1 /* 2 * hosting zSeries kernel virtual machines 3 * 4 * Copyright IBM Corp. 2008, 2009 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License (version 2 only) 8 * as published by the Free Software Foundation. 9 * 10 * Author(s): Carsten Otte <cotte@de.ibm.com> 11 * Christian Borntraeger <borntraeger@de.ibm.com> 12 * Heiko Carstens <heiko.carstens@de.ibm.com> 13 * Christian Ehrhardt <ehrhardt@de.ibm.com> 14 * Jason J. Herne <jjherne@us.ibm.com> 15 */ 16 17 #include <linux/compiler.h> 18 #include <linux/err.h> 19 #include <linux/fs.h> 20 #include <linux/hrtimer.h> 21 #include <linux/init.h> 22 #include <linux/kvm.h> 23 #include <linux/kvm_host.h> 24 #include <linux/mman.h> 25 #include <linux/module.h> 26 #include <linux/random.h> 27 #include <linux/slab.h> 28 #include <linux/timer.h> 29 #include <linux/vmalloc.h> 30 #include <linux/bitmap.h> 31 #include <asm/asm-offsets.h> 32 #include <asm/lowcore.h> 33 #include <asm/stp.h> 34 #include <asm/pgtable.h> 35 #include <asm/gmap.h> 36 #include <asm/nmi.h> 37 #include <asm/switch_to.h> 38 #include <asm/isc.h> 39 #include <asm/sclp.h> 40 #include <asm/cpacf.h> 41 #include <asm/timex.h> 42 #include "kvm-s390.h" 43 #include "gaccess.h" 44 45 #define KMSG_COMPONENT "kvm-s390" 46 #undef pr_fmt 47 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 48 49 #define CREATE_TRACE_POINTS 50 #include "trace.h" 51 #include "trace-s390.h" 52 53 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */ 54 #define LOCAL_IRQS 32 55 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \ 56 (KVM_MAX_VCPUS + LOCAL_IRQS)) 57 58 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 59 60 struct kvm_stats_debugfs_item debugfs_entries[] = { 61 { "userspace_handled", VCPU_STAT(exit_userspace) }, 62 { "exit_null", VCPU_STAT(exit_null) }, 63 { "exit_validity", VCPU_STAT(exit_validity) }, 64 { "exit_stop_request", VCPU_STAT(exit_stop_request) }, 65 { "exit_external_request", VCPU_STAT(exit_external_request) }, 66 { "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) }, 67 { "exit_instruction", VCPU_STAT(exit_instruction) }, 68 { "exit_pei", VCPU_STAT(exit_pei) }, 69 { "exit_program_interruption", VCPU_STAT(exit_program_interruption) }, 70 { "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) }, 71 { "exit_operation_exception", VCPU_STAT(exit_operation_exception) }, 72 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 73 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 74 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, 75 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 76 { "instruction_lctlg", VCPU_STAT(instruction_lctlg) }, 77 { "instruction_lctl", VCPU_STAT(instruction_lctl) }, 78 { "instruction_stctl", VCPU_STAT(instruction_stctl) }, 79 { "instruction_stctg", VCPU_STAT(instruction_stctg) }, 80 { "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) }, 81 { "deliver_external_call", VCPU_STAT(deliver_external_call) }, 82 { "deliver_service_signal", VCPU_STAT(deliver_service_signal) }, 83 { "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) }, 84 { "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) }, 85 { "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) }, 86 { "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) }, 87 { "deliver_program_interruption", VCPU_STAT(deliver_program_int) }, 88 { "exit_wait_state", VCPU_STAT(exit_wait_state) }, 89 { "instruction_pfmf", VCPU_STAT(instruction_pfmf) }, 90 { "instruction_stidp", VCPU_STAT(instruction_stidp) }, 91 { "instruction_spx", VCPU_STAT(instruction_spx) }, 92 { "instruction_stpx", VCPU_STAT(instruction_stpx) }, 93 { "instruction_stap", VCPU_STAT(instruction_stap) }, 94 { "instruction_storage_key", VCPU_STAT(instruction_storage_key) }, 95 { "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) }, 96 { "instruction_stsch", VCPU_STAT(instruction_stsch) }, 97 { "instruction_chsc", VCPU_STAT(instruction_chsc) }, 98 { "instruction_essa", VCPU_STAT(instruction_essa) }, 99 { "instruction_stsi", VCPU_STAT(instruction_stsi) }, 100 { "instruction_stfl", VCPU_STAT(instruction_stfl) }, 101 { "instruction_tprot", VCPU_STAT(instruction_tprot) }, 102 { "instruction_sthyi", VCPU_STAT(instruction_sthyi) }, 103 { "instruction_sie", VCPU_STAT(instruction_sie) }, 104 { "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) }, 105 { "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) }, 106 { "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) }, 107 { "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) }, 108 { "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) }, 109 { "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) }, 110 { "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) }, 111 { "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) }, 112 { "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) }, 113 { "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) }, 114 { "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) }, 115 { "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) }, 116 { "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) }, 117 { "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) }, 118 { "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) }, 119 { "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) }, 120 { "diagnose_10", VCPU_STAT(diagnose_10) }, 121 { "diagnose_44", VCPU_STAT(diagnose_44) }, 122 { "diagnose_9c", VCPU_STAT(diagnose_9c) }, 123 { "diagnose_258", VCPU_STAT(diagnose_258) }, 124 { "diagnose_308", VCPU_STAT(diagnose_308) }, 125 { "diagnose_500", VCPU_STAT(diagnose_500) }, 126 { NULL } 127 }; 128 129 /* allow nested virtualization in KVM (if enabled by user space) */ 130 static int nested; 131 module_param(nested, int, S_IRUGO); 132 MODULE_PARM_DESC(nested, "Nested virtualization support"); 133 134 /* upper facilities limit for kvm */ 135 unsigned long kvm_s390_fac_list_mask[16] = { FACILITIES_KVM }; 136 137 unsigned long kvm_s390_fac_list_mask_size(void) 138 { 139 BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64); 140 return ARRAY_SIZE(kvm_s390_fac_list_mask); 141 } 142 143 /* available cpu features supported by kvm */ 144 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 145 /* available subfunctions indicated via query / "test bit" */ 146 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc; 147 148 static struct gmap_notifier gmap_notifier; 149 static struct gmap_notifier vsie_gmap_notifier; 150 debug_info_t *kvm_s390_dbf; 151 152 /* Section: not file related */ 153 int kvm_arch_hardware_enable(void) 154 { 155 /* every s390 is virtualization enabled ;-) */ 156 return 0; 157 } 158 159 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 160 unsigned long end); 161 162 /* 163 * This callback is executed during stop_machine(). All CPUs are therefore 164 * temporarily stopped. In order not to change guest behavior, we have to 165 * disable preemption whenever we touch the epoch of kvm and the VCPUs, 166 * so a CPU won't be stopped while calculating with the epoch. 167 */ 168 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, 169 void *v) 170 { 171 struct kvm *kvm; 172 struct kvm_vcpu *vcpu; 173 int i; 174 unsigned long long *delta = v; 175 176 list_for_each_entry(kvm, &vm_list, vm_list) { 177 kvm->arch.epoch -= *delta; 178 kvm_for_each_vcpu(i, vcpu, kvm) { 179 vcpu->arch.sie_block->epoch -= *delta; 180 if (vcpu->arch.cputm_enabled) 181 vcpu->arch.cputm_start += *delta; 182 if (vcpu->arch.vsie_block) 183 vcpu->arch.vsie_block->epoch -= *delta; 184 } 185 } 186 return NOTIFY_OK; 187 } 188 189 static struct notifier_block kvm_clock_notifier = { 190 .notifier_call = kvm_clock_sync, 191 }; 192 193 int kvm_arch_hardware_setup(void) 194 { 195 gmap_notifier.notifier_call = kvm_gmap_notifier; 196 gmap_register_pte_notifier(&gmap_notifier); 197 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier; 198 gmap_register_pte_notifier(&vsie_gmap_notifier); 199 atomic_notifier_chain_register(&s390_epoch_delta_notifier, 200 &kvm_clock_notifier); 201 return 0; 202 } 203 204 void kvm_arch_hardware_unsetup(void) 205 { 206 gmap_unregister_pte_notifier(&gmap_notifier); 207 gmap_unregister_pte_notifier(&vsie_gmap_notifier); 208 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, 209 &kvm_clock_notifier); 210 } 211 212 static void allow_cpu_feat(unsigned long nr) 213 { 214 set_bit_inv(nr, kvm_s390_available_cpu_feat); 215 } 216 217 static inline int plo_test_bit(unsigned char nr) 218 { 219 register unsigned long r0 asm("0") = (unsigned long) nr | 0x100; 220 int cc = 3; /* subfunction not available */ 221 222 asm volatile( 223 /* Parameter registers are ignored for "test bit" */ 224 " plo 0,0,0,0(0)\n" 225 " ipm %0\n" 226 " srl %0,28\n" 227 : "=d" (cc) 228 : "d" (r0) 229 : "cc"); 230 return cc == 0; 231 } 232 233 static void kvm_s390_cpu_feat_init(void) 234 { 235 int i; 236 237 for (i = 0; i < 256; ++i) { 238 if (plo_test_bit(i)) 239 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7); 240 } 241 242 if (test_facility(28)) /* TOD-clock steering */ 243 ptff(kvm_s390_available_subfunc.ptff, 244 sizeof(kvm_s390_available_subfunc.ptff), 245 PTFF_QAF); 246 247 if (test_facility(17)) { /* MSA */ 248 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *) 249 kvm_s390_available_subfunc.kmac); 250 __cpacf_query(CPACF_KMC, (cpacf_mask_t *) 251 kvm_s390_available_subfunc.kmc); 252 __cpacf_query(CPACF_KM, (cpacf_mask_t *) 253 kvm_s390_available_subfunc.km); 254 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *) 255 kvm_s390_available_subfunc.kimd); 256 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *) 257 kvm_s390_available_subfunc.klmd); 258 } 259 if (test_facility(76)) /* MSA3 */ 260 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *) 261 kvm_s390_available_subfunc.pckmo); 262 if (test_facility(77)) { /* MSA4 */ 263 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *) 264 kvm_s390_available_subfunc.kmctr); 265 __cpacf_query(CPACF_KMF, (cpacf_mask_t *) 266 kvm_s390_available_subfunc.kmf); 267 __cpacf_query(CPACF_KMO, (cpacf_mask_t *) 268 kvm_s390_available_subfunc.kmo); 269 __cpacf_query(CPACF_PCC, (cpacf_mask_t *) 270 kvm_s390_available_subfunc.pcc); 271 } 272 if (test_facility(57)) /* MSA5 */ 273 __cpacf_query(CPACF_PPNO, (cpacf_mask_t *) 274 kvm_s390_available_subfunc.ppno); 275 276 if (MACHINE_HAS_ESOP) 277 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP); 278 /* 279 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow), 280 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing). 281 */ 282 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao || 283 !test_facility(3) || !nested) 284 return; 285 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2); 286 if (sclp.has_64bscao) 287 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO); 288 if (sclp.has_siif) 289 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF); 290 if (sclp.has_gpere) 291 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE); 292 if (sclp.has_gsls) 293 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS); 294 if (sclp.has_ib) 295 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB); 296 if (sclp.has_cei) 297 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI); 298 if (sclp.has_ibs) 299 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS); 300 /* 301 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make 302 * all skey handling functions read/set the skey from the PGSTE 303 * instead of the real storage key. 304 * 305 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make 306 * pages being detected as preserved although they are resident. 307 * 308 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will 309 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY. 310 * 311 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and 312 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be 313 * correctly shadowed. We can do that for the PGSTE but not for PTE.I. 314 * 315 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We 316 * cannot easily shadow the SCA because of the ipte lock. 317 */ 318 } 319 320 int kvm_arch_init(void *opaque) 321 { 322 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); 323 if (!kvm_s390_dbf) 324 return -ENOMEM; 325 326 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) { 327 debug_unregister(kvm_s390_dbf); 328 return -ENOMEM; 329 } 330 331 kvm_s390_cpu_feat_init(); 332 333 /* Register floating interrupt controller interface. */ 334 return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); 335 } 336 337 void kvm_arch_exit(void) 338 { 339 debug_unregister(kvm_s390_dbf); 340 } 341 342 /* Section: device related */ 343 long kvm_arch_dev_ioctl(struct file *filp, 344 unsigned int ioctl, unsigned long arg) 345 { 346 if (ioctl == KVM_S390_ENABLE_SIE) 347 return s390_enable_sie(); 348 return -EINVAL; 349 } 350 351 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 352 { 353 int r; 354 355 switch (ext) { 356 case KVM_CAP_S390_PSW: 357 case KVM_CAP_S390_GMAP: 358 case KVM_CAP_SYNC_MMU: 359 #ifdef CONFIG_KVM_S390_UCONTROL 360 case KVM_CAP_S390_UCONTROL: 361 #endif 362 case KVM_CAP_ASYNC_PF: 363 case KVM_CAP_SYNC_REGS: 364 case KVM_CAP_ONE_REG: 365 case KVM_CAP_ENABLE_CAP: 366 case KVM_CAP_S390_CSS_SUPPORT: 367 case KVM_CAP_IOEVENTFD: 368 case KVM_CAP_DEVICE_CTRL: 369 case KVM_CAP_ENABLE_CAP_VM: 370 case KVM_CAP_S390_IRQCHIP: 371 case KVM_CAP_VM_ATTRIBUTES: 372 case KVM_CAP_MP_STATE: 373 case KVM_CAP_S390_INJECT_IRQ: 374 case KVM_CAP_S390_USER_SIGP: 375 case KVM_CAP_S390_USER_STSI: 376 case KVM_CAP_S390_SKEYS: 377 case KVM_CAP_S390_IRQ_STATE: 378 case KVM_CAP_S390_USER_INSTR0: 379 r = 1; 380 break; 381 case KVM_CAP_S390_MEM_OP: 382 r = MEM_OP_MAX_SIZE; 383 break; 384 case KVM_CAP_NR_VCPUS: 385 case KVM_CAP_MAX_VCPUS: 386 r = KVM_S390_BSCA_CPU_SLOTS; 387 if (!kvm_s390_use_sca_entries()) 388 r = KVM_MAX_VCPUS; 389 else if (sclp.has_esca && sclp.has_64bscao) 390 r = KVM_S390_ESCA_CPU_SLOTS; 391 break; 392 case KVM_CAP_NR_MEMSLOTS: 393 r = KVM_USER_MEM_SLOTS; 394 break; 395 case KVM_CAP_S390_COW: 396 r = MACHINE_HAS_ESOP; 397 break; 398 case KVM_CAP_S390_VECTOR_REGISTERS: 399 r = MACHINE_HAS_VX; 400 break; 401 case KVM_CAP_S390_RI: 402 r = test_facility(64); 403 break; 404 default: 405 r = 0; 406 } 407 return r; 408 } 409 410 static void kvm_s390_sync_dirty_log(struct kvm *kvm, 411 struct kvm_memory_slot *memslot) 412 { 413 gfn_t cur_gfn, last_gfn; 414 unsigned long address; 415 struct gmap *gmap = kvm->arch.gmap; 416 417 /* Loop over all guest pages */ 418 last_gfn = memslot->base_gfn + memslot->npages; 419 for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) { 420 address = gfn_to_hva_memslot(memslot, cur_gfn); 421 422 if (test_and_clear_guest_dirty(gmap->mm, address)) 423 mark_page_dirty(kvm, cur_gfn); 424 if (fatal_signal_pending(current)) 425 return; 426 cond_resched(); 427 } 428 } 429 430 /* Section: vm related */ 431 static void sca_del_vcpu(struct kvm_vcpu *vcpu); 432 433 /* 434 * Get (and clear) the dirty memory log for a memory slot. 435 */ 436 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 437 struct kvm_dirty_log *log) 438 { 439 int r; 440 unsigned long n; 441 struct kvm_memslots *slots; 442 struct kvm_memory_slot *memslot; 443 int is_dirty = 0; 444 445 mutex_lock(&kvm->slots_lock); 446 447 r = -EINVAL; 448 if (log->slot >= KVM_USER_MEM_SLOTS) 449 goto out; 450 451 slots = kvm_memslots(kvm); 452 memslot = id_to_memslot(slots, log->slot); 453 r = -ENOENT; 454 if (!memslot->dirty_bitmap) 455 goto out; 456 457 kvm_s390_sync_dirty_log(kvm, memslot); 458 r = kvm_get_dirty_log(kvm, log, &is_dirty); 459 if (r) 460 goto out; 461 462 /* Clear the dirty log */ 463 if (is_dirty) { 464 n = kvm_dirty_bitmap_bytes(memslot); 465 memset(memslot->dirty_bitmap, 0, n); 466 } 467 r = 0; 468 out: 469 mutex_unlock(&kvm->slots_lock); 470 return r; 471 } 472 473 static void icpt_operexc_on_all_vcpus(struct kvm *kvm) 474 { 475 unsigned int i; 476 struct kvm_vcpu *vcpu; 477 478 kvm_for_each_vcpu(i, vcpu, kvm) { 479 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu); 480 } 481 } 482 483 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) 484 { 485 int r; 486 487 if (cap->flags) 488 return -EINVAL; 489 490 switch (cap->cap) { 491 case KVM_CAP_S390_IRQCHIP: 492 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP"); 493 kvm->arch.use_irqchip = 1; 494 r = 0; 495 break; 496 case KVM_CAP_S390_USER_SIGP: 497 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP"); 498 kvm->arch.user_sigp = 1; 499 r = 0; 500 break; 501 case KVM_CAP_S390_VECTOR_REGISTERS: 502 mutex_lock(&kvm->lock); 503 if (kvm->created_vcpus) { 504 r = -EBUSY; 505 } else if (MACHINE_HAS_VX) { 506 set_kvm_facility(kvm->arch.model.fac_mask, 129); 507 set_kvm_facility(kvm->arch.model.fac_list, 129); 508 r = 0; 509 } else 510 r = -EINVAL; 511 mutex_unlock(&kvm->lock); 512 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s", 513 r ? "(not available)" : "(success)"); 514 break; 515 case KVM_CAP_S390_RI: 516 r = -EINVAL; 517 mutex_lock(&kvm->lock); 518 if (kvm->created_vcpus) { 519 r = -EBUSY; 520 } else if (test_facility(64)) { 521 set_kvm_facility(kvm->arch.model.fac_mask, 64); 522 set_kvm_facility(kvm->arch.model.fac_list, 64); 523 r = 0; 524 } 525 mutex_unlock(&kvm->lock); 526 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s", 527 r ? "(not available)" : "(success)"); 528 break; 529 case KVM_CAP_S390_USER_STSI: 530 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI"); 531 kvm->arch.user_stsi = 1; 532 r = 0; 533 break; 534 case KVM_CAP_S390_USER_INSTR0: 535 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0"); 536 kvm->arch.user_instr0 = 1; 537 icpt_operexc_on_all_vcpus(kvm); 538 r = 0; 539 break; 540 default: 541 r = -EINVAL; 542 break; 543 } 544 return r; 545 } 546 547 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 548 { 549 int ret; 550 551 switch (attr->attr) { 552 case KVM_S390_VM_MEM_LIMIT_SIZE: 553 ret = 0; 554 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes", 555 kvm->arch.mem_limit); 556 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr)) 557 ret = -EFAULT; 558 break; 559 default: 560 ret = -ENXIO; 561 break; 562 } 563 return ret; 564 } 565 566 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 567 { 568 int ret; 569 unsigned int idx; 570 switch (attr->attr) { 571 case KVM_S390_VM_MEM_ENABLE_CMMA: 572 ret = -ENXIO; 573 if (!sclp.has_cmma) 574 break; 575 576 ret = -EBUSY; 577 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support"); 578 mutex_lock(&kvm->lock); 579 if (!kvm->created_vcpus) { 580 kvm->arch.use_cmma = 1; 581 ret = 0; 582 } 583 mutex_unlock(&kvm->lock); 584 break; 585 case KVM_S390_VM_MEM_CLR_CMMA: 586 ret = -ENXIO; 587 if (!sclp.has_cmma) 588 break; 589 ret = -EINVAL; 590 if (!kvm->arch.use_cmma) 591 break; 592 593 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states"); 594 mutex_lock(&kvm->lock); 595 idx = srcu_read_lock(&kvm->srcu); 596 s390_reset_cmma(kvm->arch.gmap->mm); 597 srcu_read_unlock(&kvm->srcu, idx); 598 mutex_unlock(&kvm->lock); 599 ret = 0; 600 break; 601 case KVM_S390_VM_MEM_LIMIT_SIZE: { 602 unsigned long new_limit; 603 604 if (kvm_is_ucontrol(kvm)) 605 return -EINVAL; 606 607 if (get_user(new_limit, (u64 __user *)attr->addr)) 608 return -EFAULT; 609 610 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT && 611 new_limit > kvm->arch.mem_limit) 612 return -E2BIG; 613 614 if (!new_limit) 615 return -EINVAL; 616 617 /* gmap_create takes last usable address */ 618 if (new_limit != KVM_S390_NO_MEM_LIMIT) 619 new_limit -= 1; 620 621 ret = -EBUSY; 622 mutex_lock(&kvm->lock); 623 if (!kvm->created_vcpus) { 624 /* gmap_create will round the limit up */ 625 struct gmap *new = gmap_create(current->mm, new_limit); 626 627 if (!new) { 628 ret = -ENOMEM; 629 } else { 630 gmap_remove(kvm->arch.gmap); 631 new->private = kvm; 632 kvm->arch.gmap = new; 633 ret = 0; 634 } 635 } 636 mutex_unlock(&kvm->lock); 637 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit); 638 VM_EVENT(kvm, 3, "New guest asce: 0x%pK", 639 (void *) kvm->arch.gmap->asce); 640 break; 641 } 642 default: 643 ret = -ENXIO; 644 break; 645 } 646 return ret; 647 } 648 649 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu); 650 651 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr) 652 { 653 struct kvm_vcpu *vcpu; 654 int i; 655 656 if (!test_kvm_facility(kvm, 76)) 657 return -EINVAL; 658 659 mutex_lock(&kvm->lock); 660 switch (attr->attr) { 661 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 662 get_random_bytes( 663 kvm->arch.crypto.crycb->aes_wrapping_key_mask, 664 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 665 kvm->arch.crypto.aes_kw = 1; 666 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support"); 667 break; 668 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 669 get_random_bytes( 670 kvm->arch.crypto.crycb->dea_wrapping_key_mask, 671 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 672 kvm->arch.crypto.dea_kw = 1; 673 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support"); 674 break; 675 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 676 kvm->arch.crypto.aes_kw = 0; 677 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0, 678 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 679 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support"); 680 break; 681 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 682 kvm->arch.crypto.dea_kw = 0; 683 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0, 684 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 685 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support"); 686 break; 687 default: 688 mutex_unlock(&kvm->lock); 689 return -ENXIO; 690 } 691 692 kvm_for_each_vcpu(i, vcpu, kvm) { 693 kvm_s390_vcpu_crypto_setup(vcpu); 694 exit_sie(vcpu); 695 } 696 mutex_unlock(&kvm->lock); 697 return 0; 698 } 699 700 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 701 { 702 u8 gtod_high; 703 704 if (copy_from_user(>od_high, (void __user *)attr->addr, 705 sizeof(gtod_high))) 706 return -EFAULT; 707 708 if (gtod_high != 0) 709 return -EINVAL; 710 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high); 711 712 return 0; 713 } 714 715 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 716 { 717 u64 gtod; 718 719 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod))) 720 return -EFAULT; 721 722 kvm_s390_set_tod_clock(kvm, gtod); 723 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod); 724 return 0; 725 } 726 727 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr) 728 { 729 int ret; 730 731 if (attr->flags) 732 return -EINVAL; 733 734 switch (attr->attr) { 735 case KVM_S390_VM_TOD_HIGH: 736 ret = kvm_s390_set_tod_high(kvm, attr); 737 break; 738 case KVM_S390_VM_TOD_LOW: 739 ret = kvm_s390_set_tod_low(kvm, attr); 740 break; 741 default: 742 ret = -ENXIO; 743 break; 744 } 745 return ret; 746 } 747 748 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 749 { 750 u8 gtod_high = 0; 751 752 if (copy_to_user((void __user *)attr->addr, >od_high, 753 sizeof(gtod_high))) 754 return -EFAULT; 755 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high); 756 757 return 0; 758 } 759 760 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 761 { 762 u64 gtod; 763 764 gtod = kvm_s390_get_tod_clock_fast(kvm); 765 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 766 return -EFAULT; 767 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod); 768 769 return 0; 770 } 771 772 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr) 773 { 774 int ret; 775 776 if (attr->flags) 777 return -EINVAL; 778 779 switch (attr->attr) { 780 case KVM_S390_VM_TOD_HIGH: 781 ret = kvm_s390_get_tod_high(kvm, attr); 782 break; 783 case KVM_S390_VM_TOD_LOW: 784 ret = kvm_s390_get_tod_low(kvm, attr); 785 break; 786 default: 787 ret = -ENXIO; 788 break; 789 } 790 return ret; 791 } 792 793 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr) 794 { 795 struct kvm_s390_vm_cpu_processor *proc; 796 u16 lowest_ibc, unblocked_ibc; 797 int ret = 0; 798 799 mutex_lock(&kvm->lock); 800 if (kvm->created_vcpus) { 801 ret = -EBUSY; 802 goto out; 803 } 804 proc = kzalloc(sizeof(*proc), GFP_KERNEL); 805 if (!proc) { 806 ret = -ENOMEM; 807 goto out; 808 } 809 if (!copy_from_user(proc, (void __user *)attr->addr, 810 sizeof(*proc))) { 811 kvm->arch.model.cpuid = proc->cpuid; 812 lowest_ibc = sclp.ibc >> 16 & 0xfff; 813 unblocked_ibc = sclp.ibc & 0xfff; 814 if (lowest_ibc && proc->ibc) { 815 if (proc->ibc > unblocked_ibc) 816 kvm->arch.model.ibc = unblocked_ibc; 817 else if (proc->ibc < lowest_ibc) 818 kvm->arch.model.ibc = lowest_ibc; 819 else 820 kvm->arch.model.ibc = proc->ibc; 821 } 822 memcpy(kvm->arch.model.fac_list, proc->fac_list, 823 S390_ARCH_FAC_LIST_SIZE_BYTE); 824 } else 825 ret = -EFAULT; 826 kfree(proc); 827 out: 828 mutex_unlock(&kvm->lock); 829 return ret; 830 } 831 832 static int kvm_s390_set_processor_feat(struct kvm *kvm, 833 struct kvm_device_attr *attr) 834 { 835 struct kvm_s390_vm_cpu_feat data; 836 int ret = -EBUSY; 837 838 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data))) 839 return -EFAULT; 840 if (!bitmap_subset((unsigned long *) data.feat, 841 kvm_s390_available_cpu_feat, 842 KVM_S390_VM_CPU_FEAT_NR_BITS)) 843 return -EINVAL; 844 845 mutex_lock(&kvm->lock); 846 if (!atomic_read(&kvm->online_vcpus)) { 847 bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat, 848 KVM_S390_VM_CPU_FEAT_NR_BITS); 849 ret = 0; 850 } 851 mutex_unlock(&kvm->lock); 852 return ret; 853 } 854 855 static int kvm_s390_set_processor_subfunc(struct kvm *kvm, 856 struct kvm_device_attr *attr) 857 { 858 /* 859 * Once supported by kernel + hw, we have to store the subfunctions 860 * in kvm->arch and remember that user space configured them. 861 */ 862 return -ENXIO; 863 } 864 865 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 866 { 867 int ret = -ENXIO; 868 869 switch (attr->attr) { 870 case KVM_S390_VM_CPU_PROCESSOR: 871 ret = kvm_s390_set_processor(kvm, attr); 872 break; 873 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 874 ret = kvm_s390_set_processor_feat(kvm, attr); 875 break; 876 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 877 ret = kvm_s390_set_processor_subfunc(kvm, attr); 878 break; 879 } 880 return ret; 881 } 882 883 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr) 884 { 885 struct kvm_s390_vm_cpu_processor *proc; 886 int ret = 0; 887 888 proc = kzalloc(sizeof(*proc), GFP_KERNEL); 889 if (!proc) { 890 ret = -ENOMEM; 891 goto out; 892 } 893 proc->cpuid = kvm->arch.model.cpuid; 894 proc->ibc = kvm->arch.model.ibc; 895 memcpy(&proc->fac_list, kvm->arch.model.fac_list, 896 S390_ARCH_FAC_LIST_SIZE_BYTE); 897 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc))) 898 ret = -EFAULT; 899 kfree(proc); 900 out: 901 return ret; 902 } 903 904 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr) 905 { 906 struct kvm_s390_vm_cpu_machine *mach; 907 int ret = 0; 908 909 mach = kzalloc(sizeof(*mach), GFP_KERNEL); 910 if (!mach) { 911 ret = -ENOMEM; 912 goto out; 913 } 914 get_cpu_id((struct cpuid *) &mach->cpuid); 915 mach->ibc = sclp.ibc; 916 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask, 917 S390_ARCH_FAC_LIST_SIZE_BYTE); 918 memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list, 919 S390_ARCH_FAC_LIST_SIZE_BYTE); 920 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach))) 921 ret = -EFAULT; 922 kfree(mach); 923 out: 924 return ret; 925 } 926 927 static int kvm_s390_get_processor_feat(struct kvm *kvm, 928 struct kvm_device_attr *attr) 929 { 930 struct kvm_s390_vm_cpu_feat data; 931 932 bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat, 933 KVM_S390_VM_CPU_FEAT_NR_BITS); 934 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 935 return -EFAULT; 936 return 0; 937 } 938 939 static int kvm_s390_get_machine_feat(struct kvm *kvm, 940 struct kvm_device_attr *attr) 941 { 942 struct kvm_s390_vm_cpu_feat data; 943 944 bitmap_copy((unsigned long *) data.feat, 945 kvm_s390_available_cpu_feat, 946 KVM_S390_VM_CPU_FEAT_NR_BITS); 947 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 948 return -EFAULT; 949 return 0; 950 } 951 952 static int kvm_s390_get_processor_subfunc(struct kvm *kvm, 953 struct kvm_device_attr *attr) 954 { 955 /* 956 * Once we can actually configure subfunctions (kernel + hw support), 957 * we have to check if they were already set by user space, if so copy 958 * them from kvm->arch. 959 */ 960 return -ENXIO; 961 } 962 963 static int kvm_s390_get_machine_subfunc(struct kvm *kvm, 964 struct kvm_device_attr *attr) 965 { 966 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc, 967 sizeof(struct kvm_s390_vm_cpu_subfunc))) 968 return -EFAULT; 969 return 0; 970 } 971 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 972 { 973 int ret = -ENXIO; 974 975 switch (attr->attr) { 976 case KVM_S390_VM_CPU_PROCESSOR: 977 ret = kvm_s390_get_processor(kvm, attr); 978 break; 979 case KVM_S390_VM_CPU_MACHINE: 980 ret = kvm_s390_get_machine(kvm, attr); 981 break; 982 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 983 ret = kvm_s390_get_processor_feat(kvm, attr); 984 break; 985 case KVM_S390_VM_CPU_MACHINE_FEAT: 986 ret = kvm_s390_get_machine_feat(kvm, attr); 987 break; 988 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 989 ret = kvm_s390_get_processor_subfunc(kvm, attr); 990 break; 991 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 992 ret = kvm_s390_get_machine_subfunc(kvm, attr); 993 break; 994 } 995 return ret; 996 } 997 998 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 999 { 1000 int ret; 1001 1002 switch (attr->group) { 1003 case KVM_S390_VM_MEM_CTRL: 1004 ret = kvm_s390_set_mem_control(kvm, attr); 1005 break; 1006 case KVM_S390_VM_TOD: 1007 ret = kvm_s390_set_tod(kvm, attr); 1008 break; 1009 case KVM_S390_VM_CPU_MODEL: 1010 ret = kvm_s390_set_cpu_model(kvm, attr); 1011 break; 1012 case KVM_S390_VM_CRYPTO: 1013 ret = kvm_s390_vm_set_crypto(kvm, attr); 1014 break; 1015 default: 1016 ret = -ENXIO; 1017 break; 1018 } 1019 1020 return ret; 1021 } 1022 1023 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1024 { 1025 int ret; 1026 1027 switch (attr->group) { 1028 case KVM_S390_VM_MEM_CTRL: 1029 ret = kvm_s390_get_mem_control(kvm, attr); 1030 break; 1031 case KVM_S390_VM_TOD: 1032 ret = kvm_s390_get_tod(kvm, attr); 1033 break; 1034 case KVM_S390_VM_CPU_MODEL: 1035 ret = kvm_s390_get_cpu_model(kvm, attr); 1036 break; 1037 default: 1038 ret = -ENXIO; 1039 break; 1040 } 1041 1042 return ret; 1043 } 1044 1045 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1046 { 1047 int ret; 1048 1049 switch (attr->group) { 1050 case KVM_S390_VM_MEM_CTRL: 1051 switch (attr->attr) { 1052 case KVM_S390_VM_MEM_ENABLE_CMMA: 1053 case KVM_S390_VM_MEM_CLR_CMMA: 1054 ret = sclp.has_cmma ? 0 : -ENXIO; 1055 break; 1056 case KVM_S390_VM_MEM_LIMIT_SIZE: 1057 ret = 0; 1058 break; 1059 default: 1060 ret = -ENXIO; 1061 break; 1062 } 1063 break; 1064 case KVM_S390_VM_TOD: 1065 switch (attr->attr) { 1066 case KVM_S390_VM_TOD_LOW: 1067 case KVM_S390_VM_TOD_HIGH: 1068 ret = 0; 1069 break; 1070 default: 1071 ret = -ENXIO; 1072 break; 1073 } 1074 break; 1075 case KVM_S390_VM_CPU_MODEL: 1076 switch (attr->attr) { 1077 case KVM_S390_VM_CPU_PROCESSOR: 1078 case KVM_S390_VM_CPU_MACHINE: 1079 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1080 case KVM_S390_VM_CPU_MACHINE_FEAT: 1081 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1082 ret = 0; 1083 break; 1084 /* configuring subfunctions is not supported yet */ 1085 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1086 default: 1087 ret = -ENXIO; 1088 break; 1089 } 1090 break; 1091 case KVM_S390_VM_CRYPTO: 1092 switch (attr->attr) { 1093 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 1094 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 1095 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 1096 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 1097 ret = 0; 1098 break; 1099 default: 1100 ret = -ENXIO; 1101 break; 1102 } 1103 break; 1104 default: 1105 ret = -ENXIO; 1106 break; 1107 } 1108 1109 return ret; 1110 } 1111 1112 static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 1113 { 1114 uint8_t *keys; 1115 uint64_t hva; 1116 int i, r = 0; 1117 1118 if (args->flags != 0) 1119 return -EINVAL; 1120 1121 /* Is this guest using storage keys? */ 1122 if (!mm_use_skey(current->mm)) 1123 return KVM_S390_GET_SKEYS_NONE; 1124 1125 /* Enforce sane limit on memory allocation */ 1126 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 1127 return -EINVAL; 1128 1129 keys = kmalloc_array(args->count, sizeof(uint8_t), 1130 GFP_KERNEL | __GFP_NOWARN); 1131 if (!keys) 1132 keys = vmalloc(sizeof(uint8_t) * args->count); 1133 if (!keys) 1134 return -ENOMEM; 1135 1136 down_read(¤t->mm->mmap_sem); 1137 for (i = 0; i < args->count; i++) { 1138 hva = gfn_to_hva(kvm, args->start_gfn + i); 1139 if (kvm_is_error_hva(hva)) { 1140 r = -EFAULT; 1141 break; 1142 } 1143 1144 r = get_guest_storage_key(current->mm, hva, &keys[i]); 1145 if (r) 1146 break; 1147 } 1148 up_read(¤t->mm->mmap_sem); 1149 1150 if (!r) { 1151 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys, 1152 sizeof(uint8_t) * args->count); 1153 if (r) 1154 r = -EFAULT; 1155 } 1156 1157 kvfree(keys); 1158 return r; 1159 } 1160 1161 static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 1162 { 1163 uint8_t *keys; 1164 uint64_t hva; 1165 int i, r = 0; 1166 1167 if (args->flags != 0) 1168 return -EINVAL; 1169 1170 /* Enforce sane limit on memory allocation */ 1171 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 1172 return -EINVAL; 1173 1174 keys = kmalloc_array(args->count, sizeof(uint8_t), 1175 GFP_KERNEL | __GFP_NOWARN); 1176 if (!keys) 1177 keys = vmalloc(sizeof(uint8_t) * args->count); 1178 if (!keys) 1179 return -ENOMEM; 1180 1181 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr, 1182 sizeof(uint8_t) * args->count); 1183 if (r) { 1184 r = -EFAULT; 1185 goto out; 1186 } 1187 1188 /* Enable storage key handling for the guest */ 1189 r = s390_enable_skey(); 1190 if (r) 1191 goto out; 1192 1193 down_read(¤t->mm->mmap_sem); 1194 for (i = 0; i < args->count; i++) { 1195 hva = gfn_to_hva(kvm, args->start_gfn + i); 1196 if (kvm_is_error_hva(hva)) { 1197 r = -EFAULT; 1198 break; 1199 } 1200 1201 /* Lowest order bit is reserved */ 1202 if (keys[i] & 0x01) { 1203 r = -EINVAL; 1204 break; 1205 } 1206 1207 r = set_guest_storage_key(current->mm, hva, keys[i], 0); 1208 if (r) 1209 break; 1210 } 1211 up_read(¤t->mm->mmap_sem); 1212 out: 1213 kvfree(keys); 1214 return r; 1215 } 1216 1217 long kvm_arch_vm_ioctl(struct file *filp, 1218 unsigned int ioctl, unsigned long arg) 1219 { 1220 struct kvm *kvm = filp->private_data; 1221 void __user *argp = (void __user *)arg; 1222 struct kvm_device_attr attr; 1223 int r; 1224 1225 switch (ioctl) { 1226 case KVM_S390_INTERRUPT: { 1227 struct kvm_s390_interrupt s390int; 1228 1229 r = -EFAULT; 1230 if (copy_from_user(&s390int, argp, sizeof(s390int))) 1231 break; 1232 r = kvm_s390_inject_vm(kvm, &s390int); 1233 break; 1234 } 1235 case KVM_ENABLE_CAP: { 1236 struct kvm_enable_cap cap; 1237 r = -EFAULT; 1238 if (copy_from_user(&cap, argp, sizeof(cap))) 1239 break; 1240 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 1241 break; 1242 } 1243 case KVM_CREATE_IRQCHIP: { 1244 struct kvm_irq_routing_entry routing; 1245 1246 r = -EINVAL; 1247 if (kvm->arch.use_irqchip) { 1248 /* Set up dummy routing. */ 1249 memset(&routing, 0, sizeof(routing)); 1250 r = kvm_set_irq_routing(kvm, &routing, 0, 0); 1251 } 1252 break; 1253 } 1254 case KVM_SET_DEVICE_ATTR: { 1255 r = -EFAULT; 1256 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 1257 break; 1258 r = kvm_s390_vm_set_attr(kvm, &attr); 1259 break; 1260 } 1261 case KVM_GET_DEVICE_ATTR: { 1262 r = -EFAULT; 1263 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 1264 break; 1265 r = kvm_s390_vm_get_attr(kvm, &attr); 1266 break; 1267 } 1268 case KVM_HAS_DEVICE_ATTR: { 1269 r = -EFAULT; 1270 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 1271 break; 1272 r = kvm_s390_vm_has_attr(kvm, &attr); 1273 break; 1274 } 1275 case KVM_S390_GET_SKEYS: { 1276 struct kvm_s390_skeys args; 1277 1278 r = -EFAULT; 1279 if (copy_from_user(&args, argp, 1280 sizeof(struct kvm_s390_skeys))) 1281 break; 1282 r = kvm_s390_get_skeys(kvm, &args); 1283 break; 1284 } 1285 case KVM_S390_SET_SKEYS: { 1286 struct kvm_s390_skeys args; 1287 1288 r = -EFAULT; 1289 if (copy_from_user(&args, argp, 1290 sizeof(struct kvm_s390_skeys))) 1291 break; 1292 r = kvm_s390_set_skeys(kvm, &args); 1293 break; 1294 } 1295 default: 1296 r = -ENOTTY; 1297 } 1298 1299 return r; 1300 } 1301 1302 static int kvm_s390_query_ap_config(u8 *config) 1303 { 1304 u32 fcn_code = 0x04000000UL; 1305 u32 cc = 0; 1306 1307 memset(config, 0, 128); 1308 asm volatile( 1309 "lgr 0,%1\n" 1310 "lgr 2,%2\n" 1311 ".long 0xb2af0000\n" /* PQAP(QCI) */ 1312 "0: ipm %0\n" 1313 "srl %0,28\n" 1314 "1:\n" 1315 EX_TABLE(0b, 1b) 1316 : "+r" (cc) 1317 : "r" (fcn_code), "r" (config) 1318 : "cc", "0", "2", "memory" 1319 ); 1320 1321 return cc; 1322 } 1323 1324 static int kvm_s390_apxa_installed(void) 1325 { 1326 u8 config[128]; 1327 int cc; 1328 1329 if (test_facility(12)) { 1330 cc = kvm_s390_query_ap_config(config); 1331 1332 if (cc) 1333 pr_err("PQAP(QCI) failed with cc=%d", cc); 1334 else 1335 return config[0] & 0x40; 1336 } 1337 1338 return 0; 1339 } 1340 1341 static void kvm_s390_set_crycb_format(struct kvm *kvm) 1342 { 1343 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb; 1344 1345 if (kvm_s390_apxa_installed()) 1346 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2; 1347 else 1348 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1; 1349 } 1350 1351 static u64 kvm_s390_get_initial_cpuid(void) 1352 { 1353 struct cpuid cpuid; 1354 1355 get_cpu_id(&cpuid); 1356 cpuid.version = 0xff; 1357 return *((u64 *) &cpuid); 1358 } 1359 1360 static void kvm_s390_crypto_init(struct kvm *kvm) 1361 { 1362 if (!test_kvm_facility(kvm, 76)) 1363 return; 1364 1365 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb; 1366 kvm_s390_set_crycb_format(kvm); 1367 1368 /* Enable AES/DEA protected key functions by default */ 1369 kvm->arch.crypto.aes_kw = 1; 1370 kvm->arch.crypto.dea_kw = 1; 1371 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 1372 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1373 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 1374 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1375 } 1376 1377 static void sca_dispose(struct kvm *kvm) 1378 { 1379 if (kvm->arch.use_esca) 1380 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block)); 1381 else 1382 free_page((unsigned long)(kvm->arch.sca)); 1383 kvm->arch.sca = NULL; 1384 } 1385 1386 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 1387 { 1388 gfp_t alloc_flags = GFP_KERNEL; 1389 int i, rc; 1390 char debug_name[16]; 1391 static unsigned long sca_offset; 1392 1393 rc = -EINVAL; 1394 #ifdef CONFIG_KVM_S390_UCONTROL 1395 if (type & ~KVM_VM_S390_UCONTROL) 1396 goto out_err; 1397 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN))) 1398 goto out_err; 1399 #else 1400 if (type) 1401 goto out_err; 1402 #endif 1403 1404 rc = s390_enable_sie(); 1405 if (rc) 1406 goto out_err; 1407 1408 rc = -ENOMEM; 1409 1410 ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500); 1411 1412 kvm->arch.use_esca = 0; /* start with basic SCA */ 1413 if (!sclp.has_64bscao) 1414 alloc_flags |= GFP_DMA; 1415 rwlock_init(&kvm->arch.sca_lock); 1416 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags); 1417 if (!kvm->arch.sca) 1418 goto out_err; 1419 spin_lock(&kvm_lock); 1420 sca_offset += 16; 1421 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE) 1422 sca_offset = 0; 1423 kvm->arch.sca = (struct bsca_block *) 1424 ((char *) kvm->arch.sca + sca_offset); 1425 spin_unlock(&kvm_lock); 1426 1427 sprintf(debug_name, "kvm-%u", current->pid); 1428 1429 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long)); 1430 if (!kvm->arch.dbf) 1431 goto out_err; 1432 1433 kvm->arch.sie_page2 = 1434 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA); 1435 if (!kvm->arch.sie_page2) 1436 goto out_err; 1437 1438 /* Populate the facility mask initially. */ 1439 memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list, 1440 S390_ARCH_FAC_LIST_SIZE_BYTE); 1441 for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) { 1442 if (i < kvm_s390_fac_list_mask_size()) 1443 kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i]; 1444 else 1445 kvm->arch.model.fac_mask[i] = 0UL; 1446 } 1447 1448 /* Populate the facility list initially. */ 1449 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list; 1450 memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask, 1451 S390_ARCH_FAC_LIST_SIZE_BYTE); 1452 1453 set_kvm_facility(kvm->arch.model.fac_mask, 74); 1454 set_kvm_facility(kvm->arch.model.fac_list, 74); 1455 1456 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid(); 1457 kvm->arch.model.ibc = sclp.ibc & 0x0fff; 1458 1459 kvm_s390_crypto_init(kvm); 1460 1461 spin_lock_init(&kvm->arch.float_int.lock); 1462 for (i = 0; i < FIRQ_LIST_COUNT; i++) 1463 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]); 1464 init_waitqueue_head(&kvm->arch.ipte_wq); 1465 mutex_init(&kvm->arch.ipte_mutex); 1466 1467 debug_register_view(kvm->arch.dbf, &debug_sprintf_view); 1468 VM_EVENT(kvm, 3, "vm created with type %lu", type); 1469 1470 if (type & KVM_VM_S390_UCONTROL) { 1471 kvm->arch.gmap = NULL; 1472 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT; 1473 } else { 1474 if (sclp.hamax == U64_MAX) 1475 kvm->arch.mem_limit = TASK_MAX_SIZE; 1476 else 1477 kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE, 1478 sclp.hamax + 1); 1479 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1); 1480 if (!kvm->arch.gmap) 1481 goto out_err; 1482 kvm->arch.gmap->private = kvm; 1483 kvm->arch.gmap->pfault_enabled = 0; 1484 } 1485 1486 kvm->arch.css_support = 0; 1487 kvm->arch.use_irqchip = 0; 1488 kvm->arch.epoch = 0; 1489 1490 spin_lock_init(&kvm->arch.start_stop_lock); 1491 kvm_s390_vsie_init(kvm); 1492 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid); 1493 1494 return 0; 1495 out_err: 1496 free_page((unsigned long)kvm->arch.sie_page2); 1497 debug_unregister(kvm->arch.dbf); 1498 sca_dispose(kvm); 1499 KVM_EVENT(3, "creation of vm failed: %d", rc); 1500 return rc; 1501 } 1502 1503 bool kvm_arch_has_vcpu_debugfs(void) 1504 { 1505 return false; 1506 } 1507 1508 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 1509 { 1510 return 0; 1511 } 1512 1513 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 1514 { 1515 VCPU_EVENT(vcpu, 3, "%s", "free cpu"); 1516 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id); 1517 kvm_s390_clear_local_irqs(vcpu); 1518 kvm_clear_async_pf_completion_queue(vcpu); 1519 if (!kvm_is_ucontrol(vcpu->kvm)) 1520 sca_del_vcpu(vcpu); 1521 1522 if (kvm_is_ucontrol(vcpu->kvm)) 1523 gmap_remove(vcpu->arch.gmap); 1524 1525 if (vcpu->kvm->arch.use_cmma) 1526 kvm_s390_vcpu_unsetup_cmma(vcpu); 1527 free_page((unsigned long)(vcpu->arch.sie_block)); 1528 1529 kvm_vcpu_uninit(vcpu); 1530 kmem_cache_free(kvm_vcpu_cache, vcpu); 1531 } 1532 1533 static void kvm_free_vcpus(struct kvm *kvm) 1534 { 1535 unsigned int i; 1536 struct kvm_vcpu *vcpu; 1537 1538 kvm_for_each_vcpu(i, vcpu, kvm) 1539 kvm_arch_vcpu_destroy(vcpu); 1540 1541 mutex_lock(&kvm->lock); 1542 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 1543 kvm->vcpus[i] = NULL; 1544 1545 atomic_set(&kvm->online_vcpus, 0); 1546 mutex_unlock(&kvm->lock); 1547 } 1548 1549 void kvm_arch_destroy_vm(struct kvm *kvm) 1550 { 1551 kvm_free_vcpus(kvm); 1552 sca_dispose(kvm); 1553 debug_unregister(kvm->arch.dbf); 1554 free_page((unsigned long)kvm->arch.sie_page2); 1555 if (!kvm_is_ucontrol(kvm)) 1556 gmap_remove(kvm->arch.gmap); 1557 kvm_s390_destroy_adapters(kvm); 1558 kvm_s390_clear_float_irqs(kvm); 1559 kvm_s390_vsie_destroy(kvm); 1560 KVM_EVENT(3, "vm 0x%pK destroyed", kvm); 1561 } 1562 1563 /* Section: vcpu related */ 1564 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) 1565 { 1566 vcpu->arch.gmap = gmap_create(current->mm, -1UL); 1567 if (!vcpu->arch.gmap) 1568 return -ENOMEM; 1569 vcpu->arch.gmap->private = vcpu->kvm; 1570 1571 return 0; 1572 } 1573 1574 static void sca_del_vcpu(struct kvm_vcpu *vcpu) 1575 { 1576 if (!kvm_s390_use_sca_entries()) 1577 return; 1578 read_lock(&vcpu->kvm->arch.sca_lock); 1579 if (vcpu->kvm->arch.use_esca) { 1580 struct esca_block *sca = vcpu->kvm->arch.sca; 1581 1582 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 1583 sca->cpu[vcpu->vcpu_id].sda = 0; 1584 } else { 1585 struct bsca_block *sca = vcpu->kvm->arch.sca; 1586 1587 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 1588 sca->cpu[vcpu->vcpu_id].sda = 0; 1589 } 1590 read_unlock(&vcpu->kvm->arch.sca_lock); 1591 } 1592 1593 static void sca_add_vcpu(struct kvm_vcpu *vcpu) 1594 { 1595 if (!kvm_s390_use_sca_entries()) { 1596 struct bsca_block *sca = vcpu->kvm->arch.sca; 1597 1598 /* we still need the basic sca for the ipte control */ 1599 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); 1600 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca; 1601 } 1602 read_lock(&vcpu->kvm->arch.sca_lock); 1603 if (vcpu->kvm->arch.use_esca) { 1604 struct esca_block *sca = vcpu->kvm->arch.sca; 1605 1606 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block; 1607 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); 1608 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU; 1609 vcpu->arch.sie_block->ecb2 |= 0x04U; 1610 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 1611 } else { 1612 struct bsca_block *sca = vcpu->kvm->arch.sca; 1613 1614 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block; 1615 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); 1616 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca; 1617 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 1618 } 1619 read_unlock(&vcpu->kvm->arch.sca_lock); 1620 } 1621 1622 /* Basic SCA to Extended SCA data copy routines */ 1623 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s) 1624 { 1625 d->sda = s->sda; 1626 d->sigp_ctrl.c = s->sigp_ctrl.c; 1627 d->sigp_ctrl.scn = s->sigp_ctrl.scn; 1628 } 1629 1630 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s) 1631 { 1632 int i; 1633 1634 d->ipte_control = s->ipte_control; 1635 d->mcn[0] = s->mcn; 1636 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++) 1637 sca_copy_entry(&d->cpu[i], &s->cpu[i]); 1638 } 1639 1640 static int sca_switch_to_extended(struct kvm *kvm) 1641 { 1642 struct bsca_block *old_sca = kvm->arch.sca; 1643 struct esca_block *new_sca; 1644 struct kvm_vcpu *vcpu; 1645 unsigned int vcpu_idx; 1646 u32 scaol, scaoh; 1647 1648 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO); 1649 if (!new_sca) 1650 return -ENOMEM; 1651 1652 scaoh = (u32)((u64)(new_sca) >> 32); 1653 scaol = (u32)(u64)(new_sca) & ~0x3fU; 1654 1655 kvm_s390_vcpu_block_all(kvm); 1656 write_lock(&kvm->arch.sca_lock); 1657 1658 sca_copy_b_to_e(new_sca, old_sca); 1659 1660 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) { 1661 vcpu->arch.sie_block->scaoh = scaoh; 1662 vcpu->arch.sie_block->scaol = scaol; 1663 vcpu->arch.sie_block->ecb2 |= 0x04U; 1664 } 1665 kvm->arch.sca = new_sca; 1666 kvm->arch.use_esca = 1; 1667 1668 write_unlock(&kvm->arch.sca_lock); 1669 kvm_s390_vcpu_unblock_all(kvm); 1670 1671 free_page((unsigned long)old_sca); 1672 1673 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)", 1674 old_sca, kvm->arch.sca); 1675 return 0; 1676 } 1677 1678 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id) 1679 { 1680 int rc; 1681 1682 if (!kvm_s390_use_sca_entries()) { 1683 if (id < KVM_MAX_VCPUS) 1684 return true; 1685 return false; 1686 } 1687 if (id < KVM_S390_BSCA_CPU_SLOTS) 1688 return true; 1689 if (!sclp.has_esca || !sclp.has_64bscao) 1690 return false; 1691 1692 mutex_lock(&kvm->lock); 1693 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm); 1694 mutex_unlock(&kvm->lock); 1695 1696 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS; 1697 } 1698 1699 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 1700 { 1701 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 1702 kvm_clear_async_pf_completion_queue(vcpu); 1703 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX | 1704 KVM_SYNC_GPRS | 1705 KVM_SYNC_ACRS | 1706 KVM_SYNC_CRS | 1707 KVM_SYNC_ARCH0 | 1708 KVM_SYNC_PFAULT; 1709 kvm_s390_set_prefix(vcpu, 0); 1710 if (test_kvm_facility(vcpu->kvm, 64)) 1711 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB; 1712 /* fprs can be synchronized via vrs, even if the guest has no vx. With 1713 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format. 1714 */ 1715 if (MACHINE_HAS_VX) 1716 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS; 1717 else 1718 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS; 1719 1720 if (kvm_is_ucontrol(vcpu->kvm)) 1721 return __kvm_ucontrol_vcpu_init(vcpu); 1722 1723 return 0; 1724 } 1725 1726 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 1727 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu) 1728 { 1729 WARN_ON_ONCE(vcpu->arch.cputm_start != 0); 1730 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 1731 vcpu->arch.cputm_start = get_tod_clock_fast(); 1732 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 1733 } 1734 1735 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 1736 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu) 1737 { 1738 WARN_ON_ONCE(vcpu->arch.cputm_start == 0); 1739 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 1740 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start; 1741 vcpu->arch.cputm_start = 0; 1742 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 1743 } 1744 1745 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 1746 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 1747 { 1748 WARN_ON_ONCE(vcpu->arch.cputm_enabled); 1749 vcpu->arch.cputm_enabled = true; 1750 __start_cpu_timer_accounting(vcpu); 1751 } 1752 1753 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 1754 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 1755 { 1756 WARN_ON_ONCE(!vcpu->arch.cputm_enabled); 1757 __stop_cpu_timer_accounting(vcpu); 1758 vcpu->arch.cputm_enabled = false; 1759 } 1760 1761 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 1762 { 1763 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 1764 __enable_cpu_timer_accounting(vcpu); 1765 preempt_enable(); 1766 } 1767 1768 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 1769 { 1770 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 1771 __disable_cpu_timer_accounting(vcpu); 1772 preempt_enable(); 1773 } 1774 1775 /* set the cpu timer - may only be called from the VCPU thread itself */ 1776 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm) 1777 { 1778 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 1779 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 1780 if (vcpu->arch.cputm_enabled) 1781 vcpu->arch.cputm_start = get_tod_clock_fast(); 1782 vcpu->arch.sie_block->cputm = cputm; 1783 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 1784 preempt_enable(); 1785 } 1786 1787 /* update and get the cpu timer - can also be called from other VCPU threads */ 1788 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu) 1789 { 1790 unsigned int seq; 1791 __u64 value; 1792 1793 if (unlikely(!vcpu->arch.cputm_enabled)) 1794 return vcpu->arch.sie_block->cputm; 1795 1796 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 1797 do { 1798 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount); 1799 /* 1800 * If the writer would ever execute a read in the critical 1801 * section, e.g. in irq context, we have a deadlock. 1802 */ 1803 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu); 1804 value = vcpu->arch.sie_block->cputm; 1805 /* if cputm_start is 0, accounting is being started/stopped */ 1806 if (likely(vcpu->arch.cputm_start)) 1807 value -= get_tod_clock_fast() - vcpu->arch.cputm_start; 1808 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1)); 1809 preempt_enable(); 1810 return value; 1811 } 1812 1813 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1814 { 1815 /* Save host register state */ 1816 save_fpu_regs(); 1817 vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc; 1818 vcpu->arch.host_fpregs.regs = current->thread.fpu.regs; 1819 1820 if (MACHINE_HAS_VX) 1821 current->thread.fpu.regs = vcpu->run->s.regs.vrs; 1822 else 1823 current->thread.fpu.regs = vcpu->run->s.regs.fprs; 1824 current->thread.fpu.fpc = vcpu->run->s.regs.fpc; 1825 if (test_fp_ctl(current->thread.fpu.fpc)) 1826 /* User space provided an invalid FPC, let's clear it */ 1827 current->thread.fpu.fpc = 0; 1828 1829 save_access_regs(vcpu->arch.host_acrs); 1830 restore_access_regs(vcpu->run->s.regs.acrs); 1831 gmap_enable(vcpu->arch.enabled_gmap); 1832 atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags); 1833 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 1834 __start_cpu_timer_accounting(vcpu); 1835 vcpu->cpu = cpu; 1836 } 1837 1838 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 1839 { 1840 vcpu->cpu = -1; 1841 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 1842 __stop_cpu_timer_accounting(vcpu); 1843 atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags); 1844 vcpu->arch.enabled_gmap = gmap_get_enabled(); 1845 gmap_disable(vcpu->arch.enabled_gmap); 1846 1847 /* Save guest register state */ 1848 save_fpu_regs(); 1849 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 1850 1851 /* Restore host register state */ 1852 current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc; 1853 current->thread.fpu.regs = vcpu->arch.host_fpregs.regs; 1854 1855 save_access_regs(vcpu->run->s.regs.acrs); 1856 restore_access_regs(vcpu->arch.host_acrs); 1857 } 1858 1859 static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu) 1860 { 1861 /* this equals initial cpu reset in pop, but we don't switch to ESA */ 1862 vcpu->arch.sie_block->gpsw.mask = 0UL; 1863 vcpu->arch.sie_block->gpsw.addr = 0UL; 1864 kvm_s390_set_prefix(vcpu, 0); 1865 kvm_s390_set_cpu_timer(vcpu, 0); 1866 vcpu->arch.sie_block->ckc = 0UL; 1867 vcpu->arch.sie_block->todpr = 0; 1868 memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64)); 1869 vcpu->arch.sie_block->gcr[0] = 0xE0UL; 1870 vcpu->arch.sie_block->gcr[14] = 0xC2000000UL; 1871 /* make sure the new fpc will be lazily loaded */ 1872 save_fpu_regs(); 1873 current->thread.fpu.fpc = 0; 1874 vcpu->arch.sie_block->gbea = 1; 1875 vcpu->arch.sie_block->pp = 0; 1876 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 1877 kvm_clear_async_pf_completion_queue(vcpu); 1878 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) 1879 kvm_s390_vcpu_stop(vcpu); 1880 kvm_s390_clear_local_irqs(vcpu); 1881 } 1882 1883 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 1884 { 1885 mutex_lock(&vcpu->kvm->lock); 1886 preempt_disable(); 1887 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch; 1888 preempt_enable(); 1889 mutex_unlock(&vcpu->kvm->lock); 1890 if (!kvm_is_ucontrol(vcpu->kvm)) { 1891 vcpu->arch.gmap = vcpu->kvm->arch.gmap; 1892 sca_add_vcpu(vcpu); 1893 } 1894 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0) 1895 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 1896 /* make vcpu_load load the right gmap on the first trigger */ 1897 vcpu->arch.enabled_gmap = vcpu->arch.gmap; 1898 } 1899 1900 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) 1901 { 1902 if (!test_kvm_facility(vcpu->kvm, 76)) 1903 return; 1904 1905 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA); 1906 1907 if (vcpu->kvm->arch.crypto.aes_kw) 1908 vcpu->arch.sie_block->ecb3 |= ECB3_AES; 1909 if (vcpu->kvm->arch.crypto.dea_kw) 1910 vcpu->arch.sie_block->ecb3 |= ECB3_DEA; 1911 1912 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd; 1913 } 1914 1915 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu) 1916 { 1917 free_page(vcpu->arch.sie_block->cbrlo); 1918 vcpu->arch.sie_block->cbrlo = 0; 1919 } 1920 1921 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu) 1922 { 1923 vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL); 1924 if (!vcpu->arch.sie_block->cbrlo) 1925 return -ENOMEM; 1926 1927 vcpu->arch.sie_block->ecb2 |= 0x80; 1928 vcpu->arch.sie_block->ecb2 &= ~0x08; 1929 return 0; 1930 } 1931 1932 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu) 1933 { 1934 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model; 1935 1936 vcpu->arch.sie_block->ibc = model->ibc; 1937 if (test_kvm_facility(vcpu->kvm, 7)) 1938 vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list; 1939 } 1940 1941 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 1942 { 1943 int rc = 0; 1944 1945 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH | 1946 CPUSTAT_SM | 1947 CPUSTAT_STOPPED); 1948 1949 if (test_kvm_facility(vcpu->kvm, 78)) 1950 atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags); 1951 else if (test_kvm_facility(vcpu->kvm, 8)) 1952 atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags); 1953 1954 kvm_s390_vcpu_setup_model(vcpu); 1955 1956 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */ 1957 if (MACHINE_HAS_ESOP) 1958 vcpu->arch.sie_block->ecb |= 0x02; 1959 if (test_kvm_facility(vcpu->kvm, 9)) 1960 vcpu->arch.sie_block->ecb |= 0x04; 1961 if (test_kvm_facility(vcpu->kvm, 73)) 1962 vcpu->arch.sie_block->ecb |= 0x10; 1963 1964 if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi) 1965 vcpu->arch.sie_block->ecb2 |= 0x08; 1966 vcpu->arch.sie_block->eca = 0x1002000U; 1967 if (sclp.has_cei) 1968 vcpu->arch.sie_block->eca |= 0x80000000U; 1969 if (sclp.has_ib) 1970 vcpu->arch.sie_block->eca |= 0x40000000U; 1971 if (sclp.has_siif) 1972 vcpu->arch.sie_block->eca |= 1; 1973 if (sclp.has_sigpif) 1974 vcpu->arch.sie_block->eca |= 0x10000000U; 1975 if (test_kvm_facility(vcpu->kvm, 129)) { 1976 vcpu->arch.sie_block->eca |= 0x00020000; 1977 vcpu->arch.sie_block->ecd |= 0x20000000; 1978 } 1979 vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb; 1980 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; 1981 1982 if (vcpu->kvm->arch.use_cmma) { 1983 rc = kvm_s390_vcpu_setup_cmma(vcpu); 1984 if (rc) 1985 return rc; 1986 } 1987 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1988 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup; 1989 1990 kvm_s390_vcpu_crypto_setup(vcpu); 1991 1992 return rc; 1993 } 1994 1995 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 1996 unsigned int id) 1997 { 1998 struct kvm_vcpu *vcpu; 1999 struct sie_page *sie_page; 2000 int rc = -EINVAL; 2001 2002 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id)) 2003 goto out; 2004 2005 rc = -ENOMEM; 2006 2007 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 2008 if (!vcpu) 2009 goto out; 2010 2011 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL); 2012 if (!sie_page) 2013 goto out_free_cpu; 2014 2015 vcpu->arch.sie_block = &sie_page->sie_block; 2016 vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb; 2017 2018 /* the real guest size will always be smaller than msl */ 2019 vcpu->arch.sie_block->mso = 0; 2020 vcpu->arch.sie_block->msl = sclp.hamax; 2021 2022 vcpu->arch.sie_block->icpua = id; 2023 spin_lock_init(&vcpu->arch.local_int.lock); 2024 vcpu->arch.local_int.float_int = &kvm->arch.float_int; 2025 vcpu->arch.local_int.wq = &vcpu->wq; 2026 vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags; 2027 seqcount_init(&vcpu->arch.cputm_seqcount); 2028 2029 rc = kvm_vcpu_init(vcpu, kvm, id); 2030 if (rc) 2031 goto out_free_sie_block; 2032 VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu, 2033 vcpu->arch.sie_block); 2034 trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block); 2035 2036 return vcpu; 2037 out_free_sie_block: 2038 free_page((unsigned long)(vcpu->arch.sie_block)); 2039 out_free_cpu: 2040 kmem_cache_free(kvm_vcpu_cache, vcpu); 2041 out: 2042 return ERR_PTR(rc); 2043 } 2044 2045 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 2046 { 2047 return kvm_s390_vcpu_has_irq(vcpu, 0); 2048 } 2049 2050 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu) 2051 { 2052 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 2053 exit_sie(vcpu); 2054 } 2055 2056 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu) 2057 { 2058 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 2059 } 2060 2061 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu) 2062 { 2063 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 2064 exit_sie(vcpu); 2065 } 2066 2067 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu) 2068 { 2069 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 2070 } 2071 2072 /* 2073 * Kick a guest cpu out of SIE and wait until SIE is not running. 2074 * If the CPU is not running (e.g. waiting as idle) the function will 2075 * return immediately. */ 2076 void exit_sie(struct kvm_vcpu *vcpu) 2077 { 2078 atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags); 2079 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE) 2080 cpu_relax(); 2081 } 2082 2083 /* Kick a guest cpu out of SIE to process a request synchronously */ 2084 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) 2085 { 2086 kvm_make_request(req, vcpu); 2087 kvm_s390_vcpu_request(vcpu); 2088 } 2089 2090 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 2091 unsigned long end) 2092 { 2093 struct kvm *kvm = gmap->private; 2094 struct kvm_vcpu *vcpu; 2095 unsigned long prefix; 2096 int i; 2097 2098 if (gmap_is_shadow(gmap)) 2099 return; 2100 if (start >= 1UL << 31) 2101 /* We are only interested in prefix pages */ 2102 return; 2103 kvm_for_each_vcpu(i, vcpu, kvm) { 2104 /* match against both prefix pages */ 2105 prefix = kvm_s390_get_prefix(vcpu); 2106 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) { 2107 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx", 2108 start, end); 2109 kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu); 2110 } 2111 } 2112 } 2113 2114 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 2115 { 2116 /* kvm common code refers to this, but never calls it */ 2117 BUG(); 2118 return 0; 2119 } 2120 2121 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, 2122 struct kvm_one_reg *reg) 2123 { 2124 int r = -EINVAL; 2125 2126 switch (reg->id) { 2127 case KVM_REG_S390_TODPR: 2128 r = put_user(vcpu->arch.sie_block->todpr, 2129 (u32 __user *)reg->addr); 2130 break; 2131 case KVM_REG_S390_EPOCHDIFF: 2132 r = put_user(vcpu->arch.sie_block->epoch, 2133 (u64 __user *)reg->addr); 2134 break; 2135 case KVM_REG_S390_CPU_TIMER: 2136 r = put_user(kvm_s390_get_cpu_timer(vcpu), 2137 (u64 __user *)reg->addr); 2138 break; 2139 case KVM_REG_S390_CLOCK_COMP: 2140 r = put_user(vcpu->arch.sie_block->ckc, 2141 (u64 __user *)reg->addr); 2142 break; 2143 case KVM_REG_S390_PFTOKEN: 2144 r = put_user(vcpu->arch.pfault_token, 2145 (u64 __user *)reg->addr); 2146 break; 2147 case KVM_REG_S390_PFCOMPARE: 2148 r = put_user(vcpu->arch.pfault_compare, 2149 (u64 __user *)reg->addr); 2150 break; 2151 case KVM_REG_S390_PFSELECT: 2152 r = put_user(vcpu->arch.pfault_select, 2153 (u64 __user *)reg->addr); 2154 break; 2155 case KVM_REG_S390_PP: 2156 r = put_user(vcpu->arch.sie_block->pp, 2157 (u64 __user *)reg->addr); 2158 break; 2159 case KVM_REG_S390_GBEA: 2160 r = put_user(vcpu->arch.sie_block->gbea, 2161 (u64 __user *)reg->addr); 2162 break; 2163 default: 2164 break; 2165 } 2166 2167 return r; 2168 } 2169 2170 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, 2171 struct kvm_one_reg *reg) 2172 { 2173 int r = -EINVAL; 2174 __u64 val; 2175 2176 switch (reg->id) { 2177 case KVM_REG_S390_TODPR: 2178 r = get_user(vcpu->arch.sie_block->todpr, 2179 (u32 __user *)reg->addr); 2180 break; 2181 case KVM_REG_S390_EPOCHDIFF: 2182 r = get_user(vcpu->arch.sie_block->epoch, 2183 (u64 __user *)reg->addr); 2184 break; 2185 case KVM_REG_S390_CPU_TIMER: 2186 r = get_user(val, (u64 __user *)reg->addr); 2187 if (!r) 2188 kvm_s390_set_cpu_timer(vcpu, val); 2189 break; 2190 case KVM_REG_S390_CLOCK_COMP: 2191 r = get_user(vcpu->arch.sie_block->ckc, 2192 (u64 __user *)reg->addr); 2193 break; 2194 case KVM_REG_S390_PFTOKEN: 2195 r = get_user(vcpu->arch.pfault_token, 2196 (u64 __user *)reg->addr); 2197 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 2198 kvm_clear_async_pf_completion_queue(vcpu); 2199 break; 2200 case KVM_REG_S390_PFCOMPARE: 2201 r = get_user(vcpu->arch.pfault_compare, 2202 (u64 __user *)reg->addr); 2203 break; 2204 case KVM_REG_S390_PFSELECT: 2205 r = get_user(vcpu->arch.pfault_select, 2206 (u64 __user *)reg->addr); 2207 break; 2208 case KVM_REG_S390_PP: 2209 r = get_user(vcpu->arch.sie_block->pp, 2210 (u64 __user *)reg->addr); 2211 break; 2212 case KVM_REG_S390_GBEA: 2213 r = get_user(vcpu->arch.sie_block->gbea, 2214 (u64 __user *)reg->addr); 2215 break; 2216 default: 2217 break; 2218 } 2219 2220 return r; 2221 } 2222 2223 static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu) 2224 { 2225 kvm_s390_vcpu_initial_reset(vcpu); 2226 return 0; 2227 } 2228 2229 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 2230 { 2231 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs)); 2232 return 0; 2233 } 2234 2235 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 2236 { 2237 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs)); 2238 return 0; 2239 } 2240 2241 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 2242 struct kvm_sregs *sregs) 2243 { 2244 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs)); 2245 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs)); 2246 restore_access_regs(vcpu->run->s.regs.acrs); 2247 return 0; 2248 } 2249 2250 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 2251 struct kvm_sregs *sregs) 2252 { 2253 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs)); 2254 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs)); 2255 return 0; 2256 } 2257 2258 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 2259 { 2260 /* make sure the new values will be lazily loaded */ 2261 save_fpu_regs(); 2262 if (test_fp_ctl(fpu->fpc)) 2263 return -EINVAL; 2264 current->thread.fpu.fpc = fpu->fpc; 2265 if (MACHINE_HAS_VX) 2266 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs, 2267 (freg_t *) fpu->fprs); 2268 else 2269 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs)); 2270 return 0; 2271 } 2272 2273 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 2274 { 2275 /* make sure we have the latest values */ 2276 save_fpu_regs(); 2277 if (MACHINE_HAS_VX) 2278 convert_vx_to_fp((freg_t *) fpu->fprs, 2279 (__vector128 *) vcpu->run->s.regs.vrs); 2280 else 2281 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs)); 2282 fpu->fpc = current->thread.fpu.fpc; 2283 return 0; 2284 } 2285 2286 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw) 2287 { 2288 int rc = 0; 2289 2290 if (!is_vcpu_stopped(vcpu)) 2291 rc = -EBUSY; 2292 else { 2293 vcpu->run->psw_mask = psw.mask; 2294 vcpu->run->psw_addr = psw.addr; 2295 } 2296 return rc; 2297 } 2298 2299 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 2300 struct kvm_translation *tr) 2301 { 2302 return -EINVAL; /* not implemented yet */ 2303 } 2304 2305 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \ 2306 KVM_GUESTDBG_USE_HW_BP | \ 2307 KVM_GUESTDBG_ENABLE) 2308 2309 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 2310 struct kvm_guest_debug *dbg) 2311 { 2312 int rc = 0; 2313 2314 vcpu->guest_debug = 0; 2315 kvm_s390_clear_bp_data(vcpu); 2316 2317 if (dbg->control & ~VALID_GUESTDBG_FLAGS) 2318 return -EINVAL; 2319 if (!sclp.has_gpere) 2320 return -EINVAL; 2321 2322 if (dbg->control & KVM_GUESTDBG_ENABLE) { 2323 vcpu->guest_debug = dbg->control; 2324 /* enforce guest PER */ 2325 atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags); 2326 2327 if (dbg->control & KVM_GUESTDBG_USE_HW_BP) 2328 rc = kvm_s390_import_bp_data(vcpu, dbg); 2329 } else { 2330 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags); 2331 vcpu->arch.guestdbg.last_bp = 0; 2332 } 2333 2334 if (rc) { 2335 vcpu->guest_debug = 0; 2336 kvm_s390_clear_bp_data(vcpu); 2337 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags); 2338 } 2339 2340 return rc; 2341 } 2342 2343 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 2344 struct kvm_mp_state *mp_state) 2345 { 2346 /* CHECK_STOP and LOAD are not supported yet */ 2347 return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED : 2348 KVM_MP_STATE_OPERATING; 2349 } 2350 2351 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2352 struct kvm_mp_state *mp_state) 2353 { 2354 int rc = 0; 2355 2356 /* user space knows about this interface - let it control the state */ 2357 vcpu->kvm->arch.user_cpu_state_ctrl = 1; 2358 2359 switch (mp_state->mp_state) { 2360 case KVM_MP_STATE_STOPPED: 2361 kvm_s390_vcpu_stop(vcpu); 2362 break; 2363 case KVM_MP_STATE_OPERATING: 2364 kvm_s390_vcpu_start(vcpu); 2365 break; 2366 case KVM_MP_STATE_LOAD: 2367 case KVM_MP_STATE_CHECK_STOP: 2368 /* fall through - CHECK_STOP and LOAD are not supported yet */ 2369 default: 2370 rc = -ENXIO; 2371 } 2372 2373 return rc; 2374 } 2375 2376 static bool ibs_enabled(struct kvm_vcpu *vcpu) 2377 { 2378 return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS; 2379 } 2380 2381 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) 2382 { 2383 retry: 2384 kvm_s390_vcpu_request_handled(vcpu); 2385 if (!vcpu->requests) 2386 return 0; 2387 /* 2388 * We use MMU_RELOAD just to re-arm the ipte notifier for the 2389 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock. 2390 * This ensures that the ipte instruction for this request has 2391 * already finished. We might race against a second unmapper that 2392 * wants to set the blocking bit. Lets just retry the request loop. 2393 */ 2394 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) { 2395 int rc; 2396 rc = gmap_mprotect_notify(vcpu->arch.gmap, 2397 kvm_s390_get_prefix(vcpu), 2398 PAGE_SIZE * 2, PROT_WRITE); 2399 if (rc) { 2400 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu); 2401 return rc; 2402 } 2403 goto retry; 2404 } 2405 2406 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 2407 vcpu->arch.sie_block->ihcpu = 0xffff; 2408 goto retry; 2409 } 2410 2411 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) { 2412 if (!ibs_enabled(vcpu)) { 2413 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1); 2414 atomic_or(CPUSTAT_IBS, 2415 &vcpu->arch.sie_block->cpuflags); 2416 } 2417 goto retry; 2418 } 2419 2420 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) { 2421 if (ibs_enabled(vcpu)) { 2422 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0); 2423 atomic_andnot(CPUSTAT_IBS, 2424 &vcpu->arch.sie_block->cpuflags); 2425 } 2426 goto retry; 2427 } 2428 2429 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) { 2430 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 2431 goto retry; 2432 } 2433 2434 /* nothing to do, just clear the request */ 2435 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 2436 2437 return 0; 2438 } 2439 2440 void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod) 2441 { 2442 struct kvm_vcpu *vcpu; 2443 int i; 2444 2445 mutex_lock(&kvm->lock); 2446 preempt_disable(); 2447 kvm->arch.epoch = tod - get_tod_clock(); 2448 kvm_s390_vcpu_block_all(kvm); 2449 kvm_for_each_vcpu(i, vcpu, kvm) 2450 vcpu->arch.sie_block->epoch = kvm->arch.epoch; 2451 kvm_s390_vcpu_unblock_all(kvm); 2452 preempt_enable(); 2453 mutex_unlock(&kvm->lock); 2454 } 2455 2456 /** 2457 * kvm_arch_fault_in_page - fault-in guest page if necessary 2458 * @vcpu: The corresponding virtual cpu 2459 * @gpa: Guest physical address 2460 * @writable: Whether the page should be writable or not 2461 * 2462 * Make sure that a guest page has been faulted-in on the host. 2463 * 2464 * Return: Zero on success, negative error code otherwise. 2465 */ 2466 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable) 2467 { 2468 return gmap_fault(vcpu->arch.gmap, gpa, 2469 writable ? FAULT_FLAG_WRITE : 0); 2470 } 2471 2472 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token, 2473 unsigned long token) 2474 { 2475 struct kvm_s390_interrupt inti; 2476 struct kvm_s390_irq irq; 2477 2478 if (start_token) { 2479 irq.u.ext.ext_params2 = token; 2480 irq.type = KVM_S390_INT_PFAULT_INIT; 2481 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq)); 2482 } else { 2483 inti.type = KVM_S390_INT_PFAULT_DONE; 2484 inti.parm64 = token; 2485 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti)); 2486 } 2487 } 2488 2489 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2490 struct kvm_async_pf *work) 2491 { 2492 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token); 2493 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token); 2494 } 2495 2496 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2497 struct kvm_async_pf *work) 2498 { 2499 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token); 2500 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token); 2501 } 2502 2503 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2504 struct kvm_async_pf *work) 2505 { 2506 /* s390 will always inject the page directly */ 2507 } 2508 2509 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 2510 { 2511 /* 2512 * s390 will always inject the page directly, 2513 * but we still want check_async_completion to cleanup 2514 */ 2515 return true; 2516 } 2517 2518 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu) 2519 { 2520 hva_t hva; 2521 struct kvm_arch_async_pf arch; 2522 int rc; 2523 2524 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 2525 return 0; 2526 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) != 2527 vcpu->arch.pfault_compare) 2528 return 0; 2529 if (psw_extint_disabled(vcpu)) 2530 return 0; 2531 if (kvm_s390_vcpu_has_irq(vcpu, 0)) 2532 return 0; 2533 if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul)) 2534 return 0; 2535 if (!vcpu->arch.gmap->pfault_enabled) 2536 return 0; 2537 2538 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr)); 2539 hva += current->thread.gmap_addr & ~PAGE_MASK; 2540 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8)) 2541 return 0; 2542 2543 rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch); 2544 return rc; 2545 } 2546 2547 static int vcpu_pre_run(struct kvm_vcpu *vcpu) 2548 { 2549 int rc, cpuflags; 2550 2551 /* 2552 * On s390 notifications for arriving pages will be delivered directly 2553 * to the guest but the house keeping for completed pfaults is 2554 * handled outside the worker. 2555 */ 2556 kvm_check_async_pf_completion(vcpu); 2557 2558 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14]; 2559 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15]; 2560 2561 if (need_resched()) 2562 schedule(); 2563 2564 if (test_cpu_flag(CIF_MCCK_PENDING)) 2565 s390_handle_mcck(); 2566 2567 if (!kvm_is_ucontrol(vcpu->kvm)) { 2568 rc = kvm_s390_deliver_pending_interrupts(vcpu); 2569 if (rc) 2570 return rc; 2571 } 2572 2573 rc = kvm_s390_handle_requests(vcpu); 2574 if (rc) 2575 return rc; 2576 2577 if (guestdbg_enabled(vcpu)) { 2578 kvm_s390_backup_guest_per_regs(vcpu); 2579 kvm_s390_patch_guest_per_regs(vcpu); 2580 } 2581 2582 vcpu->arch.sie_block->icptcode = 0; 2583 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags); 2584 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags); 2585 trace_kvm_s390_sie_enter(vcpu, cpuflags); 2586 2587 return 0; 2588 } 2589 2590 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu) 2591 { 2592 struct kvm_s390_pgm_info pgm_info = { 2593 .code = PGM_ADDRESSING, 2594 }; 2595 u8 opcode, ilen; 2596 int rc; 2597 2598 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction"); 2599 trace_kvm_s390_sie_fault(vcpu); 2600 2601 /* 2602 * We want to inject an addressing exception, which is defined as a 2603 * suppressing or terminating exception. However, since we came here 2604 * by a DAT access exception, the PSW still points to the faulting 2605 * instruction since DAT exceptions are nullifying. So we've got 2606 * to look up the current opcode to get the length of the instruction 2607 * to be able to forward the PSW. 2608 */ 2609 rc = read_guest_instr(vcpu, &opcode, 1); 2610 ilen = insn_length(opcode); 2611 if (rc < 0) { 2612 return rc; 2613 } else if (rc) { 2614 /* Instruction-Fetching Exceptions - we can't detect the ilen. 2615 * Forward by arbitrary ilc, injection will take care of 2616 * nullification if necessary. 2617 */ 2618 pgm_info = vcpu->arch.pgm; 2619 ilen = 4; 2620 } 2621 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID; 2622 kvm_s390_forward_psw(vcpu, ilen); 2623 return kvm_s390_inject_prog_irq(vcpu, &pgm_info); 2624 } 2625 2626 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason) 2627 { 2628 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d", 2629 vcpu->arch.sie_block->icptcode); 2630 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode); 2631 2632 if (guestdbg_enabled(vcpu)) 2633 kvm_s390_restore_guest_per_regs(vcpu); 2634 2635 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14; 2636 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15; 2637 2638 if (vcpu->arch.sie_block->icptcode > 0) { 2639 int rc = kvm_handle_sie_intercept(vcpu); 2640 2641 if (rc != -EOPNOTSUPP) 2642 return rc; 2643 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC; 2644 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode; 2645 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa; 2646 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb; 2647 return -EREMOTE; 2648 } else if (exit_reason != -EFAULT) { 2649 vcpu->stat.exit_null++; 2650 return 0; 2651 } else if (kvm_is_ucontrol(vcpu->kvm)) { 2652 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL; 2653 vcpu->run->s390_ucontrol.trans_exc_code = 2654 current->thread.gmap_addr; 2655 vcpu->run->s390_ucontrol.pgm_code = 0x10; 2656 return -EREMOTE; 2657 } else if (current->thread.gmap_pfault) { 2658 trace_kvm_s390_major_guest_pfault(vcpu); 2659 current->thread.gmap_pfault = 0; 2660 if (kvm_arch_setup_async_pf(vcpu)) 2661 return 0; 2662 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1); 2663 } 2664 return vcpu_post_run_fault_in_sie(vcpu); 2665 } 2666 2667 static int __vcpu_run(struct kvm_vcpu *vcpu) 2668 { 2669 int rc, exit_reason; 2670 2671 /* 2672 * We try to hold kvm->srcu during most of vcpu_run (except when run- 2673 * ning the guest), so that memslots (and other stuff) are protected 2674 */ 2675 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2676 2677 do { 2678 rc = vcpu_pre_run(vcpu); 2679 if (rc) 2680 break; 2681 2682 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 2683 /* 2684 * As PF_VCPU will be used in fault handler, between 2685 * guest_enter and guest_exit should be no uaccess. 2686 */ 2687 local_irq_disable(); 2688 guest_enter_irqoff(); 2689 __disable_cpu_timer_accounting(vcpu); 2690 local_irq_enable(); 2691 exit_reason = sie64a(vcpu->arch.sie_block, 2692 vcpu->run->s.regs.gprs); 2693 local_irq_disable(); 2694 __enable_cpu_timer_accounting(vcpu); 2695 guest_exit_irqoff(); 2696 local_irq_enable(); 2697 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2698 2699 rc = vcpu_post_run(vcpu, exit_reason); 2700 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc); 2701 2702 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 2703 return rc; 2704 } 2705 2706 static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 2707 { 2708 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask; 2709 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr; 2710 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) 2711 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix); 2712 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) { 2713 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128); 2714 /* some control register changes require a tlb flush */ 2715 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 2716 } 2717 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 2718 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm); 2719 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc; 2720 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr; 2721 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp; 2722 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea; 2723 } 2724 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) { 2725 vcpu->arch.pfault_token = kvm_run->s.regs.pft; 2726 vcpu->arch.pfault_select = kvm_run->s.regs.pfs; 2727 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc; 2728 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 2729 kvm_clear_async_pf_completion_queue(vcpu); 2730 } 2731 /* 2732 * If userspace sets the riccb (e.g. after migration) to a valid state, 2733 * we should enable RI here instead of doing the lazy enablement. 2734 */ 2735 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) && 2736 test_kvm_facility(vcpu->kvm, 64)) { 2737 struct runtime_instr_cb *riccb = 2738 (struct runtime_instr_cb *) &kvm_run->s.regs.riccb; 2739 2740 if (riccb->valid) 2741 vcpu->arch.sie_block->ecb3 |= 0x01; 2742 } 2743 2744 kvm_run->kvm_dirty_regs = 0; 2745 } 2746 2747 static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 2748 { 2749 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask; 2750 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr; 2751 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu); 2752 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128); 2753 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu); 2754 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc; 2755 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr; 2756 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp; 2757 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea; 2758 kvm_run->s.regs.pft = vcpu->arch.pfault_token; 2759 kvm_run->s.regs.pfs = vcpu->arch.pfault_select; 2760 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare; 2761 } 2762 2763 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 2764 { 2765 int rc; 2766 sigset_t sigsaved; 2767 2768 if (guestdbg_exit_pending(vcpu)) { 2769 kvm_s390_prepare_debug_exit(vcpu); 2770 return 0; 2771 } 2772 2773 if (vcpu->sigset_active) 2774 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 2775 2776 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) { 2777 kvm_s390_vcpu_start(vcpu); 2778 } else if (is_vcpu_stopped(vcpu)) { 2779 pr_err_ratelimited("can't run stopped vcpu %d\n", 2780 vcpu->vcpu_id); 2781 return -EINVAL; 2782 } 2783 2784 sync_regs(vcpu, kvm_run); 2785 enable_cpu_timer_accounting(vcpu); 2786 2787 might_fault(); 2788 rc = __vcpu_run(vcpu); 2789 2790 if (signal_pending(current) && !rc) { 2791 kvm_run->exit_reason = KVM_EXIT_INTR; 2792 rc = -EINTR; 2793 } 2794 2795 if (guestdbg_exit_pending(vcpu) && !rc) { 2796 kvm_s390_prepare_debug_exit(vcpu); 2797 rc = 0; 2798 } 2799 2800 if (rc == -EREMOTE) { 2801 /* userspace support is needed, kvm_run has been prepared */ 2802 rc = 0; 2803 } 2804 2805 disable_cpu_timer_accounting(vcpu); 2806 store_regs(vcpu, kvm_run); 2807 2808 if (vcpu->sigset_active) 2809 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 2810 2811 vcpu->stat.exit_userspace++; 2812 return rc; 2813 } 2814 2815 /* 2816 * store status at address 2817 * we use have two special cases: 2818 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit 2819 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix 2820 */ 2821 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa) 2822 { 2823 unsigned char archmode = 1; 2824 freg_t fprs[NUM_FPRS]; 2825 unsigned int px; 2826 u64 clkcomp, cputm; 2827 int rc; 2828 2829 px = kvm_s390_get_prefix(vcpu); 2830 if (gpa == KVM_S390_STORE_STATUS_NOADDR) { 2831 if (write_guest_abs(vcpu, 163, &archmode, 1)) 2832 return -EFAULT; 2833 gpa = 0; 2834 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) { 2835 if (write_guest_real(vcpu, 163, &archmode, 1)) 2836 return -EFAULT; 2837 gpa = px; 2838 } else 2839 gpa -= __LC_FPREGS_SAVE_AREA; 2840 2841 /* manually convert vector registers if necessary */ 2842 if (MACHINE_HAS_VX) { 2843 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 2844 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 2845 fprs, 128); 2846 } else { 2847 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 2848 vcpu->run->s.regs.fprs, 128); 2849 } 2850 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA, 2851 vcpu->run->s.regs.gprs, 128); 2852 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA, 2853 &vcpu->arch.sie_block->gpsw, 16); 2854 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA, 2855 &px, 4); 2856 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA, 2857 &vcpu->run->s.regs.fpc, 4); 2858 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA, 2859 &vcpu->arch.sie_block->todpr, 4); 2860 cputm = kvm_s390_get_cpu_timer(vcpu); 2861 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA, 2862 &cputm, 8); 2863 clkcomp = vcpu->arch.sie_block->ckc >> 8; 2864 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA, 2865 &clkcomp, 8); 2866 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA, 2867 &vcpu->run->s.regs.acrs, 64); 2868 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA, 2869 &vcpu->arch.sie_block->gcr, 128); 2870 return rc ? -EFAULT : 0; 2871 } 2872 2873 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr) 2874 { 2875 /* 2876 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy 2877 * copying in vcpu load/put. Lets update our copies before we save 2878 * it into the save area 2879 */ 2880 save_fpu_regs(); 2881 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 2882 save_access_regs(vcpu->run->s.regs.acrs); 2883 2884 return kvm_s390_store_status_unloaded(vcpu, addr); 2885 } 2886 2887 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 2888 { 2889 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu); 2890 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu); 2891 } 2892 2893 static void __disable_ibs_on_all_vcpus(struct kvm *kvm) 2894 { 2895 unsigned int i; 2896 struct kvm_vcpu *vcpu; 2897 2898 kvm_for_each_vcpu(i, vcpu, kvm) { 2899 __disable_ibs_on_vcpu(vcpu); 2900 } 2901 } 2902 2903 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 2904 { 2905 if (!sclp.has_ibs) 2906 return; 2907 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu); 2908 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu); 2909 } 2910 2911 void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu) 2912 { 2913 int i, online_vcpus, started_vcpus = 0; 2914 2915 if (!is_vcpu_stopped(vcpu)) 2916 return; 2917 2918 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1); 2919 /* Only one cpu at a time may enter/leave the STOPPED state. */ 2920 spin_lock(&vcpu->kvm->arch.start_stop_lock); 2921 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 2922 2923 for (i = 0; i < online_vcpus; i++) { 2924 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) 2925 started_vcpus++; 2926 } 2927 2928 if (started_vcpus == 0) { 2929 /* we're the only active VCPU -> speed it up */ 2930 __enable_ibs_on_vcpu(vcpu); 2931 } else if (started_vcpus == 1) { 2932 /* 2933 * As we are starting a second VCPU, we have to disable 2934 * the IBS facility on all VCPUs to remove potentially 2935 * oustanding ENABLE requests. 2936 */ 2937 __disable_ibs_on_all_vcpus(vcpu->kvm); 2938 } 2939 2940 atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags); 2941 /* 2942 * Another VCPU might have used IBS while we were offline. 2943 * Let's play safe and flush the VCPU at startup. 2944 */ 2945 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 2946 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 2947 return; 2948 } 2949 2950 void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu) 2951 { 2952 int i, online_vcpus, started_vcpus = 0; 2953 struct kvm_vcpu *started_vcpu = NULL; 2954 2955 if (is_vcpu_stopped(vcpu)) 2956 return; 2957 2958 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0); 2959 /* Only one cpu at a time may enter/leave the STOPPED state. */ 2960 spin_lock(&vcpu->kvm->arch.start_stop_lock); 2961 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 2962 2963 /* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */ 2964 kvm_s390_clear_stop_irq(vcpu); 2965 2966 atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags); 2967 __disable_ibs_on_vcpu(vcpu); 2968 2969 for (i = 0; i < online_vcpus; i++) { 2970 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) { 2971 started_vcpus++; 2972 started_vcpu = vcpu->kvm->vcpus[i]; 2973 } 2974 } 2975 2976 if (started_vcpus == 1) { 2977 /* 2978 * As we only have one VCPU left, we want to enable the 2979 * IBS facility for that VCPU to speed it up. 2980 */ 2981 __enable_ibs_on_vcpu(started_vcpu); 2982 } 2983 2984 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 2985 return; 2986 } 2987 2988 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 2989 struct kvm_enable_cap *cap) 2990 { 2991 int r; 2992 2993 if (cap->flags) 2994 return -EINVAL; 2995 2996 switch (cap->cap) { 2997 case KVM_CAP_S390_CSS_SUPPORT: 2998 if (!vcpu->kvm->arch.css_support) { 2999 vcpu->kvm->arch.css_support = 1; 3000 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support"); 3001 trace_kvm_s390_enable_css(vcpu->kvm); 3002 } 3003 r = 0; 3004 break; 3005 default: 3006 r = -EINVAL; 3007 break; 3008 } 3009 return r; 3010 } 3011 3012 static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu, 3013 struct kvm_s390_mem_op *mop) 3014 { 3015 void __user *uaddr = (void __user *)mop->buf; 3016 void *tmpbuf = NULL; 3017 int r, srcu_idx; 3018 const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION 3019 | KVM_S390_MEMOP_F_CHECK_ONLY; 3020 3021 if (mop->flags & ~supported_flags) 3022 return -EINVAL; 3023 3024 if (mop->size > MEM_OP_MAX_SIZE) 3025 return -E2BIG; 3026 3027 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 3028 tmpbuf = vmalloc(mop->size); 3029 if (!tmpbuf) 3030 return -ENOMEM; 3031 } 3032 3033 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 3034 3035 switch (mop->op) { 3036 case KVM_S390_MEMOP_LOGICAL_READ: 3037 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 3038 r = check_gva_range(vcpu, mop->gaddr, mop->ar, 3039 mop->size, GACC_FETCH); 3040 break; 3041 } 3042 r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size); 3043 if (r == 0) { 3044 if (copy_to_user(uaddr, tmpbuf, mop->size)) 3045 r = -EFAULT; 3046 } 3047 break; 3048 case KVM_S390_MEMOP_LOGICAL_WRITE: 3049 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 3050 r = check_gva_range(vcpu, mop->gaddr, mop->ar, 3051 mop->size, GACC_STORE); 3052 break; 3053 } 3054 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 3055 r = -EFAULT; 3056 break; 3057 } 3058 r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size); 3059 break; 3060 default: 3061 r = -EINVAL; 3062 } 3063 3064 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 3065 3066 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0) 3067 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); 3068 3069 vfree(tmpbuf); 3070 return r; 3071 } 3072 3073 long kvm_arch_vcpu_ioctl(struct file *filp, 3074 unsigned int ioctl, unsigned long arg) 3075 { 3076 struct kvm_vcpu *vcpu = filp->private_data; 3077 void __user *argp = (void __user *)arg; 3078 int idx; 3079 long r; 3080 3081 switch (ioctl) { 3082 case KVM_S390_IRQ: { 3083 struct kvm_s390_irq s390irq; 3084 3085 r = -EFAULT; 3086 if (copy_from_user(&s390irq, argp, sizeof(s390irq))) 3087 break; 3088 r = kvm_s390_inject_vcpu(vcpu, &s390irq); 3089 break; 3090 } 3091 case KVM_S390_INTERRUPT: { 3092 struct kvm_s390_interrupt s390int; 3093 struct kvm_s390_irq s390irq; 3094 3095 r = -EFAULT; 3096 if (copy_from_user(&s390int, argp, sizeof(s390int))) 3097 break; 3098 if (s390int_to_s390irq(&s390int, &s390irq)) 3099 return -EINVAL; 3100 r = kvm_s390_inject_vcpu(vcpu, &s390irq); 3101 break; 3102 } 3103 case KVM_S390_STORE_STATUS: 3104 idx = srcu_read_lock(&vcpu->kvm->srcu); 3105 r = kvm_s390_vcpu_store_status(vcpu, arg); 3106 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3107 break; 3108 case KVM_S390_SET_INITIAL_PSW: { 3109 psw_t psw; 3110 3111 r = -EFAULT; 3112 if (copy_from_user(&psw, argp, sizeof(psw))) 3113 break; 3114 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw); 3115 break; 3116 } 3117 case KVM_S390_INITIAL_RESET: 3118 r = kvm_arch_vcpu_ioctl_initial_reset(vcpu); 3119 break; 3120 case KVM_SET_ONE_REG: 3121 case KVM_GET_ONE_REG: { 3122 struct kvm_one_reg reg; 3123 r = -EFAULT; 3124 if (copy_from_user(®, argp, sizeof(reg))) 3125 break; 3126 if (ioctl == KVM_SET_ONE_REG) 3127 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®); 3128 else 3129 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®); 3130 break; 3131 } 3132 #ifdef CONFIG_KVM_S390_UCONTROL 3133 case KVM_S390_UCAS_MAP: { 3134 struct kvm_s390_ucas_mapping ucasmap; 3135 3136 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 3137 r = -EFAULT; 3138 break; 3139 } 3140 3141 if (!kvm_is_ucontrol(vcpu->kvm)) { 3142 r = -EINVAL; 3143 break; 3144 } 3145 3146 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr, 3147 ucasmap.vcpu_addr, ucasmap.length); 3148 break; 3149 } 3150 case KVM_S390_UCAS_UNMAP: { 3151 struct kvm_s390_ucas_mapping ucasmap; 3152 3153 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 3154 r = -EFAULT; 3155 break; 3156 } 3157 3158 if (!kvm_is_ucontrol(vcpu->kvm)) { 3159 r = -EINVAL; 3160 break; 3161 } 3162 3163 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr, 3164 ucasmap.length); 3165 break; 3166 } 3167 #endif 3168 case KVM_S390_VCPU_FAULT: { 3169 r = gmap_fault(vcpu->arch.gmap, arg, 0); 3170 break; 3171 } 3172 case KVM_ENABLE_CAP: 3173 { 3174 struct kvm_enable_cap cap; 3175 r = -EFAULT; 3176 if (copy_from_user(&cap, argp, sizeof(cap))) 3177 break; 3178 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 3179 break; 3180 } 3181 case KVM_S390_MEM_OP: { 3182 struct kvm_s390_mem_op mem_op; 3183 3184 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 3185 r = kvm_s390_guest_mem_op(vcpu, &mem_op); 3186 else 3187 r = -EFAULT; 3188 break; 3189 } 3190 case KVM_S390_SET_IRQ_STATE: { 3191 struct kvm_s390_irq_state irq_state; 3192 3193 r = -EFAULT; 3194 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 3195 break; 3196 if (irq_state.len > VCPU_IRQS_MAX_BUF || 3197 irq_state.len == 0 || 3198 irq_state.len % sizeof(struct kvm_s390_irq) > 0) { 3199 r = -EINVAL; 3200 break; 3201 } 3202 r = kvm_s390_set_irq_state(vcpu, 3203 (void __user *) irq_state.buf, 3204 irq_state.len); 3205 break; 3206 } 3207 case KVM_S390_GET_IRQ_STATE: { 3208 struct kvm_s390_irq_state irq_state; 3209 3210 r = -EFAULT; 3211 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 3212 break; 3213 if (irq_state.len == 0) { 3214 r = -EINVAL; 3215 break; 3216 } 3217 r = kvm_s390_get_irq_state(vcpu, 3218 (__u8 __user *) irq_state.buf, 3219 irq_state.len); 3220 break; 3221 } 3222 default: 3223 r = -ENOTTY; 3224 } 3225 return r; 3226 } 3227 3228 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3229 { 3230 #ifdef CONFIG_KVM_S390_UCONTROL 3231 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET) 3232 && (kvm_is_ucontrol(vcpu->kvm))) { 3233 vmf->page = virt_to_page(vcpu->arch.sie_block); 3234 get_page(vmf->page); 3235 return 0; 3236 } 3237 #endif 3238 return VM_FAULT_SIGBUS; 3239 } 3240 3241 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 3242 unsigned long npages) 3243 { 3244 return 0; 3245 } 3246 3247 /* Section: memory related */ 3248 int kvm_arch_prepare_memory_region(struct kvm *kvm, 3249 struct kvm_memory_slot *memslot, 3250 const struct kvm_userspace_memory_region *mem, 3251 enum kvm_mr_change change) 3252 { 3253 /* A few sanity checks. We can have memory slots which have to be 3254 located/ended at a segment boundary (1MB). The memory in userland is 3255 ok to be fragmented into various different vmas. It is okay to mmap() 3256 and munmap() stuff in this slot after doing this call at any time */ 3257 3258 if (mem->userspace_addr & 0xffffful) 3259 return -EINVAL; 3260 3261 if (mem->memory_size & 0xffffful) 3262 return -EINVAL; 3263 3264 if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit) 3265 return -EINVAL; 3266 3267 return 0; 3268 } 3269 3270 void kvm_arch_commit_memory_region(struct kvm *kvm, 3271 const struct kvm_userspace_memory_region *mem, 3272 const struct kvm_memory_slot *old, 3273 const struct kvm_memory_slot *new, 3274 enum kvm_mr_change change) 3275 { 3276 int rc; 3277 3278 /* If the basics of the memslot do not change, we do not want 3279 * to update the gmap. Every update causes several unnecessary 3280 * segment translation exceptions. This is usually handled just 3281 * fine by the normal fault handler + gmap, but it will also 3282 * cause faults on the prefix page of running guest CPUs. 3283 */ 3284 if (old->userspace_addr == mem->userspace_addr && 3285 old->base_gfn * PAGE_SIZE == mem->guest_phys_addr && 3286 old->npages * PAGE_SIZE == mem->memory_size) 3287 return; 3288 3289 rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr, 3290 mem->guest_phys_addr, mem->memory_size); 3291 if (rc) 3292 pr_warn("failed to commit memory region\n"); 3293 return; 3294 } 3295 3296 static inline unsigned long nonhyp_mask(int i) 3297 { 3298 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30; 3299 3300 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4); 3301 } 3302 3303 void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) 3304 { 3305 vcpu->valid_wakeup = false; 3306 } 3307 3308 static int __init kvm_s390_init(void) 3309 { 3310 int i; 3311 3312 if (!sclp.has_sief2) { 3313 pr_info("SIE not available\n"); 3314 return -ENODEV; 3315 } 3316 3317 for (i = 0; i < 16; i++) 3318 kvm_s390_fac_list_mask[i] |= 3319 S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i); 3320 3321 return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 3322 } 3323 3324 static void __exit kvm_s390_exit(void) 3325 { 3326 kvm_exit(); 3327 } 3328 3329 module_init(kvm_s390_init); 3330 module_exit(kvm_s390_exit); 3331 3332 /* 3333 * Enable autoloading of the kvm module. 3334 * Note that we add the module alias here instead of virt/kvm/kvm_main.c 3335 * since x86 takes a different approach. 3336 */ 3337 #include <linux/miscdevice.h> 3338 MODULE_ALIAS_MISCDEV(KVM_MINOR); 3339 MODULE_ALIAS("devname:kvm"); 3340