1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * hosting IBM Z kernel virtual machines (s390x) 4 * 5 * Copyright IBM Corp. 2008, 2020 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 * Christian Borntraeger <borntraeger@de.ibm.com> 9 * Christian Ehrhardt <ehrhardt@de.ibm.com> 10 * Jason J. Herne <jjherne@us.ibm.com> 11 */ 12 13 #define KMSG_COMPONENT "kvm-s390" 14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 15 16 #include <linux/compiler.h> 17 #include <linux/err.h> 18 #include <linux/fs.h> 19 #include <linux/hrtimer.h> 20 #include <linux/init.h> 21 #include <linux/kvm.h> 22 #include <linux/kvm_host.h> 23 #include <linux/mman.h> 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/random.h> 27 #include <linux/slab.h> 28 #include <linux/timer.h> 29 #include <linux/vmalloc.h> 30 #include <linux/bitmap.h> 31 #include <linux/sched/signal.h> 32 #include <linux/string.h> 33 #include <linux/pgtable.h> 34 #include <linux/mmu_notifier.h> 35 36 #include <asm/asm-offsets.h> 37 #include <asm/lowcore.h> 38 #include <asm/stp.h> 39 #include <asm/gmap.h> 40 #include <asm/nmi.h> 41 #include <asm/switch_to.h> 42 #include <asm/isc.h> 43 #include <asm/sclp.h> 44 #include <asm/cpacf.h> 45 #include <asm/timex.h> 46 #include <asm/ap.h> 47 #include <asm/uv.h> 48 #include <asm/fpu/api.h> 49 #include "kvm-s390.h" 50 #include "gaccess.h" 51 #include "pci.h" 52 53 #define CREATE_TRACE_POINTS 54 #include "trace.h" 55 #include "trace-s390.h" 56 57 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */ 58 #define LOCAL_IRQS 32 59 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \ 60 (KVM_MAX_VCPUS + LOCAL_IRQS)) 61 62 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 63 KVM_GENERIC_VM_STATS(), 64 STATS_DESC_COUNTER(VM, inject_io), 65 STATS_DESC_COUNTER(VM, inject_float_mchk), 66 STATS_DESC_COUNTER(VM, inject_pfault_done), 67 STATS_DESC_COUNTER(VM, inject_service_signal), 68 STATS_DESC_COUNTER(VM, inject_virtio), 69 STATS_DESC_COUNTER(VM, aen_forward), 70 STATS_DESC_COUNTER(VM, gmap_shadow_reuse), 71 STATS_DESC_COUNTER(VM, gmap_shadow_create), 72 STATS_DESC_COUNTER(VM, gmap_shadow_r1_entry), 73 STATS_DESC_COUNTER(VM, gmap_shadow_r2_entry), 74 STATS_DESC_COUNTER(VM, gmap_shadow_r3_entry), 75 STATS_DESC_COUNTER(VM, gmap_shadow_sg_entry), 76 STATS_DESC_COUNTER(VM, gmap_shadow_pg_entry), 77 }; 78 79 const struct kvm_stats_header kvm_vm_stats_header = { 80 .name_size = KVM_STATS_NAME_SIZE, 81 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 82 .id_offset = sizeof(struct kvm_stats_header), 83 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 84 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 85 sizeof(kvm_vm_stats_desc), 86 }; 87 88 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 89 KVM_GENERIC_VCPU_STATS(), 90 STATS_DESC_COUNTER(VCPU, exit_userspace), 91 STATS_DESC_COUNTER(VCPU, exit_null), 92 STATS_DESC_COUNTER(VCPU, exit_external_request), 93 STATS_DESC_COUNTER(VCPU, exit_io_request), 94 STATS_DESC_COUNTER(VCPU, exit_external_interrupt), 95 STATS_DESC_COUNTER(VCPU, exit_stop_request), 96 STATS_DESC_COUNTER(VCPU, exit_validity), 97 STATS_DESC_COUNTER(VCPU, exit_instruction), 98 STATS_DESC_COUNTER(VCPU, exit_pei), 99 STATS_DESC_COUNTER(VCPU, halt_no_poll_steal), 100 STATS_DESC_COUNTER(VCPU, instruction_lctl), 101 STATS_DESC_COUNTER(VCPU, instruction_lctlg), 102 STATS_DESC_COUNTER(VCPU, instruction_stctl), 103 STATS_DESC_COUNTER(VCPU, instruction_stctg), 104 STATS_DESC_COUNTER(VCPU, exit_program_interruption), 105 STATS_DESC_COUNTER(VCPU, exit_instr_and_program), 106 STATS_DESC_COUNTER(VCPU, exit_operation_exception), 107 STATS_DESC_COUNTER(VCPU, deliver_ckc), 108 STATS_DESC_COUNTER(VCPU, deliver_cputm), 109 STATS_DESC_COUNTER(VCPU, deliver_external_call), 110 STATS_DESC_COUNTER(VCPU, deliver_emergency_signal), 111 STATS_DESC_COUNTER(VCPU, deliver_service_signal), 112 STATS_DESC_COUNTER(VCPU, deliver_virtio), 113 STATS_DESC_COUNTER(VCPU, deliver_stop_signal), 114 STATS_DESC_COUNTER(VCPU, deliver_prefix_signal), 115 STATS_DESC_COUNTER(VCPU, deliver_restart_signal), 116 STATS_DESC_COUNTER(VCPU, deliver_program), 117 STATS_DESC_COUNTER(VCPU, deliver_io), 118 STATS_DESC_COUNTER(VCPU, deliver_machine_check), 119 STATS_DESC_COUNTER(VCPU, exit_wait_state), 120 STATS_DESC_COUNTER(VCPU, inject_ckc), 121 STATS_DESC_COUNTER(VCPU, inject_cputm), 122 STATS_DESC_COUNTER(VCPU, inject_external_call), 123 STATS_DESC_COUNTER(VCPU, inject_emergency_signal), 124 STATS_DESC_COUNTER(VCPU, inject_mchk), 125 STATS_DESC_COUNTER(VCPU, inject_pfault_init), 126 STATS_DESC_COUNTER(VCPU, inject_program), 127 STATS_DESC_COUNTER(VCPU, inject_restart), 128 STATS_DESC_COUNTER(VCPU, inject_set_prefix), 129 STATS_DESC_COUNTER(VCPU, inject_stop_signal), 130 STATS_DESC_COUNTER(VCPU, instruction_epsw), 131 STATS_DESC_COUNTER(VCPU, instruction_gs), 132 STATS_DESC_COUNTER(VCPU, instruction_io_other), 133 STATS_DESC_COUNTER(VCPU, instruction_lpsw), 134 STATS_DESC_COUNTER(VCPU, instruction_lpswe), 135 STATS_DESC_COUNTER(VCPU, instruction_lpswey), 136 STATS_DESC_COUNTER(VCPU, instruction_pfmf), 137 STATS_DESC_COUNTER(VCPU, instruction_ptff), 138 STATS_DESC_COUNTER(VCPU, instruction_sck), 139 STATS_DESC_COUNTER(VCPU, instruction_sckpf), 140 STATS_DESC_COUNTER(VCPU, instruction_stidp), 141 STATS_DESC_COUNTER(VCPU, instruction_spx), 142 STATS_DESC_COUNTER(VCPU, instruction_stpx), 143 STATS_DESC_COUNTER(VCPU, instruction_stap), 144 STATS_DESC_COUNTER(VCPU, instruction_iske), 145 STATS_DESC_COUNTER(VCPU, instruction_ri), 146 STATS_DESC_COUNTER(VCPU, instruction_rrbe), 147 STATS_DESC_COUNTER(VCPU, instruction_sske), 148 STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock), 149 STATS_DESC_COUNTER(VCPU, instruction_stsi), 150 STATS_DESC_COUNTER(VCPU, instruction_stfl), 151 STATS_DESC_COUNTER(VCPU, instruction_tb), 152 STATS_DESC_COUNTER(VCPU, instruction_tpi), 153 STATS_DESC_COUNTER(VCPU, instruction_tprot), 154 STATS_DESC_COUNTER(VCPU, instruction_tsch), 155 STATS_DESC_COUNTER(VCPU, instruction_sie), 156 STATS_DESC_COUNTER(VCPU, instruction_essa), 157 STATS_DESC_COUNTER(VCPU, instruction_sthyi), 158 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense), 159 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running), 160 STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call), 161 STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency), 162 STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency), 163 STATS_DESC_COUNTER(VCPU, instruction_sigp_start), 164 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop), 165 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status), 166 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status), 167 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status), 168 STATS_DESC_COUNTER(VCPU, instruction_sigp_arch), 169 STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix), 170 STATS_DESC_COUNTER(VCPU, instruction_sigp_restart), 171 STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset), 172 STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset), 173 STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown), 174 STATS_DESC_COUNTER(VCPU, instruction_diagnose_10), 175 STATS_DESC_COUNTER(VCPU, instruction_diagnose_44), 176 STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c), 177 STATS_DESC_COUNTER(VCPU, diag_9c_ignored), 178 STATS_DESC_COUNTER(VCPU, diag_9c_forward), 179 STATS_DESC_COUNTER(VCPU, instruction_diagnose_258), 180 STATS_DESC_COUNTER(VCPU, instruction_diagnose_308), 181 STATS_DESC_COUNTER(VCPU, instruction_diagnose_500), 182 STATS_DESC_COUNTER(VCPU, instruction_diagnose_other), 183 STATS_DESC_COUNTER(VCPU, pfault_sync) 184 }; 185 186 const struct kvm_stats_header kvm_vcpu_stats_header = { 187 .name_size = KVM_STATS_NAME_SIZE, 188 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 189 .id_offset = sizeof(struct kvm_stats_header), 190 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 191 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 192 sizeof(kvm_vcpu_stats_desc), 193 }; 194 195 /* allow nested virtualization in KVM (if enabled by user space) */ 196 static int nested; 197 module_param(nested, int, S_IRUGO); 198 MODULE_PARM_DESC(nested, "Nested virtualization support"); 199 200 /* allow 1m huge page guest backing, if !nested */ 201 static int hpage; 202 module_param(hpage, int, 0444); 203 MODULE_PARM_DESC(hpage, "1m huge page backing support"); 204 205 /* maximum percentage of steal time for polling. >100 is treated like 100 */ 206 static u8 halt_poll_max_steal = 10; 207 module_param(halt_poll_max_steal, byte, 0644); 208 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling"); 209 210 /* if set to true, the GISA will be initialized and used if available */ 211 static bool use_gisa = true; 212 module_param(use_gisa, bool, 0644); 213 MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it."); 214 215 /* maximum diag9c forwarding per second */ 216 unsigned int diag9c_forwarding_hz; 217 module_param(diag9c_forwarding_hz, uint, 0644); 218 MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off"); 219 220 /* 221 * allow asynchronous deinit for protected guests; enable by default since 222 * the feature is opt-in anyway 223 */ 224 static int async_destroy = 1; 225 module_param(async_destroy, int, 0444); 226 MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests"); 227 228 /* 229 * For now we handle at most 16 double words as this is what the s390 base 230 * kernel handles and stores in the prefix page. If we ever need to go beyond 231 * this, this requires changes to code, but the external uapi can stay. 232 */ 233 #define SIZE_INTERNAL 16 234 235 /* 236 * Base feature mask that defines default mask for facilities. Consists of the 237 * defines in FACILITIES_KVM and the non-hypervisor managed bits. 238 */ 239 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM }; 240 /* 241 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL 242 * and defines the facilities that can be enabled via a cpu model. 243 */ 244 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL }; 245 246 static unsigned long kvm_s390_fac_size(void) 247 { 248 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64); 249 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64); 250 BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) > 251 sizeof(stfle_fac_list)); 252 253 return SIZE_INTERNAL; 254 } 255 256 /* available cpu features supported by kvm */ 257 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 258 /* available subfunctions indicated via query / "test bit" */ 259 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc; 260 261 static struct gmap_notifier gmap_notifier; 262 static struct gmap_notifier vsie_gmap_notifier; 263 debug_info_t *kvm_s390_dbf; 264 debug_info_t *kvm_s390_dbf_uv; 265 266 /* Section: not file related */ 267 /* forward declarations */ 268 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 269 unsigned long end); 270 static int sca_switch_to_extended(struct kvm *kvm); 271 272 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta) 273 { 274 u8 delta_idx = 0; 275 276 /* 277 * The TOD jumps by delta, we have to compensate this by adding 278 * -delta to the epoch. 279 */ 280 delta = -delta; 281 282 /* sign-extension - we're adding to signed values below */ 283 if ((s64)delta < 0) 284 delta_idx = -1; 285 286 scb->epoch += delta; 287 if (scb->ecd & ECD_MEF) { 288 scb->epdx += delta_idx; 289 if (scb->epoch < delta) 290 scb->epdx += 1; 291 } 292 } 293 294 /* 295 * This callback is executed during stop_machine(). All CPUs are therefore 296 * temporarily stopped. In order not to change guest behavior, we have to 297 * disable preemption whenever we touch the epoch of kvm and the VCPUs, 298 * so a CPU won't be stopped while calculating with the epoch. 299 */ 300 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, 301 void *v) 302 { 303 struct kvm *kvm; 304 struct kvm_vcpu *vcpu; 305 unsigned long i; 306 unsigned long long *delta = v; 307 308 list_for_each_entry(kvm, &vm_list, vm_list) { 309 kvm_for_each_vcpu(i, vcpu, kvm) { 310 kvm_clock_sync_scb(vcpu->arch.sie_block, *delta); 311 if (i == 0) { 312 kvm->arch.epoch = vcpu->arch.sie_block->epoch; 313 kvm->arch.epdx = vcpu->arch.sie_block->epdx; 314 } 315 if (vcpu->arch.cputm_enabled) 316 vcpu->arch.cputm_start += *delta; 317 if (vcpu->arch.vsie_block) 318 kvm_clock_sync_scb(vcpu->arch.vsie_block, 319 *delta); 320 } 321 } 322 return NOTIFY_OK; 323 } 324 325 static struct notifier_block kvm_clock_notifier = { 326 .notifier_call = kvm_clock_sync, 327 }; 328 329 static void allow_cpu_feat(unsigned long nr) 330 { 331 set_bit_inv(nr, kvm_s390_available_cpu_feat); 332 } 333 334 static inline int plo_test_bit(unsigned char nr) 335 { 336 unsigned long function = (unsigned long)nr | 0x100; 337 int cc; 338 339 asm volatile( 340 " lgr 0,%[function]\n" 341 /* Parameter registers are ignored for "test bit" */ 342 " plo 0,0,0,0(0)\n" 343 " ipm %0\n" 344 " srl %0,28\n" 345 : "=d" (cc) 346 : [function] "d" (function) 347 : "cc", "0"); 348 return cc == 0; 349 } 350 351 static __always_inline void __insn32_query(unsigned int opcode, u8 *query) 352 { 353 asm volatile( 354 " lghi 0,0\n" 355 " lgr 1,%[query]\n" 356 /* Parameter registers are ignored */ 357 " .insn rrf,%[opc] << 16,2,4,6,0\n" 358 : 359 : [query] "d" ((unsigned long)query), [opc] "i" (opcode) 360 : "cc", "memory", "0", "1"); 361 } 362 363 #define INSN_SORTL 0xb938 364 #define INSN_DFLTCC 0xb939 365 366 static void __init kvm_s390_cpu_feat_init(void) 367 { 368 int i; 369 370 for (i = 0; i < 256; ++i) { 371 if (plo_test_bit(i)) 372 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7); 373 } 374 375 if (test_facility(28)) /* TOD-clock steering */ 376 ptff(kvm_s390_available_subfunc.ptff, 377 sizeof(kvm_s390_available_subfunc.ptff), 378 PTFF_QAF); 379 380 if (test_facility(17)) { /* MSA */ 381 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *) 382 kvm_s390_available_subfunc.kmac); 383 __cpacf_query(CPACF_KMC, (cpacf_mask_t *) 384 kvm_s390_available_subfunc.kmc); 385 __cpacf_query(CPACF_KM, (cpacf_mask_t *) 386 kvm_s390_available_subfunc.km); 387 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *) 388 kvm_s390_available_subfunc.kimd); 389 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *) 390 kvm_s390_available_subfunc.klmd); 391 } 392 if (test_facility(76)) /* MSA3 */ 393 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *) 394 kvm_s390_available_subfunc.pckmo); 395 if (test_facility(77)) { /* MSA4 */ 396 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *) 397 kvm_s390_available_subfunc.kmctr); 398 __cpacf_query(CPACF_KMF, (cpacf_mask_t *) 399 kvm_s390_available_subfunc.kmf); 400 __cpacf_query(CPACF_KMO, (cpacf_mask_t *) 401 kvm_s390_available_subfunc.kmo); 402 __cpacf_query(CPACF_PCC, (cpacf_mask_t *) 403 kvm_s390_available_subfunc.pcc); 404 } 405 if (test_facility(57)) /* MSA5 */ 406 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *) 407 kvm_s390_available_subfunc.ppno); 408 409 if (test_facility(146)) /* MSA8 */ 410 __cpacf_query(CPACF_KMA, (cpacf_mask_t *) 411 kvm_s390_available_subfunc.kma); 412 413 if (test_facility(155)) /* MSA9 */ 414 __cpacf_query(CPACF_KDSA, (cpacf_mask_t *) 415 kvm_s390_available_subfunc.kdsa); 416 417 if (test_facility(150)) /* SORTL */ 418 __insn32_query(INSN_SORTL, kvm_s390_available_subfunc.sortl); 419 420 if (test_facility(151)) /* DFLTCC */ 421 __insn32_query(INSN_DFLTCC, kvm_s390_available_subfunc.dfltcc); 422 423 if (MACHINE_HAS_ESOP) 424 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP); 425 /* 426 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow), 427 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing). 428 */ 429 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao || 430 !test_facility(3) || !nested) 431 return; 432 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2); 433 if (sclp.has_64bscao) 434 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO); 435 if (sclp.has_siif) 436 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF); 437 if (sclp.has_gpere) 438 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE); 439 if (sclp.has_gsls) 440 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS); 441 if (sclp.has_ib) 442 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB); 443 if (sclp.has_cei) 444 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI); 445 if (sclp.has_ibs) 446 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS); 447 if (sclp.has_kss) 448 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS); 449 /* 450 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make 451 * all skey handling functions read/set the skey from the PGSTE 452 * instead of the real storage key. 453 * 454 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make 455 * pages being detected as preserved although they are resident. 456 * 457 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will 458 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY. 459 * 460 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and 461 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be 462 * correctly shadowed. We can do that for the PGSTE but not for PTE.I. 463 * 464 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We 465 * cannot easily shadow the SCA because of the ipte lock. 466 */ 467 } 468 469 static int __init __kvm_s390_init(void) 470 { 471 int rc = -ENOMEM; 472 473 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); 474 if (!kvm_s390_dbf) 475 return -ENOMEM; 476 477 kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long)); 478 if (!kvm_s390_dbf_uv) 479 goto err_kvm_uv; 480 481 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) || 482 debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view)) 483 goto err_debug_view; 484 485 kvm_s390_cpu_feat_init(); 486 487 /* Register floating interrupt controller interface. */ 488 rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); 489 if (rc) { 490 pr_err("A FLIC registration call failed with rc=%d\n", rc); 491 goto err_flic; 492 } 493 494 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 495 rc = kvm_s390_pci_init(); 496 if (rc) { 497 pr_err("Unable to allocate AIFT for PCI\n"); 498 goto err_pci; 499 } 500 } 501 502 rc = kvm_s390_gib_init(GAL_ISC); 503 if (rc) 504 goto err_gib; 505 506 gmap_notifier.notifier_call = kvm_gmap_notifier; 507 gmap_register_pte_notifier(&gmap_notifier); 508 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier; 509 gmap_register_pte_notifier(&vsie_gmap_notifier); 510 atomic_notifier_chain_register(&s390_epoch_delta_notifier, 511 &kvm_clock_notifier); 512 513 return 0; 514 515 err_gib: 516 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 517 kvm_s390_pci_exit(); 518 err_pci: 519 err_flic: 520 err_debug_view: 521 debug_unregister(kvm_s390_dbf_uv); 522 err_kvm_uv: 523 debug_unregister(kvm_s390_dbf); 524 return rc; 525 } 526 527 static void __kvm_s390_exit(void) 528 { 529 gmap_unregister_pte_notifier(&gmap_notifier); 530 gmap_unregister_pte_notifier(&vsie_gmap_notifier); 531 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, 532 &kvm_clock_notifier); 533 534 kvm_s390_gib_destroy(); 535 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 536 kvm_s390_pci_exit(); 537 debug_unregister(kvm_s390_dbf); 538 debug_unregister(kvm_s390_dbf_uv); 539 } 540 541 /* Section: device related */ 542 long kvm_arch_dev_ioctl(struct file *filp, 543 unsigned int ioctl, unsigned long arg) 544 { 545 if (ioctl == KVM_S390_ENABLE_SIE) 546 return s390_enable_sie(); 547 return -EINVAL; 548 } 549 550 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 551 { 552 int r; 553 554 switch (ext) { 555 case KVM_CAP_S390_PSW: 556 case KVM_CAP_S390_GMAP: 557 case KVM_CAP_SYNC_MMU: 558 #ifdef CONFIG_KVM_S390_UCONTROL 559 case KVM_CAP_S390_UCONTROL: 560 #endif 561 case KVM_CAP_ASYNC_PF: 562 case KVM_CAP_SYNC_REGS: 563 case KVM_CAP_ONE_REG: 564 case KVM_CAP_ENABLE_CAP: 565 case KVM_CAP_S390_CSS_SUPPORT: 566 case KVM_CAP_IOEVENTFD: 567 case KVM_CAP_DEVICE_CTRL: 568 case KVM_CAP_S390_IRQCHIP: 569 case KVM_CAP_VM_ATTRIBUTES: 570 case KVM_CAP_MP_STATE: 571 case KVM_CAP_IMMEDIATE_EXIT: 572 case KVM_CAP_S390_INJECT_IRQ: 573 case KVM_CAP_S390_USER_SIGP: 574 case KVM_CAP_S390_USER_STSI: 575 case KVM_CAP_S390_SKEYS: 576 case KVM_CAP_S390_IRQ_STATE: 577 case KVM_CAP_S390_USER_INSTR0: 578 case KVM_CAP_S390_CMMA_MIGRATION: 579 case KVM_CAP_S390_AIS: 580 case KVM_CAP_S390_AIS_MIGRATION: 581 case KVM_CAP_S390_VCPU_RESETS: 582 case KVM_CAP_SET_GUEST_DEBUG: 583 case KVM_CAP_S390_DIAG318: 584 case KVM_CAP_IRQFD_RESAMPLE: 585 r = 1; 586 break; 587 case KVM_CAP_SET_GUEST_DEBUG2: 588 r = KVM_GUESTDBG_VALID_MASK; 589 break; 590 case KVM_CAP_S390_HPAGE_1M: 591 r = 0; 592 if (hpage && !kvm_is_ucontrol(kvm)) 593 r = 1; 594 break; 595 case KVM_CAP_S390_MEM_OP: 596 r = MEM_OP_MAX_SIZE; 597 break; 598 case KVM_CAP_S390_MEM_OP_EXTENSION: 599 /* 600 * Flag bits indicating which extensions are supported. 601 * If r > 0, the base extension must also be supported/indicated, 602 * in order to maintain backwards compatibility. 603 */ 604 r = KVM_S390_MEMOP_EXTENSION_CAP_BASE | 605 KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG; 606 break; 607 case KVM_CAP_NR_VCPUS: 608 case KVM_CAP_MAX_VCPUS: 609 case KVM_CAP_MAX_VCPU_ID: 610 r = KVM_S390_BSCA_CPU_SLOTS; 611 if (!kvm_s390_use_sca_entries()) 612 r = KVM_MAX_VCPUS; 613 else if (sclp.has_esca && sclp.has_64bscao) 614 r = KVM_S390_ESCA_CPU_SLOTS; 615 if (ext == KVM_CAP_NR_VCPUS) 616 r = min_t(unsigned int, num_online_cpus(), r); 617 break; 618 case KVM_CAP_S390_COW: 619 r = MACHINE_HAS_ESOP; 620 break; 621 case KVM_CAP_S390_VECTOR_REGISTERS: 622 r = MACHINE_HAS_VX; 623 break; 624 case KVM_CAP_S390_RI: 625 r = test_facility(64); 626 break; 627 case KVM_CAP_S390_GS: 628 r = test_facility(133); 629 break; 630 case KVM_CAP_S390_BPB: 631 r = test_facility(82); 632 break; 633 case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE: 634 r = async_destroy && is_prot_virt_host(); 635 break; 636 case KVM_CAP_S390_PROTECTED: 637 r = is_prot_virt_host(); 638 break; 639 case KVM_CAP_S390_PROTECTED_DUMP: { 640 u64 pv_cmds_dump[] = { 641 BIT_UVC_CMD_DUMP_INIT, 642 BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE, 643 BIT_UVC_CMD_DUMP_CPU, 644 BIT_UVC_CMD_DUMP_COMPLETE, 645 }; 646 int i; 647 648 r = is_prot_virt_host(); 649 650 for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) { 651 if (!test_bit_inv(pv_cmds_dump[i], 652 (unsigned long *)&uv_info.inst_calls_list)) { 653 r = 0; 654 break; 655 } 656 } 657 break; 658 } 659 case KVM_CAP_S390_ZPCI_OP: 660 r = kvm_s390_pci_interp_allowed(); 661 break; 662 case KVM_CAP_S390_CPU_TOPOLOGY: 663 r = test_facility(11); 664 break; 665 default: 666 r = 0; 667 } 668 return r; 669 } 670 671 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 672 { 673 int i; 674 gfn_t cur_gfn, last_gfn; 675 unsigned long gaddr, vmaddr; 676 struct gmap *gmap = kvm->arch.gmap; 677 DECLARE_BITMAP(bitmap, _PAGE_ENTRIES); 678 679 /* Loop over all guest segments */ 680 cur_gfn = memslot->base_gfn; 681 last_gfn = memslot->base_gfn + memslot->npages; 682 for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) { 683 gaddr = gfn_to_gpa(cur_gfn); 684 vmaddr = gfn_to_hva_memslot(memslot, cur_gfn); 685 if (kvm_is_error_hva(vmaddr)) 686 continue; 687 688 bitmap_zero(bitmap, _PAGE_ENTRIES); 689 gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr); 690 for (i = 0; i < _PAGE_ENTRIES; i++) { 691 if (test_bit(i, bitmap)) 692 mark_page_dirty(kvm, cur_gfn + i); 693 } 694 695 if (fatal_signal_pending(current)) 696 return; 697 cond_resched(); 698 } 699 } 700 701 /* Section: vm related */ 702 static void sca_del_vcpu(struct kvm_vcpu *vcpu); 703 704 /* 705 * Get (and clear) the dirty memory log for a memory slot. 706 */ 707 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 708 struct kvm_dirty_log *log) 709 { 710 int r; 711 unsigned long n; 712 struct kvm_memory_slot *memslot; 713 int is_dirty; 714 715 if (kvm_is_ucontrol(kvm)) 716 return -EINVAL; 717 718 mutex_lock(&kvm->slots_lock); 719 720 r = -EINVAL; 721 if (log->slot >= KVM_USER_MEM_SLOTS) 722 goto out; 723 724 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot); 725 if (r) 726 goto out; 727 728 /* Clear the dirty log */ 729 if (is_dirty) { 730 n = kvm_dirty_bitmap_bytes(memslot); 731 memset(memslot->dirty_bitmap, 0, n); 732 } 733 r = 0; 734 out: 735 mutex_unlock(&kvm->slots_lock); 736 return r; 737 } 738 739 static void icpt_operexc_on_all_vcpus(struct kvm *kvm) 740 { 741 unsigned long i; 742 struct kvm_vcpu *vcpu; 743 744 kvm_for_each_vcpu(i, vcpu, kvm) { 745 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu); 746 } 747 } 748 749 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) 750 { 751 int r; 752 753 if (cap->flags) 754 return -EINVAL; 755 756 switch (cap->cap) { 757 case KVM_CAP_S390_IRQCHIP: 758 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP"); 759 kvm->arch.use_irqchip = 1; 760 r = 0; 761 break; 762 case KVM_CAP_S390_USER_SIGP: 763 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP"); 764 kvm->arch.user_sigp = 1; 765 r = 0; 766 break; 767 case KVM_CAP_S390_VECTOR_REGISTERS: 768 mutex_lock(&kvm->lock); 769 if (kvm->created_vcpus) { 770 r = -EBUSY; 771 } else if (MACHINE_HAS_VX) { 772 set_kvm_facility(kvm->arch.model.fac_mask, 129); 773 set_kvm_facility(kvm->arch.model.fac_list, 129); 774 if (test_facility(134)) { 775 set_kvm_facility(kvm->arch.model.fac_mask, 134); 776 set_kvm_facility(kvm->arch.model.fac_list, 134); 777 } 778 if (test_facility(135)) { 779 set_kvm_facility(kvm->arch.model.fac_mask, 135); 780 set_kvm_facility(kvm->arch.model.fac_list, 135); 781 } 782 if (test_facility(148)) { 783 set_kvm_facility(kvm->arch.model.fac_mask, 148); 784 set_kvm_facility(kvm->arch.model.fac_list, 148); 785 } 786 if (test_facility(152)) { 787 set_kvm_facility(kvm->arch.model.fac_mask, 152); 788 set_kvm_facility(kvm->arch.model.fac_list, 152); 789 } 790 if (test_facility(192)) { 791 set_kvm_facility(kvm->arch.model.fac_mask, 192); 792 set_kvm_facility(kvm->arch.model.fac_list, 192); 793 } 794 r = 0; 795 } else 796 r = -EINVAL; 797 mutex_unlock(&kvm->lock); 798 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s", 799 r ? "(not available)" : "(success)"); 800 break; 801 case KVM_CAP_S390_RI: 802 r = -EINVAL; 803 mutex_lock(&kvm->lock); 804 if (kvm->created_vcpus) { 805 r = -EBUSY; 806 } else if (test_facility(64)) { 807 set_kvm_facility(kvm->arch.model.fac_mask, 64); 808 set_kvm_facility(kvm->arch.model.fac_list, 64); 809 r = 0; 810 } 811 mutex_unlock(&kvm->lock); 812 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s", 813 r ? "(not available)" : "(success)"); 814 break; 815 case KVM_CAP_S390_AIS: 816 mutex_lock(&kvm->lock); 817 if (kvm->created_vcpus) { 818 r = -EBUSY; 819 } else { 820 set_kvm_facility(kvm->arch.model.fac_mask, 72); 821 set_kvm_facility(kvm->arch.model.fac_list, 72); 822 r = 0; 823 } 824 mutex_unlock(&kvm->lock); 825 VM_EVENT(kvm, 3, "ENABLE: AIS %s", 826 r ? "(not available)" : "(success)"); 827 break; 828 case KVM_CAP_S390_GS: 829 r = -EINVAL; 830 mutex_lock(&kvm->lock); 831 if (kvm->created_vcpus) { 832 r = -EBUSY; 833 } else if (test_facility(133)) { 834 set_kvm_facility(kvm->arch.model.fac_mask, 133); 835 set_kvm_facility(kvm->arch.model.fac_list, 133); 836 r = 0; 837 } 838 mutex_unlock(&kvm->lock); 839 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s", 840 r ? "(not available)" : "(success)"); 841 break; 842 case KVM_CAP_S390_HPAGE_1M: 843 mutex_lock(&kvm->lock); 844 if (kvm->created_vcpus) 845 r = -EBUSY; 846 else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm)) 847 r = -EINVAL; 848 else { 849 r = 0; 850 mmap_write_lock(kvm->mm); 851 kvm->mm->context.allow_gmap_hpage_1m = 1; 852 mmap_write_unlock(kvm->mm); 853 /* 854 * We might have to create fake 4k page 855 * tables. To avoid that the hardware works on 856 * stale PGSTEs, we emulate these instructions. 857 */ 858 kvm->arch.use_skf = 0; 859 kvm->arch.use_pfmfi = 0; 860 } 861 mutex_unlock(&kvm->lock); 862 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s", 863 r ? "(not available)" : "(success)"); 864 break; 865 case KVM_CAP_S390_USER_STSI: 866 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI"); 867 kvm->arch.user_stsi = 1; 868 r = 0; 869 break; 870 case KVM_CAP_S390_USER_INSTR0: 871 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0"); 872 kvm->arch.user_instr0 = 1; 873 icpt_operexc_on_all_vcpus(kvm); 874 r = 0; 875 break; 876 case KVM_CAP_S390_CPU_TOPOLOGY: 877 r = -EINVAL; 878 mutex_lock(&kvm->lock); 879 if (kvm->created_vcpus) { 880 r = -EBUSY; 881 } else if (test_facility(11)) { 882 set_kvm_facility(kvm->arch.model.fac_mask, 11); 883 set_kvm_facility(kvm->arch.model.fac_list, 11); 884 r = 0; 885 } 886 mutex_unlock(&kvm->lock); 887 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s", 888 r ? "(not available)" : "(success)"); 889 break; 890 default: 891 r = -EINVAL; 892 break; 893 } 894 return r; 895 } 896 897 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 898 { 899 int ret; 900 901 switch (attr->attr) { 902 case KVM_S390_VM_MEM_LIMIT_SIZE: 903 ret = 0; 904 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes", 905 kvm->arch.mem_limit); 906 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr)) 907 ret = -EFAULT; 908 break; 909 default: 910 ret = -ENXIO; 911 break; 912 } 913 return ret; 914 } 915 916 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 917 { 918 int ret; 919 unsigned int idx; 920 switch (attr->attr) { 921 case KVM_S390_VM_MEM_ENABLE_CMMA: 922 ret = -ENXIO; 923 if (!sclp.has_cmma) 924 break; 925 926 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support"); 927 mutex_lock(&kvm->lock); 928 if (kvm->created_vcpus) 929 ret = -EBUSY; 930 else if (kvm->mm->context.allow_gmap_hpage_1m) 931 ret = -EINVAL; 932 else { 933 kvm->arch.use_cmma = 1; 934 /* Not compatible with cmma. */ 935 kvm->arch.use_pfmfi = 0; 936 ret = 0; 937 } 938 mutex_unlock(&kvm->lock); 939 break; 940 case KVM_S390_VM_MEM_CLR_CMMA: 941 ret = -ENXIO; 942 if (!sclp.has_cmma) 943 break; 944 ret = -EINVAL; 945 if (!kvm->arch.use_cmma) 946 break; 947 948 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states"); 949 mutex_lock(&kvm->lock); 950 idx = srcu_read_lock(&kvm->srcu); 951 s390_reset_cmma(kvm->arch.gmap->mm); 952 srcu_read_unlock(&kvm->srcu, idx); 953 mutex_unlock(&kvm->lock); 954 ret = 0; 955 break; 956 case KVM_S390_VM_MEM_LIMIT_SIZE: { 957 unsigned long new_limit; 958 959 if (kvm_is_ucontrol(kvm)) 960 return -EINVAL; 961 962 if (get_user(new_limit, (u64 __user *)attr->addr)) 963 return -EFAULT; 964 965 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT && 966 new_limit > kvm->arch.mem_limit) 967 return -E2BIG; 968 969 if (!new_limit) 970 return -EINVAL; 971 972 /* gmap_create takes last usable address */ 973 if (new_limit != KVM_S390_NO_MEM_LIMIT) 974 new_limit -= 1; 975 976 ret = -EBUSY; 977 mutex_lock(&kvm->lock); 978 if (!kvm->created_vcpus) { 979 /* gmap_create will round the limit up */ 980 struct gmap *new = gmap_create(current->mm, new_limit); 981 982 if (!new) { 983 ret = -ENOMEM; 984 } else { 985 gmap_remove(kvm->arch.gmap); 986 new->private = kvm; 987 kvm->arch.gmap = new; 988 ret = 0; 989 } 990 } 991 mutex_unlock(&kvm->lock); 992 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit); 993 VM_EVENT(kvm, 3, "New guest asce: 0x%pK", 994 (void *) kvm->arch.gmap->asce); 995 break; 996 } 997 default: 998 ret = -ENXIO; 999 break; 1000 } 1001 return ret; 1002 } 1003 1004 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu); 1005 1006 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm) 1007 { 1008 struct kvm_vcpu *vcpu; 1009 unsigned long i; 1010 1011 kvm_s390_vcpu_block_all(kvm); 1012 1013 kvm_for_each_vcpu(i, vcpu, kvm) { 1014 kvm_s390_vcpu_crypto_setup(vcpu); 1015 /* recreate the shadow crycb by leaving the VSIE handler */ 1016 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1017 } 1018 1019 kvm_s390_vcpu_unblock_all(kvm); 1020 } 1021 1022 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr) 1023 { 1024 mutex_lock(&kvm->lock); 1025 switch (attr->attr) { 1026 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 1027 if (!test_kvm_facility(kvm, 76)) { 1028 mutex_unlock(&kvm->lock); 1029 return -EINVAL; 1030 } 1031 get_random_bytes( 1032 kvm->arch.crypto.crycb->aes_wrapping_key_mask, 1033 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1034 kvm->arch.crypto.aes_kw = 1; 1035 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support"); 1036 break; 1037 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 1038 if (!test_kvm_facility(kvm, 76)) { 1039 mutex_unlock(&kvm->lock); 1040 return -EINVAL; 1041 } 1042 get_random_bytes( 1043 kvm->arch.crypto.crycb->dea_wrapping_key_mask, 1044 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1045 kvm->arch.crypto.dea_kw = 1; 1046 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support"); 1047 break; 1048 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 1049 if (!test_kvm_facility(kvm, 76)) { 1050 mutex_unlock(&kvm->lock); 1051 return -EINVAL; 1052 } 1053 kvm->arch.crypto.aes_kw = 0; 1054 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0, 1055 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1056 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support"); 1057 break; 1058 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 1059 if (!test_kvm_facility(kvm, 76)) { 1060 mutex_unlock(&kvm->lock); 1061 return -EINVAL; 1062 } 1063 kvm->arch.crypto.dea_kw = 0; 1064 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0, 1065 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1066 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support"); 1067 break; 1068 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 1069 if (!ap_instructions_available()) { 1070 mutex_unlock(&kvm->lock); 1071 return -EOPNOTSUPP; 1072 } 1073 kvm->arch.crypto.apie = 1; 1074 break; 1075 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 1076 if (!ap_instructions_available()) { 1077 mutex_unlock(&kvm->lock); 1078 return -EOPNOTSUPP; 1079 } 1080 kvm->arch.crypto.apie = 0; 1081 break; 1082 default: 1083 mutex_unlock(&kvm->lock); 1084 return -ENXIO; 1085 } 1086 1087 kvm_s390_vcpu_crypto_reset_all(kvm); 1088 mutex_unlock(&kvm->lock); 1089 return 0; 1090 } 1091 1092 static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu) 1093 { 1094 /* Only set the ECB bits after guest requests zPCI interpretation */ 1095 if (!vcpu->kvm->arch.use_zpci_interp) 1096 return; 1097 1098 vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI; 1099 vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI; 1100 } 1101 1102 void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm) 1103 { 1104 struct kvm_vcpu *vcpu; 1105 unsigned long i; 1106 1107 lockdep_assert_held(&kvm->lock); 1108 1109 if (!kvm_s390_pci_interp_allowed()) 1110 return; 1111 1112 /* 1113 * If host is configured for PCI and the necessary facilities are 1114 * available, turn on interpretation for the life of this guest 1115 */ 1116 kvm->arch.use_zpci_interp = 1; 1117 1118 kvm_s390_vcpu_block_all(kvm); 1119 1120 kvm_for_each_vcpu(i, vcpu, kvm) { 1121 kvm_s390_vcpu_pci_setup(vcpu); 1122 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1123 } 1124 1125 kvm_s390_vcpu_unblock_all(kvm); 1126 } 1127 1128 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req) 1129 { 1130 unsigned long cx; 1131 struct kvm_vcpu *vcpu; 1132 1133 kvm_for_each_vcpu(cx, vcpu, kvm) 1134 kvm_s390_sync_request(req, vcpu); 1135 } 1136 1137 /* 1138 * Must be called with kvm->srcu held to avoid races on memslots, and with 1139 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration. 1140 */ 1141 static int kvm_s390_vm_start_migration(struct kvm *kvm) 1142 { 1143 struct kvm_memory_slot *ms; 1144 struct kvm_memslots *slots; 1145 unsigned long ram_pages = 0; 1146 int bkt; 1147 1148 /* migration mode already enabled */ 1149 if (kvm->arch.migration_mode) 1150 return 0; 1151 slots = kvm_memslots(kvm); 1152 if (!slots || kvm_memslots_empty(slots)) 1153 return -EINVAL; 1154 1155 if (!kvm->arch.use_cmma) { 1156 kvm->arch.migration_mode = 1; 1157 return 0; 1158 } 1159 /* mark all the pages in active slots as dirty */ 1160 kvm_for_each_memslot(ms, bkt, slots) { 1161 if (!ms->dirty_bitmap) 1162 return -EINVAL; 1163 /* 1164 * The second half of the bitmap is only used on x86, 1165 * and would be wasted otherwise, so we put it to good 1166 * use here to keep track of the state of the storage 1167 * attributes. 1168 */ 1169 memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms)); 1170 ram_pages += ms->npages; 1171 } 1172 atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages); 1173 kvm->arch.migration_mode = 1; 1174 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION); 1175 return 0; 1176 } 1177 1178 /* 1179 * Must be called with kvm->slots_lock to avoid races with ourselves and 1180 * kvm_s390_vm_start_migration. 1181 */ 1182 static int kvm_s390_vm_stop_migration(struct kvm *kvm) 1183 { 1184 /* migration mode already disabled */ 1185 if (!kvm->arch.migration_mode) 1186 return 0; 1187 kvm->arch.migration_mode = 0; 1188 if (kvm->arch.use_cmma) 1189 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION); 1190 return 0; 1191 } 1192 1193 static int kvm_s390_vm_set_migration(struct kvm *kvm, 1194 struct kvm_device_attr *attr) 1195 { 1196 int res = -ENXIO; 1197 1198 mutex_lock(&kvm->slots_lock); 1199 switch (attr->attr) { 1200 case KVM_S390_VM_MIGRATION_START: 1201 res = kvm_s390_vm_start_migration(kvm); 1202 break; 1203 case KVM_S390_VM_MIGRATION_STOP: 1204 res = kvm_s390_vm_stop_migration(kvm); 1205 break; 1206 default: 1207 break; 1208 } 1209 mutex_unlock(&kvm->slots_lock); 1210 1211 return res; 1212 } 1213 1214 static int kvm_s390_vm_get_migration(struct kvm *kvm, 1215 struct kvm_device_attr *attr) 1216 { 1217 u64 mig = kvm->arch.migration_mode; 1218 1219 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS) 1220 return -ENXIO; 1221 1222 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig))) 1223 return -EFAULT; 1224 return 0; 1225 } 1226 1227 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod); 1228 1229 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1230 { 1231 struct kvm_s390_vm_tod_clock gtod; 1232 1233 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod))) 1234 return -EFAULT; 1235 1236 if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx) 1237 return -EINVAL; 1238 __kvm_s390_set_tod_clock(kvm, >od); 1239 1240 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx", 1241 gtod.epoch_idx, gtod.tod); 1242 1243 return 0; 1244 } 1245 1246 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1247 { 1248 u8 gtod_high; 1249 1250 if (copy_from_user(>od_high, (void __user *)attr->addr, 1251 sizeof(gtod_high))) 1252 return -EFAULT; 1253 1254 if (gtod_high != 0) 1255 return -EINVAL; 1256 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high); 1257 1258 return 0; 1259 } 1260 1261 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1262 { 1263 struct kvm_s390_vm_tod_clock gtod = { 0 }; 1264 1265 if (copy_from_user(>od.tod, (void __user *)attr->addr, 1266 sizeof(gtod.tod))) 1267 return -EFAULT; 1268 1269 __kvm_s390_set_tod_clock(kvm, >od); 1270 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod); 1271 return 0; 1272 } 1273 1274 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1275 { 1276 int ret; 1277 1278 if (attr->flags) 1279 return -EINVAL; 1280 1281 mutex_lock(&kvm->lock); 1282 /* 1283 * For protected guests, the TOD is managed by the ultravisor, so trying 1284 * to change it will never bring the expected results. 1285 */ 1286 if (kvm_s390_pv_is_protected(kvm)) { 1287 ret = -EOPNOTSUPP; 1288 goto out_unlock; 1289 } 1290 1291 switch (attr->attr) { 1292 case KVM_S390_VM_TOD_EXT: 1293 ret = kvm_s390_set_tod_ext(kvm, attr); 1294 break; 1295 case KVM_S390_VM_TOD_HIGH: 1296 ret = kvm_s390_set_tod_high(kvm, attr); 1297 break; 1298 case KVM_S390_VM_TOD_LOW: 1299 ret = kvm_s390_set_tod_low(kvm, attr); 1300 break; 1301 default: 1302 ret = -ENXIO; 1303 break; 1304 } 1305 1306 out_unlock: 1307 mutex_unlock(&kvm->lock); 1308 return ret; 1309 } 1310 1311 static void kvm_s390_get_tod_clock(struct kvm *kvm, 1312 struct kvm_s390_vm_tod_clock *gtod) 1313 { 1314 union tod_clock clk; 1315 1316 preempt_disable(); 1317 1318 store_tod_clock_ext(&clk); 1319 1320 gtod->tod = clk.tod + kvm->arch.epoch; 1321 gtod->epoch_idx = 0; 1322 if (test_kvm_facility(kvm, 139)) { 1323 gtod->epoch_idx = clk.ei + kvm->arch.epdx; 1324 if (gtod->tod < clk.tod) 1325 gtod->epoch_idx += 1; 1326 } 1327 1328 preempt_enable(); 1329 } 1330 1331 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1332 { 1333 struct kvm_s390_vm_tod_clock gtod; 1334 1335 memset(>od, 0, sizeof(gtod)); 1336 kvm_s390_get_tod_clock(kvm, >od); 1337 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1338 return -EFAULT; 1339 1340 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx", 1341 gtod.epoch_idx, gtod.tod); 1342 return 0; 1343 } 1344 1345 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1346 { 1347 u8 gtod_high = 0; 1348 1349 if (copy_to_user((void __user *)attr->addr, >od_high, 1350 sizeof(gtod_high))) 1351 return -EFAULT; 1352 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high); 1353 1354 return 0; 1355 } 1356 1357 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1358 { 1359 u64 gtod; 1360 1361 gtod = kvm_s390_get_tod_clock_fast(kvm); 1362 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1363 return -EFAULT; 1364 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod); 1365 1366 return 0; 1367 } 1368 1369 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1370 { 1371 int ret; 1372 1373 if (attr->flags) 1374 return -EINVAL; 1375 1376 switch (attr->attr) { 1377 case KVM_S390_VM_TOD_EXT: 1378 ret = kvm_s390_get_tod_ext(kvm, attr); 1379 break; 1380 case KVM_S390_VM_TOD_HIGH: 1381 ret = kvm_s390_get_tod_high(kvm, attr); 1382 break; 1383 case KVM_S390_VM_TOD_LOW: 1384 ret = kvm_s390_get_tod_low(kvm, attr); 1385 break; 1386 default: 1387 ret = -ENXIO; 1388 break; 1389 } 1390 return ret; 1391 } 1392 1393 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1394 { 1395 struct kvm_s390_vm_cpu_processor *proc; 1396 u16 lowest_ibc, unblocked_ibc; 1397 int ret = 0; 1398 1399 mutex_lock(&kvm->lock); 1400 if (kvm->created_vcpus) { 1401 ret = -EBUSY; 1402 goto out; 1403 } 1404 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1405 if (!proc) { 1406 ret = -ENOMEM; 1407 goto out; 1408 } 1409 if (!copy_from_user(proc, (void __user *)attr->addr, 1410 sizeof(*proc))) { 1411 kvm->arch.model.cpuid = proc->cpuid; 1412 lowest_ibc = sclp.ibc >> 16 & 0xfff; 1413 unblocked_ibc = sclp.ibc & 0xfff; 1414 if (lowest_ibc && proc->ibc) { 1415 if (proc->ibc > unblocked_ibc) 1416 kvm->arch.model.ibc = unblocked_ibc; 1417 else if (proc->ibc < lowest_ibc) 1418 kvm->arch.model.ibc = lowest_ibc; 1419 else 1420 kvm->arch.model.ibc = proc->ibc; 1421 } 1422 memcpy(kvm->arch.model.fac_list, proc->fac_list, 1423 S390_ARCH_FAC_LIST_SIZE_BYTE); 1424 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1425 kvm->arch.model.ibc, 1426 kvm->arch.model.cpuid); 1427 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1428 kvm->arch.model.fac_list[0], 1429 kvm->arch.model.fac_list[1], 1430 kvm->arch.model.fac_list[2]); 1431 } else 1432 ret = -EFAULT; 1433 kfree(proc); 1434 out: 1435 mutex_unlock(&kvm->lock); 1436 return ret; 1437 } 1438 1439 static int kvm_s390_set_processor_feat(struct kvm *kvm, 1440 struct kvm_device_attr *attr) 1441 { 1442 struct kvm_s390_vm_cpu_feat data; 1443 1444 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data))) 1445 return -EFAULT; 1446 if (!bitmap_subset((unsigned long *) data.feat, 1447 kvm_s390_available_cpu_feat, 1448 KVM_S390_VM_CPU_FEAT_NR_BITS)) 1449 return -EINVAL; 1450 1451 mutex_lock(&kvm->lock); 1452 if (kvm->created_vcpus) { 1453 mutex_unlock(&kvm->lock); 1454 return -EBUSY; 1455 } 1456 bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1457 mutex_unlock(&kvm->lock); 1458 VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1459 data.feat[0], 1460 data.feat[1], 1461 data.feat[2]); 1462 return 0; 1463 } 1464 1465 static int kvm_s390_set_processor_subfunc(struct kvm *kvm, 1466 struct kvm_device_attr *attr) 1467 { 1468 mutex_lock(&kvm->lock); 1469 if (kvm->created_vcpus) { 1470 mutex_unlock(&kvm->lock); 1471 return -EBUSY; 1472 } 1473 1474 if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr, 1475 sizeof(struct kvm_s390_vm_cpu_subfunc))) { 1476 mutex_unlock(&kvm->lock); 1477 return -EFAULT; 1478 } 1479 mutex_unlock(&kvm->lock); 1480 1481 VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1482 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1483 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1484 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1485 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1486 VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1487 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1488 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1489 VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1490 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1491 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1492 VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1493 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1494 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1495 VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx", 1496 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1497 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1498 VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1499 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1500 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1501 VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1502 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1503 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1504 VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1505 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1506 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1507 VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1508 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1509 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1510 VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1511 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1512 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1513 VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1514 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1515 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1516 VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1517 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1518 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1519 VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1520 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1521 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1522 VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1523 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1524 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1525 VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1526 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1527 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1528 VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1529 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1530 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1531 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1532 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1533 VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1534 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1535 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1536 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1537 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1538 1539 return 0; 1540 } 1541 1542 #define KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK \ 1543 ( \ 1544 ((struct kvm_s390_vm_cpu_uv_feat){ \ 1545 .ap = 1, \ 1546 .ap_intr = 1, \ 1547 }) \ 1548 .feat \ 1549 ) 1550 1551 static int kvm_s390_set_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1552 { 1553 struct kvm_s390_vm_cpu_uv_feat __user *ptr = (void __user *)attr->addr; 1554 unsigned long data, filter; 1555 1556 filter = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; 1557 if (get_user(data, &ptr->feat)) 1558 return -EFAULT; 1559 if (!bitmap_subset(&data, &filter, KVM_S390_VM_CPU_UV_FEAT_NR_BITS)) 1560 return -EINVAL; 1561 1562 mutex_lock(&kvm->lock); 1563 if (kvm->created_vcpus) { 1564 mutex_unlock(&kvm->lock); 1565 return -EBUSY; 1566 } 1567 kvm->arch.model.uv_feat_guest.feat = data; 1568 mutex_unlock(&kvm->lock); 1569 1570 VM_EVENT(kvm, 3, "SET: guest UV-feat: 0x%16.16lx", data); 1571 1572 return 0; 1573 } 1574 1575 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1576 { 1577 int ret = -ENXIO; 1578 1579 switch (attr->attr) { 1580 case KVM_S390_VM_CPU_PROCESSOR: 1581 ret = kvm_s390_set_processor(kvm, attr); 1582 break; 1583 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1584 ret = kvm_s390_set_processor_feat(kvm, attr); 1585 break; 1586 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1587 ret = kvm_s390_set_processor_subfunc(kvm, attr); 1588 break; 1589 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 1590 ret = kvm_s390_set_uv_feat(kvm, attr); 1591 break; 1592 } 1593 return ret; 1594 } 1595 1596 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1597 { 1598 struct kvm_s390_vm_cpu_processor *proc; 1599 int ret = 0; 1600 1601 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1602 if (!proc) { 1603 ret = -ENOMEM; 1604 goto out; 1605 } 1606 proc->cpuid = kvm->arch.model.cpuid; 1607 proc->ibc = kvm->arch.model.ibc; 1608 memcpy(&proc->fac_list, kvm->arch.model.fac_list, 1609 S390_ARCH_FAC_LIST_SIZE_BYTE); 1610 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1611 kvm->arch.model.ibc, 1612 kvm->arch.model.cpuid); 1613 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1614 kvm->arch.model.fac_list[0], 1615 kvm->arch.model.fac_list[1], 1616 kvm->arch.model.fac_list[2]); 1617 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc))) 1618 ret = -EFAULT; 1619 kfree(proc); 1620 out: 1621 return ret; 1622 } 1623 1624 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr) 1625 { 1626 struct kvm_s390_vm_cpu_machine *mach; 1627 int ret = 0; 1628 1629 mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT); 1630 if (!mach) { 1631 ret = -ENOMEM; 1632 goto out; 1633 } 1634 get_cpu_id((struct cpuid *) &mach->cpuid); 1635 mach->ibc = sclp.ibc; 1636 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask, 1637 S390_ARCH_FAC_LIST_SIZE_BYTE); 1638 memcpy((unsigned long *)&mach->fac_list, stfle_fac_list, 1639 sizeof(stfle_fac_list)); 1640 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx", 1641 kvm->arch.model.ibc, 1642 kvm->arch.model.cpuid); 1643 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx", 1644 mach->fac_mask[0], 1645 mach->fac_mask[1], 1646 mach->fac_mask[2]); 1647 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1648 mach->fac_list[0], 1649 mach->fac_list[1], 1650 mach->fac_list[2]); 1651 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach))) 1652 ret = -EFAULT; 1653 kfree(mach); 1654 out: 1655 return ret; 1656 } 1657 1658 static int kvm_s390_get_processor_feat(struct kvm *kvm, 1659 struct kvm_device_attr *attr) 1660 { 1661 struct kvm_s390_vm_cpu_feat data; 1662 1663 bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1664 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1665 return -EFAULT; 1666 VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1667 data.feat[0], 1668 data.feat[1], 1669 data.feat[2]); 1670 return 0; 1671 } 1672 1673 static int kvm_s390_get_machine_feat(struct kvm *kvm, 1674 struct kvm_device_attr *attr) 1675 { 1676 struct kvm_s390_vm_cpu_feat data; 1677 1678 bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1679 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1680 return -EFAULT; 1681 VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1682 data.feat[0], 1683 data.feat[1], 1684 data.feat[2]); 1685 return 0; 1686 } 1687 1688 static int kvm_s390_get_processor_subfunc(struct kvm *kvm, 1689 struct kvm_device_attr *attr) 1690 { 1691 if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs, 1692 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1693 return -EFAULT; 1694 1695 VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1696 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1697 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1698 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1699 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1700 VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1701 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1702 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1703 VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1704 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1705 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1706 VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1707 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1708 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1709 VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx", 1710 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1711 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1712 VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1713 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1714 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1715 VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1716 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1717 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1718 VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1719 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1720 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1721 VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1722 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1723 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1724 VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1725 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1726 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1727 VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1728 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1729 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1730 VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1731 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1732 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1733 VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1734 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1735 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1736 VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1737 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1738 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1739 VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1740 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1741 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1742 VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1743 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1744 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1745 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1746 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1747 VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1748 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1749 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1750 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1751 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1752 1753 return 0; 1754 } 1755 1756 static int kvm_s390_get_machine_subfunc(struct kvm *kvm, 1757 struct kvm_device_attr *attr) 1758 { 1759 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc, 1760 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1761 return -EFAULT; 1762 1763 VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1764 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0], 1765 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1], 1766 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2], 1767 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]); 1768 VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx", 1769 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0], 1770 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]); 1771 VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx", 1772 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0], 1773 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]); 1774 VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx", 1775 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0], 1776 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]); 1777 VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx", 1778 ((unsigned long *) &kvm_s390_available_subfunc.km)[0], 1779 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]); 1780 VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx", 1781 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0], 1782 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]); 1783 VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx", 1784 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0], 1785 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]); 1786 VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx", 1787 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0], 1788 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]); 1789 VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx", 1790 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0], 1791 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]); 1792 VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx", 1793 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0], 1794 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]); 1795 VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx", 1796 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0], 1797 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]); 1798 VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx", 1799 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0], 1800 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]); 1801 VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx", 1802 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0], 1803 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]); 1804 VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx", 1805 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0], 1806 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]); 1807 VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx", 1808 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0], 1809 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]); 1810 VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1811 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0], 1812 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1], 1813 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2], 1814 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]); 1815 VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1816 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0], 1817 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1], 1818 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2], 1819 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]); 1820 1821 return 0; 1822 } 1823 1824 static int kvm_s390_get_processor_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1825 { 1826 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; 1827 unsigned long feat = kvm->arch.model.uv_feat_guest.feat; 1828 1829 if (put_user(feat, &dst->feat)) 1830 return -EFAULT; 1831 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); 1832 1833 return 0; 1834 } 1835 1836 static int kvm_s390_get_machine_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1837 { 1838 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; 1839 unsigned long feat; 1840 1841 BUILD_BUG_ON(sizeof(*dst) != sizeof(uv_info.uv_feature_indications)); 1842 1843 feat = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; 1844 if (put_user(feat, &dst->feat)) 1845 return -EFAULT; 1846 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); 1847 1848 return 0; 1849 } 1850 1851 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1852 { 1853 int ret = -ENXIO; 1854 1855 switch (attr->attr) { 1856 case KVM_S390_VM_CPU_PROCESSOR: 1857 ret = kvm_s390_get_processor(kvm, attr); 1858 break; 1859 case KVM_S390_VM_CPU_MACHINE: 1860 ret = kvm_s390_get_machine(kvm, attr); 1861 break; 1862 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1863 ret = kvm_s390_get_processor_feat(kvm, attr); 1864 break; 1865 case KVM_S390_VM_CPU_MACHINE_FEAT: 1866 ret = kvm_s390_get_machine_feat(kvm, attr); 1867 break; 1868 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1869 ret = kvm_s390_get_processor_subfunc(kvm, attr); 1870 break; 1871 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1872 ret = kvm_s390_get_machine_subfunc(kvm, attr); 1873 break; 1874 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 1875 ret = kvm_s390_get_processor_uv_feat(kvm, attr); 1876 break; 1877 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: 1878 ret = kvm_s390_get_machine_uv_feat(kvm, attr); 1879 break; 1880 } 1881 return ret; 1882 } 1883 1884 /** 1885 * kvm_s390_update_topology_change_report - update CPU topology change report 1886 * @kvm: guest KVM description 1887 * @val: set or clear the MTCR bit 1888 * 1889 * Updates the Multiprocessor Topology-Change-Report bit to signal 1890 * the guest with a topology change. 1891 * This is only relevant if the topology facility is present. 1892 * 1893 * The SCA version, bsca or esca, doesn't matter as offset is the same. 1894 */ 1895 static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val) 1896 { 1897 union sca_utility new, old; 1898 struct bsca_block *sca; 1899 1900 read_lock(&kvm->arch.sca_lock); 1901 sca = kvm->arch.sca; 1902 do { 1903 old = READ_ONCE(sca->utility); 1904 new = old; 1905 new.mtcr = val; 1906 } while (cmpxchg(&sca->utility.val, old.val, new.val) != old.val); 1907 read_unlock(&kvm->arch.sca_lock); 1908 } 1909 1910 static int kvm_s390_set_topo_change_indication(struct kvm *kvm, 1911 struct kvm_device_attr *attr) 1912 { 1913 if (!test_kvm_facility(kvm, 11)) 1914 return -ENXIO; 1915 1916 kvm_s390_update_topology_change_report(kvm, !!attr->attr); 1917 return 0; 1918 } 1919 1920 static int kvm_s390_get_topo_change_indication(struct kvm *kvm, 1921 struct kvm_device_attr *attr) 1922 { 1923 u8 topo; 1924 1925 if (!test_kvm_facility(kvm, 11)) 1926 return -ENXIO; 1927 1928 read_lock(&kvm->arch.sca_lock); 1929 topo = ((struct bsca_block *)kvm->arch.sca)->utility.mtcr; 1930 read_unlock(&kvm->arch.sca_lock); 1931 1932 return put_user(topo, (u8 __user *)attr->addr); 1933 } 1934 1935 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1936 { 1937 int ret; 1938 1939 switch (attr->group) { 1940 case KVM_S390_VM_MEM_CTRL: 1941 ret = kvm_s390_set_mem_control(kvm, attr); 1942 break; 1943 case KVM_S390_VM_TOD: 1944 ret = kvm_s390_set_tod(kvm, attr); 1945 break; 1946 case KVM_S390_VM_CPU_MODEL: 1947 ret = kvm_s390_set_cpu_model(kvm, attr); 1948 break; 1949 case KVM_S390_VM_CRYPTO: 1950 ret = kvm_s390_vm_set_crypto(kvm, attr); 1951 break; 1952 case KVM_S390_VM_MIGRATION: 1953 ret = kvm_s390_vm_set_migration(kvm, attr); 1954 break; 1955 case KVM_S390_VM_CPU_TOPOLOGY: 1956 ret = kvm_s390_set_topo_change_indication(kvm, attr); 1957 break; 1958 default: 1959 ret = -ENXIO; 1960 break; 1961 } 1962 1963 return ret; 1964 } 1965 1966 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1967 { 1968 int ret; 1969 1970 switch (attr->group) { 1971 case KVM_S390_VM_MEM_CTRL: 1972 ret = kvm_s390_get_mem_control(kvm, attr); 1973 break; 1974 case KVM_S390_VM_TOD: 1975 ret = kvm_s390_get_tod(kvm, attr); 1976 break; 1977 case KVM_S390_VM_CPU_MODEL: 1978 ret = kvm_s390_get_cpu_model(kvm, attr); 1979 break; 1980 case KVM_S390_VM_MIGRATION: 1981 ret = kvm_s390_vm_get_migration(kvm, attr); 1982 break; 1983 case KVM_S390_VM_CPU_TOPOLOGY: 1984 ret = kvm_s390_get_topo_change_indication(kvm, attr); 1985 break; 1986 default: 1987 ret = -ENXIO; 1988 break; 1989 } 1990 1991 return ret; 1992 } 1993 1994 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1995 { 1996 int ret; 1997 1998 switch (attr->group) { 1999 case KVM_S390_VM_MEM_CTRL: 2000 switch (attr->attr) { 2001 case KVM_S390_VM_MEM_ENABLE_CMMA: 2002 case KVM_S390_VM_MEM_CLR_CMMA: 2003 ret = sclp.has_cmma ? 0 : -ENXIO; 2004 break; 2005 case KVM_S390_VM_MEM_LIMIT_SIZE: 2006 ret = 0; 2007 break; 2008 default: 2009 ret = -ENXIO; 2010 break; 2011 } 2012 break; 2013 case KVM_S390_VM_TOD: 2014 switch (attr->attr) { 2015 case KVM_S390_VM_TOD_LOW: 2016 case KVM_S390_VM_TOD_HIGH: 2017 ret = 0; 2018 break; 2019 default: 2020 ret = -ENXIO; 2021 break; 2022 } 2023 break; 2024 case KVM_S390_VM_CPU_MODEL: 2025 switch (attr->attr) { 2026 case KVM_S390_VM_CPU_PROCESSOR: 2027 case KVM_S390_VM_CPU_MACHINE: 2028 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 2029 case KVM_S390_VM_CPU_MACHINE_FEAT: 2030 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 2031 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 2032 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: 2033 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 2034 ret = 0; 2035 break; 2036 default: 2037 ret = -ENXIO; 2038 break; 2039 } 2040 break; 2041 case KVM_S390_VM_CRYPTO: 2042 switch (attr->attr) { 2043 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 2044 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 2045 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 2046 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 2047 ret = 0; 2048 break; 2049 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 2050 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 2051 ret = ap_instructions_available() ? 0 : -ENXIO; 2052 break; 2053 default: 2054 ret = -ENXIO; 2055 break; 2056 } 2057 break; 2058 case KVM_S390_VM_MIGRATION: 2059 ret = 0; 2060 break; 2061 case KVM_S390_VM_CPU_TOPOLOGY: 2062 ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO; 2063 break; 2064 default: 2065 ret = -ENXIO; 2066 break; 2067 } 2068 2069 return ret; 2070 } 2071 2072 static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 2073 { 2074 uint8_t *keys; 2075 uint64_t hva; 2076 int srcu_idx, i, r = 0; 2077 2078 if (args->flags != 0) 2079 return -EINVAL; 2080 2081 /* Is this guest using storage keys? */ 2082 if (!mm_uses_skeys(current->mm)) 2083 return KVM_S390_GET_SKEYS_NONE; 2084 2085 /* Enforce sane limit on memory allocation */ 2086 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2087 return -EINVAL; 2088 2089 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2090 if (!keys) 2091 return -ENOMEM; 2092 2093 mmap_read_lock(current->mm); 2094 srcu_idx = srcu_read_lock(&kvm->srcu); 2095 for (i = 0; i < args->count; i++) { 2096 hva = gfn_to_hva(kvm, args->start_gfn + i); 2097 if (kvm_is_error_hva(hva)) { 2098 r = -EFAULT; 2099 break; 2100 } 2101 2102 r = get_guest_storage_key(current->mm, hva, &keys[i]); 2103 if (r) 2104 break; 2105 } 2106 srcu_read_unlock(&kvm->srcu, srcu_idx); 2107 mmap_read_unlock(current->mm); 2108 2109 if (!r) { 2110 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys, 2111 sizeof(uint8_t) * args->count); 2112 if (r) 2113 r = -EFAULT; 2114 } 2115 2116 kvfree(keys); 2117 return r; 2118 } 2119 2120 static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 2121 { 2122 uint8_t *keys; 2123 uint64_t hva; 2124 int srcu_idx, i, r = 0; 2125 bool unlocked; 2126 2127 if (args->flags != 0) 2128 return -EINVAL; 2129 2130 /* Enforce sane limit on memory allocation */ 2131 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2132 return -EINVAL; 2133 2134 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2135 if (!keys) 2136 return -ENOMEM; 2137 2138 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr, 2139 sizeof(uint8_t) * args->count); 2140 if (r) { 2141 r = -EFAULT; 2142 goto out; 2143 } 2144 2145 /* Enable storage key handling for the guest */ 2146 r = s390_enable_skey(); 2147 if (r) 2148 goto out; 2149 2150 i = 0; 2151 mmap_read_lock(current->mm); 2152 srcu_idx = srcu_read_lock(&kvm->srcu); 2153 while (i < args->count) { 2154 unlocked = false; 2155 hva = gfn_to_hva(kvm, args->start_gfn + i); 2156 if (kvm_is_error_hva(hva)) { 2157 r = -EFAULT; 2158 break; 2159 } 2160 2161 /* Lowest order bit is reserved */ 2162 if (keys[i] & 0x01) { 2163 r = -EINVAL; 2164 break; 2165 } 2166 2167 r = set_guest_storage_key(current->mm, hva, keys[i], 0); 2168 if (r) { 2169 r = fixup_user_fault(current->mm, hva, 2170 FAULT_FLAG_WRITE, &unlocked); 2171 if (r) 2172 break; 2173 } 2174 if (!r) 2175 i++; 2176 } 2177 srcu_read_unlock(&kvm->srcu, srcu_idx); 2178 mmap_read_unlock(current->mm); 2179 out: 2180 kvfree(keys); 2181 return r; 2182 } 2183 2184 /* 2185 * Base address and length must be sent at the start of each block, therefore 2186 * it's cheaper to send some clean data, as long as it's less than the size of 2187 * two longs. 2188 */ 2189 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *)) 2190 /* for consistency */ 2191 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX) 2192 2193 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2194 u8 *res, unsigned long bufsize) 2195 { 2196 unsigned long pgstev, hva, cur_gfn = args->start_gfn; 2197 2198 args->count = 0; 2199 while (args->count < bufsize) { 2200 hva = gfn_to_hva(kvm, cur_gfn); 2201 /* 2202 * We return an error if the first value was invalid, but we 2203 * return successfully if at least one value was copied. 2204 */ 2205 if (kvm_is_error_hva(hva)) 2206 return args->count ? 0 : -EFAULT; 2207 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2208 pgstev = 0; 2209 res[args->count++] = (pgstev >> 24) & 0x43; 2210 cur_gfn++; 2211 } 2212 2213 return 0; 2214 } 2215 2216 static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots, 2217 gfn_t gfn) 2218 { 2219 return ____gfn_to_memslot(slots, gfn, true); 2220 } 2221 2222 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots, 2223 unsigned long cur_gfn) 2224 { 2225 struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn); 2226 unsigned long ofs = cur_gfn - ms->base_gfn; 2227 struct rb_node *mnode = &ms->gfn_node[slots->node_idx]; 2228 2229 if (ms->base_gfn + ms->npages <= cur_gfn) { 2230 mnode = rb_next(mnode); 2231 /* If we are above the highest slot, wrap around */ 2232 if (!mnode) 2233 mnode = rb_first(&slots->gfn_tree); 2234 2235 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2236 ofs = 0; 2237 } 2238 2239 if (cur_gfn < ms->base_gfn) 2240 ofs = 0; 2241 2242 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs); 2243 while (ofs >= ms->npages && (mnode = rb_next(mnode))) { 2244 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2245 ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages); 2246 } 2247 return ms->base_gfn + ofs; 2248 } 2249 2250 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2251 u8 *res, unsigned long bufsize) 2252 { 2253 unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev; 2254 struct kvm_memslots *slots = kvm_memslots(kvm); 2255 struct kvm_memory_slot *ms; 2256 2257 if (unlikely(kvm_memslots_empty(slots))) 2258 return 0; 2259 2260 cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn); 2261 ms = gfn_to_memslot(kvm, cur_gfn); 2262 args->count = 0; 2263 args->start_gfn = cur_gfn; 2264 if (!ms) 2265 return 0; 2266 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2267 mem_end = kvm_s390_get_gfn_end(slots); 2268 2269 while (args->count < bufsize) { 2270 hva = gfn_to_hva(kvm, cur_gfn); 2271 if (kvm_is_error_hva(hva)) 2272 return 0; 2273 /* Decrement only if we actually flipped the bit to 0 */ 2274 if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms))) 2275 atomic64_dec(&kvm->arch.cmma_dirty_pages); 2276 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2277 pgstev = 0; 2278 /* Save the value */ 2279 res[args->count++] = (pgstev >> 24) & 0x43; 2280 /* If the next bit is too far away, stop. */ 2281 if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE) 2282 return 0; 2283 /* If we reached the previous "next", find the next one */ 2284 if (cur_gfn == next_gfn) 2285 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2286 /* Reached the end of memory or of the buffer, stop */ 2287 if ((next_gfn >= mem_end) || 2288 (next_gfn - args->start_gfn >= bufsize)) 2289 return 0; 2290 cur_gfn++; 2291 /* Reached the end of the current memslot, take the next one. */ 2292 if (cur_gfn - ms->base_gfn >= ms->npages) { 2293 ms = gfn_to_memslot(kvm, cur_gfn); 2294 if (!ms) 2295 return 0; 2296 } 2297 } 2298 return 0; 2299 } 2300 2301 /* 2302 * This function searches for the next page with dirty CMMA attributes, and 2303 * saves the attributes in the buffer up to either the end of the buffer or 2304 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found; 2305 * no trailing clean bytes are saved. 2306 * In case no dirty bits were found, or if CMMA was not enabled or used, the 2307 * output buffer will indicate 0 as length. 2308 */ 2309 static int kvm_s390_get_cmma_bits(struct kvm *kvm, 2310 struct kvm_s390_cmma_log *args) 2311 { 2312 unsigned long bufsize; 2313 int srcu_idx, peek, ret; 2314 u8 *values; 2315 2316 if (!kvm->arch.use_cmma) 2317 return -ENXIO; 2318 /* Invalid/unsupported flags were specified */ 2319 if (args->flags & ~KVM_S390_CMMA_PEEK) 2320 return -EINVAL; 2321 /* Migration mode query, and we are not doing a migration */ 2322 peek = !!(args->flags & KVM_S390_CMMA_PEEK); 2323 if (!peek && !kvm->arch.migration_mode) 2324 return -EINVAL; 2325 /* CMMA is disabled or was not used, or the buffer has length zero */ 2326 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX); 2327 if (!bufsize || !kvm->mm->context.uses_cmm) { 2328 memset(args, 0, sizeof(*args)); 2329 return 0; 2330 } 2331 /* We are not peeking, and there are no dirty pages */ 2332 if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) { 2333 memset(args, 0, sizeof(*args)); 2334 return 0; 2335 } 2336 2337 values = vmalloc(bufsize); 2338 if (!values) 2339 return -ENOMEM; 2340 2341 mmap_read_lock(kvm->mm); 2342 srcu_idx = srcu_read_lock(&kvm->srcu); 2343 if (peek) 2344 ret = kvm_s390_peek_cmma(kvm, args, values, bufsize); 2345 else 2346 ret = kvm_s390_get_cmma(kvm, args, values, bufsize); 2347 srcu_read_unlock(&kvm->srcu, srcu_idx); 2348 mmap_read_unlock(kvm->mm); 2349 2350 if (kvm->arch.migration_mode) 2351 args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages); 2352 else 2353 args->remaining = 0; 2354 2355 if (copy_to_user((void __user *)args->values, values, args->count)) 2356 ret = -EFAULT; 2357 2358 vfree(values); 2359 return ret; 2360 } 2361 2362 /* 2363 * This function sets the CMMA attributes for the given pages. If the input 2364 * buffer has zero length, no action is taken, otherwise the attributes are 2365 * set and the mm->context.uses_cmm flag is set. 2366 */ 2367 static int kvm_s390_set_cmma_bits(struct kvm *kvm, 2368 const struct kvm_s390_cmma_log *args) 2369 { 2370 unsigned long hva, mask, pgstev, i; 2371 uint8_t *bits; 2372 int srcu_idx, r = 0; 2373 2374 mask = args->mask; 2375 2376 if (!kvm->arch.use_cmma) 2377 return -ENXIO; 2378 /* invalid/unsupported flags */ 2379 if (args->flags != 0) 2380 return -EINVAL; 2381 /* Enforce sane limit on memory allocation */ 2382 if (args->count > KVM_S390_CMMA_SIZE_MAX) 2383 return -EINVAL; 2384 /* Nothing to do */ 2385 if (args->count == 0) 2386 return 0; 2387 2388 bits = vmalloc(array_size(sizeof(*bits), args->count)); 2389 if (!bits) 2390 return -ENOMEM; 2391 2392 r = copy_from_user(bits, (void __user *)args->values, args->count); 2393 if (r) { 2394 r = -EFAULT; 2395 goto out; 2396 } 2397 2398 mmap_read_lock(kvm->mm); 2399 srcu_idx = srcu_read_lock(&kvm->srcu); 2400 for (i = 0; i < args->count; i++) { 2401 hva = gfn_to_hva(kvm, args->start_gfn + i); 2402 if (kvm_is_error_hva(hva)) { 2403 r = -EFAULT; 2404 break; 2405 } 2406 2407 pgstev = bits[i]; 2408 pgstev = pgstev << 24; 2409 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT; 2410 set_pgste_bits(kvm->mm, hva, mask, pgstev); 2411 } 2412 srcu_read_unlock(&kvm->srcu, srcu_idx); 2413 mmap_read_unlock(kvm->mm); 2414 2415 if (!kvm->mm->context.uses_cmm) { 2416 mmap_write_lock(kvm->mm); 2417 kvm->mm->context.uses_cmm = 1; 2418 mmap_write_unlock(kvm->mm); 2419 } 2420 out: 2421 vfree(bits); 2422 return r; 2423 } 2424 2425 /** 2426 * kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to 2427 * non protected. 2428 * @kvm: the VM whose protected vCPUs are to be converted 2429 * @rc: return value for the RC field of the UVC (in case of error) 2430 * @rrc: return value for the RRC field of the UVC (in case of error) 2431 * 2432 * Does not stop in case of error, tries to convert as many 2433 * CPUs as possible. In case of error, the RC and RRC of the last error are 2434 * returned. 2435 * 2436 * Return: 0 in case of success, otherwise -EIO 2437 */ 2438 int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2439 { 2440 struct kvm_vcpu *vcpu; 2441 unsigned long i; 2442 u16 _rc, _rrc; 2443 int ret = 0; 2444 2445 /* 2446 * We ignore failures and try to destroy as many CPUs as possible. 2447 * At the same time we must not free the assigned resources when 2448 * this fails, as the ultravisor has still access to that memory. 2449 * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak 2450 * behind. 2451 * We want to return the first failure rc and rrc, though. 2452 */ 2453 kvm_for_each_vcpu(i, vcpu, kvm) { 2454 mutex_lock(&vcpu->mutex); 2455 if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) { 2456 *rc = _rc; 2457 *rrc = _rrc; 2458 ret = -EIO; 2459 } 2460 mutex_unlock(&vcpu->mutex); 2461 } 2462 /* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */ 2463 if (use_gisa) 2464 kvm_s390_gisa_enable(kvm); 2465 return ret; 2466 } 2467 2468 /** 2469 * kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM 2470 * to protected. 2471 * @kvm: the VM whose protected vCPUs are to be converted 2472 * @rc: return value for the RC field of the UVC (in case of error) 2473 * @rrc: return value for the RRC field of the UVC (in case of error) 2474 * 2475 * Tries to undo the conversion in case of error. 2476 * 2477 * Return: 0 in case of success, otherwise -EIO 2478 */ 2479 static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2480 { 2481 unsigned long i; 2482 int r = 0; 2483 u16 dummy; 2484 2485 struct kvm_vcpu *vcpu; 2486 2487 /* Disable the GISA if the ultravisor does not support AIV. */ 2488 if (!uv_has_feature(BIT_UV_FEAT_AIV)) 2489 kvm_s390_gisa_disable(kvm); 2490 2491 kvm_for_each_vcpu(i, vcpu, kvm) { 2492 mutex_lock(&vcpu->mutex); 2493 r = kvm_s390_pv_create_cpu(vcpu, rc, rrc); 2494 mutex_unlock(&vcpu->mutex); 2495 if (r) 2496 break; 2497 } 2498 if (r) 2499 kvm_s390_cpus_from_pv(kvm, &dummy, &dummy); 2500 return r; 2501 } 2502 2503 /* 2504 * Here we provide user space with a direct interface to query UV 2505 * related data like UV maxima and available features as well as 2506 * feature specific data. 2507 * 2508 * To facilitate future extension of the data structures we'll try to 2509 * write data up to the maximum requested length. 2510 */ 2511 static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info) 2512 { 2513 ssize_t len_min; 2514 2515 switch (info->header.id) { 2516 case KVM_PV_INFO_VM: { 2517 len_min = sizeof(info->header) + sizeof(info->vm); 2518 2519 if (info->header.len_max < len_min) 2520 return -EINVAL; 2521 2522 memcpy(info->vm.inst_calls_list, 2523 uv_info.inst_calls_list, 2524 sizeof(uv_info.inst_calls_list)); 2525 2526 /* It's max cpuid not max cpus, so it's off by one */ 2527 info->vm.max_cpus = uv_info.max_guest_cpu_id + 1; 2528 info->vm.max_guests = uv_info.max_num_sec_conf; 2529 info->vm.max_guest_addr = uv_info.max_sec_stor_addr; 2530 info->vm.feature_indication = uv_info.uv_feature_indications; 2531 2532 return len_min; 2533 } 2534 case KVM_PV_INFO_DUMP: { 2535 len_min = sizeof(info->header) + sizeof(info->dump); 2536 2537 if (info->header.len_max < len_min) 2538 return -EINVAL; 2539 2540 info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len; 2541 info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len; 2542 info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len; 2543 return len_min; 2544 } 2545 default: 2546 return -EINVAL; 2547 } 2548 } 2549 2550 static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd, 2551 struct kvm_s390_pv_dmp dmp) 2552 { 2553 int r = -EINVAL; 2554 void __user *result_buff = (void __user *)dmp.buff_addr; 2555 2556 switch (dmp.subcmd) { 2557 case KVM_PV_DUMP_INIT: { 2558 if (kvm->arch.pv.dumping) 2559 break; 2560 2561 /* 2562 * Block SIE entry as concurrent dump UVCs could lead 2563 * to validities. 2564 */ 2565 kvm_s390_vcpu_block_all(kvm); 2566 2567 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2568 UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc); 2569 KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x", 2570 cmd->rc, cmd->rrc); 2571 if (!r) { 2572 kvm->arch.pv.dumping = true; 2573 } else { 2574 kvm_s390_vcpu_unblock_all(kvm); 2575 r = -EINVAL; 2576 } 2577 break; 2578 } 2579 case KVM_PV_DUMP_CONFIG_STOR_STATE: { 2580 if (!kvm->arch.pv.dumping) 2581 break; 2582 2583 /* 2584 * gaddr is an output parameter since we might stop 2585 * early. As dmp will be copied back in our caller, we 2586 * don't need to do it ourselves. 2587 */ 2588 r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len, 2589 &cmd->rc, &cmd->rrc); 2590 break; 2591 } 2592 case KVM_PV_DUMP_COMPLETE: { 2593 if (!kvm->arch.pv.dumping) 2594 break; 2595 2596 r = -EINVAL; 2597 if (dmp.buff_len < uv_info.conf_dump_finalize_len) 2598 break; 2599 2600 r = kvm_s390_pv_dump_complete(kvm, result_buff, 2601 &cmd->rc, &cmd->rrc); 2602 break; 2603 } 2604 default: 2605 r = -ENOTTY; 2606 break; 2607 } 2608 2609 return r; 2610 } 2611 2612 static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd) 2613 { 2614 const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM); 2615 void __user *argp = (void __user *)cmd->data; 2616 int r = 0; 2617 u16 dummy; 2618 2619 if (need_lock) 2620 mutex_lock(&kvm->lock); 2621 2622 switch (cmd->cmd) { 2623 case KVM_PV_ENABLE: { 2624 r = -EINVAL; 2625 if (kvm_s390_pv_is_protected(kvm)) 2626 break; 2627 2628 /* 2629 * FMT 4 SIE needs esca. As we never switch back to bsca from 2630 * esca, we need no cleanup in the error cases below 2631 */ 2632 r = sca_switch_to_extended(kvm); 2633 if (r) 2634 break; 2635 2636 r = s390_disable_cow_sharing(); 2637 if (r) 2638 break; 2639 2640 r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc); 2641 if (r) 2642 break; 2643 2644 r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc); 2645 if (r) 2646 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy); 2647 2648 /* we need to block service interrupts from now on */ 2649 set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2650 break; 2651 } 2652 case KVM_PV_ASYNC_CLEANUP_PREPARE: 2653 r = -EINVAL; 2654 if (!kvm_s390_pv_is_protected(kvm) || !async_destroy) 2655 break; 2656 2657 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2658 /* 2659 * If a CPU could not be destroyed, destroy VM will also fail. 2660 * There is no point in trying to destroy it. Instead return 2661 * the rc and rrc from the first CPU that failed destroying. 2662 */ 2663 if (r) 2664 break; 2665 r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc); 2666 2667 /* no need to block service interrupts any more */ 2668 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2669 break; 2670 case KVM_PV_ASYNC_CLEANUP_PERFORM: 2671 r = -EINVAL; 2672 if (!async_destroy) 2673 break; 2674 /* kvm->lock must not be held; this is asserted inside the function. */ 2675 r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc); 2676 break; 2677 case KVM_PV_DISABLE: { 2678 r = -EINVAL; 2679 if (!kvm_s390_pv_is_protected(kvm)) 2680 break; 2681 2682 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2683 /* 2684 * If a CPU could not be destroyed, destroy VM will also fail. 2685 * There is no point in trying to destroy it. Instead return 2686 * the rc and rrc from the first CPU that failed destroying. 2687 */ 2688 if (r) 2689 break; 2690 r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc); 2691 2692 /* no need to block service interrupts any more */ 2693 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2694 break; 2695 } 2696 case KVM_PV_SET_SEC_PARMS: { 2697 struct kvm_s390_pv_sec_parm parms = {}; 2698 void *hdr; 2699 2700 r = -EINVAL; 2701 if (!kvm_s390_pv_is_protected(kvm)) 2702 break; 2703 2704 r = -EFAULT; 2705 if (copy_from_user(&parms, argp, sizeof(parms))) 2706 break; 2707 2708 /* Currently restricted to 8KB */ 2709 r = -EINVAL; 2710 if (parms.length > PAGE_SIZE * 2) 2711 break; 2712 2713 r = -ENOMEM; 2714 hdr = vmalloc(parms.length); 2715 if (!hdr) 2716 break; 2717 2718 r = -EFAULT; 2719 if (!copy_from_user(hdr, (void __user *)parms.origin, 2720 parms.length)) 2721 r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length, 2722 &cmd->rc, &cmd->rrc); 2723 2724 vfree(hdr); 2725 break; 2726 } 2727 case KVM_PV_UNPACK: { 2728 struct kvm_s390_pv_unp unp = {}; 2729 2730 r = -EINVAL; 2731 if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm)) 2732 break; 2733 2734 r = -EFAULT; 2735 if (copy_from_user(&unp, argp, sizeof(unp))) 2736 break; 2737 2738 r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak, 2739 &cmd->rc, &cmd->rrc); 2740 break; 2741 } 2742 case KVM_PV_VERIFY: { 2743 r = -EINVAL; 2744 if (!kvm_s390_pv_is_protected(kvm)) 2745 break; 2746 2747 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2748 UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc); 2749 KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc, 2750 cmd->rrc); 2751 break; 2752 } 2753 case KVM_PV_PREP_RESET: { 2754 r = -EINVAL; 2755 if (!kvm_s390_pv_is_protected(kvm)) 2756 break; 2757 2758 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2759 UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc); 2760 KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x", 2761 cmd->rc, cmd->rrc); 2762 break; 2763 } 2764 case KVM_PV_UNSHARE_ALL: { 2765 r = -EINVAL; 2766 if (!kvm_s390_pv_is_protected(kvm)) 2767 break; 2768 2769 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2770 UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc); 2771 KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x", 2772 cmd->rc, cmd->rrc); 2773 break; 2774 } 2775 case KVM_PV_INFO: { 2776 struct kvm_s390_pv_info info = {}; 2777 ssize_t data_len; 2778 2779 /* 2780 * No need to check the VM protection here. 2781 * 2782 * Maybe user space wants to query some of the data 2783 * when the VM is still unprotected. If we see the 2784 * need to fence a new data command we can still 2785 * return an error in the info handler. 2786 */ 2787 2788 r = -EFAULT; 2789 if (copy_from_user(&info, argp, sizeof(info.header))) 2790 break; 2791 2792 r = -EINVAL; 2793 if (info.header.len_max < sizeof(info.header)) 2794 break; 2795 2796 data_len = kvm_s390_handle_pv_info(&info); 2797 if (data_len < 0) { 2798 r = data_len; 2799 break; 2800 } 2801 /* 2802 * If a data command struct is extended (multiple 2803 * times) this can be used to determine how much of it 2804 * is valid. 2805 */ 2806 info.header.len_written = data_len; 2807 2808 r = -EFAULT; 2809 if (copy_to_user(argp, &info, data_len)) 2810 break; 2811 2812 r = 0; 2813 break; 2814 } 2815 case KVM_PV_DUMP: { 2816 struct kvm_s390_pv_dmp dmp; 2817 2818 r = -EINVAL; 2819 if (!kvm_s390_pv_is_protected(kvm)) 2820 break; 2821 2822 r = -EFAULT; 2823 if (copy_from_user(&dmp, argp, sizeof(dmp))) 2824 break; 2825 2826 r = kvm_s390_pv_dmp(kvm, cmd, dmp); 2827 if (r) 2828 break; 2829 2830 if (copy_to_user(argp, &dmp, sizeof(dmp))) { 2831 r = -EFAULT; 2832 break; 2833 } 2834 2835 break; 2836 } 2837 default: 2838 r = -ENOTTY; 2839 } 2840 if (need_lock) 2841 mutex_unlock(&kvm->lock); 2842 2843 return r; 2844 } 2845 2846 static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags) 2847 { 2848 if (mop->flags & ~supported_flags || !mop->size) 2849 return -EINVAL; 2850 if (mop->size > MEM_OP_MAX_SIZE) 2851 return -E2BIG; 2852 if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) { 2853 if (mop->key > 0xf) 2854 return -EINVAL; 2855 } else { 2856 mop->key = 0; 2857 } 2858 return 0; 2859 } 2860 2861 static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2862 { 2863 void __user *uaddr = (void __user *)mop->buf; 2864 enum gacc_mode acc_mode; 2865 void *tmpbuf = NULL; 2866 int r, srcu_idx; 2867 2868 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION | 2869 KVM_S390_MEMOP_F_CHECK_ONLY); 2870 if (r) 2871 return r; 2872 2873 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 2874 tmpbuf = vmalloc(mop->size); 2875 if (!tmpbuf) 2876 return -ENOMEM; 2877 } 2878 2879 srcu_idx = srcu_read_lock(&kvm->srcu); 2880 2881 if (kvm_is_error_gpa(kvm, mop->gaddr)) { 2882 r = PGM_ADDRESSING; 2883 goto out_unlock; 2884 } 2885 2886 acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE; 2887 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 2888 r = check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key); 2889 goto out_unlock; 2890 } 2891 if (acc_mode == GACC_FETCH) { 2892 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2893 mop->size, GACC_FETCH, mop->key); 2894 if (r) 2895 goto out_unlock; 2896 if (copy_to_user(uaddr, tmpbuf, mop->size)) 2897 r = -EFAULT; 2898 } else { 2899 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 2900 r = -EFAULT; 2901 goto out_unlock; 2902 } 2903 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2904 mop->size, GACC_STORE, mop->key); 2905 } 2906 2907 out_unlock: 2908 srcu_read_unlock(&kvm->srcu, srcu_idx); 2909 2910 vfree(tmpbuf); 2911 return r; 2912 } 2913 2914 static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2915 { 2916 void __user *uaddr = (void __user *)mop->buf; 2917 void __user *old_addr = (void __user *)mop->old_addr; 2918 union { 2919 __uint128_t quad; 2920 char raw[sizeof(__uint128_t)]; 2921 } old = { .quad = 0}, new = { .quad = 0 }; 2922 unsigned int off_in_quad = sizeof(new) - mop->size; 2923 int r, srcu_idx; 2924 bool success; 2925 2926 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION); 2927 if (r) 2928 return r; 2929 /* 2930 * This validates off_in_quad. Checking that size is a power 2931 * of two is not necessary, as cmpxchg_guest_abs_with_key 2932 * takes care of that 2933 */ 2934 if (mop->size > sizeof(new)) 2935 return -EINVAL; 2936 if (copy_from_user(&new.raw[off_in_quad], uaddr, mop->size)) 2937 return -EFAULT; 2938 if (copy_from_user(&old.raw[off_in_quad], old_addr, mop->size)) 2939 return -EFAULT; 2940 2941 srcu_idx = srcu_read_lock(&kvm->srcu); 2942 2943 if (kvm_is_error_gpa(kvm, mop->gaddr)) { 2944 r = PGM_ADDRESSING; 2945 goto out_unlock; 2946 } 2947 2948 r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old.quad, 2949 new.quad, mop->key, &success); 2950 if (!success && copy_to_user(old_addr, &old.raw[off_in_quad], mop->size)) 2951 r = -EFAULT; 2952 2953 out_unlock: 2954 srcu_read_unlock(&kvm->srcu, srcu_idx); 2955 return r; 2956 } 2957 2958 static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2959 { 2960 /* 2961 * This is technically a heuristic only, if the kvm->lock is not 2962 * taken, it is not guaranteed that the vm is/remains non-protected. 2963 * This is ok from a kernel perspective, wrongdoing is detected 2964 * on the access, -EFAULT is returned and the vm may crash the 2965 * next time it accesses the memory in question. 2966 * There is no sane usecase to do switching and a memop on two 2967 * different CPUs at the same time. 2968 */ 2969 if (kvm_s390_pv_get_handle(kvm)) 2970 return -EINVAL; 2971 2972 switch (mop->op) { 2973 case KVM_S390_MEMOP_ABSOLUTE_READ: 2974 case KVM_S390_MEMOP_ABSOLUTE_WRITE: 2975 return kvm_s390_vm_mem_op_abs(kvm, mop); 2976 case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG: 2977 return kvm_s390_vm_mem_op_cmpxchg(kvm, mop); 2978 default: 2979 return -EINVAL; 2980 } 2981 } 2982 2983 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 2984 { 2985 struct kvm *kvm = filp->private_data; 2986 void __user *argp = (void __user *)arg; 2987 struct kvm_device_attr attr; 2988 int r; 2989 2990 switch (ioctl) { 2991 case KVM_S390_INTERRUPT: { 2992 struct kvm_s390_interrupt s390int; 2993 2994 r = -EFAULT; 2995 if (copy_from_user(&s390int, argp, sizeof(s390int))) 2996 break; 2997 r = kvm_s390_inject_vm(kvm, &s390int); 2998 break; 2999 } 3000 case KVM_CREATE_IRQCHIP: { 3001 struct kvm_irq_routing_entry routing; 3002 3003 r = -EINVAL; 3004 if (kvm->arch.use_irqchip) { 3005 /* Set up dummy routing. */ 3006 memset(&routing, 0, sizeof(routing)); 3007 r = kvm_set_irq_routing(kvm, &routing, 0, 0); 3008 } 3009 break; 3010 } 3011 case KVM_SET_DEVICE_ATTR: { 3012 r = -EFAULT; 3013 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3014 break; 3015 r = kvm_s390_vm_set_attr(kvm, &attr); 3016 break; 3017 } 3018 case KVM_GET_DEVICE_ATTR: { 3019 r = -EFAULT; 3020 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3021 break; 3022 r = kvm_s390_vm_get_attr(kvm, &attr); 3023 break; 3024 } 3025 case KVM_HAS_DEVICE_ATTR: { 3026 r = -EFAULT; 3027 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3028 break; 3029 r = kvm_s390_vm_has_attr(kvm, &attr); 3030 break; 3031 } 3032 case KVM_S390_GET_SKEYS: { 3033 struct kvm_s390_skeys args; 3034 3035 r = -EFAULT; 3036 if (copy_from_user(&args, argp, 3037 sizeof(struct kvm_s390_skeys))) 3038 break; 3039 r = kvm_s390_get_skeys(kvm, &args); 3040 break; 3041 } 3042 case KVM_S390_SET_SKEYS: { 3043 struct kvm_s390_skeys args; 3044 3045 r = -EFAULT; 3046 if (copy_from_user(&args, argp, 3047 sizeof(struct kvm_s390_skeys))) 3048 break; 3049 r = kvm_s390_set_skeys(kvm, &args); 3050 break; 3051 } 3052 case KVM_S390_GET_CMMA_BITS: { 3053 struct kvm_s390_cmma_log args; 3054 3055 r = -EFAULT; 3056 if (copy_from_user(&args, argp, sizeof(args))) 3057 break; 3058 mutex_lock(&kvm->slots_lock); 3059 r = kvm_s390_get_cmma_bits(kvm, &args); 3060 mutex_unlock(&kvm->slots_lock); 3061 if (!r) { 3062 r = copy_to_user(argp, &args, sizeof(args)); 3063 if (r) 3064 r = -EFAULT; 3065 } 3066 break; 3067 } 3068 case KVM_S390_SET_CMMA_BITS: { 3069 struct kvm_s390_cmma_log args; 3070 3071 r = -EFAULT; 3072 if (copy_from_user(&args, argp, sizeof(args))) 3073 break; 3074 mutex_lock(&kvm->slots_lock); 3075 r = kvm_s390_set_cmma_bits(kvm, &args); 3076 mutex_unlock(&kvm->slots_lock); 3077 break; 3078 } 3079 case KVM_S390_PV_COMMAND: { 3080 struct kvm_pv_cmd args; 3081 3082 /* protvirt means user cpu state */ 3083 kvm_s390_set_user_cpu_state_ctrl(kvm); 3084 r = 0; 3085 if (!is_prot_virt_host()) { 3086 r = -EINVAL; 3087 break; 3088 } 3089 if (copy_from_user(&args, argp, sizeof(args))) { 3090 r = -EFAULT; 3091 break; 3092 } 3093 if (args.flags) { 3094 r = -EINVAL; 3095 break; 3096 } 3097 /* must be called without kvm->lock */ 3098 r = kvm_s390_handle_pv(kvm, &args); 3099 if (copy_to_user(argp, &args, sizeof(args))) { 3100 r = -EFAULT; 3101 break; 3102 } 3103 break; 3104 } 3105 case KVM_S390_MEM_OP: { 3106 struct kvm_s390_mem_op mem_op; 3107 3108 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 3109 r = kvm_s390_vm_mem_op(kvm, &mem_op); 3110 else 3111 r = -EFAULT; 3112 break; 3113 } 3114 case KVM_S390_ZPCI_OP: { 3115 struct kvm_s390_zpci_op args; 3116 3117 r = -EINVAL; 3118 if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3119 break; 3120 if (copy_from_user(&args, argp, sizeof(args))) { 3121 r = -EFAULT; 3122 break; 3123 } 3124 r = kvm_s390_pci_zpci_op(kvm, &args); 3125 break; 3126 } 3127 default: 3128 r = -ENOTTY; 3129 } 3130 3131 return r; 3132 } 3133 3134 static int kvm_s390_apxa_installed(void) 3135 { 3136 struct ap_config_info info; 3137 3138 if (ap_instructions_available()) { 3139 if (ap_qci(&info) == 0) 3140 return info.apxa; 3141 } 3142 3143 return 0; 3144 } 3145 3146 /* 3147 * The format of the crypto control block (CRYCB) is specified in the 3 low 3148 * order bits of the CRYCB designation (CRYCBD) field as follows: 3149 * Format 0: Neither the message security assist extension 3 (MSAX3) nor the 3150 * AP extended addressing (APXA) facility are installed. 3151 * Format 1: The APXA facility is not installed but the MSAX3 facility is. 3152 * Format 2: Both the APXA and MSAX3 facilities are installed 3153 */ 3154 static void kvm_s390_set_crycb_format(struct kvm *kvm) 3155 { 3156 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb; 3157 3158 /* Clear the CRYCB format bits - i.e., set format 0 by default */ 3159 kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK); 3160 3161 /* Check whether MSAX3 is installed */ 3162 if (!test_kvm_facility(kvm, 76)) 3163 return; 3164 3165 if (kvm_s390_apxa_installed()) 3166 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2; 3167 else 3168 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1; 3169 } 3170 3171 /* 3172 * kvm_arch_crypto_set_masks 3173 * 3174 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3175 * to be set. 3176 * @apm: the mask identifying the accessible AP adapters 3177 * @aqm: the mask identifying the accessible AP domains 3178 * @adm: the mask identifying the accessible AP control domains 3179 * 3180 * Set the masks that identify the adapters, domains and control domains to 3181 * which the KVM guest is granted access. 3182 * 3183 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3184 * function. 3185 */ 3186 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm, 3187 unsigned long *aqm, unsigned long *adm) 3188 { 3189 struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb; 3190 3191 kvm_s390_vcpu_block_all(kvm); 3192 3193 switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) { 3194 case CRYCB_FORMAT2: /* APCB1 use 256 bits */ 3195 memcpy(crycb->apcb1.apm, apm, 32); 3196 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx", 3197 apm[0], apm[1], apm[2], apm[3]); 3198 memcpy(crycb->apcb1.aqm, aqm, 32); 3199 VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx", 3200 aqm[0], aqm[1], aqm[2], aqm[3]); 3201 memcpy(crycb->apcb1.adm, adm, 32); 3202 VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx", 3203 adm[0], adm[1], adm[2], adm[3]); 3204 break; 3205 case CRYCB_FORMAT1: 3206 case CRYCB_FORMAT0: /* Fall through both use APCB0 */ 3207 memcpy(crycb->apcb0.apm, apm, 8); 3208 memcpy(crycb->apcb0.aqm, aqm, 2); 3209 memcpy(crycb->apcb0.adm, adm, 2); 3210 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x", 3211 apm[0], *((unsigned short *)aqm), 3212 *((unsigned short *)adm)); 3213 break; 3214 default: /* Can not happen */ 3215 break; 3216 } 3217 3218 /* recreate the shadow crycb for each vcpu */ 3219 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3220 kvm_s390_vcpu_unblock_all(kvm); 3221 } 3222 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks); 3223 3224 /* 3225 * kvm_arch_crypto_clear_masks 3226 * 3227 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3228 * to be cleared. 3229 * 3230 * Clear the masks that identify the adapters, domains and control domains to 3231 * which the KVM guest is granted access. 3232 * 3233 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3234 * function. 3235 */ 3236 void kvm_arch_crypto_clear_masks(struct kvm *kvm) 3237 { 3238 kvm_s390_vcpu_block_all(kvm); 3239 3240 memset(&kvm->arch.crypto.crycb->apcb0, 0, 3241 sizeof(kvm->arch.crypto.crycb->apcb0)); 3242 memset(&kvm->arch.crypto.crycb->apcb1, 0, 3243 sizeof(kvm->arch.crypto.crycb->apcb1)); 3244 3245 VM_EVENT(kvm, 3, "%s", "CLR CRYCB:"); 3246 /* recreate the shadow crycb for each vcpu */ 3247 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3248 kvm_s390_vcpu_unblock_all(kvm); 3249 } 3250 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks); 3251 3252 static u64 kvm_s390_get_initial_cpuid(void) 3253 { 3254 struct cpuid cpuid; 3255 3256 get_cpu_id(&cpuid); 3257 cpuid.version = 0xff; 3258 return *((u64 *) &cpuid); 3259 } 3260 3261 static void kvm_s390_crypto_init(struct kvm *kvm) 3262 { 3263 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb; 3264 kvm_s390_set_crycb_format(kvm); 3265 init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem); 3266 3267 if (!test_kvm_facility(kvm, 76)) 3268 return; 3269 3270 /* Enable AES/DEA protected key functions by default */ 3271 kvm->arch.crypto.aes_kw = 1; 3272 kvm->arch.crypto.dea_kw = 1; 3273 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 3274 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 3275 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 3276 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 3277 } 3278 3279 static void sca_dispose(struct kvm *kvm) 3280 { 3281 if (kvm->arch.use_esca) 3282 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block)); 3283 else 3284 free_page((unsigned long)(kvm->arch.sca)); 3285 kvm->arch.sca = NULL; 3286 } 3287 3288 void kvm_arch_free_vm(struct kvm *kvm) 3289 { 3290 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3291 kvm_s390_pci_clear_list(kvm); 3292 3293 __kvm_arch_free_vm(kvm); 3294 } 3295 3296 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 3297 { 3298 gfp_t alloc_flags = GFP_KERNEL_ACCOUNT; 3299 int i, rc; 3300 char debug_name[16]; 3301 static unsigned long sca_offset; 3302 3303 rc = -EINVAL; 3304 #ifdef CONFIG_KVM_S390_UCONTROL 3305 if (type & ~KVM_VM_S390_UCONTROL) 3306 goto out_err; 3307 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN))) 3308 goto out_err; 3309 #else 3310 if (type) 3311 goto out_err; 3312 #endif 3313 3314 rc = s390_enable_sie(); 3315 if (rc) 3316 goto out_err; 3317 3318 rc = -ENOMEM; 3319 3320 if (!sclp.has_64bscao) 3321 alloc_flags |= GFP_DMA; 3322 rwlock_init(&kvm->arch.sca_lock); 3323 /* start with basic SCA */ 3324 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags); 3325 if (!kvm->arch.sca) 3326 goto out_err; 3327 mutex_lock(&kvm_lock); 3328 sca_offset += 16; 3329 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE) 3330 sca_offset = 0; 3331 kvm->arch.sca = (struct bsca_block *) 3332 ((char *) kvm->arch.sca + sca_offset); 3333 mutex_unlock(&kvm_lock); 3334 3335 sprintf(debug_name, "kvm-%u", current->pid); 3336 3337 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long)); 3338 if (!kvm->arch.dbf) 3339 goto out_err; 3340 3341 BUILD_BUG_ON(sizeof(struct sie_page2) != 4096); 3342 kvm->arch.sie_page2 = 3343 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); 3344 if (!kvm->arch.sie_page2) 3345 goto out_err; 3346 3347 kvm->arch.sie_page2->kvm = kvm; 3348 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list; 3349 3350 for (i = 0; i < kvm_s390_fac_size(); i++) { 3351 kvm->arch.model.fac_mask[i] = stfle_fac_list[i] & 3352 (kvm_s390_fac_base[i] | 3353 kvm_s390_fac_ext[i]); 3354 kvm->arch.model.fac_list[i] = stfle_fac_list[i] & 3355 kvm_s390_fac_base[i]; 3356 } 3357 kvm->arch.model.subfuncs = kvm_s390_available_subfunc; 3358 3359 /* we are always in czam mode - even on pre z14 machines */ 3360 set_kvm_facility(kvm->arch.model.fac_mask, 138); 3361 set_kvm_facility(kvm->arch.model.fac_list, 138); 3362 /* we emulate STHYI in kvm */ 3363 set_kvm_facility(kvm->arch.model.fac_mask, 74); 3364 set_kvm_facility(kvm->arch.model.fac_list, 74); 3365 if (MACHINE_HAS_TLB_GUEST) { 3366 set_kvm_facility(kvm->arch.model.fac_mask, 147); 3367 set_kvm_facility(kvm->arch.model.fac_list, 147); 3368 } 3369 3370 if (css_general_characteristics.aiv && test_facility(65)) 3371 set_kvm_facility(kvm->arch.model.fac_mask, 65); 3372 3373 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid(); 3374 kvm->arch.model.ibc = sclp.ibc & 0x0fff; 3375 3376 kvm->arch.model.uv_feat_guest.feat = 0; 3377 3378 kvm_s390_crypto_init(kvm); 3379 3380 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 3381 mutex_lock(&kvm->lock); 3382 kvm_s390_pci_init_list(kvm); 3383 kvm_s390_vcpu_pci_enable_interp(kvm); 3384 mutex_unlock(&kvm->lock); 3385 } 3386 3387 mutex_init(&kvm->arch.float_int.ais_lock); 3388 spin_lock_init(&kvm->arch.float_int.lock); 3389 for (i = 0; i < FIRQ_LIST_COUNT; i++) 3390 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]); 3391 init_waitqueue_head(&kvm->arch.ipte_wq); 3392 mutex_init(&kvm->arch.ipte_mutex); 3393 3394 debug_register_view(kvm->arch.dbf, &debug_sprintf_view); 3395 VM_EVENT(kvm, 3, "vm created with type %lu", type); 3396 3397 if (type & KVM_VM_S390_UCONTROL) { 3398 kvm->arch.gmap = NULL; 3399 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT; 3400 } else { 3401 if (sclp.hamax == U64_MAX) 3402 kvm->arch.mem_limit = TASK_SIZE_MAX; 3403 else 3404 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX, 3405 sclp.hamax + 1); 3406 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1); 3407 if (!kvm->arch.gmap) 3408 goto out_err; 3409 kvm->arch.gmap->private = kvm; 3410 kvm->arch.gmap->pfault_enabled = 0; 3411 } 3412 3413 kvm->arch.use_pfmfi = sclp.has_pfmfi; 3414 kvm->arch.use_skf = sclp.has_skey; 3415 spin_lock_init(&kvm->arch.start_stop_lock); 3416 kvm_s390_vsie_init(kvm); 3417 if (use_gisa) 3418 kvm_s390_gisa_init(kvm); 3419 INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup); 3420 kvm->arch.pv.set_aside = NULL; 3421 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid); 3422 3423 return 0; 3424 out_err: 3425 free_page((unsigned long)kvm->arch.sie_page2); 3426 debug_unregister(kvm->arch.dbf); 3427 sca_dispose(kvm); 3428 KVM_EVENT(3, "creation of vm failed: %d", rc); 3429 return rc; 3430 } 3431 3432 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 3433 { 3434 u16 rc, rrc; 3435 3436 VCPU_EVENT(vcpu, 3, "%s", "free cpu"); 3437 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id); 3438 kvm_s390_clear_local_irqs(vcpu); 3439 kvm_clear_async_pf_completion_queue(vcpu); 3440 if (!kvm_is_ucontrol(vcpu->kvm)) 3441 sca_del_vcpu(vcpu); 3442 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 3443 3444 if (kvm_is_ucontrol(vcpu->kvm)) 3445 gmap_remove(vcpu->arch.gmap); 3446 3447 if (vcpu->kvm->arch.use_cmma) 3448 kvm_s390_vcpu_unsetup_cmma(vcpu); 3449 /* We can not hold the vcpu mutex here, we are already dying */ 3450 if (kvm_s390_pv_cpu_get_handle(vcpu)) 3451 kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc); 3452 free_page((unsigned long)(vcpu->arch.sie_block)); 3453 } 3454 3455 void kvm_arch_destroy_vm(struct kvm *kvm) 3456 { 3457 u16 rc, rrc; 3458 3459 kvm_destroy_vcpus(kvm); 3460 sca_dispose(kvm); 3461 kvm_s390_gisa_destroy(kvm); 3462 /* 3463 * We are already at the end of life and kvm->lock is not taken. 3464 * This is ok as the file descriptor is closed by now and nobody 3465 * can mess with the pv state. 3466 */ 3467 kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc); 3468 /* 3469 * Remove the mmu notifier only when the whole KVM VM is torn down, 3470 * and only if one was registered to begin with. If the VM is 3471 * currently not protected, but has been previously been protected, 3472 * then it's possible that the notifier is still registered. 3473 */ 3474 if (kvm->arch.pv.mmu_notifier.ops) 3475 mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm); 3476 3477 debug_unregister(kvm->arch.dbf); 3478 free_page((unsigned long)kvm->arch.sie_page2); 3479 if (!kvm_is_ucontrol(kvm)) 3480 gmap_remove(kvm->arch.gmap); 3481 kvm_s390_destroy_adapters(kvm); 3482 kvm_s390_clear_float_irqs(kvm); 3483 kvm_s390_vsie_destroy(kvm); 3484 KVM_EVENT(3, "vm 0x%pK destroyed", kvm); 3485 } 3486 3487 /* Section: vcpu related */ 3488 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) 3489 { 3490 vcpu->arch.gmap = gmap_create(current->mm, -1UL); 3491 if (!vcpu->arch.gmap) 3492 return -ENOMEM; 3493 vcpu->arch.gmap->private = vcpu->kvm; 3494 3495 return 0; 3496 } 3497 3498 static void sca_del_vcpu(struct kvm_vcpu *vcpu) 3499 { 3500 if (!kvm_s390_use_sca_entries()) 3501 return; 3502 read_lock(&vcpu->kvm->arch.sca_lock); 3503 if (vcpu->kvm->arch.use_esca) { 3504 struct esca_block *sca = vcpu->kvm->arch.sca; 3505 3506 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3507 sca->cpu[vcpu->vcpu_id].sda = 0; 3508 } else { 3509 struct bsca_block *sca = vcpu->kvm->arch.sca; 3510 3511 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3512 sca->cpu[vcpu->vcpu_id].sda = 0; 3513 } 3514 read_unlock(&vcpu->kvm->arch.sca_lock); 3515 } 3516 3517 static void sca_add_vcpu(struct kvm_vcpu *vcpu) 3518 { 3519 if (!kvm_s390_use_sca_entries()) { 3520 phys_addr_t sca_phys = virt_to_phys(vcpu->kvm->arch.sca); 3521 3522 /* we still need the basic sca for the ipte control */ 3523 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3524 vcpu->arch.sie_block->scaol = sca_phys; 3525 return; 3526 } 3527 read_lock(&vcpu->kvm->arch.sca_lock); 3528 if (vcpu->kvm->arch.use_esca) { 3529 struct esca_block *sca = vcpu->kvm->arch.sca; 3530 phys_addr_t sca_phys = virt_to_phys(sca); 3531 3532 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3533 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3534 vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK; 3535 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3536 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3537 } else { 3538 struct bsca_block *sca = vcpu->kvm->arch.sca; 3539 phys_addr_t sca_phys = virt_to_phys(sca); 3540 3541 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3542 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3543 vcpu->arch.sie_block->scaol = sca_phys; 3544 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3545 } 3546 read_unlock(&vcpu->kvm->arch.sca_lock); 3547 } 3548 3549 /* Basic SCA to Extended SCA data copy routines */ 3550 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s) 3551 { 3552 d->sda = s->sda; 3553 d->sigp_ctrl.c = s->sigp_ctrl.c; 3554 d->sigp_ctrl.scn = s->sigp_ctrl.scn; 3555 } 3556 3557 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s) 3558 { 3559 int i; 3560 3561 d->ipte_control = s->ipte_control; 3562 d->mcn[0] = s->mcn; 3563 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++) 3564 sca_copy_entry(&d->cpu[i], &s->cpu[i]); 3565 } 3566 3567 static int sca_switch_to_extended(struct kvm *kvm) 3568 { 3569 struct bsca_block *old_sca = kvm->arch.sca; 3570 struct esca_block *new_sca; 3571 struct kvm_vcpu *vcpu; 3572 unsigned long vcpu_idx; 3573 u32 scaol, scaoh; 3574 phys_addr_t new_sca_phys; 3575 3576 if (kvm->arch.use_esca) 3577 return 0; 3578 3579 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3580 if (!new_sca) 3581 return -ENOMEM; 3582 3583 new_sca_phys = virt_to_phys(new_sca); 3584 scaoh = new_sca_phys >> 32; 3585 scaol = new_sca_phys & ESCA_SCAOL_MASK; 3586 3587 kvm_s390_vcpu_block_all(kvm); 3588 write_lock(&kvm->arch.sca_lock); 3589 3590 sca_copy_b_to_e(new_sca, old_sca); 3591 3592 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) { 3593 vcpu->arch.sie_block->scaoh = scaoh; 3594 vcpu->arch.sie_block->scaol = scaol; 3595 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3596 } 3597 kvm->arch.sca = new_sca; 3598 kvm->arch.use_esca = 1; 3599 3600 write_unlock(&kvm->arch.sca_lock); 3601 kvm_s390_vcpu_unblock_all(kvm); 3602 3603 free_page((unsigned long)old_sca); 3604 3605 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)", 3606 old_sca, kvm->arch.sca); 3607 return 0; 3608 } 3609 3610 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id) 3611 { 3612 int rc; 3613 3614 if (!kvm_s390_use_sca_entries()) { 3615 if (id < KVM_MAX_VCPUS) 3616 return true; 3617 return false; 3618 } 3619 if (id < KVM_S390_BSCA_CPU_SLOTS) 3620 return true; 3621 if (!sclp.has_esca || !sclp.has_64bscao) 3622 return false; 3623 3624 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm); 3625 3626 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS; 3627 } 3628 3629 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3630 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3631 { 3632 WARN_ON_ONCE(vcpu->arch.cputm_start != 0); 3633 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3634 vcpu->arch.cputm_start = get_tod_clock_fast(); 3635 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3636 } 3637 3638 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3639 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3640 { 3641 WARN_ON_ONCE(vcpu->arch.cputm_start == 0); 3642 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3643 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3644 vcpu->arch.cputm_start = 0; 3645 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3646 } 3647 3648 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3649 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3650 { 3651 WARN_ON_ONCE(vcpu->arch.cputm_enabled); 3652 vcpu->arch.cputm_enabled = true; 3653 __start_cpu_timer_accounting(vcpu); 3654 } 3655 3656 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3657 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3658 { 3659 WARN_ON_ONCE(!vcpu->arch.cputm_enabled); 3660 __stop_cpu_timer_accounting(vcpu); 3661 vcpu->arch.cputm_enabled = false; 3662 } 3663 3664 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3665 { 3666 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3667 __enable_cpu_timer_accounting(vcpu); 3668 preempt_enable(); 3669 } 3670 3671 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3672 { 3673 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3674 __disable_cpu_timer_accounting(vcpu); 3675 preempt_enable(); 3676 } 3677 3678 /* set the cpu timer - may only be called from the VCPU thread itself */ 3679 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm) 3680 { 3681 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3682 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3683 if (vcpu->arch.cputm_enabled) 3684 vcpu->arch.cputm_start = get_tod_clock_fast(); 3685 vcpu->arch.sie_block->cputm = cputm; 3686 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3687 preempt_enable(); 3688 } 3689 3690 /* update and get the cpu timer - can also be called from other VCPU threads */ 3691 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu) 3692 { 3693 unsigned int seq; 3694 __u64 value; 3695 3696 if (unlikely(!vcpu->arch.cputm_enabled)) 3697 return vcpu->arch.sie_block->cputm; 3698 3699 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3700 do { 3701 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount); 3702 /* 3703 * If the writer would ever execute a read in the critical 3704 * section, e.g. in irq context, we have a deadlock. 3705 */ 3706 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu); 3707 value = vcpu->arch.sie_block->cputm; 3708 /* if cputm_start is 0, accounting is being started/stopped */ 3709 if (likely(vcpu->arch.cputm_start)) 3710 value -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3711 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1)); 3712 preempt_enable(); 3713 return value; 3714 } 3715 3716 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3717 { 3718 3719 gmap_enable(vcpu->arch.enabled_gmap); 3720 kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING); 3721 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3722 __start_cpu_timer_accounting(vcpu); 3723 vcpu->cpu = cpu; 3724 } 3725 3726 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3727 { 3728 vcpu->cpu = -1; 3729 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3730 __stop_cpu_timer_accounting(vcpu); 3731 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING); 3732 vcpu->arch.enabled_gmap = gmap_get_enabled(); 3733 gmap_disable(vcpu->arch.enabled_gmap); 3734 3735 } 3736 3737 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 3738 { 3739 mutex_lock(&vcpu->kvm->lock); 3740 preempt_disable(); 3741 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch; 3742 vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx; 3743 preempt_enable(); 3744 mutex_unlock(&vcpu->kvm->lock); 3745 if (!kvm_is_ucontrol(vcpu->kvm)) { 3746 vcpu->arch.gmap = vcpu->kvm->arch.gmap; 3747 sca_add_vcpu(vcpu); 3748 } 3749 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0) 3750 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 3751 /* make vcpu_load load the right gmap on the first trigger */ 3752 vcpu->arch.enabled_gmap = vcpu->arch.gmap; 3753 } 3754 3755 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr) 3756 { 3757 if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) && 3758 test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo)) 3759 return true; 3760 return false; 3761 } 3762 3763 static bool kvm_has_pckmo_ecc(struct kvm *kvm) 3764 { 3765 /* At least one ECC subfunction must be present */ 3766 return kvm_has_pckmo_subfunc(kvm, 32) || 3767 kvm_has_pckmo_subfunc(kvm, 33) || 3768 kvm_has_pckmo_subfunc(kvm, 34) || 3769 kvm_has_pckmo_subfunc(kvm, 40) || 3770 kvm_has_pckmo_subfunc(kvm, 41); 3771 3772 } 3773 3774 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) 3775 { 3776 /* 3777 * If the AP instructions are not being interpreted and the MSAX3 3778 * facility is not configured for the guest, there is nothing to set up. 3779 */ 3780 if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76)) 3781 return; 3782 3783 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd; 3784 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA); 3785 vcpu->arch.sie_block->eca &= ~ECA_APIE; 3786 vcpu->arch.sie_block->ecd &= ~ECD_ECC; 3787 3788 if (vcpu->kvm->arch.crypto.apie) 3789 vcpu->arch.sie_block->eca |= ECA_APIE; 3790 3791 /* Set up protected key support */ 3792 if (vcpu->kvm->arch.crypto.aes_kw) { 3793 vcpu->arch.sie_block->ecb3 |= ECB3_AES; 3794 /* ecc is also wrapped with AES key */ 3795 if (kvm_has_pckmo_ecc(vcpu->kvm)) 3796 vcpu->arch.sie_block->ecd |= ECD_ECC; 3797 } 3798 3799 if (vcpu->kvm->arch.crypto.dea_kw) 3800 vcpu->arch.sie_block->ecb3 |= ECB3_DEA; 3801 } 3802 3803 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu) 3804 { 3805 free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo)); 3806 vcpu->arch.sie_block->cbrlo = 0; 3807 } 3808 3809 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu) 3810 { 3811 void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3812 3813 if (!cbrlo_page) 3814 return -ENOMEM; 3815 3816 vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page); 3817 return 0; 3818 } 3819 3820 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu) 3821 { 3822 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model; 3823 3824 vcpu->arch.sie_block->ibc = model->ibc; 3825 if (test_kvm_facility(vcpu->kvm, 7)) 3826 vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list); 3827 } 3828 3829 static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu) 3830 { 3831 int rc = 0; 3832 u16 uvrc, uvrrc; 3833 3834 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH | 3835 CPUSTAT_SM | 3836 CPUSTAT_STOPPED); 3837 3838 if (test_kvm_facility(vcpu->kvm, 78)) 3839 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2); 3840 else if (test_kvm_facility(vcpu->kvm, 8)) 3841 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED); 3842 3843 kvm_s390_vcpu_setup_model(vcpu); 3844 3845 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */ 3846 if (MACHINE_HAS_ESOP) 3847 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT; 3848 if (test_kvm_facility(vcpu->kvm, 9)) 3849 vcpu->arch.sie_block->ecb |= ECB_SRSI; 3850 if (test_kvm_facility(vcpu->kvm, 11)) 3851 vcpu->arch.sie_block->ecb |= ECB_PTF; 3852 if (test_kvm_facility(vcpu->kvm, 73)) 3853 vcpu->arch.sie_block->ecb |= ECB_TE; 3854 if (!kvm_is_ucontrol(vcpu->kvm)) 3855 vcpu->arch.sie_block->ecb |= ECB_SPECI; 3856 3857 if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi) 3858 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI; 3859 if (test_kvm_facility(vcpu->kvm, 130)) 3860 vcpu->arch.sie_block->ecb2 |= ECB2_IEP; 3861 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI; 3862 if (sclp.has_cei) 3863 vcpu->arch.sie_block->eca |= ECA_CEI; 3864 if (sclp.has_ib) 3865 vcpu->arch.sie_block->eca |= ECA_IB; 3866 if (sclp.has_siif) 3867 vcpu->arch.sie_block->eca |= ECA_SII; 3868 if (sclp.has_sigpif) 3869 vcpu->arch.sie_block->eca |= ECA_SIGPI; 3870 if (test_kvm_facility(vcpu->kvm, 129)) { 3871 vcpu->arch.sie_block->eca |= ECA_VX; 3872 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 3873 } 3874 if (test_kvm_facility(vcpu->kvm, 139)) 3875 vcpu->arch.sie_block->ecd |= ECD_MEF; 3876 if (test_kvm_facility(vcpu->kvm, 156)) 3877 vcpu->arch.sie_block->ecd |= ECD_ETOKENF; 3878 if (vcpu->arch.sie_block->gd) { 3879 vcpu->arch.sie_block->eca |= ECA_AIV; 3880 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3881 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3882 } 3883 vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC; 3884 vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb); 3885 3886 if (sclp.has_kss) 3887 kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS); 3888 else 3889 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; 3890 3891 if (vcpu->kvm->arch.use_cmma) { 3892 rc = kvm_s390_vcpu_setup_cmma(vcpu); 3893 if (rc) 3894 return rc; 3895 } 3896 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3897 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup; 3898 3899 vcpu->arch.sie_block->hpid = HPID_KVM; 3900 3901 kvm_s390_vcpu_crypto_setup(vcpu); 3902 3903 kvm_s390_vcpu_pci_setup(vcpu); 3904 3905 mutex_lock(&vcpu->kvm->lock); 3906 if (kvm_s390_pv_is_protected(vcpu->kvm)) { 3907 rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc); 3908 if (rc) 3909 kvm_s390_vcpu_unsetup_cmma(vcpu); 3910 } 3911 mutex_unlock(&vcpu->kvm->lock); 3912 3913 return rc; 3914 } 3915 3916 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 3917 { 3918 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id)) 3919 return -EINVAL; 3920 return 0; 3921 } 3922 3923 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 3924 { 3925 struct sie_page *sie_page; 3926 int rc; 3927 3928 BUILD_BUG_ON(sizeof(struct sie_page) != 4096); 3929 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT); 3930 if (!sie_page) 3931 return -ENOMEM; 3932 3933 vcpu->arch.sie_block = &sie_page->sie_block; 3934 vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb); 3935 3936 /* the real guest size will always be smaller than msl */ 3937 vcpu->arch.sie_block->mso = 0; 3938 vcpu->arch.sie_block->msl = sclp.hamax; 3939 3940 vcpu->arch.sie_block->icpua = vcpu->vcpu_id; 3941 spin_lock_init(&vcpu->arch.local_int.lock); 3942 vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm); 3943 seqcount_init(&vcpu->arch.cputm_seqcount); 3944 3945 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 3946 kvm_clear_async_pf_completion_queue(vcpu); 3947 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX | 3948 KVM_SYNC_GPRS | 3949 KVM_SYNC_ACRS | 3950 KVM_SYNC_CRS | 3951 KVM_SYNC_ARCH0 | 3952 KVM_SYNC_PFAULT | 3953 KVM_SYNC_DIAG318; 3954 kvm_s390_set_prefix(vcpu, 0); 3955 if (test_kvm_facility(vcpu->kvm, 64)) 3956 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB; 3957 if (test_kvm_facility(vcpu->kvm, 82)) 3958 vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC; 3959 if (test_kvm_facility(vcpu->kvm, 133)) 3960 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB; 3961 if (test_kvm_facility(vcpu->kvm, 156)) 3962 vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN; 3963 /* fprs can be synchronized via vrs, even if the guest has no vx. With 3964 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format. 3965 */ 3966 if (MACHINE_HAS_VX) 3967 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS; 3968 else 3969 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS; 3970 3971 if (kvm_is_ucontrol(vcpu->kvm)) { 3972 rc = __kvm_ucontrol_vcpu_init(vcpu); 3973 if (rc) 3974 goto out_free_sie_block; 3975 } 3976 3977 VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", 3978 vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 3979 trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 3980 3981 rc = kvm_s390_vcpu_setup(vcpu); 3982 if (rc) 3983 goto out_ucontrol_uninit; 3984 3985 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 3986 return 0; 3987 3988 out_ucontrol_uninit: 3989 if (kvm_is_ucontrol(vcpu->kvm)) 3990 gmap_remove(vcpu->arch.gmap); 3991 out_free_sie_block: 3992 free_page((unsigned long)(vcpu->arch.sie_block)); 3993 return rc; 3994 } 3995 3996 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 3997 { 3998 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 3999 return kvm_s390_vcpu_has_irq(vcpu, 0); 4000 } 4001 4002 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 4003 { 4004 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE); 4005 } 4006 4007 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu) 4008 { 4009 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 4010 exit_sie(vcpu); 4011 } 4012 4013 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu) 4014 { 4015 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 4016 } 4017 4018 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu) 4019 { 4020 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 4021 exit_sie(vcpu); 4022 } 4023 4024 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu) 4025 { 4026 return atomic_read(&vcpu->arch.sie_block->prog20) & 4027 (PROG_BLOCK_SIE | PROG_REQUEST); 4028 } 4029 4030 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu) 4031 { 4032 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 4033 } 4034 4035 /* 4036 * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running. 4037 * If the CPU is not running (e.g. waiting as idle) the function will 4038 * return immediately. */ 4039 void exit_sie(struct kvm_vcpu *vcpu) 4040 { 4041 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 4042 kvm_s390_vsie_kick(vcpu); 4043 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE) 4044 cpu_relax(); 4045 } 4046 4047 /* Kick a guest cpu out of SIE to process a request synchronously */ 4048 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) 4049 { 4050 __kvm_make_request(req, vcpu); 4051 kvm_s390_vcpu_request(vcpu); 4052 } 4053 4054 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 4055 unsigned long end) 4056 { 4057 struct kvm *kvm = gmap->private; 4058 struct kvm_vcpu *vcpu; 4059 unsigned long prefix; 4060 unsigned long i; 4061 4062 if (gmap_is_shadow(gmap)) 4063 return; 4064 if (start >= 1UL << 31) 4065 /* We are only interested in prefix pages */ 4066 return; 4067 kvm_for_each_vcpu(i, vcpu, kvm) { 4068 /* match against both prefix pages */ 4069 prefix = kvm_s390_get_prefix(vcpu); 4070 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) { 4071 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx", 4072 start, end); 4073 kvm_s390_sync_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 4074 } 4075 } 4076 } 4077 4078 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 4079 { 4080 /* do not poll with more than halt_poll_max_steal percent of steal time */ 4081 if (S390_lowcore.avg_steal_timer * 100 / (TICK_USEC << 12) >= 4082 READ_ONCE(halt_poll_max_steal)) { 4083 vcpu->stat.halt_no_poll_steal++; 4084 return true; 4085 } 4086 return false; 4087 } 4088 4089 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 4090 { 4091 /* kvm common code refers to this, but never calls it */ 4092 BUG(); 4093 return 0; 4094 } 4095 4096 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, 4097 struct kvm_one_reg *reg) 4098 { 4099 int r = -EINVAL; 4100 4101 switch (reg->id) { 4102 case KVM_REG_S390_TODPR: 4103 r = put_user(vcpu->arch.sie_block->todpr, 4104 (u32 __user *)reg->addr); 4105 break; 4106 case KVM_REG_S390_EPOCHDIFF: 4107 r = put_user(vcpu->arch.sie_block->epoch, 4108 (u64 __user *)reg->addr); 4109 break; 4110 case KVM_REG_S390_CPU_TIMER: 4111 r = put_user(kvm_s390_get_cpu_timer(vcpu), 4112 (u64 __user *)reg->addr); 4113 break; 4114 case KVM_REG_S390_CLOCK_COMP: 4115 r = put_user(vcpu->arch.sie_block->ckc, 4116 (u64 __user *)reg->addr); 4117 break; 4118 case KVM_REG_S390_PFTOKEN: 4119 r = put_user(vcpu->arch.pfault_token, 4120 (u64 __user *)reg->addr); 4121 break; 4122 case KVM_REG_S390_PFCOMPARE: 4123 r = put_user(vcpu->arch.pfault_compare, 4124 (u64 __user *)reg->addr); 4125 break; 4126 case KVM_REG_S390_PFSELECT: 4127 r = put_user(vcpu->arch.pfault_select, 4128 (u64 __user *)reg->addr); 4129 break; 4130 case KVM_REG_S390_PP: 4131 r = put_user(vcpu->arch.sie_block->pp, 4132 (u64 __user *)reg->addr); 4133 break; 4134 case KVM_REG_S390_GBEA: 4135 r = put_user(vcpu->arch.sie_block->gbea, 4136 (u64 __user *)reg->addr); 4137 break; 4138 default: 4139 break; 4140 } 4141 4142 return r; 4143 } 4144 4145 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, 4146 struct kvm_one_reg *reg) 4147 { 4148 int r = -EINVAL; 4149 __u64 val; 4150 4151 switch (reg->id) { 4152 case KVM_REG_S390_TODPR: 4153 r = get_user(vcpu->arch.sie_block->todpr, 4154 (u32 __user *)reg->addr); 4155 break; 4156 case KVM_REG_S390_EPOCHDIFF: 4157 r = get_user(vcpu->arch.sie_block->epoch, 4158 (u64 __user *)reg->addr); 4159 break; 4160 case KVM_REG_S390_CPU_TIMER: 4161 r = get_user(val, (u64 __user *)reg->addr); 4162 if (!r) 4163 kvm_s390_set_cpu_timer(vcpu, val); 4164 break; 4165 case KVM_REG_S390_CLOCK_COMP: 4166 r = get_user(vcpu->arch.sie_block->ckc, 4167 (u64 __user *)reg->addr); 4168 break; 4169 case KVM_REG_S390_PFTOKEN: 4170 r = get_user(vcpu->arch.pfault_token, 4171 (u64 __user *)reg->addr); 4172 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4173 kvm_clear_async_pf_completion_queue(vcpu); 4174 break; 4175 case KVM_REG_S390_PFCOMPARE: 4176 r = get_user(vcpu->arch.pfault_compare, 4177 (u64 __user *)reg->addr); 4178 break; 4179 case KVM_REG_S390_PFSELECT: 4180 r = get_user(vcpu->arch.pfault_select, 4181 (u64 __user *)reg->addr); 4182 break; 4183 case KVM_REG_S390_PP: 4184 r = get_user(vcpu->arch.sie_block->pp, 4185 (u64 __user *)reg->addr); 4186 break; 4187 case KVM_REG_S390_GBEA: 4188 r = get_user(vcpu->arch.sie_block->gbea, 4189 (u64 __user *)reg->addr); 4190 break; 4191 default: 4192 break; 4193 } 4194 4195 return r; 4196 } 4197 4198 static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu) 4199 { 4200 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI; 4201 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 4202 memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb)); 4203 4204 kvm_clear_async_pf_completion_queue(vcpu); 4205 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) 4206 kvm_s390_vcpu_stop(vcpu); 4207 kvm_s390_clear_local_irqs(vcpu); 4208 } 4209 4210 static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu) 4211 { 4212 /* Initial reset is a superset of the normal reset */ 4213 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 4214 4215 /* 4216 * This equals initial cpu reset in pop, but we don't switch to ESA. 4217 * We do not only reset the internal data, but also ... 4218 */ 4219 vcpu->arch.sie_block->gpsw.mask = 0; 4220 vcpu->arch.sie_block->gpsw.addr = 0; 4221 kvm_s390_set_prefix(vcpu, 0); 4222 kvm_s390_set_cpu_timer(vcpu, 0); 4223 vcpu->arch.sie_block->ckc = 0; 4224 memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr)); 4225 vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK; 4226 vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK; 4227 4228 /* ... the data in sync regs */ 4229 memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs)); 4230 vcpu->run->s.regs.ckc = 0; 4231 vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK; 4232 vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK; 4233 vcpu->run->psw_addr = 0; 4234 vcpu->run->psw_mask = 0; 4235 vcpu->run->s.regs.todpr = 0; 4236 vcpu->run->s.regs.cputm = 0; 4237 vcpu->run->s.regs.ckc = 0; 4238 vcpu->run->s.regs.pp = 0; 4239 vcpu->run->s.regs.gbea = 1; 4240 vcpu->run->s.regs.fpc = 0; 4241 /* 4242 * Do not reset these registers in the protected case, as some of 4243 * them are overlaid and they are not accessible in this case 4244 * anyway. 4245 */ 4246 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4247 vcpu->arch.sie_block->gbea = 1; 4248 vcpu->arch.sie_block->pp = 0; 4249 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 4250 vcpu->arch.sie_block->todpr = 0; 4251 } 4252 } 4253 4254 static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu) 4255 { 4256 struct kvm_sync_regs *regs = &vcpu->run->s.regs; 4257 4258 /* Clear reset is a superset of the initial reset */ 4259 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 4260 4261 memset(®s->gprs, 0, sizeof(regs->gprs)); 4262 memset(®s->vrs, 0, sizeof(regs->vrs)); 4263 memset(®s->acrs, 0, sizeof(regs->acrs)); 4264 memset(®s->gscb, 0, sizeof(regs->gscb)); 4265 4266 regs->etoken = 0; 4267 regs->etoken_extension = 0; 4268 } 4269 4270 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4271 { 4272 vcpu_load(vcpu); 4273 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs)); 4274 vcpu_put(vcpu); 4275 return 0; 4276 } 4277 4278 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4279 { 4280 vcpu_load(vcpu); 4281 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs)); 4282 vcpu_put(vcpu); 4283 return 0; 4284 } 4285 4286 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 4287 struct kvm_sregs *sregs) 4288 { 4289 vcpu_load(vcpu); 4290 4291 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs)); 4292 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs)); 4293 4294 vcpu_put(vcpu); 4295 return 0; 4296 } 4297 4298 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 4299 struct kvm_sregs *sregs) 4300 { 4301 vcpu_load(vcpu); 4302 4303 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs)); 4304 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs)); 4305 4306 vcpu_put(vcpu); 4307 return 0; 4308 } 4309 4310 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4311 { 4312 int ret = 0; 4313 4314 vcpu_load(vcpu); 4315 4316 vcpu->run->s.regs.fpc = fpu->fpc; 4317 if (MACHINE_HAS_VX) 4318 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs, 4319 (freg_t *) fpu->fprs); 4320 else 4321 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs)); 4322 4323 vcpu_put(vcpu); 4324 return ret; 4325 } 4326 4327 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4328 { 4329 vcpu_load(vcpu); 4330 4331 /* make sure we have the latest values */ 4332 save_fpu_regs(); 4333 if (MACHINE_HAS_VX) 4334 convert_vx_to_fp((freg_t *) fpu->fprs, 4335 (__vector128 *) vcpu->run->s.regs.vrs); 4336 else 4337 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs)); 4338 fpu->fpc = vcpu->run->s.regs.fpc; 4339 4340 vcpu_put(vcpu); 4341 return 0; 4342 } 4343 4344 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw) 4345 { 4346 int rc = 0; 4347 4348 if (!is_vcpu_stopped(vcpu)) 4349 rc = -EBUSY; 4350 else { 4351 vcpu->run->psw_mask = psw.mask; 4352 vcpu->run->psw_addr = psw.addr; 4353 } 4354 return rc; 4355 } 4356 4357 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 4358 struct kvm_translation *tr) 4359 { 4360 return -EINVAL; /* not implemented yet */ 4361 } 4362 4363 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \ 4364 KVM_GUESTDBG_USE_HW_BP | \ 4365 KVM_GUESTDBG_ENABLE) 4366 4367 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 4368 struct kvm_guest_debug *dbg) 4369 { 4370 int rc = 0; 4371 4372 vcpu_load(vcpu); 4373 4374 vcpu->guest_debug = 0; 4375 kvm_s390_clear_bp_data(vcpu); 4376 4377 if (dbg->control & ~VALID_GUESTDBG_FLAGS) { 4378 rc = -EINVAL; 4379 goto out; 4380 } 4381 if (!sclp.has_gpere) { 4382 rc = -EINVAL; 4383 goto out; 4384 } 4385 4386 if (dbg->control & KVM_GUESTDBG_ENABLE) { 4387 vcpu->guest_debug = dbg->control; 4388 /* enforce guest PER */ 4389 kvm_s390_set_cpuflags(vcpu, CPUSTAT_P); 4390 4391 if (dbg->control & KVM_GUESTDBG_USE_HW_BP) 4392 rc = kvm_s390_import_bp_data(vcpu, dbg); 4393 } else { 4394 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4395 vcpu->arch.guestdbg.last_bp = 0; 4396 } 4397 4398 if (rc) { 4399 vcpu->guest_debug = 0; 4400 kvm_s390_clear_bp_data(vcpu); 4401 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4402 } 4403 4404 out: 4405 vcpu_put(vcpu); 4406 return rc; 4407 } 4408 4409 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 4410 struct kvm_mp_state *mp_state) 4411 { 4412 int ret; 4413 4414 vcpu_load(vcpu); 4415 4416 /* CHECK_STOP and LOAD are not supported yet */ 4417 ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED : 4418 KVM_MP_STATE_OPERATING; 4419 4420 vcpu_put(vcpu); 4421 return ret; 4422 } 4423 4424 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 4425 struct kvm_mp_state *mp_state) 4426 { 4427 int rc = 0; 4428 4429 vcpu_load(vcpu); 4430 4431 /* user space knows about this interface - let it control the state */ 4432 kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm); 4433 4434 switch (mp_state->mp_state) { 4435 case KVM_MP_STATE_STOPPED: 4436 rc = kvm_s390_vcpu_stop(vcpu); 4437 break; 4438 case KVM_MP_STATE_OPERATING: 4439 rc = kvm_s390_vcpu_start(vcpu); 4440 break; 4441 case KVM_MP_STATE_LOAD: 4442 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4443 rc = -ENXIO; 4444 break; 4445 } 4446 rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD); 4447 break; 4448 case KVM_MP_STATE_CHECK_STOP: 4449 fallthrough; /* CHECK_STOP and LOAD are not supported yet */ 4450 default: 4451 rc = -ENXIO; 4452 } 4453 4454 vcpu_put(vcpu); 4455 return rc; 4456 } 4457 4458 static bool ibs_enabled(struct kvm_vcpu *vcpu) 4459 { 4460 return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS); 4461 } 4462 4463 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) 4464 { 4465 retry: 4466 kvm_s390_vcpu_request_handled(vcpu); 4467 if (!kvm_request_pending(vcpu)) 4468 return 0; 4469 /* 4470 * If the guest prefix changed, re-arm the ipte notifier for the 4471 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock. 4472 * This ensures that the ipte instruction for this request has 4473 * already finished. We might race against a second unmapper that 4474 * wants to set the blocking bit. Lets just retry the request loop. 4475 */ 4476 if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) { 4477 int rc; 4478 rc = gmap_mprotect_notify(vcpu->arch.gmap, 4479 kvm_s390_get_prefix(vcpu), 4480 PAGE_SIZE * 2, PROT_WRITE); 4481 if (rc) { 4482 kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 4483 return rc; 4484 } 4485 goto retry; 4486 } 4487 4488 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 4489 vcpu->arch.sie_block->ihcpu = 0xffff; 4490 goto retry; 4491 } 4492 4493 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) { 4494 if (!ibs_enabled(vcpu)) { 4495 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1); 4496 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS); 4497 } 4498 goto retry; 4499 } 4500 4501 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) { 4502 if (ibs_enabled(vcpu)) { 4503 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0); 4504 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS); 4505 } 4506 goto retry; 4507 } 4508 4509 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) { 4510 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 4511 goto retry; 4512 } 4513 4514 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) { 4515 /* 4516 * Disable CMM virtualization; we will emulate the ESSA 4517 * instruction manually, in order to provide additional 4518 * functionalities needed for live migration. 4519 */ 4520 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA; 4521 goto retry; 4522 } 4523 4524 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) { 4525 /* 4526 * Re-enable CMM virtualization if CMMA is available and 4527 * CMM has been used. 4528 */ 4529 if ((vcpu->kvm->arch.use_cmma) && 4530 (vcpu->kvm->mm->context.uses_cmm)) 4531 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA; 4532 goto retry; 4533 } 4534 4535 /* we left the vsie handler, nothing to do, just clear the request */ 4536 kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu); 4537 4538 return 0; 4539 } 4540 4541 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4542 { 4543 struct kvm_vcpu *vcpu; 4544 union tod_clock clk; 4545 unsigned long i; 4546 4547 preempt_disable(); 4548 4549 store_tod_clock_ext(&clk); 4550 4551 kvm->arch.epoch = gtod->tod - clk.tod; 4552 kvm->arch.epdx = 0; 4553 if (test_kvm_facility(kvm, 139)) { 4554 kvm->arch.epdx = gtod->epoch_idx - clk.ei; 4555 if (kvm->arch.epoch > gtod->tod) 4556 kvm->arch.epdx -= 1; 4557 } 4558 4559 kvm_s390_vcpu_block_all(kvm); 4560 kvm_for_each_vcpu(i, vcpu, kvm) { 4561 vcpu->arch.sie_block->epoch = kvm->arch.epoch; 4562 vcpu->arch.sie_block->epdx = kvm->arch.epdx; 4563 } 4564 4565 kvm_s390_vcpu_unblock_all(kvm); 4566 preempt_enable(); 4567 } 4568 4569 int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4570 { 4571 if (!mutex_trylock(&kvm->lock)) 4572 return 0; 4573 __kvm_s390_set_tod_clock(kvm, gtod); 4574 mutex_unlock(&kvm->lock); 4575 return 1; 4576 } 4577 4578 /** 4579 * kvm_arch_fault_in_page - fault-in guest page if necessary 4580 * @vcpu: The corresponding virtual cpu 4581 * @gpa: Guest physical address 4582 * @writable: Whether the page should be writable or not 4583 * 4584 * Make sure that a guest page has been faulted-in on the host. 4585 * 4586 * Return: Zero on success, negative error code otherwise. 4587 */ 4588 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable) 4589 { 4590 return gmap_fault(vcpu->arch.gmap, gpa, 4591 writable ? FAULT_FLAG_WRITE : 0); 4592 } 4593 4594 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token, 4595 unsigned long token) 4596 { 4597 struct kvm_s390_interrupt inti; 4598 struct kvm_s390_irq irq; 4599 4600 if (start_token) { 4601 irq.u.ext.ext_params2 = token; 4602 irq.type = KVM_S390_INT_PFAULT_INIT; 4603 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq)); 4604 } else { 4605 inti.type = KVM_S390_INT_PFAULT_DONE; 4606 inti.parm64 = token; 4607 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti)); 4608 } 4609 } 4610 4611 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 4612 struct kvm_async_pf *work) 4613 { 4614 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token); 4615 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token); 4616 4617 return true; 4618 } 4619 4620 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 4621 struct kvm_async_pf *work) 4622 { 4623 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token); 4624 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token); 4625 } 4626 4627 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 4628 struct kvm_async_pf *work) 4629 { 4630 /* s390 will always inject the page directly */ 4631 } 4632 4633 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 4634 { 4635 /* 4636 * s390 will always inject the page directly, 4637 * but we still want check_async_completion to cleanup 4638 */ 4639 return true; 4640 } 4641 4642 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu) 4643 { 4644 hva_t hva; 4645 struct kvm_arch_async_pf arch; 4646 4647 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4648 return false; 4649 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) != 4650 vcpu->arch.pfault_compare) 4651 return false; 4652 if (psw_extint_disabled(vcpu)) 4653 return false; 4654 if (kvm_s390_vcpu_has_irq(vcpu, 0)) 4655 return false; 4656 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) 4657 return false; 4658 if (!vcpu->arch.gmap->pfault_enabled) 4659 return false; 4660 4661 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr)); 4662 hva += current->thread.gmap_addr & ~PAGE_MASK; 4663 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8)) 4664 return false; 4665 4666 return kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch); 4667 } 4668 4669 static int vcpu_pre_run(struct kvm_vcpu *vcpu) 4670 { 4671 int rc, cpuflags; 4672 4673 /* 4674 * On s390 notifications for arriving pages will be delivered directly 4675 * to the guest but the house keeping for completed pfaults is 4676 * handled outside the worker. 4677 */ 4678 kvm_check_async_pf_completion(vcpu); 4679 4680 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14]; 4681 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15]; 4682 4683 if (need_resched()) 4684 schedule(); 4685 4686 if (!kvm_is_ucontrol(vcpu->kvm)) { 4687 rc = kvm_s390_deliver_pending_interrupts(vcpu); 4688 if (rc || guestdbg_exit_pending(vcpu)) 4689 return rc; 4690 } 4691 4692 rc = kvm_s390_handle_requests(vcpu); 4693 if (rc) 4694 return rc; 4695 4696 if (guestdbg_enabled(vcpu)) { 4697 kvm_s390_backup_guest_per_regs(vcpu); 4698 kvm_s390_patch_guest_per_regs(vcpu); 4699 } 4700 4701 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 4702 4703 vcpu->arch.sie_block->icptcode = 0; 4704 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags); 4705 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags); 4706 trace_kvm_s390_sie_enter(vcpu, cpuflags); 4707 4708 return 0; 4709 } 4710 4711 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu) 4712 { 4713 struct kvm_s390_pgm_info pgm_info = { 4714 .code = PGM_ADDRESSING, 4715 }; 4716 u8 opcode, ilen; 4717 int rc; 4718 4719 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction"); 4720 trace_kvm_s390_sie_fault(vcpu); 4721 4722 /* 4723 * We want to inject an addressing exception, which is defined as a 4724 * suppressing or terminating exception. However, since we came here 4725 * by a DAT access exception, the PSW still points to the faulting 4726 * instruction since DAT exceptions are nullifying. So we've got 4727 * to look up the current opcode to get the length of the instruction 4728 * to be able to forward the PSW. 4729 */ 4730 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1); 4731 ilen = insn_length(opcode); 4732 if (rc < 0) { 4733 return rc; 4734 } else if (rc) { 4735 /* Instruction-Fetching Exceptions - we can't detect the ilen. 4736 * Forward by arbitrary ilc, injection will take care of 4737 * nullification if necessary. 4738 */ 4739 pgm_info = vcpu->arch.pgm; 4740 ilen = 4; 4741 } 4742 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID; 4743 kvm_s390_forward_psw(vcpu, ilen); 4744 return kvm_s390_inject_prog_irq(vcpu, &pgm_info); 4745 } 4746 4747 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason) 4748 { 4749 struct mcck_volatile_info *mcck_info; 4750 struct sie_page *sie_page; 4751 4752 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d", 4753 vcpu->arch.sie_block->icptcode); 4754 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode); 4755 4756 if (guestdbg_enabled(vcpu)) 4757 kvm_s390_restore_guest_per_regs(vcpu); 4758 4759 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14; 4760 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15; 4761 4762 if (exit_reason == -EINTR) { 4763 VCPU_EVENT(vcpu, 3, "%s", "machine check"); 4764 sie_page = container_of(vcpu->arch.sie_block, 4765 struct sie_page, sie_block); 4766 mcck_info = &sie_page->mcck_info; 4767 kvm_s390_reinject_machine_check(vcpu, mcck_info); 4768 return 0; 4769 } 4770 4771 if (vcpu->arch.sie_block->icptcode > 0) { 4772 int rc = kvm_handle_sie_intercept(vcpu); 4773 4774 if (rc != -EOPNOTSUPP) 4775 return rc; 4776 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC; 4777 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode; 4778 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa; 4779 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb; 4780 return -EREMOTE; 4781 } else if (exit_reason != -EFAULT) { 4782 vcpu->stat.exit_null++; 4783 return 0; 4784 } else if (kvm_is_ucontrol(vcpu->kvm)) { 4785 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL; 4786 vcpu->run->s390_ucontrol.trans_exc_code = 4787 current->thread.gmap_addr; 4788 vcpu->run->s390_ucontrol.pgm_code = 0x10; 4789 return -EREMOTE; 4790 } else if (current->thread.gmap_pfault) { 4791 trace_kvm_s390_major_guest_pfault(vcpu); 4792 current->thread.gmap_pfault = 0; 4793 if (kvm_arch_setup_async_pf(vcpu)) 4794 return 0; 4795 vcpu->stat.pfault_sync++; 4796 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1); 4797 } 4798 return vcpu_post_run_fault_in_sie(vcpu); 4799 } 4800 4801 #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK) 4802 static int __vcpu_run(struct kvm_vcpu *vcpu) 4803 { 4804 int rc, exit_reason; 4805 struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block; 4806 4807 /* 4808 * We try to hold kvm->srcu during most of vcpu_run (except when run- 4809 * ning the guest), so that memslots (and other stuff) are protected 4810 */ 4811 kvm_vcpu_srcu_read_lock(vcpu); 4812 4813 do { 4814 rc = vcpu_pre_run(vcpu); 4815 if (rc || guestdbg_exit_pending(vcpu)) 4816 break; 4817 4818 kvm_vcpu_srcu_read_unlock(vcpu); 4819 /* 4820 * As PF_VCPU will be used in fault handler, between 4821 * guest_enter and guest_exit should be no uaccess. 4822 */ 4823 local_irq_disable(); 4824 guest_enter_irqoff(); 4825 __disable_cpu_timer_accounting(vcpu); 4826 local_irq_enable(); 4827 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4828 memcpy(sie_page->pv_grregs, 4829 vcpu->run->s.regs.gprs, 4830 sizeof(sie_page->pv_grregs)); 4831 } 4832 if (test_cpu_flag(CIF_FPU)) 4833 load_fpu_regs(); 4834 exit_reason = sie64a(vcpu->arch.sie_block, 4835 vcpu->run->s.regs.gprs); 4836 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4837 memcpy(vcpu->run->s.regs.gprs, 4838 sie_page->pv_grregs, 4839 sizeof(sie_page->pv_grregs)); 4840 /* 4841 * We're not allowed to inject interrupts on intercepts 4842 * that leave the guest state in an "in-between" state 4843 * where the next SIE entry will do a continuation. 4844 * Fence interrupts in our "internal" PSW. 4845 */ 4846 if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR || 4847 vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) { 4848 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 4849 } 4850 } 4851 local_irq_disable(); 4852 __enable_cpu_timer_accounting(vcpu); 4853 guest_exit_irqoff(); 4854 local_irq_enable(); 4855 kvm_vcpu_srcu_read_lock(vcpu); 4856 4857 rc = vcpu_post_run(vcpu, exit_reason); 4858 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc); 4859 4860 kvm_vcpu_srcu_read_unlock(vcpu); 4861 return rc; 4862 } 4863 4864 static void sync_regs_fmt2(struct kvm_vcpu *vcpu) 4865 { 4866 struct kvm_run *kvm_run = vcpu->run; 4867 struct runtime_instr_cb *riccb; 4868 struct gs_cb *gscb; 4869 4870 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb; 4871 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb; 4872 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask; 4873 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr; 4874 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 4875 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr; 4876 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp; 4877 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea; 4878 } 4879 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) { 4880 vcpu->arch.pfault_token = kvm_run->s.regs.pft; 4881 vcpu->arch.pfault_select = kvm_run->s.regs.pfs; 4882 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc; 4883 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4884 kvm_clear_async_pf_completion_queue(vcpu); 4885 } 4886 if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) { 4887 vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318; 4888 vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc; 4889 VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc); 4890 } 4891 /* 4892 * If userspace sets the riccb (e.g. after migration) to a valid state, 4893 * we should enable RI here instead of doing the lazy enablement. 4894 */ 4895 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) && 4896 test_kvm_facility(vcpu->kvm, 64) && 4897 riccb->v && 4898 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) { 4899 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)"); 4900 vcpu->arch.sie_block->ecb3 |= ECB3_RI; 4901 } 4902 /* 4903 * If userspace sets the gscb (e.g. after migration) to non-zero, 4904 * we should enable GS here instead of doing the lazy enablement. 4905 */ 4906 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) && 4907 test_kvm_facility(vcpu->kvm, 133) && 4908 gscb->gssm && 4909 !vcpu->arch.gs_enabled) { 4910 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)"); 4911 vcpu->arch.sie_block->ecb |= ECB_GS; 4912 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 4913 vcpu->arch.gs_enabled = 1; 4914 } 4915 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) && 4916 test_kvm_facility(vcpu->kvm, 82)) { 4917 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 4918 vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0; 4919 } 4920 if (MACHINE_HAS_GS) { 4921 preempt_disable(); 4922 __ctl_set_bit(2, 4); 4923 if (current->thread.gs_cb) { 4924 vcpu->arch.host_gscb = current->thread.gs_cb; 4925 save_gs_cb(vcpu->arch.host_gscb); 4926 } 4927 if (vcpu->arch.gs_enabled) { 4928 current->thread.gs_cb = (struct gs_cb *) 4929 &vcpu->run->s.regs.gscb; 4930 restore_gs_cb(current->thread.gs_cb); 4931 } 4932 preempt_enable(); 4933 } 4934 /* SIE will load etoken directly from SDNX and therefore kvm_run */ 4935 } 4936 4937 static void sync_regs(struct kvm_vcpu *vcpu) 4938 { 4939 struct kvm_run *kvm_run = vcpu->run; 4940 4941 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) 4942 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix); 4943 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) { 4944 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128); 4945 /* some control register changes require a tlb flush */ 4946 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 4947 } 4948 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 4949 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm); 4950 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc; 4951 } 4952 save_access_regs(vcpu->arch.host_acrs); 4953 restore_access_regs(vcpu->run->s.regs.acrs); 4954 /* save host (userspace) fprs/vrs */ 4955 save_fpu_regs(); 4956 vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc; 4957 vcpu->arch.host_fpregs.regs = current->thread.fpu.regs; 4958 if (MACHINE_HAS_VX) 4959 current->thread.fpu.regs = vcpu->run->s.regs.vrs; 4960 else 4961 current->thread.fpu.regs = vcpu->run->s.regs.fprs; 4962 current->thread.fpu.fpc = vcpu->run->s.regs.fpc; 4963 if (test_fp_ctl(current->thread.fpu.fpc)) 4964 /* User space provided an invalid FPC, let's clear it */ 4965 current->thread.fpu.fpc = 0; 4966 4967 /* Sync fmt2 only data */ 4968 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) { 4969 sync_regs_fmt2(vcpu); 4970 } else { 4971 /* 4972 * In several places we have to modify our internal view to 4973 * not do things that are disallowed by the ultravisor. For 4974 * example we must not inject interrupts after specific exits 4975 * (e.g. 112 prefix page not secure). We do this by turning 4976 * off the machine check, external and I/O interrupt bits 4977 * of our PSW copy. To avoid getting validity intercepts, we 4978 * do only accept the condition code from userspace. 4979 */ 4980 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC; 4981 vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask & 4982 PSW_MASK_CC; 4983 } 4984 4985 kvm_run->kvm_dirty_regs = 0; 4986 } 4987 4988 static void store_regs_fmt2(struct kvm_vcpu *vcpu) 4989 { 4990 struct kvm_run *kvm_run = vcpu->run; 4991 4992 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr; 4993 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp; 4994 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea; 4995 kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC; 4996 kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val; 4997 if (MACHINE_HAS_GS) { 4998 preempt_disable(); 4999 __ctl_set_bit(2, 4); 5000 if (vcpu->arch.gs_enabled) 5001 save_gs_cb(current->thread.gs_cb); 5002 current->thread.gs_cb = vcpu->arch.host_gscb; 5003 restore_gs_cb(vcpu->arch.host_gscb); 5004 if (!vcpu->arch.host_gscb) 5005 __ctl_clear_bit(2, 4); 5006 vcpu->arch.host_gscb = NULL; 5007 preempt_enable(); 5008 } 5009 /* SIE will save etoken directly into SDNX and therefore kvm_run */ 5010 } 5011 5012 static void store_regs(struct kvm_vcpu *vcpu) 5013 { 5014 struct kvm_run *kvm_run = vcpu->run; 5015 5016 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask; 5017 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr; 5018 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu); 5019 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128); 5020 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu); 5021 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc; 5022 kvm_run->s.regs.pft = vcpu->arch.pfault_token; 5023 kvm_run->s.regs.pfs = vcpu->arch.pfault_select; 5024 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare; 5025 save_access_regs(vcpu->run->s.regs.acrs); 5026 restore_access_regs(vcpu->arch.host_acrs); 5027 /* Save guest register state */ 5028 save_fpu_regs(); 5029 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 5030 /* Restore will be done lazily at return */ 5031 current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc; 5032 current->thread.fpu.regs = vcpu->arch.host_fpregs.regs; 5033 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) 5034 store_regs_fmt2(vcpu); 5035 } 5036 5037 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 5038 { 5039 struct kvm_run *kvm_run = vcpu->run; 5040 int rc; 5041 5042 /* 5043 * Running a VM while dumping always has the potential to 5044 * produce inconsistent dump data. But for PV vcpus a SIE 5045 * entry while dumping could also lead to a fatal validity 5046 * intercept which we absolutely want to avoid. 5047 */ 5048 if (vcpu->kvm->arch.pv.dumping) 5049 return -EINVAL; 5050 5051 if (kvm_run->immediate_exit) 5052 return -EINTR; 5053 5054 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS || 5055 kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS) 5056 return -EINVAL; 5057 5058 vcpu_load(vcpu); 5059 5060 if (guestdbg_exit_pending(vcpu)) { 5061 kvm_s390_prepare_debug_exit(vcpu); 5062 rc = 0; 5063 goto out; 5064 } 5065 5066 kvm_sigset_activate(vcpu); 5067 5068 /* 5069 * no need to check the return value of vcpu_start as it can only have 5070 * an error for protvirt, but protvirt means user cpu state 5071 */ 5072 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) { 5073 kvm_s390_vcpu_start(vcpu); 5074 } else if (is_vcpu_stopped(vcpu)) { 5075 pr_err_ratelimited("can't run stopped vcpu %d\n", 5076 vcpu->vcpu_id); 5077 rc = -EINVAL; 5078 goto out; 5079 } 5080 5081 sync_regs(vcpu); 5082 enable_cpu_timer_accounting(vcpu); 5083 5084 might_fault(); 5085 rc = __vcpu_run(vcpu); 5086 5087 if (signal_pending(current) && !rc) { 5088 kvm_run->exit_reason = KVM_EXIT_INTR; 5089 rc = -EINTR; 5090 } 5091 5092 if (guestdbg_exit_pending(vcpu) && !rc) { 5093 kvm_s390_prepare_debug_exit(vcpu); 5094 rc = 0; 5095 } 5096 5097 if (rc == -EREMOTE) { 5098 /* userspace support is needed, kvm_run has been prepared */ 5099 rc = 0; 5100 } 5101 5102 disable_cpu_timer_accounting(vcpu); 5103 store_regs(vcpu); 5104 5105 kvm_sigset_deactivate(vcpu); 5106 5107 vcpu->stat.exit_userspace++; 5108 out: 5109 vcpu_put(vcpu); 5110 return rc; 5111 } 5112 5113 /* 5114 * store status at address 5115 * we use have two special cases: 5116 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit 5117 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix 5118 */ 5119 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa) 5120 { 5121 unsigned char archmode = 1; 5122 freg_t fprs[NUM_FPRS]; 5123 unsigned int px; 5124 u64 clkcomp, cputm; 5125 int rc; 5126 5127 px = kvm_s390_get_prefix(vcpu); 5128 if (gpa == KVM_S390_STORE_STATUS_NOADDR) { 5129 if (write_guest_abs(vcpu, 163, &archmode, 1)) 5130 return -EFAULT; 5131 gpa = 0; 5132 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) { 5133 if (write_guest_real(vcpu, 163, &archmode, 1)) 5134 return -EFAULT; 5135 gpa = px; 5136 } else 5137 gpa -= __LC_FPREGS_SAVE_AREA; 5138 5139 /* manually convert vector registers if necessary */ 5140 if (MACHINE_HAS_VX) { 5141 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 5142 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5143 fprs, 128); 5144 } else { 5145 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5146 vcpu->run->s.regs.fprs, 128); 5147 } 5148 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA, 5149 vcpu->run->s.regs.gprs, 128); 5150 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA, 5151 &vcpu->arch.sie_block->gpsw, 16); 5152 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA, 5153 &px, 4); 5154 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA, 5155 &vcpu->run->s.regs.fpc, 4); 5156 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA, 5157 &vcpu->arch.sie_block->todpr, 4); 5158 cputm = kvm_s390_get_cpu_timer(vcpu); 5159 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA, 5160 &cputm, 8); 5161 clkcomp = vcpu->arch.sie_block->ckc >> 8; 5162 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA, 5163 &clkcomp, 8); 5164 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA, 5165 &vcpu->run->s.regs.acrs, 64); 5166 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA, 5167 &vcpu->arch.sie_block->gcr, 128); 5168 return rc ? -EFAULT : 0; 5169 } 5170 5171 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr) 5172 { 5173 /* 5174 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy 5175 * switch in the run ioctl. Let's update our copies before we save 5176 * it into the save area 5177 */ 5178 save_fpu_regs(); 5179 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 5180 save_access_regs(vcpu->run->s.regs.acrs); 5181 5182 return kvm_s390_store_status_unloaded(vcpu, addr); 5183 } 5184 5185 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5186 { 5187 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu); 5188 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu); 5189 } 5190 5191 static void __disable_ibs_on_all_vcpus(struct kvm *kvm) 5192 { 5193 unsigned long i; 5194 struct kvm_vcpu *vcpu; 5195 5196 kvm_for_each_vcpu(i, vcpu, kvm) { 5197 __disable_ibs_on_vcpu(vcpu); 5198 } 5199 } 5200 5201 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5202 { 5203 if (!sclp.has_ibs) 5204 return; 5205 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu); 5206 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu); 5207 } 5208 5209 int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu) 5210 { 5211 int i, online_vcpus, r = 0, started_vcpus = 0; 5212 5213 if (!is_vcpu_stopped(vcpu)) 5214 return 0; 5215 5216 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1); 5217 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5218 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5219 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5220 5221 /* Let's tell the UV that we want to change into the operating state */ 5222 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5223 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR); 5224 if (r) { 5225 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5226 return r; 5227 } 5228 } 5229 5230 for (i = 0; i < online_vcpus; i++) { 5231 if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i))) 5232 started_vcpus++; 5233 } 5234 5235 if (started_vcpus == 0) { 5236 /* we're the only active VCPU -> speed it up */ 5237 __enable_ibs_on_vcpu(vcpu); 5238 } else if (started_vcpus == 1) { 5239 /* 5240 * As we are starting a second VCPU, we have to disable 5241 * the IBS facility on all VCPUs to remove potentially 5242 * outstanding ENABLE requests. 5243 */ 5244 __disable_ibs_on_all_vcpus(vcpu->kvm); 5245 } 5246 5247 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED); 5248 /* 5249 * The real PSW might have changed due to a RESTART interpreted by the 5250 * ultravisor. We block all interrupts and let the next sie exit 5251 * refresh our view. 5252 */ 5253 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5254 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 5255 /* 5256 * Another VCPU might have used IBS while we were offline. 5257 * Let's play safe and flush the VCPU at startup. 5258 */ 5259 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 5260 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5261 return 0; 5262 } 5263 5264 int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu) 5265 { 5266 int i, online_vcpus, r = 0, started_vcpus = 0; 5267 struct kvm_vcpu *started_vcpu = NULL; 5268 5269 if (is_vcpu_stopped(vcpu)) 5270 return 0; 5271 5272 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0); 5273 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5274 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5275 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5276 5277 /* Let's tell the UV that we want to change into the stopped state */ 5278 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5279 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP); 5280 if (r) { 5281 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5282 return r; 5283 } 5284 } 5285 5286 /* 5287 * Set the VCPU to STOPPED and THEN clear the interrupt flag, 5288 * now that the SIGP STOP and SIGP STOP AND STORE STATUS orders 5289 * have been fully processed. This will ensure that the VCPU 5290 * is kept BUSY if another VCPU is inquiring with SIGP SENSE. 5291 */ 5292 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED); 5293 kvm_s390_clear_stop_irq(vcpu); 5294 5295 __disable_ibs_on_vcpu(vcpu); 5296 5297 for (i = 0; i < online_vcpus; i++) { 5298 struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i); 5299 5300 if (!is_vcpu_stopped(tmp)) { 5301 started_vcpus++; 5302 started_vcpu = tmp; 5303 } 5304 } 5305 5306 if (started_vcpus == 1) { 5307 /* 5308 * As we only have one VCPU left, we want to enable the 5309 * IBS facility for that VCPU to speed it up. 5310 */ 5311 __enable_ibs_on_vcpu(started_vcpu); 5312 } 5313 5314 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5315 return 0; 5316 } 5317 5318 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5319 struct kvm_enable_cap *cap) 5320 { 5321 int r; 5322 5323 if (cap->flags) 5324 return -EINVAL; 5325 5326 switch (cap->cap) { 5327 case KVM_CAP_S390_CSS_SUPPORT: 5328 if (!vcpu->kvm->arch.css_support) { 5329 vcpu->kvm->arch.css_support = 1; 5330 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support"); 5331 trace_kvm_s390_enable_css(vcpu->kvm); 5332 } 5333 r = 0; 5334 break; 5335 default: 5336 r = -EINVAL; 5337 break; 5338 } 5339 return r; 5340 } 5341 5342 static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu, 5343 struct kvm_s390_mem_op *mop) 5344 { 5345 void __user *uaddr = (void __user *)mop->buf; 5346 void *sida_addr; 5347 int r = 0; 5348 5349 if (mop->flags || !mop->size) 5350 return -EINVAL; 5351 if (mop->size + mop->sida_offset < mop->size) 5352 return -EINVAL; 5353 if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block)) 5354 return -E2BIG; 5355 if (!kvm_s390_pv_cpu_is_protected(vcpu)) 5356 return -EINVAL; 5357 5358 sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset; 5359 5360 switch (mop->op) { 5361 case KVM_S390_MEMOP_SIDA_READ: 5362 if (copy_to_user(uaddr, sida_addr, mop->size)) 5363 r = -EFAULT; 5364 5365 break; 5366 case KVM_S390_MEMOP_SIDA_WRITE: 5367 if (copy_from_user(sida_addr, uaddr, mop->size)) 5368 r = -EFAULT; 5369 break; 5370 } 5371 return r; 5372 } 5373 5374 static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu, 5375 struct kvm_s390_mem_op *mop) 5376 { 5377 void __user *uaddr = (void __user *)mop->buf; 5378 enum gacc_mode acc_mode; 5379 void *tmpbuf = NULL; 5380 int r; 5381 5382 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION | 5383 KVM_S390_MEMOP_F_CHECK_ONLY | 5384 KVM_S390_MEMOP_F_SKEY_PROTECTION); 5385 if (r) 5386 return r; 5387 if (mop->ar >= NUM_ACRS) 5388 return -EINVAL; 5389 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5390 return -EINVAL; 5391 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 5392 tmpbuf = vmalloc(mop->size); 5393 if (!tmpbuf) 5394 return -ENOMEM; 5395 } 5396 5397 acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE; 5398 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 5399 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, 5400 acc_mode, mop->key); 5401 goto out_inject; 5402 } 5403 if (acc_mode == GACC_FETCH) { 5404 r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5405 mop->size, mop->key); 5406 if (r) 5407 goto out_inject; 5408 if (copy_to_user(uaddr, tmpbuf, mop->size)) { 5409 r = -EFAULT; 5410 goto out_free; 5411 } 5412 } else { 5413 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 5414 r = -EFAULT; 5415 goto out_free; 5416 } 5417 r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5418 mop->size, mop->key); 5419 } 5420 5421 out_inject: 5422 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0) 5423 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); 5424 5425 out_free: 5426 vfree(tmpbuf); 5427 return r; 5428 } 5429 5430 static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu, 5431 struct kvm_s390_mem_op *mop) 5432 { 5433 int r, srcu_idx; 5434 5435 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5436 5437 switch (mop->op) { 5438 case KVM_S390_MEMOP_LOGICAL_READ: 5439 case KVM_S390_MEMOP_LOGICAL_WRITE: 5440 r = kvm_s390_vcpu_mem_op(vcpu, mop); 5441 break; 5442 case KVM_S390_MEMOP_SIDA_READ: 5443 case KVM_S390_MEMOP_SIDA_WRITE: 5444 /* we are locked against sida going away by the vcpu->mutex */ 5445 r = kvm_s390_vcpu_sida_op(vcpu, mop); 5446 break; 5447 default: 5448 r = -EINVAL; 5449 } 5450 5451 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 5452 return r; 5453 } 5454 5455 long kvm_arch_vcpu_async_ioctl(struct file *filp, 5456 unsigned int ioctl, unsigned long arg) 5457 { 5458 struct kvm_vcpu *vcpu = filp->private_data; 5459 void __user *argp = (void __user *)arg; 5460 int rc; 5461 5462 switch (ioctl) { 5463 case KVM_S390_IRQ: { 5464 struct kvm_s390_irq s390irq; 5465 5466 if (copy_from_user(&s390irq, argp, sizeof(s390irq))) 5467 return -EFAULT; 5468 rc = kvm_s390_inject_vcpu(vcpu, &s390irq); 5469 break; 5470 } 5471 case KVM_S390_INTERRUPT: { 5472 struct kvm_s390_interrupt s390int; 5473 struct kvm_s390_irq s390irq = {}; 5474 5475 if (copy_from_user(&s390int, argp, sizeof(s390int))) 5476 return -EFAULT; 5477 if (s390int_to_s390irq(&s390int, &s390irq)) 5478 return -EINVAL; 5479 rc = kvm_s390_inject_vcpu(vcpu, &s390irq); 5480 break; 5481 } 5482 default: 5483 rc = -ENOIOCTLCMD; 5484 break; 5485 } 5486 5487 /* 5488 * To simplify single stepping of userspace-emulated instructions, 5489 * KVM_EXIT_S390_SIEIC exit sets KVM_GUESTDBG_EXIT_PENDING (see 5490 * should_handle_per_ifetch()). However, if userspace emulation injects 5491 * an interrupt, it needs to be cleared, so that KVM_EXIT_DEBUG happens 5492 * after (and not before) the interrupt delivery. 5493 */ 5494 if (!rc) 5495 vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING; 5496 5497 return rc; 5498 } 5499 5500 static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu, 5501 struct kvm_pv_cmd *cmd) 5502 { 5503 struct kvm_s390_pv_dmp dmp; 5504 void *data; 5505 int ret; 5506 5507 /* Dump initialization is a prerequisite */ 5508 if (!vcpu->kvm->arch.pv.dumping) 5509 return -EINVAL; 5510 5511 if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp))) 5512 return -EFAULT; 5513 5514 /* We only handle this subcmd right now */ 5515 if (dmp.subcmd != KVM_PV_DUMP_CPU) 5516 return -EINVAL; 5517 5518 /* CPU dump length is the same as create cpu storage donation. */ 5519 if (dmp.buff_len != uv_info.guest_cpu_stor_len) 5520 return -EINVAL; 5521 5522 data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL); 5523 if (!data) 5524 return -ENOMEM; 5525 5526 ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc); 5527 5528 VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x", 5529 vcpu->vcpu_id, cmd->rc, cmd->rrc); 5530 5531 if (ret) 5532 ret = -EINVAL; 5533 5534 /* On success copy over the dump data */ 5535 if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len)) 5536 ret = -EFAULT; 5537 5538 kvfree(data); 5539 return ret; 5540 } 5541 5542 long kvm_arch_vcpu_ioctl(struct file *filp, 5543 unsigned int ioctl, unsigned long arg) 5544 { 5545 struct kvm_vcpu *vcpu = filp->private_data; 5546 void __user *argp = (void __user *)arg; 5547 int idx; 5548 long r; 5549 u16 rc, rrc; 5550 5551 vcpu_load(vcpu); 5552 5553 switch (ioctl) { 5554 case KVM_S390_STORE_STATUS: 5555 idx = srcu_read_lock(&vcpu->kvm->srcu); 5556 r = kvm_s390_store_status_unloaded(vcpu, arg); 5557 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5558 break; 5559 case KVM_S390_SET_INITIAL_PSW: { 5560 psw_t psw; 5561 5562 r = -EFAULT; 5563 if (copy_from_user(&psw, argp, sizeof(psw))) 5564 break; 5565 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw); 5566 break; 5567 } 5568 case KVM_S390_CLEAR_RESET: 5569 r = 0; 5570 kvm_arch_vcpu_ioctl_clear_reset(vcpu); 5571 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5572 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5573 UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc); 5574 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x", 5575 rc, rrc); 5576 } 5577 break; 5578 case KVM_S390_INITIAL_RESET: 5579 r = 0; 5580 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 5581 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5582 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5583 UVC_CMD_CPU_RESET_INITIAL, 5584 &rc, &rrc); 5585 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x", 5586 rc, rrc); 5587 } 5588 break; 5589 case KVM_S390_NORMAL_RESET: 5590 r = 0; 5591 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 5592 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5593 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5594 UVC_CMD_CPU_RESET, &rc, &rrc); 5595 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x", 5596 rc, rrc); 5597 } 5598 break; 5599 case KVM_SET_ONE_REG: 5600 case KVM_GET_ONE_REG: { 5601 struct kvm_one_reg reg; 5602 r = -EINVAL; 5603 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5604 break; 5605 r = -EFAULT; 5606 if (copy_from_user(®, argp, sizeof(reg))) 5607 break; 5608 if (ioctl == KVM_SET_ONE_REG) 5609 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®); 5610 else 5611 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®); 5612 break; 5613 } 5614 #ifdef CONFIG_KVM_S390_UCONTROL 5615 case KVM_S390_UCAS_MAP: { 5616 struct kvm_s390_ucas_mapping ucasmap; 5617 5618 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5619 r = -EFAULT; 5620 break; 5621 } 5622 5623 if (!kvm_is_ucontrol(vcpu->kvm)) { 5624 r = -EINVAL; 5625 break; 5626 } 5627 5628 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr, 5629 ucasmap.vcpu_addr, ucasmap.length); 5630 break; 5631 } 5632 case KVM_S390_UCAS_UNMAP: { 5633 struct kvm_s390_ucas_mapping ucasmap; 5634 5635 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5636 r = -EFAULT; 5637 break; 5638 } 5639 5640 if (!kvm_is_ucontrol(vcpu->kvm)) { 5641 r = -EINVAL; 5642 break; 5643 } 5644 5645 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr, 5646 ucasmap.length); 5647 break; 5648 } 5649 #endif 5650 case KVM_S390_VCPU_FAULT: { 5651 r = gmap_fault(vcpu->arch.gmap, arg, 0); 5652 break; 5653 } 5654 case KVM_ENABLE_CAP: 5655 { 5656 struct kvm_enable_cap cap; 5657 r = -EFAULT; 5658 if (copy_from_user(&cap, argp, sizeof(cap))) 5659 break; 5660 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5661 break; 5662 } 5663 case KVM_S390_MEM_OP: { 5664 struct kvm_s390_mem_op mem_op; 5665 5666 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 5667 r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op); 5668 else 5669 r = -EFAULT; 5670 break; 5671 } 5672 case KVM_S390_SET_IRQ_STATE: { 5673 struct kvm_s390_irq_state irq_state; 5674 5675 r = -EFAULT; 5676 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5677 break; 5678 if (irq_state.len > VCPU_IRQS_MAX_BUF || 5679 irq_state.len == 0 || 5680 irq_state.len % sizeof(struct kvm_s390_irq) > 0) { 5681 r = -EINVAL; 5682 break; 5683 } 5684 /* do not use irq_state.flags, it will break old QEMUs */ 5685 r = kvm_s390_set_irq_state(vcpu, 5686 (void __user *) irq_state.buf, 5687 irq_state.len); 5688 break; 5689 } 5690 case KVM_S390_GET_IRQ_STATE: { 5691 struct kvm_s390_irq_state irq_state; 5692 5693 r = -EFAULT; 5694 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5695 break; 5696 if (irq_state.len == 0) { 5697 r = -EINVAL; 5698 break; 5699 } 5700 /* do not use irq_state.flags, it will break old QEMUs */ 5701 r = kvm_s390_get_irq_state(vcpu, 5702 (__u8 __user *) irq_state.buf, 5703 irq_state.len); 5704 break; 5705 } 5706 case KVM_S390_PV_CPU_COMMAND: { 5707 struct kvm_pv_cmd cmd; 5708 5709 r = -EINVAL; 5710 if (!is_prot_virt_host()) 5711 break; 5712 5713 r = -EFAULT; 5714 if (copy_from_user(&cmd, argp, sizeof(cmd))) 5715 break; 5716 5717 r = -EINVAL; 5718 if (cmd.flags) 5719 break; 5720 5721 /* We only handle this cmd right now */ 5722 if (cmd.cmd != KVM_PV_DUMP) 5723 break; 5724 5725 r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd); 5726 5727 /* Always copy over UV rc / rrc data */ 5728 if (copy_to_user((__u8 __user *)argp, &cmd.rc, 5729 sizeof(cmd.rc) + sizeof(cmd.rrc))) 5730 r = -EFAULT; 5731 break; 5732 } 5733 default: 5734 r = -ENOTTY; 5735 } 5736 5737 vcpu_put(vcpu); 5738 return r; 5739 } 5740 5741 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5742 { 5743 #ifdef CONFIG_KVM_S390_UCONTROL 5744 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET) 5745 && (kvm_is_ucontrol(vcpu->kvm))) { 5746 vmf->page = virt_to_page(vcpu->arch.sie_block); 5747 get_page(vmf->page); 5748 return 0; 5749 } 5750 #endif 5751 return VM_FAULT_SIGBUS; 5752 } 5753 5754 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 5755 { 5756 return true; 5757 } 5758 5759 /* Section: memory related */ 5760 int kvm_arch_prepare_memory_region(struct kvm *kvm, 5761 const struct kvm_memory_slot *old, 5762 struct kvm_memory_slot *new, 5763 enum kvm_mr_change change) 5764 { 5765 gpa_t size; 5766 5767 /* When we are protected, we should not change the memory slots */ 5768 if (kvm_s390_pv_get_handle(kvm)) 5769 return -EINVAL; 5770 5771 if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) { 5772 /* 5773 * A few sanity checks. We can have memory slots which have to be 5774 * located/ended at a segment boundary (1MB). The memory in userland is 5775 * ok to be fragmented into various different vmas. It is okay to mmap() 5776 * and munmap() stuff in this slot after doing this call at any time 5777 */ 5778 5779 if (new->userspace_addr & 0xffffful) 5780 return -EINVAL; 5781 5782 size = new->npages * PAGE_SIZE; 5783 if (size & 0xffffful) 5784 return -EINVAL; 5785 5786 if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit) 5787 return -EINVAL; 5788 } 5789 5790 if (!kvm->arch.migration_mode) 5791 return 0; 5792 5793 /* 5794 * Turn off migration mode when: 5795 * - userspace creates a new memslot with dirty logging off, 5796 * - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and 5797 * dirty logging is turned off. 5798 * Migration mode expects dirty page logging being enabled to store 5799 * its dirty bitmap. 5800 */ 5801 if (change != KVM_MR_DELETE && 5802 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 5803 WARN(kvm_s390_vm_stop_migration(kvm), 5804 "Failed to stop migration mode"); 5805 5806 return 0; 5807 } 5808 5809 void kvm_arch_commit_memory_region(struct kvm *kvm, 5810 struct kvm_memory_slot *old, 5811 const struct kvm_memory_slot *new, 5812 enum kvm_mr_change change) 5813 { 5814 int rc = 0; 5815 5816 switch (change) { 5817 case KVM_MR_DELETE: 5818 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 5819 old->npages * PAGE_SIZE); 5820 break; 5821 case KVM_MR_MOVE: 5822 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 5823 old->npages * PAGE_SIZE); 5824 if (rc) 5825 break; 5826 fallthrough; 5827 case KVM_MR_CREATE: 5828 rc = gmap_map_segment(kvm->arch.gmap, new->userspace_addr, 5829 new->base_gfn * PAGE_SIZE, 5830 new->npages * PAGE_SIZE); 5831 break; 5832 case KVM_MR_FLAGS_ONLY: 5833 break; 5834 default: 5835 WARN(1, "Unknown KVM MR CHANGE: %d\n", change); 5836 } 5837 if (rc) 5838 pr_warn("failed to commit memory region\n"); 5839 return; 5840 } 5841 5842 static inline unsigned long nonhyp_mask(int i) 5843 { 5844 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30; 5845 5846 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4); 5847 } 5848 5849 static int __init kvm_s390_init(void) 5850 { 5851 int i, r; 5852 5853 if (!sclp.has_sief2) { 5854 pr_info("SIE is not available\n"); 5855 return -ENODEV; 5856 } 5857 5858 if (nested && hpage) { 5859 pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n"); 5860 return -EINVAL; 5861 } 5862 5863 for (i = 0; i < 16; i++) 5864 kvm_s390_fac_base[i] |= 5865 stfle_fac_list[i] & nonhyp_mask(i); 5866 5867 r = __kvm_s390_init(); 5868 if (r) 5869 return r; 5870 5871 r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 5872 if (r) { 5873 __kvm_s390_exit(); 5874 return r; 5875 } 5876 return 0; 5877 } 5878 5879 static void __exit kvm_s390_exit(void) 5880 { 5881 kvm_exit(); 5882 5883 __kvm_s390_exit(); 5884 } 5885 5886 module_init(kvm_s390_init); 5887 module_exit(kvm_s390_exit); 5888 5889 /* 5890 * Enable autoloading of the kvm module. 5891 * Note that we add the module alias here instead of virt/kvm/kvm_main.c 5892 * since x86 takes a different approach. 5893 */ 5894 #include <linux/miscdevice.h> 5895 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5896 MODULE_ALIAS("devname:kvm"); 5897