 restore_gs_cb(current->thread.gs_cb); 4932 } 4933 preempt_enable(); 4934 } 4935 /* SIE will load etoken directly from SDNX and therefore kvm_run */ 4936 } 4937 4938 static void sync_regs(struct kvm_vcpu *vcpu) 4939 { 4940 struct kvm_run *kvm_run = vcpu->run; 4941 4942 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) 4943 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix); 4944 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) { 4945 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128); 4946 /* some control register changes require a tlb flush */ 4947 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 4948 } 4949 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 4950 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm); 4951 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc; 4952 } 4953 save_access_regs(vcpu->arch.host_acrs); 4954 restore_access_regs(vcpu->run->s.regs.acrs); 4955 /* save host (userspace) fprs/vrs */ 4956 save_fpu_regs(); 4957 vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc; 4958 vcpu->arch.host_fpregs.regs = current->thread.fpu.regs; 4959 if (MACHINE_HAS_VX) 4960 current->thread.fpu.regs = vcpu->run->s.regs.vrs; 4961 else 4962 current->thread.fpu.regs = vcpu->run->s.regs.fprs; 4963 current->thread.fpu.fpc = vcpu->run->s.regs.fpc; 4964 if (test_fp_ctl(current->thread.fpu.fpc)) 4965 /* User space provided an invalid FPC, let's clear it */ 4966 current->thread.fpu.fpc = 0; 4967 4968 /* Sync fmt2 only data */ 4969 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) { 4970 sync_regs_fmt2(vcpu); 4971 } else { 4972 /* 4973 * In several places we have to modify our internal view to 4974 * not do things that are disallowed by the ultravisor. For 4975 * example we must not inject interrupts after specific exits 4976 * (e.g. 112 prefix page not secure). We do this by turning 4977 * off the machine check, external and I/O interrupt bits 4978 * of our PSW copy. To avoid getting validity intercepts, we 4979 * do only accept the condition code from userspace. 4980 */ 4981 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC; 4982 vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask & 4983 PSW_MASK_CC; 4984 } 4985 4986 kvm_run->kvm_dirty_regs = 0; 4987 } 4988 4989 static void store_regs_fmt2(struct kvm_vcpu *vcpu) 4990 { 4991 struct kvm_run *kvm_run = vcpu->run; 4992 4993 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr; 4994 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp; 4995 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea; 4996 kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC; 4997 kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val; 4998 if (MACHINE_HAS_GS) { 4999 preempt_disable(); 5000 __ctl_set_bit(2, 4); 5001 if (vcpu->arch.gs_enabled) 5002 save_gs_cb(current->thread.gs_cb); 5003 current->thread.gs_cb = vcpu->arch.host_gscb; 5004 restore_gs_cb(vcpu->arch.host_gscb); 5005 if (!vcpu->arch.host_gscb) 5006 __ctl_clear_bit(2, 4); 5007 vcpu->arch.host_gscb = NULL; 5008 preempt_enable(); 5009 } 5010 /* SIE will save etoken directly into SDNX and therefore kvm_run */ 5011 } 5012 5013 static void store_regs(struct kvm_vcpu *vcpu) 5014 { 5015 struct kvm_run *kvm_run = vcpu->run; 5016 5017 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask; 5018 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr; 5019 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu); 5020 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128); 5021 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu); 5022 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc; 5023 kvm_run->s.regs.pft = vcpu->arch.pfault_token; 5024 kvm_run->s.regs.pfs = vcpu->arch.pfault_select; 5025 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare; 5026 save_access_regs(vcpu->run->s.regs.acrs); 5027 restore_access_regs(vcpu->arch.host_acrs); 5028 /* Save guest register state */ 5029 save_fpu_regs(); 5030 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 5031 /* Restore will be done lazily at return */ 5032 current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc; 5033 current->thread.fpu.regs = vcpu->arch.host_fpregs.regs; 5034 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) 5035 store_regs_fmt2(vcpu); 5036 } 5037 5038 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 5039 { 5040 struct kvm_run *kvm_run = vcpu->run; 5041 int rc; 5042 5043 /* 5044 * Running a VM while dumping always has the potential to 5045 * produce inconsistent dump data. But for PV vcpus a SIE 5046 * entry while dumping could also lead to a fatal validity 5047 * intercept which we absolutely want to avoid. 5048 */ 5049 if (vcpu->kvm->arch.pv.dumping) 5050 return -EINVAL; 5051 5052 if (kvm_run->immediate_exit) 5053 return -EINTR; 5054 5055 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS || 5056 kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS) 5057 return -EINVAL; 5058 5059 vcpu_load(vcpu); 5060 5061 if (guestdbg_exit_pending(vcpu)) { 5062 kvm_s390_prepare_debug_exit(vcpu); 5063 rc = 0; 5064 goto out; 5065 } 5066 5067 kvm_sigset_activate(vcpu); 5068 5069 /* 5070 * no need to check the return value of vcpu_start as it can only have 5071 * an error for protvirt, but protvirt means user cpu state 5072 */ 5073 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) { 5074 kvm_s390_vcpu_start(vcpu); 5075 } else if (is_vcpu_stopped(vcpu)) { 5076 pr_err_ratelimited("can't run stopped vcpu %d\n", 5077 vcpu->vcpu_id); 5078 rc = -EINVAL; 5079 goto out; 5080 } 5081 5082 sync_regs(vcpu); 5083 enable_cpu_timer_accounting(vcpu); 5084 5085 might_fault(); 5086 rc = __vcpu_run(vcpu); 5087 5088 if (signal_pending(current) && !rc) { 5089 kvm_run->exit_reason = KVM_EXIT_INTR; 5090 rc = -EINTR; 5091 } 5092 5093 if (guestdbg_exit_pending(vcpu) && !rc) { 5094 kvm_s390_prepare_debug_exit(vcpu); 5095 rc = 0; 5096 } 5097 5098 if (rc == -EREMOTE) { 5099 /* userspace support is needed, kvm_run has been prepared */ 5100 rc = 0; 5101 } 5102 5103 disable_cpu_timer_accounting(vcpu); 5104 store_regs(vcpu); 5105 5106 kvm_sigset_deactivate(vcpu); 5107 5108 vcpu->stat.exit_userspace++; 5109 out: 5110 vcpu_put(vcpu); 5111 return rc; 5112 } 5113 5114 /* 5115 * store status at address 5116 * we use have two special cases: 5117 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit 5118 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix 5119 */ 5120 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa) 5121 { 5122 unsigned char archmode = 1; 5123 freg_t fprs[NUM_FPRS]; 5124 unsigned int px; 5125 u64 clkcomp, cputm; 5126 int rc; 5127 5128 px = kvm_s390_get_prefix(vcpu); 5129 if (gpa == KVM_S390_STORE_STATUS_NOADDR) { 5130 if (write_guest_abs(vcpu, 163, &archmode, 1)) 5131 return -EFAULT; 5132 gpa = 0; 5133 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) { 5134 if (write_guest_real(vcpu, 163, &archmode, 1)) 5135 return -EFAULT; 5136 gpa = px; 5137 } else 5138 gpa -= __LC_FPREGS_SAVE_AREA; 5139 5140 /* manually convert vector registers if necessary */ 5141 if (MACHINE_HAS_VX) { 5142 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 5143 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5144 fprs, 128); 5145 } else { 5146 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5147 vcpu->run->s.regs.fprs, 128); 5148 } 5149 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA, 5150 vcpu->run->s.regs.gprs, 128); 5151 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA, 5152 &vcpu->arch.sie_block->gpsw, 16); 5153 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA, 5154 &px, 4); 5155 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA, 5156 &vcpu->run->s.regs.fpc, 4); 5157 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA, 5158 &vcpu->arch.sie_block->todpr, 4); 5159 cputm = kvm_s390_get_cpu_timer(vcpu); 5160 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA, 5161 &cputm, 8); 5162 clkcomp = vcpu->arch.sie_block->ckc >> 8; 5163 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA, 5164 &clkcomp, 8); 5165 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA, 5166 &vcpu->run->s.regs.acrs, 64); 5167 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA, 5168 &vcpu->arch.sie_block->gcr, 128); 5169 return rc ? -EFAULT : 0; 5170 } 5171 5172 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr) 5173 { 5174 /* 5175 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy 5176 * switch in the run ioctl. Let's update our copies before we save 5177 * it into the save area 5178 */ 5179 save_fpu_regs(); 5180 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 5181 save_access_regs(vcpu->run->s.regs.acrs); 5182 5183 return kvm_s390_store_status_unloaded(vcpu, addr); 5184 } 5185 5186 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5187 { 5188 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu); 5189 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu); 5190 } 5191 5192 static void __disable_ibs_on_all_vcpus(struct kvm *kvm) 5193 { 5194 unsigned long i; 5195 struct kvm_vcpu *vcpu; 5196 5197 kvm_for_each_vcpu(i, vcpu, kvm) { 5198 __disable_ibs_on_vcpu(vcpu); 5199 } 5200 } 5201 5202 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5203 { 5204 if (!sclp.has_ibs) 5205 return; 5206 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu); 5207 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu); 5208 } 5209 5210 int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu) 5211 { 5212 int i, online_vcpus, r = 0, started_vcpus = 0; 5213 5214 if (!is_vcpu_stopped(vcpu)) 5215 return 0; 5216 5217 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1); 5218 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5219 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5220 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5221 5222 /* Let's tell the UV that we want to change into the operating state */ 5223 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5224 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR); 5225 if (r) { 5226 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5227 return r; 5228 } 5229 } 5230 5231 for (i = 0; i < online_vcpus; i++) { 5232 if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i))) 5233 started_vcpus++; 5234 } 5235 5236 if (started_vcpus == 0) { 5237 /* we're the only active VCPU -> speed it up */ 5238 __enable_ibs_on_vcpu(vcpu); 5239 } else if (started_vcpus == 1) { 5240 /* 5241 * As we are starting a second VCPU, we have to disable 5242 * the IBS facility on all VCPUs to remove potentially 5243 * outstanding ENABLE requests. 5244 */ 5245 __disable_ibs_on_all_vcpus(vcpu->kvm); 5246 } 5247 5248 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED); 5249 /* 5250 * The real PSW might have changed due to a RESTART interpreted by the 5251 * ultravisor. We block all interrupts and let the next sie exit 5252 * refresh our view. 5253 */ 5254 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5255 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 5256 /* 5257 * Another VCPU might have used IBS while we were offline. 5258 * Let's play safe and flush the VCPU at startup. 5259 */ 5260 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 5261 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5262 return 0; 5263 } 5264 5265 int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu) 5266 { 5267 int i, online_vcpus, r = 0, started_vcpus = 0; 5268 struct kvm_vcpu *started_vcpu = NULL; 5269 5270 if (is_vcpu_stopped(vcpu)) 5271 return 0; 5272 5273 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0); 5274 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5275 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5276 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5277 5278 /* Let's tell the UV that we want to change into the stopped state */ 5279 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5280 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP); 5281 if (r) { 5282 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5283 return r; 5284 } 5285 } 5286 5287 /* 5288 * Set the VCPU to STOPPED and THEN clear the interrupt flag, 5289 * now that the SIGP STOP and SIGP STOP AND STORE STATUS orders 5290 * have been fully processed. This will ensure that the VCPU 5291 * is kept BUSY if another VCPU is inquiring with SIGP SENSE. 5292 */ 5293 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED); 5294 kvm_s390_clear_stop_irq(vcpu); 5295 5296 __disable_ibs_on_vcpu(vcpu); 5297 5298 for (i = 0; i < online_vcpus; i++) { 5299 struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i); 5300 5301 if (!is_vcpu_stopped(tmp)) { 5302 started_vcpus++; 5303 started_vcpu = tmp; 5304 } 5305 } 5306 5307 if (started_vcpus == 1) { 5308 /* 5309 * As we only have one VCPU left, we want to enable the 5310 * IBS facility for that VCPU to speed it up. 5311 */ 5312 __enable_ibs_on_vcpu(started_vcpu); 5313 } 5314 5315 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5316 return 0; 5317 } 5318 5319 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5320 struct kvm_enable_cap *cap) 5321 { 5322 int r; 5323 5324 if (cap->flags) 5325 return -EINVAL; 5326 5327 switch (cap->cap) { 5328 case KVM_CAP_S390_CSS_SUPPORT: 5329 if (!vcpu->kvm->arch.css_support) { 5330 vcpu->kvm->arch.css_support = 1; 5331 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support"); 5332 trace_kvm_s390_enable_css(vcpu->kvm); 5333 } 5334 r = 0; 5335 break; 5336 default: 5337 r = -EINVAL; 5338 break; 5339 } 5340 return r; 5341 } 5342 5343 static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu, 5344 struct kvm_s390_mem_op *mop) 5345 { 5346 void __user *uaddr = (void __user *)mop->buf; 5347 void *sida_addr; 5348 int r = 0; 5349 5350 if (mop->flags || !mop->size) 5351 return -EINVAL; 5352 if (mop->size + mop->sida_offset < mop->size) 5353 return -EINVAL; 5354 if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block)) 5355 return -E2BIG; 5356 if (!kvm_s390_pv_cpu_is_protected(vcpu)) 5357 return -EINVAL; 5358 5359 sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset; 5360 5361 switch (mop->op) { 5362 case KVM_S390_MEMOP_SIDA_READ: 5363 if (copy_to_user(uaddr, sida_addr, mop->size)) 5364 r = -EFAULT; 5365 5366 break; 5367 case KVM_S390_MEMOP_SIDA_WRITE: 5368 if (copy_from_user(sida_addr, uaddr, mop->size)) 5369 r = -EFAULT; 5370 break; 5371 } 5372 return r; 5373 } 5374 5375 static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu, 5376 struct kvm_s390_mem_op *mop) 5377 { 5378 void __user *uaddr = (void __user *)mop->buf; 5379 enum gacc_mode acc_mode; 5380 void *tmpbuf = NULL; 5381 int r; 5382 5383 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION | 5384 KVM_S390_MEMOP_F_CHECK_ONLY | 5385 KVM_S390_MEMOP_F_SKEY_PROTECTION); 5386 if (r) 5387 return r; 5388 if (mop->ar >= NUM_ACRS) 5389 return -EINVAL; 5390 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5391 return -EINVAL; 5392 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 5393 tmpbuf = vmalloc(mop->size); 5394 if (!tmpbuf) 5395 return -ENOMEM; 5396 } 5397 5398 acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE; 5399 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 5400 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, 5401 acc_mode, mop->key); 5402 goto out_inject; 5403 } 5404 if (acc_mode == GACC_FETCH) { 5405 r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5406 mop->size, mop->key); 5407 if (r) 5408 goto out_inject; 5409 if (copy_to_user(uaddr, tmpbuf, mop->size)) { 5410 r = -EFAULT; 5411 goto out_free; 5412 } 5413 } else { 5414 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 5415 r = -EFAULT; 5416 goto out_free; 5417 } 5418 r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5419 mop->size, mop->key); 5420 } 5421 5422 out_inject: 5423 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0) 5424 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); 5425 5426 out_free: 5427 vfree(tmpbuf); 5428 return r; 5429 } 5430 5431 static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu, 5432 struct kvm_s390_mem_op *mop) 5433 { 5434 int r, srcu_idx; 5435 5436 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5437 5438 switch (mop->op) { 5439 case KVM_S390_MEMOP_LOGICAL_READ: 5440 case KVM_S390_MEMOP_LOGICAL_WRITE: 5441 r = kvm_s390_vcpu_mem_op(vcpu, mop); 5442 break; 5443 case KVM_S390_MEMOP_SIDA_READ: 5444 case KVM_S390_MEMOP_SIDA_WRITE: 5445 /* we are locked against sida going away by the vcpu->mutex */ 5446 r = kvm_s390_vcpu_sida_op(vcpu, mop); 5447 break; 5448 default: 5449 r = -EINVAL; 5450 } 5451 5452 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 5453 return r; 5454 } 5455 5456 long kvm_arch_vcpu_async_ioctl(struct file *filp, 5457 unsigned int ioctl, unsigned long arg) 5458 { 5459 struct kvm_vcpu *vcpu = filp->private_data; 5460 void __user *argp = (void __user *)arg; 5461 int rc; 5462 5463 switch (ioctl) { 5464 case KVM_S390_IRQ: { 5465 struct kvm_s390_irq s390irq; 5466 5467 if (copy_from_user(&s390irq, argp, sizeof(s390irq))) 5468 return -EFAULT; 5469 rc = kvm_s390_inject_vcpu(vcpu, &s390irq); 5470 break; 5471 } 5472 case KVM_S390_INTERRUPT: { 5473 struct kvm_s390_interrupt s390int; 5474 struct kvm_s390_irq s390irq = {}; 5475 5476 if (copy_from_user(&s390int, argp, sizeof(s390int))) 5477 return -EFAULT; 5478 if (s390int_to_s390irq(&s390int, &s390irq)) 5479 return -EINVAL; 5480 rc = kvm_s390_inject_vcpu(vcpu, &s390irq); 5481 break; 5482 } 5483 default: 5484 rc = -ENOIOCTLCMD; 5485 break; 5486 } 5487 5488 /* 5489 * To simplify single stepping of userspace-emulated instructions, 5490 * KVM_EXIT_S390_SIEIC exit sets KVM_GUESTDBG_EXIT_PENDING (see 5491 * should_handle_per_ifetch()). However, if userspace emulation injects 5492 * an interrupt, it needs to be cleared, so that KVM_EXIT_DEBUG happens 5493 * after (and not before) the interrupt delivery. 5494 */ 5495 if (!rc) 5496 vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING; 5497 5498 return rc; 5499 } 5500 5501 static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu, 5502 struct kvm_pv_cmd *cmd) 5503 { 5504 struct kvm_s390_pv_dmp dmp; 5505 void *data; 5506 int ret; 5507 5508 /* Dump initialization is a prerequisite */ 5509 if (!vcpu->kvm->arch.pv.dumping) 5510 return -EINVAL; 5511 5512 if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp))) 5513 return -EFAULT; 5514 5515 /* We only handle this subcmd right now */ 5516 if (dmp.subcmd != KVM_PV_DUMP_CPU) 5517 return -EINVAL; 5518 5519 /* CPU dump length is the same as create cpu storage donation. */ 5520 if (dmp.buff_len != uv_info.guest_cpu_stor_len) 5521 return -EINVAL; 5522 5523 data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL); 5524 if (!data) 5525 return -ENOMEM; 5526 5527 ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc); 5528 5529 VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x", 5530 vcpu->vcpu_id, cmd->rc, cmd->rrc); 5531 5532 if (ret) 5533 ret = -EINVAL; 5534 5535 /* On success copy over the dump data */ 5536 if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len)) 5537 ret = -EFAULT; 5538 5539 kvfree(data); 5540 return ret; 5541 } 5542 5543 long kvm_arch_vcpu_ioctl(struct file *filp, 5544 unsigned int ioctl, unsigned long arg) 5545 { 5546 struct kvm_vcpu *vcpu = filp->private_data; 5547 void __user *argp = (void __user *)arg; 5548 int idx; 5549 long r; 5550 u16 rc, rrc; 5551 5552 vcpu_load(vcpu); 5553 5554 switch (ioctl) { 5555 case KVM_S390_STORE_STATUS: 5556 idx = srcu_read_lock(&vcpu->kvm->srcu); 5557 r = kvm_s390_store_status_unloaded(vcpu, arg); 5558 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5559 break; 5560 case KVM_S390_SET_INITIAL_PSW: { 5561 psw_t psw; 5562 5563 r = -EFAULT; 5564 if (copy_from_user(&psw, argp, sizeof(psw))) 5565 break; 5566 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw); 5567 break; 5568 } 5569 case KVM_S390_CLEAR_RESET: 5570 r = 0; 5571 kvm_arch_vcpu_ioctl_clear_reset(vcpu); 5572 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5573 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5574 UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc); 5575 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x", 5576 rc, rrc); 5577 } 5578 break; 5579 case KVM_S390_INITIAL_RESET: 5580 r = 0; 5581 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 5582 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5583 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5584 UVC_CMD_CPU_RESET_INITIAL, 5585 &rc, &rrc); 5586 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x", 5587 rc, rrc); 5588 } 5589 break; 5590 case KVM_S390_NORMAL_RESET: 5591 r = 0; 5592 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 5593 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5594 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5595 UVC_CMD_CPU_RESET, &rc, &rrc); 5596 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x", 5597 rc, rrc); 5598 } 5599 break; 5600 case KVM_SET_ONE_REG: 5601 case KVM_GET_ONE_REG: { 5602 struct kvm_one_reg reg; 5603 r = -EINVAL; 5604 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5605 break; 5606 r = -EFAULT; 5607 if (copy_from_user(®, argp, sizeof(reg))) 5608 break; 5609 if (ioctl == KVM_SET_ONE_REG) 5610 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®); 5611 else 5612 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®); 5613 break; 5614 } 5615 #ifdef CONFIG_KVM_S390_UCONTROL 5616 case KVM_S390_UCAS_MAP: { 5617 struct kvm_s390_ucas_mapping ucasmap; 5618 5619 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5620 r = -EFAULT; 5621 break; 5622 } 5623 5624 if (!kvm_is_ucontrol(vcpu->kvm)) { 5625 r = -EINVAL; 5626 break; 5627 } 5628 5629 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr, 5630 ucasmap.vcpu_addr, ucasmap.length); 5631 break; 5632 } 5633 case KVM_S390_UCAS_UNMAP: { 5634 struct kvm_s390_ucas_mapping ucasmap; 5635 5636 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5637 r = -EFAULT; 5638 break; 5639 } 5640 5641 if (!kvm_is_ucontrol(vcpu->kvm)) { 5642 r = -EINVAL; 5643 break; 5644 } 5645 5646 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr, 5647 ucasmap.length); 5648 break; 5649 } 5650 #endif 5651 case KVM_S390_VCPU_FAULT: { 5652 r = gmap_fault(vcpu->arch.gmap, arg, 0); 5653 break; 5654 } 5655 case KVM_ENABLE_CAP: 5656 { 5657 struct kvm_enable_cap cap; 5658 r = -EFAULT; 5659 if (copy_from_user(&cap, argp, sizeof(cap))) 5660 break; 5661 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5662 break; 5663 } 5664 case KVM_S390_MEM_OP: { 5665 struct kvm_s390_mem_op mem_op; 5666 5667 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 5668 r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op); 5669 else 5670 r = -EFAULT; 5671 break; 5672 } 5673 case KVM_S390_SET_IRQ_STATE: { 5674 struct kvm_s390_irq_state irq_state; 5675 5676 r = -EFAULT; 5677 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5678 break; 5679 if (irq_state.len > VCPU_IRQS_MAX_BUF || 5680 irq_state.len == 0 || 5681 irq_state.len % sizeof(struct kvm_s390_irq) > 0) { 5682 r = -EINVAL; 5683 break; 5684 } 5685 /* do not use irq_state.flags, it will break old QEMUs */ 5686 r = kvm_s390_set_irq_state(vcpu, 5687 (void __user *) irq_state.buf, 5688 irq_state.len); 5689 break; 5690 } 5691 case KVM_S390_GET_IRQ_STATE: { 5692 struct kvm_s390_irq_state irq_state; 5693 5694 r = -EFAULT; 5695 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5696 break; 5697 if (irq_state.len == 0) { 5698 r = -EINVAL; 5699 break; 5700 } 5701 /* do not use irq_state.flags, it will break old QEMUs */ 5702 r = kvm_s390_get_irq_state(vcpu, 5703 (__u8 __user *) irq_state.buf, 5704 irq_state.len); 5705 break; 5706 } 5707 case KVM_S390_PV_CPU_COMMAND: { 5708 struct kvm_pv_cmd cmd; 5709 5710 r = -EINVAL; 5711 if (!is_prot_virt_host()) 5712 break; 5713 5714 r = -EFAULT; 5715 if (copy_from_user(&cmd, argp, sizeof(cmd))) 5716 break; 5717 5718 r = -EINVAL; 5719 if (cmd.flags) 5720 break; 5721 5722 /* We only handle this cmd right now */ 5723 if (cmd.cmd != KVM_PV_DUMP) 5724 break; 5725 5726 r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd); 5727 5728 /* Always copy over UV rc / rrc data */ 5729 if (copy_to_user((__u8 __user *)argp, &cmd.rc, 5730 sizeof(cmd.rc) + sizeof(cmd.rrc))) 5731 r = -EFAULT; 5732 break; 5733 } 5734 default: 5735 r = -ENOTTY; 5736 } 5737 5738 vcpu_put(vcpu); 5739 return r; 5740 } 5741 5742 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5743 { 5744 #ifdef CONFIG_KVM_S390_UCONTROL 5745 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET) 5746 && (kvm_is_ucontrol(vcpu->kvm))) { 5747 vmf->page = virt_to_page(vcpu->arch.sie_block); 5748 get_page(vmf->page); 5749 return 0; 5750 } 5751 #endif 5752 return VM_FAULT_SIGBUS; 5753 } 5754 5755 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 5756 { 5757 return true; 5758 } 5759 5760 /* Section: memory related */ 5761 int kvm_arch_prepare_memory_region(struct kvm *kvm, 5762 const struct kvm_memory_slot *old, 5763 struct kvm_memory_slot *new, 5764 enum kvm_mr_change change) 5765 { 5766 gpa_t size; 5767 5768 /* When we are protected, we should not change the memory slots */ 5769 if (kvm_s390_pv_get_handle(kvm)) 5770 return -EINVAL; 5771 5772 if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) { 5773 /* 5774 * A few sanity checks. We can have memory slots which have to be 5775 * located/ended at a segment boundary (1MB). The memory in userland is 5776 * ok to be fragmented into various different vmas. It is okay to mmap() 5777 * and munmap() stuff in this slot after doing this call at any time 5778 */ 5779 5780 if (new->userspace_addr & 0xffffful) 5781 return -EINVAL; 5782 5783 size = new->npages * PAGE_SIZE; 5784 if (size & 0xffffful) 5785 return -EINVAL; 5786 5787 if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit) 5788 return -EINVAL; 5789 } 5790 5791 if (!kvm->arch.migration_mode) 5792 return 0; 5793 5794 /* 5795 * Turn off migration mode when: 5796 * - userspace creates a new memslot with dirty logging off, 5797 * - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and 5798 * dirty logging is turned off. 5799 * Migration mode expects dirty page logging being enabled to store 5800 * its dirty bitmap. 5801 */ 5802 if (change != KVM_MR_DELETE && 5803 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 5804 WARN(kvm_s390_vm_stop_migration(kvm), 5805 "Failed to stop migration mode"); 5806 5807 return 0; 5808 } 5809 5810 void kvm_arch_commit_memory_region(struct kvm *kvm, 5811 struct kvm_memory_slot *old, 5812 const struct kvm_memory_slot *new, 5813 enum kvm_mr_change change) 5814 { 5815 int rc = 0; 5816 5817 switch (change) { 5818 case KVM_MR_DELETE: 5819 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 5820 old->npages * PAGE_SIZE); 5821 break; 5822 case KVM_MR_MOVE: 5823 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 5824 old->npages * PAGE_SIZE); 5825 if (rc) 5826 break; 5827 fallthrough; 5828 case KVM_MR_CREATE: 5829 rc = gmap_map_segment(kvm->arch.gmap, new->userspace_addr, 5830 new->base_gfn * PAGE_SIZE, 5831 new->npages * PAGE_SIZE); 5832 break; 5833 case KVM_MR_FLAGS_ONLY: 5834 break; 5835 default: 5836 WARN(1, "Unknown KVM MR CHANGE: %d\n", change); 5837 } 5838 if (rc) 5839 pr_warn("failed to commit memory region\n"); 5840 return; 5841 } 5842 5843 static inline unsigned long nonhyp_mask(int i) 5844 { 5845 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30; 5846 5847 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4); 5848 } 5849 5850 static int __init kvm_s390_init(void) 5851 { 5852 int i, r; 5853 5854 if (!sclp.has_sief2) { 5855 pr_info("SIE is not available\n"); 5856 return -ENODEV; 5857 } 5858 5859 if (nested && hpage) { 5860 pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n"); 5861 return -EINVAL; 5862 } 5863 5864 for (i = 0; i < 16; i++) 5865 kvm_s390_fac_base[i] |= 5866 stfle_fac_list[i] & nonhyp_mask(i); 5867 5868 r = __kvm_s390_init(); 5869 if (r) 5870 return r; 5871 5872 r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 5873 if (r) { 5874 __kvm_s390_exit(); 5875 return r; 5876 } 5877 return 0; 5878 } 5879 5880 static void __exit kvm_s390_exit(void) 5881 { 5882 kvm_exit(); 5883 5884 __kvm_s390_exit(); 5885 } 5886 5887 module_init(kvm_s390_init); 5888 module_exit(kvm_s390_exit); 5889 5890 /* 5891 * Enable autoloading of the kvm module. 5892 * Note that we add the module alias here instead of virt/kvm/kvm_main.c 5893 * since x86 takes a different approach. 5894 */ 5895 #include <linux/miscdevice.h> 5896 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5897 MODULE_ALIAS("devname:kvm"); 5898