1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * hosting IBM Z kernel virtual machines (s390x) 4 * 5 * Copyright IBM Corp. 2008, 2018 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 * Christian Borntraeger <borntraeger@de.ibm.com> 9 * Heiko Carstens <heiko.carstens@de.ibm.com> 10 * Christian Ehrhardt <ehrhardt@de.ibm.com> 11 * Jason J. Herne <jjherne@us.ibm.com> 12 */ 13 14 #define KMSG_COMPONENT "kvm-s390" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/compiler.h> 18 #include <linux/err.h> 19 #include <linux/fs.h> 20 #include <linux/hrtimer.h> 21 #include <linux/init.h> 22 #include <linux/kvm.h> 23 #include <linux/kvm_host.h> 24 #include <linux/mman.h> 25 #include <linux/module.h> 26 #include <linux/moduleparam.h> 27 #include <linux/random.h> 28 #include <linux/slab.h> 29 #include <linux/timer.h> 30 #include <linux/vmalloc.h> 31 #include <linux/bitmap.h> 32 #include <linux/sched/signal.h> 33 #include <linux/string.h> 34 35 #include <asm/asm-offsets.h> 36 #include <asm/lowcore.h> 37 #include <asm/stp.h> 38 #include <asm/pgtable.h> 39 #include <asm/gmap.h> 40 #include <asm/nmi.h> 41 #include <asm/switch_to.h> 42 #include <asm/isc.h> 43 #include <asm/sclp.h> 44 #include <asm/cpacf.h> 45 #include <asm/timex.h> 46 #include <asm/ap.h> 47 #include "kvm-s390.h" 48 #include "gaccess.h" 49 50 #define CREATE_TRACE_POINTS 51 #include "trace.h" 52 #include "trace-s390.h" 53 54 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */ 55 #define LOCAL_IRQS 32 56 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \ 57 (KVM_MAX_VCPUS + LOCAL_IRQS)) 58 59 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 60 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 61 62 struct kvm_stats_debugfs_item debugfs_entries[] = { 63 { "userspace_handled", VCPU_STAT(exit_userspace) }, 64 { "exit_null", VCPU_STAT(exit_null) }, 65 { "exit_validity", VCPU_STAT(exit_validity) }, 66 { "exit_stop_request", VCPU_STAT(exit_stop_request) }, 67 { "exit_external_request", VCPU_STAT(exit_external_request) }, 68 { "exit_io_request", VCPU_STAT(exit_io_request) }, 69 { "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) }, 70 { "exit_instruction", VCPU_STAT(exit_instruction) }, 71 { "exit_pei", VCPU_STAT(exit_pei) }, 72 { "exit_program_interruption", VCPU_STAT(exit_program_interruption) }, 73 { "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) }, 74 { "exit_operation_exception", VCPU_STAT(exit_operation_exception) }, 75 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 76 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 77 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, 78 { "halt_no_poll_steal", VCPU_STAT(halt_no_poll_steal) }, 79 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 80 { "instruction_lctlg", VCPU_STAT(instruction_lctlg) }, 81 { "instruction_lctl", VCPU_STAT(instruction_lctl) }, 82 { "instruction_stctl", VCPU_STAT(instruction_stctl) }, 83 { "instruction_stctg", VCPU_STAT(instruction_stctg) }, 84 { "deliver_ckc", VCPU_STAT(deliver_ckc) }, 85 { "deliver_cputm", VCPU_STAT(deliver_cputm) }, 86 { "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) }, 87 { "deliver_external_call", VCPU_STAT(deliver_external_call) }, 88 { "deliver_service_signal", VCPU_STAT(deliver_service_signal) }, 89 { "deliver_virtio", VCPU_STAT(deliver_virtio) }, 90 { "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) }, 91 { "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) }, 92 { "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) }, 93 { "deliver_program", VCPU_STAT(deliver_program) }, 94 { "deliver_io", VCPU_STAT(deliver_io) }, 95 { "deliver_machine_check", VCPU_STAT(deliver_machine_check) }, 96 { "exit_wait_state", VCPU_STAT(exit_wait_state) }, 97 { "inject_ckc", VCPU_STAT(inject_ckc) }, 98 { "inject_cputm", VCPU_STAT(inject_cputm) }, 99 { "inject_external_call", VCPU_STAT(inject_external_call) }, 100 { "inject_float_mchk", VM_STAT(inject_float_mchk) }, 101 { "inject_emergency_signal", VCPU_STAT(inject_emergency_signal) }, 102 { "inject_io", VM_STAT(inject_io) }, 103 { "inject_mchk", VCPU_STAT(inject_mchk) }, 104 { "inject_pfault_done", VM_STAT(inject_pfault_done) }, 105 { "inject_program", VCPU_STAT(inject_program) }, 106 { "inject_restart", VCPU_STAT(inject_restart) }, 107 { "inject_service_signal", VM_STAT(inject_service_signal) }, 108 { "inject_set_prefix", VCPU_STAT(inject_set_prefix) }, 109 { "inject_stop_signal", VCPU_STAT(inject_stop_signal) }, 110 { "inject_pfault_init", VCPU_STAT(inject_pfault_init) }, 111 { "inject_virtio", VM_STAT(inject_virtio) }, 112 { "instruction_epsw", VCPU_STAT(instruction_epsw) }, 113 { "instruction_gs", VCPU_STAT(instruction_gs) }, 114 { "instruction_io_other", VCPU_STAT(instruction_io_other) }, 115 { "instruction_lpsw", VCPU_STAT(instruction_lpsw) }, 116 { "instruction_lpswe", VCPU_STAT(instruction_lpswe) }, 117 { "instruction_pfmf", VCPU_STAT(instruction_pfmf) }, 118 { "instruction_ptff", VCPU_STAT(instruction_ptff) }, 119 { "instruction_stidp", VCPU_STAT(instruction_stidp) }, 120 { "instruction_sck", VCPU_STAT(instruction_sck) }, 121 { "instruction_sckpf", VCPU_STAT(instruction_sckpf) }, 122 { "instruction_spx", VCPU_STAT(instruction_spx) }, 123 { "instruction_stpx", VCPU_STAT(instruction_stpx) }, 124 { "instruction_stap", VCPU_STAT(instruction_stap) }, 125 { "instruction_iske", VCPU_STAT(instruction_iske) }, 126 { "instruction_ri", VCPU_STAT(instruction_ri) }, 127 { "instruction_rrbe", VCPU_STAT(instruction_rrbe) }, 128 { "instruction_sske", VCPU_STAT(instruction_sske) }, 129 { "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) }, 130 { "instruction_essa", VCPU_STAT(instruction_essa) }, 131 { "instruction_stsi", VCPU_STAT(instruction_stsi) }, 132 { "instruction_stfl", VCPU_STAT(instruction_stfl) }, 133 { "instruction_tb", VCPU_STAT(instruction_tb) }, 134 { "instruction_tpi", VCPU_STAT(instruction_tpi) }, 135 { "instruction_tprot", VCPU_STAT(instruction_tprot) }, 136 { "instruction_tsch", VCPU_STAT(instruction_tsch) }, 137 { "instruction_sthyi", VCPU_STAT(instruction_sthyi) }, 138 { "instruction_sie", VCPU_STAT(instruction_sie) }, 139 { "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) }, 140 { "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) }, 141 { "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) }, 142 { "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) }, 143 { "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) }, 144 { "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) }, 145 { "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) }, 146 { "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) }, 147 { "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) }, 148 { "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) }, 149 { "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) }, 150 { "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) }, 151 { "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) }, 152 { "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) }, 153 { "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) }, 154 { "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) }, 155 { "instruction_diag_10", VCPU_STAT(diagnose_10) }, 156 { "instruction_diag_44", VCPU_STAT(diagnose_44) }, 157 { "instruction_diag_9c", VCPU_STAT(diagnose_9c) }, 158 { "diag_9c_ignored", VCPU_STAT(diagnose_9c_ignored) }, 159 { "instruction_diag_258", VCPU_STAT(diagnose_258) }, 160 { "instruction_diag_308", VCPU_STAT(diagnose_308) }, 161 { "instruction_diag_500", VCPU_STAT(diagnose_500) }, 162 { "instruction_diag_other", VCPU_STAT(diagnose_other) }, 163 { NULL } 164 }; 165 166 struct kvm_s390_tod_clock_ext { 167 __u8 epoch_idx; 168 __u64 tod; 169 __u8 reserved[7]; 170 } __packed; 171 172 /* allow nested virtualization in KVM (if enabled by user space) */ 173 static int nested; 174 module_param(nested, int, S_IRUGO); 175 MODULE_PARM_DESC(nested, "Nested virtualization support"); 176 177 /* allow 1m huge page guest backing, if !nested */ 178 static int hpage; 179 module_param(hpage, int, 0444); 180 MODULE_PARM_DESC(hpage, "1m huge page backing support"); 181 182 /* maximum percentage of steal time for polling. >100 is treated like 100 */ 183 static u8 halt_poll_max_steal = 10; 184 module_param(halt_poll_max_steal, byte, 0644); 185 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling"); 186 187 /* 188 * For now we handle at most 16 double words as this is what the s390 base 189 * kernel handles and stores in the prefix page. If we ever need to go beyond 190 * this, this requires changes to code, but the external uapi can stay. 191 */ 192 #define SIZE_INTERNAL 16 193 194 /* 195 * Base feature mask that defines default mask for facilities. Consists of the 196 * defines in FACILITIES_KVM and the non-hypervisor managed bits. 197 */ 198 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM }; 199 /* 200 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL 201 * and defines the facilities that can be enabled via a cpu model. 202 */ 203 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL }; 204 205 static unsigned long kvm_s390_fac_size(void) 206 { 207 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64); 208 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64); 209 BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) > 210 sizeof(S390_lowcore.stfle_fac_list)); 211 212 return SIZE_INTERNAL; 213 } 214 215 /* available cpu features supported by kvm */ 216 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 217 /* available subfunctions indicated via query / "test bit" */ 218 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc; 219 220 static struct gmap_notifier gmap_notifier; 221 static struct gmap_notifier vsie_gmap_notifier; 222 debug_info_t *kvm_s390_dbf; 223 224 /* Section: not file related */ 225 int kvm_arch_hardware_enable(void) 226 { 227 /* every s390 is virtualization enabled ;-) */ 228 return 0; 229 } 230 231 int kvm_arch_check_processor_compat(void) 232 { 233 return 0; 234 } 235 236 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 237 unsigned long end); 238 239 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta) 240 { 241 u8 delta_idx = 0; 242 243 /* 244 * The TOD jumps by delta, we have to compensate this by adding 245 * -delta to the epoch. 246 */ 247 delta = -delta; 248 249 /* sign-extension - we're adding to signed values below */ 250 if ((s64)delta < 0) 251 delta_idx = -1; 252 253 scb->epoch += delta; 254 if (scb->ecd & ECD_MEF) { 255 scb->epdx += delta_idx; 256 if (scb->epoch < delta) 257 scb->epdx += 1; 258 } 259 } 260 261 /* 262 * This callback is executed during stop_machine(). All CPUs are therefore 263 * temporarily stopped. In order not to change guest behavior, we have to 264 * disable preemption whenever we touch the epoch of kvm and the VCPUs, 265 * so a CPU won't be stopped while calculating with the epoch. 266 */ 267 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, 268 void *v) 269 { 270 struct kvm *kvm; 271 struct kvm_vcpu *vcpu; 272 int i; 273 unsigned long long *delta = v; 274 275 list_for_each_entry(kvm, &vm_list, vm_list) { 276 kvm_for_each_vcpu(i, vcpu, kvm) { 277 kvm_clock_sync_scb(vcpu->arch.sie_block, *delta); 278 if (i == 0) { 279 kvm->arch.epoch = vcpu->arch.sie_block->epoch; 280 kvm->arch.epdx = vcpu->arch.sie_block->epdx; 281 } 282 if (vcpu->arch.cputm_enabled) 283 vcpu->arch.cputm_start += *delta; 284 if (vcpu->arch.vsie_block) 285 kvm_clock_sync_scb(vcpu->arch.vsie_block, 286 *delta); 287 } 288 } 289 return NOTIFY_OK; 290 } 291 292 static struct notifier_block kvm_clock_notifier = { 293 .notifier_call = kvm_clock_sync, 294 }; 295 296 int kvm_arch_hardware_setup(void) 297 { 298 gmap_notifier.notifier_call = kvm_gmap_notifier; 299 gmap_register_pte_notifier(&gmap_notifier); 300 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier; 301 gmap_register_pte_notifier(&vsie_gmap_notifier); 302 atomic_notifier_chain_register(&s390_epoch_delta_notifier, 303 &kvm_clock_notifier); 304 return 0; 305 } 306 307 void kvm_arch_hardware_unsetup(void) 308 { 309 gmap_unregister_pte_notifier(&gmap_notifier); 310 gmap_unregister_pte_notifier(&vsie_gmap_notifier); 311 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, 312 &kvm_clock_notifier); 313 } 314 315 static void allow_cpu_feat(unsigned long nr) 316 { 317 set_bit_inv(nr, kvm_s390_available_cpu_feat); 318 } 319 320 static inline int plo_test_bit(unsigned char nr) 321 { 322 register unsigned long r0 asm("0") = (unsigned long) nr | 0x100; 323 int cc; 324 325 asm volatile( 326 /* Parameter registers are ignored for "test bit" */ 327 " plo 0,0,0,0(0)\n" 328 " ipm %0\n" 329 " srl %0,28\n" 330 : "=d" (cc) 331 : "d" (r0) 332 : "cc"); 333 return cc == 0; 334 } 335 336 static __always_inline void __insn32_query(unsigned int opcode, u8 *query) 337 { 338 register unsigned long r0 asm("0") = 0; /* query function */ 339 register unsigned long r1 asm("1") = (unsigned long) query; 340 341 asm volatile( 342 /* Parameter regs are ignored */ 343 " .insn rrf,%[opc] << 16,2,4,6,0\n" 344 : 345 : "d" (r0), "a" (r1), [opc] "i" (opcode) 346 : "cc", "memory"); 347 } 348 349 #define INSN_SORTL 0xb938 350 #define INSN_DFLTCC 0xb939 351 352 static void kvm_s390_cpu_feat_init(void) 353 { 354 int i; 355 356 for (i = 0; i < 256; ++i) { 357 if (plo_test_bit(i)) 358 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7); 359 } 360 361 if (test_facility(28)) /* TOD-clock steering */ 362 ptff(kvm_s390_available_subfunc.ptff, 363 sizeof(kvm_s390_available_subfunc.ptff), 364 PTFF_QAF); 365 366 if (test_facility(17)) { /* MSA */ 367 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *) 368 kvm_s390_available_subfunc.kmac); 369 __cpacf_query(CPACF_KMC, (cpacf_mask_t *) 370 kvm_s390_available_subfunc.kmc); 371 __cpacf_query(CPACF_KM, (cpacf_mask_t *) 372 kvm_s390_available_subfunc.km); 373 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *) 374 kvm_s390_available_subfunc.kimd); 375 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *) 376 kvm_s390_available_subfunc.klmd); 377 } 378 if (test_facility(76)) /* MSA3 */ 379 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *) 380 kvm_s390_available_subfunc.pckmo); 381 if (test_facility(77)) { /* MSA4 */ 382 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *) 383 kvm_s390_available_subfunc.kmctr); 384 __cpacf_query(CPACF_KMF, (cpacf_mask_t *) 385 kvm_s390_available_subfunc.kmf); 386 __cpacf_query(CPACF_KMO, (cpacf_mask_t *) 387 kvm_s390_available_subfunc.kmo); 388 __cpacf_query(CPACF_PCC, (cpacf_mask_t *) 389 kvm_s390_available_subfunc.pcc); 390 } 391 if (test_facility(57)) /* MSA5 */ 392 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *) 393 kvm_s390_available_subfunc.ppno); 394 395 if (test_facility(146)) /* MSA8 */ 396 __cpacf_query(CPACF_KMA, (cpacf_mask_t *) 397 kvm_s390_available_subfunc.kma); 398 399 if (test_facility(155)) /* MSA9 */ 400 __cpacf_query(CPACF_KDSA, (cpacf_mask_t *) 401 kvm_s390_available_subfunc.kdsa); 402 403 if (test_facility(150)) /* SORTL */ 404 __insn32_query(INSN_SORTL, kvm_s390_available_subfunc.sortl); 405 406 if (test_facility(151)) /* DFLTCC */ 407 __insn32_query(INSN_DFLTCC, kvm_s390_available_subfunc.dfltcc); 408 409 if (MACHINE_HAS_ESOP) 410 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP); 411 /* 412 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow), 413 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing). 414 */ 415 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao || 416 !test_facility(3) || !nested) 417 return; 418 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2); 419 if (sclp.has_64bscao) 420 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO); 421 if (sclp.has_siif) 422 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF); 423 if (sclp.has_gpere) 424 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE); 425 if (sclp.has_gsls) 426 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS); 427 if (sclp.has_ib) 428 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB); 429 if (sclp.has_cei) 430 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI); 431 if (sclp.has_ibs) 432 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS); 433 if (sclp.has_kss) 434 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS); 435 /* 436 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make 437 * all skey handling functions read/set the skey from the PGSTE 438 * instead of the real storage key. 439 * 440 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make 441 * pages being detected as preserved although they are resident. 442 * 443 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will 444 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY. 445 * 446 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and 447 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be 448 * correctly shadowed. We can do that for the PGSTE but not for PTE.I. 449 * 450 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We 451 * cannot easily shadow the SCA because of the ipte lock. 452 */ 453 } 454 455 int kvm_arch_init(void *opaque) 456 { 457 int rc = -ENOMEM; 458 459 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); 460 if (!kvm_s390_dbf) 461 return -ENOMEM; 462 463 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) 464 goto out; 465 466 kvm_s390_cpu_feat_init(); 467 468 /* Register floating interrupt controller interface. */ 469 rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); 470 if (rc) { 471 pr_err("A FLIC registration call failed with rc=%d\n", rc); 472 goto out; 473 } 474 475 rc = kvm_s390_gib_init(GAL_ISC); 476 if (rc) 477 goto out; 478 479 return 0; 480 481 out: 482 kvm_arch_exit(); 483 return rc; 484 } 485 486 void kvm_arch_exit(void) 487 { 488 kvm_s390_gib_destroy(); 489 debug_unregister(kvm_s390_dbf); 490 } 491 492 /* Section: device related */ 493 long kvm_arch_dev_ioctl(struct file *filp, 494 unsigned int ioctl, unsigned long arg) 495 { 496 if (ioctl == KVM_S390_ENABLE_SIE) 497 return s390_enable_sie(); 498 return -EINVAL; 499 } 500 501 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 502 { 503 int r; 504 505 switch (ext) { 506 case KVM_CAP_S390_PSW: 507 case KVM_CAP_S390_GMAP: 508 case KVM_CAP_SYNC_MMU: 509 #ifdef CONFIG_KVM_S390_UCONTROL 510 case KVM_CAP_S390_UCONTROL: 511 #endif 512 case KVM_CAP_ASYNC_PF: 513 case KVM_CAP_SYNC_REGS: 514 case KVM_CAP_ONE_REG: 515 case KVM_CAP_ENABLE_CAP: 516 case KVM_CAP_S390_CSS_SUPPORT: 517 case KVM_CAP_IOEVENTFD: 518 case KVM_CAP_DEVICE_CTRL: 519 case KVM_CAP_S390_IRQCHIP: 520 case KVM_CAP_VM_ATTRIBUTES: 521 case KVM_CAP_MP_STATE: 522 case KVM_CAP_IMMEDIATE_EXIT: 523 case KVM_CAP_S390_INJECT_IRQ: 524 case KVM_CAP_S390_USER_SIGP: 525 case KVM_CAP_S390_USER_STSI: 526 case KVM_CAP_S390_SKEYS: 527 case KVM_CAP_S390_IRQ_STATE: 528 case KVM_CAP_S390_USER_INSTR0: 529 case KVM_CAP_S390_CMMA_MIGRATION: 530 case KVM_CAP_S390_AIS: 531 case KVM_CAP_S390_AIS_MIGRATION: 532 r = 1; 533 break; 534 case KVM_CAP_S390_HPAGE_1M: 535 r = 0; 536 if (hpage && !kvm_is_ucontrol(kvm)) 537 r = 1; 538 break; 539 case KVM_CAP_S390_MEM_OP: 540 r = MEM_OP_MAX_SIZE; 541 break; 542 case KVM_CAP_NR_VCPUS: 543 case KVM_CAP_MAX_VCPUS: 544 case KVM_CAP_MAX_VCPU_ID: 545 r = KVM_S390_BSCA_CPU_SLOTS; 546 if (!kvm_s390_use_sca_entries()) 547 r = KVM_MAX_VCPUS; 548 else if (sclp.has_esca && sclp.has_64bscao) 549 r = KVM_S390_ESCA_CPU_SLOTS; 550 break; 551 case KVM_CAP_S390_COW: 552 r = MACHINE_HAS_ESOP; 553 break; 554 case KVM_CAP_S390_VECTOR_REGISTERS: 555 r = MACHINE_HAS_VX; 556 break; 557 case KVM_CAP_S390_RI: 558 r = test_facility(64); 559 break; 560 case KVM_CAP_S390_GS: 561 r = test_facility(133); 562 break; 563 case KVM_CAP_S390_BPB: 564 r = test_facility(82); 565 break; 566 default: 567 r = 0; 568 } 569 return r; 570 } 571 572 static void kvm_s390_sync_dirty_log(struct kvm *kvm, 573 struct kvm_memory_slot *memslot) 574 { 575 int i; 576 gfn_t cur_gfn, last_gfn; 577 unsigned long gaddr, vmaddr; 578 struct gmap *gmap = kvm->arch.gmap; 579 DECLARE_BITMAP(bitmap, _PAGE_ENTRIES); 580 581 /* Loop over all guest segments */ 582 cur_gfn = memslot->base_gfn; 583 last_gfn = memslot->base_gfn + memslot->npages; 584 for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) { 585 gaddr = gfn_to_gpa(cur_gfn); 586 vmaddr = gfn_to_hva_memslot(memslot, cur_gfn); 587 if (kvm_is_error_hva(vmaddr)) 588 continue; 589 590 bitmap_zero(bitmap, _PAGE_ENTRIES); 591 gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr); 592 for (i = 0; i < _PAGE_ENTRIES; i++) { 593 if (test_bit(i, bitmap)) 594 mark_page_dirty(kvm, cur_gfn + i); 595 } 596 597 if (fatal_signal_pending(current)) 598 return; 599 cond_resched(); 600 } 601 } 602 603 /* Section: vm related */ 604 static void sca_del_vcpu(struct kvm_vcpu *vcpu); 605 606 /* 607 * Get (and clear) the dirty memory log for a memory slot. 608 */ 609 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 610 struct kvm_dirty_log *log) 611 { 612 int r; 613 unsigned long n; 614 struct kvm_memslots *slots; 615 struct kvm_memory_slot *memslot; 616 int is_dirty = 0; 617 618 if (kvm_is_ucontrol(kvm)) 619 return -EINVAL; 620 621 mutex_lock(&kvm->slots_lock); 622 623 r = -EINVAL; 624 if (log->slot >= KVM_USER_MEM_SLOTS) 625 goto out; 626 627 slots = kvm_memslots(kvm); 628 memslot = id_to_memslot(slots, log->slot); 629 r = -ENOENT; 630 if (!memslot->dirty_bitmap) 631 goto out; 632 633 kvm_s390_sync_dirty_log(kvm, memslot); 634 r = kvm_get_dirty_log(kvm, log, &is_dirty); 635 if (r) 636 goto out; 637 638 /* Clear the dirty log */ 639 if (is_dirty) { 640 n = kvm_dirty_bitmap_bytes(memslot); 641 memset(memslot->dirty_bitmap, 0, n); 642 } 643 r = 0; 644 out: 645 mutex_unlock(&kvm->slots_lock); 646 return r; 647 } 648 649 static void icpt_operexc_on_all_vcpus(struct kvm *kvm) 650 { 651 unsigned int i; 652 struct kvm_vcpu *vcpu; 653 654 kvm_for_each_vcpu(i, vcpu, kvm) { 655 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu); 656 } 657 } 658 659 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) 660 { 661 int r; 662 663 if (cap->flags) 664 return -EINVAL; 665 666 switch (cap->cap) { 667 case KVM_CAP_S390_IRQCHIP: 668 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP"); 669 kvm->arch.use_irqchip = 1; 670 r = 0; 671 break; 672 case KVM_CAP_S390_USER_SIGP: 673 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP"); 674 kvm->arch.user_sigp = 1; 675 r = 0; 676 break; 677 case KVM_CAP_S390_VECTOR_REGISTERS: 678 mutex_lock(&kvm->lock); 679 if (kvm->created_vcpus) { 680 r = -EBUSY; 681 } else if (MACHINE_HAS_VX) { 682 set_kvm_facility(kvm->arch.model.fac_mask, 129); 683 set_kvm_facility(kvm->arch.model.fac_list, 129); 684 if (test_facility(134)) { 685 set_kvm_facility(kvm->arch.model.fac_mask, 134); 686 set_kvm_facility(kvm->arch.model.fac_list, 134); 687 } 688 if (test_facility(135)) { 689 set_kvm_facility(kvm->arch.model.fac_mask, 135); 690 set_kvm_facility(kvm->arch.model.fac_list, 135); 691 } 692 if (test_facility(148)) { 693 set_kvm_facility(kvm->arch.model.fac_mask, 148); 694 set_kvm_facility(kvm->arch.model.fac_list, 148); 695 } 696 if (test_facility(152)) { 697 set_kvm_facility(kvm->arch.model.fac_mask, 152); 698 set_kvm_facility(kvm->arch.model.fac_list, 152); 699 } 700 r = 0; 701 } else 702 r = -EINVAL; 703 mutex_unlock(&kvm->lock); 704 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s", 705 r ? "(not available)" : "(success)"); 706 break; 707 case KVM_CAP_S390_RI: 708 r = -EINVAL; 709 mutex_lock(&kvm->lock); 710 if (kvm->created_vcpus) { 711 r = -EBUSY; 712 } else if (test_facility(64)) { 713 set_kvm_facility(kvm->arch.model.fac_mask, 64); 714 set_kvm_facility(kvm->arch.model.fac_list, 64); 715 r = 0; 716 } 717 mutex_unlock(&kvm->lock); 718 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s", 719 r ? "(not available)" : "(success)"); 720 break; 721 case KVM_CAP_S390_AIS: 722 mutex_lock(&kvm->lock); 723 if (kvm->created_vcpus) { 724 r = -EBUSY; 725 } else { 726 set_kvm_facility(kvm->arch.model.fac_mask, 72); 727 set_kvm_facility(kvm->arch.model.fac_list, 72); 728 r = 0; 729 } 730 mutex_unlock(&kvm->lock); 731 VM_EVENT(kvm, 3, "ENABLE: AIS %s", 732 r ? "(not available)" : "(success)"); 733 break; 734 case KVM_CAP_S390_GS: 735 r = -EINVAL; 736 mutex_lock(&kvm->lock); 737 if (kvm->created_vcpus) { 738 r = -EBUSY; 739 } else if (test_facility(133)) { 740 set_kvm_facility(kvm->arch.model.fac_mask, 133); 741 set_kvm_facility(kvm->arch.model.fac_list, 133); 742 r = 0; 743 } 744 mutex_unlock(&kvm->lock); 745 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s", 746 r ? "(not available)" : "(success)"); 747 break; 748 case KVM_CAP_S390_HPAGE_1M: 749 mutex_lock(&kvm->lock); 750 if (kvm->created_vcpus) 751 r = -EBUSY; 752 else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm)) 753 r = -EINVAL; 754 else { 755 r = 0; 756 down_write(&kvm->mm->mmap_sem); 757 kvm->mm->context.allow_gmap_hpage_1m = 1; 758 up_write(&kvm->mm->mmap_sem); 759 /* 760 * We might have to create fake 4k page 761 * tables. To avoid that the hardware works on 762 * stale PGSTEs, we emulate these instructions. 763 */ 764 kvm->arch.use_skf = 0; 765 kvm->arch.use_pfmfi = 0; 766 } 767 mutex_unlock(&kvm->lock); 768 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s", 769 r ? "(not available)" : "(success)"); 770 break; 771 case KVM_CAP_S390_USER_STSI: 772 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI"); 773 kvm->arch.user_stsi = 1; 774 r = 0; 775 break; 776 case KVM_CAP_S390_USER_INSTR0: 777 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0"); 778 kvm->arch.user_instr0 = 1; 779 icpt_operexc_on_all_vcpus(kvm); 780 r = 0; 781 break; 782 default: 783 r = -EINVAL; 784 break; 785 } 786 return r; 787 } 788 789 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 790 { 791 int ret; 792 793 switch (attr->attr) { 794 case KVM_S390_VM_MEM_LIMIT_SIZE: 795 ret = 0; 796 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes", 797 kvm->arch.mem_limit); 798 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr)) 799 ret = -EFAULT; 800 break; 801 default: 802 ret = -ENXIO; 803 break; 804 } 805 return ret; 806 } 807 808 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 809 { 810 int ret; 811 unsigned int idx; 812 switch (attr->attr) { 813 case KVM_S390_VM_MEM_ENABLE_CMMA: 814 ret = -ENXIO; 815 if (!sclp.has_cmma) 816 break; 817 818 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support"); 819 mutex_lock(&kvm->lock); 820 if (kvm->created_vcpus) 821 ret = -EBUSY; 822 else if (kvm->mm->context.allow_gmap_hpage_1m) 823 ret = -EINVAL; 824 else { 825 kvm->arch.use_cmma = 1; 826 /* Not compatible with cmma. */ 827 kvm->arch.use_pfmfi = 0; 828 ret = 0; 829 } 830 mutex_unlock(&kvm->lock); 831 break; 832 case KVM_S390_VM_MEM_CLR_CMMA: 833 ret = -ENXIO; 834 if (!sclp.has_cmma) 835 break; 836 ret = -EINVAL; 837 if (!kvm->arch.use_cmma) 838 break; 839 840 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states"); 841 mutex_lock(&kvm->lock); 842 idx = srcu_read_lock(&kvm->srcu); 843 s390_reset_cmma(kvm->arch.gmap->mm); 844 srcu_read_unlock(&kvm->srcu, idx); 845 mutex_unlock(&kvm->lock); 846 ret = 0; 847 break; 848 case KVM_S390_VM_MEM_LIMIT_SIZE: { 849 unsigned long new_limit; 850 851 if (kvm_is_ucontrol(kvm)) 852 return -EINVAL; 853 854 if (get_user(new_limit, (u64 __user *)attr->addr)) 855 return -EFAULT; 856 857 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT && 858 new_limit > kvm->arch.mem_limit) 859 return -E2BIG; 860 861 if (!new_limit) 862 return -EINVAL; 863 864 /* gmap_create takes last usable address */ 865 if (new_limit != KVM_S390_NO_MEM_LIMIT) 866 new_limit -= 1; 867 868 ret = -EBUSY; 869 mutex_lock(&kvm->lock); 870 if (!kvm->created_vcpus) { 871 /* gmap_create will round the limit up */ 872 struct gmap *new = gmap_create(current->mm, new_limit); 873 874 if (!new) { 875 ret = -ENOMEM; 876 } else { 877 gmap_remove(kvm->arch.gmap); 878 new->private = kvm; 879 kvm->arch.gmap = new; 880 ret = 0; 881 } 882 } 883 mutex_unlock(&kvm->lock); 884 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit); 885 VM_EVENT(kvm, 3, "New guest asce: 0x%pK", 886 (void *) kvm->arch.gmap->asce); 887 break; 888 } 889 default: 890 ret = -ENXIO; 891 break; 892 } 893 return ret; 894 } 895 896 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu); 897 898 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm) 899 { 900 struct kvm_vcpu *vcpu; 901 int i; 902 903 kvm_s390_vcpu_block_all(kvm); 904 905 kvm_for_each_vcpu(i, vcpu, kvm) { 906 kvm_s390_vcpu_crypto_setup(vcpu); 907 /* recreate the shadow crycb by leaving the VSIE handler */ 908 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 909 } 910 911 kvm_s390_vcpu_unblock_all(kvm); 912 } 913 914 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr) 915 { 916 mutex_lock(&kvm->lock); 917 switch (attr->attr) { 918 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 919 if (!test_kvm_facility(kvm, 76)) { 920 mutex_unlock(&kvm->lock); 921 return -EINVAL; 922 } 923 get_random_bytes( 924 kvm->arch.crypto.crycb->aes_wrapping_key_mask, 925 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 926 kvm->arch.crypto.aes_kw = 1; 927 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support"); 928 break; 929 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 930 if (!test_kvm_facility(kvm, 76)) { 931 mutex_unlock(&kvm->lock); 932 return -EINVAL; 933 } 934 get_random_bytes( 935 kvm->arch.crypto.crycb->dea_wrapping_key_mask, 936 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 937 kvm->arch.crypto.dea_kw = 1; 938 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support"); 939 break; 940 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 941 if (!test_kvm_facility(kvm, 76)) { 942 mutex_unlock(&kvm->lock); 943 return -EINVAL; 944 } 945 kvm->arch.crypto.aes_kw = 0; 946 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0, 947 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 948 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support"); 949 break; 950 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 951 if (!test_kvm_facility(kvm, 76)) { 952 mutex_unlock(&kvm->lock); 953 return -EINVAL; 954 } 955 kvm->arch.crypto.dea_kw = 0; 956 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0, 957 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 958 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support"); 959 break; 960 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 961 if (!ap_instructions_available()) { 962 mutex_unlock(&kvm->lock); 963 return -EOPNOTSUPP; 964 } 965 kvm->arch.crypto.apie = 1; 966 break; 967 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 968 if (!ap_instructions_available()) { 969 mutex_unlock(&kvm->lock); 970 return -EOPNOTSUPP; 971 } 972 kvm->arch.crypto.apie = 0; 973 break; 974 default: 975 mutex_unlock(&kvm->lock); 976 return -ENXIO; 977 } 978 979 kvm_s390_vcpu_crypto_reset_all(kvm); 980 mutex_unlock(&kvm->lock); 981 return 0; 982 } 983 984 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req) 985 { 986 int cx; 987 struct kvm_vcpu *vcpu; 988 989 kvm_for_each_vcpu(cx, vcpu, kvm) 990 kvm_s390_sync_request(req, vcpu); 991 } 992 993 /* 994 * Must be called with kvm->srcu held to avoid races on memslots, and with 995 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration. 996 */ 997 static int kvm_s390_vm_start_migration(struct kvm *kvm) 998 { 999 struct kvm_memory_slot *ms; 1000 struct kvm_memslots *slots; 1001 unsigned long ram_pages = 0; 1002 int slotnr; 1003 1004 /* migration mode already enabled */ 1005 if (kvm->arch.migration_mode) 1006 return 0; 1007 slots = kvm_memslots(kvm); 1008 if (!slots || !slots->used_slots) 1009 return -EINVAL; 1010 1011 if (!kvm->arch.use_cmma) { 1012 kvm->arch.migration_mode = 1; 1013 return 0; 1014 } 1015 /* mark all the pages in active slots as dirty */ 1016 for (slotnr = 0; slotnr < slots->used_slots; slotnr++) { 1017 ms = slots->memslots + slotnr; 1018 if (!ms->dirty_bitmap) 1019 return -EINVAL; 1020 /* 1021 * The second half of the bitmap is only used on x86, 1022 * and would be wasted otherwise, so we put it to good 1023 * use here to keep track of the state of the storage 1024 * attributes. 1025 */ 1026 memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms)); 1027 ram_pages += ms->npages; 1028 } 1029 atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages); 1030 kvm->arch.migration_mode = 1; 1031 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION); 1032 return 0; 1033 } 1034 1035 /* 1036 * Must be called with kvm->slots_lock to avoid races with ourselves and 1037 * kvm_s390_vm_start_migration. 1038 */ 1039 static int kvm_s390_vm_stop_migration(struct kvm *kvm) 1040 { 1041 /* migration mode already disabled */ 1042 if (!kvm->arch.migration_mode) 1043 return 0; 1044 kvm->arch.migration_mode = 0; 1045 if (kvm->arch.use_cmma) 1046 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION); 1047 return 0; 1048 } 1049 1050 static int kvm_s390_vm_set_migration(struct kvm *kvm, 1051 struct kvm_device_attr *attr) 1052 { 1053 int res = -ENXIO; 1054 1055 mutex_lock(&kvm->slots_lock); 1056 switch (attr->attr) { 1057 case KVM_S390_VM_MIGRATION_START: 1058 res = kvm_s390_vm_start_migration(kvm); 1059 break; 1060 case KVM_S390_VM_MIGRATION_STOP: 1061 res = kvm_s390_vm_stop_migration(kvm); 1062 break; 1063 default: 1064 break; 1065 } 1066 mutex_unlock(&kvm->slots_lock); 1067 1068 return res; 1069 } 1070 1071 static int kvm_s390_vm_get_migration(struct kvm *kvm, 1072 struct kvm_device_attr *attr) 1073 { 1074 u64 mig = kvm->arch.migration_mode; 1075 1076 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS) 1077 return -ENXIO; 1078 1079 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig))) 1080 return -EFAULT; 1081 return 0; 1082 } 1083 1084 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1085 { 1086 struct kvm_s390_vm_tod_clock gtod; 1087 1088 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod))) 1089 return -EFAULT; 1090 1091 if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx) 1092 return -EINVAL; 1093 kvm_s390_set_tod_clock(kvm, >od); 1094 1095 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx", 1096 gtod.epoch_idx, gtod.tod); 1097 1098 return 0; 1099 } 1100 1101 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1102 { 1103 u8 gtod_high; 1104 1105 if (copy_from_user(>od_high, (void __user *)attr->addr, 1106 sizeof(gtod_high))) 1107 return -EFAULT; 1108 1109 if (gtod_high != 0) 1110 return -EINVAL; 1111 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high); 1112 1113 return 0; 1114 } 1115 1116 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1117 { 1118 struct kvm_s390_vm_tod_clock gtod = { 0 }; 1119 1120 if (copy_from_user(>od.tod, (void __user *)attr->addr, 1121 sizeof(gtod.tod))) 1122 return -EFAULT; 1123 1124 kvm_s390_set_tod_clock(kvm, >od); 1125 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod); 1126 return 0; 1127 } 1128 1129 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1130 { 1131 int ret; 1132 1133 if (attr->flags) 1134 return -EINVAL; 1135 1136 switch (attr->attr) { 1137 case KVM_S390_VM_TOD_EXT: 1138 ret = kvm_s390_set_tod_ext(kvm, attr); 1139 break; 1140 case KVM_S390_VM_TOD_HIGH: 1141 ret = kvm_s390_set_tod_high(kvm, attr); 1142 break; 1143 case KVM_S390_VM_TOD_LOW: 1144 ret = kvm_s390_set_tod_low(kvm, attr); 1145 break; 1146 default: 1147 ret = -ENXIO; 1148 break; 1149 } 1150 return ret; 1151 } 1152 1153 static void kvm_s390_get_tod_clock(struct kvm *kvm, 1154 struct kvm_s390_vm_tod_clock *gtod) 1155 { 1156 struct kvm_s390_tod_clock_ext htod; 1157 1158 preempt_disable(); 1159 1160 get_tod_clock_ext((char *)&htod); 1161 1162 gtod->tod = htod.tod + kvm->arch.epoch; 1163 gtod->epoch_idx = 0; 1164 if (test_kvm_facility(kvm, 139)) { 1165 gtod->epoch_idx = htod.epoch_idx + kvm->arch.epdx; 1166 if (gtod->tod < htod.tod) 1167 gtod->epoch_idx += 1; 1168 } 1169 1170 preempt_enable(); 1171 } 1172 1173 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1174 { 1175 struct kvm_s390_vm_tod_clock gtod; 1176 1177 memset(>od, 0, sizeof(gtod)); 1178 kvm_s390_get_tod_clock(kvm, >od); 1179 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1180 return -EFAULT; 1181 1182 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx", 1183 gtod.epoch_idx, gtod.tod); 1184 return 0; 1185 } 1186 1187 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1188 { 1189 u8 gtod_high = 0; 1190 1191 if (copy_to_user((void __user *)attr->addr, >od_high, 1192 sizeof(gtod_high))) 1193 return -EFAULT; 1194 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high); 1195 1196 return 0; 1197 } 1198 1199 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1200 { 1201 u64 gtod; 1202 1203 gtod = kvm_s390_get_tod_clock_fast(kvm); 1204 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1205 return -EFAULT; 1206 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod); 1207 1208 return 0; 1209 } 1210 1211 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1212 { 1213 int ret; 1214 1215 if (attr->flags) 1216 return -EINVAL; 1217 1218 switch (attr->attr) { 1219 case KVM_S390_VM_TOD_EXT: 1220 ret = kvm_s390_get_tod_ext(kvm, attr); 1221 break; 1222 case KVM_S390_VM_TOD_HIGH: 1223 ret = kvm_s390_get_tod_high(kvm, attr); 1224 break; 1225 case KVM_S390_VM_TOD_LOW: 1226 ret = kvm_s390_get_tod_low(kvm, attr); 1227 break; 1228 default: 1229 ret = -ENXIO; 1230 break; 1231 } 1232 return ret; 1233 } 1234 1235 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1236 { 1237 struct kvm_s390_vm_cpu_processor *proc; 1238 u16 lowest_ibc, unblocked_ibc; 1239 int ret = 0; 1240 1241 mutex_lock(&kvm->lock); 1242 if (kvm->created_vcpus) { 1243 ret = -EBUSY; 1244 goto out; 1245 } 1246 proc = kzalloc(sizeof(*proc), GFP_KERNEL); 1247 if (!proc) { 1248 ret = -ENOMEM; 1249 goto out; 1250 } 1251 if (!copy_from_user(proc, (void __user *)attr->addr, 1252 sizeof(*proc))) { 1253 kvm->arch.model.cpuid = proc->cpuid; 1254 lowest_ibc = sclp.ibc >> 16 & 0xfff; 1255 unblocked_ibc = sclp.ibc & 0xfff; 1256 if (lowest_ibc && proc->ibc) { 1257 if (proc->ibc > unblocked_ibc) 1258 kvm->arch.model.ibc = unblocked_ibc; 1259 else if (proc->ibc < lowest_ibc) 1260 kvm->arch.model.ibc = lowest_ibc; 1261 else 1262 kvm->arch.model.ibc = proc->ibc; 1263 } 1264 memcpy(kvm->arch.model.fac_list, proc->fac_list, 1265 S390_ARCH_FAC_LIST_SIZE_BYTE); 1266 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1267 kvm->arch.model.ibc, 1268 kvm->arch.model.cpuid); 1269 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1270 kvm->arch.model.fac_list[0], 1271 kvm->arch.model.fac_list[1], 1272 kvm->arch.model.fac_list[2]); 1273 } else 1274 ret = -EFAULT; 1275 kfree(proc); 1276 out: 1277 mutex_unlock(&kvm->lock); 1278 return ret; 1279 } 1280 1281 static int kvm_s390_set_processor_feat(struct kvm *kvm, 1282 struct kvm_device_attr *attr) 1283 { 1284 struct kvm_s390_vm_cpu_feat data; 1285 1286 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data))) 1287 return -EFAULT; 1288 if (!bitmap_subset((unsigned long *) data.feat, 1289 kvm_s390_available_cpu_feat, 1290 KVM_S390_VM_CPU_FEAT_NR_BITS)) 1291 return -EINVAL; 1292 1293 mutex_lock(&kvm->lock); 1294 if (kvm->created_vcpus) { 1295 mutex_unlock(&kvm->lock); 1296 return -EBUSY; 1297 } 1298 bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat, 1299 KVM_S390_VM_CPU_FEAT_NR_BITS); 1300 mutex_unlock(&kvm->lock); 1301 VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1302 data.feat[0], 1303 data.feat[1], 1304 data.feat[2]); 1305 return 0; 1306 } 1307 1308 static int kvm_s390_set_processor_subfunc(struct kvm *kvm, 1309 struct kvm_device_attr *attr) 1310 { 1311 mutex_lock(&kvm->lock); 1312 if (kvm->created_vcpus) { 1313 mutex_unlock(&kvm->lock); 1314 return -EBUSY; 1315 } 1316 1317 if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr, 1318 sizeof(struct kvm_s390_vm_cpu_subfunc))) { 1319 mutex_unlock(&kvm->lock); 1320 return -EFAULT; 1321 } 1322 mutex_unlock(&kvm->lock); 1323 1324 VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1325 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1326 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1327 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1328 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1329 VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1330 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1331 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1332 VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1333 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1334 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1335 VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1336 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1337 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1338 VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx", 1339 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1340 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1341 VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1342 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1343 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1344 VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1345 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1346 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1347 VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1348 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1349 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1350 VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1351 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1352 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1353 VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1354 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1355 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1356 VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1357 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1358 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1359 VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1360 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1361 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1362 VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1363 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1364 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1365 VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1366 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1367 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1368 VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1369 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1370 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1371 VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1372 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1373 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1374 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1375 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1376 VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1377 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1378 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1379 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1380 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1381 1382 return 0; 1383 } 1384 1385 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1386 { 1387 int ret = -ENXIO; 1388 1389 switch (attr->attr) { 1390 case KVM_S390_VM_CPU_PROCESSOR: 1391 ret = kvm_s390_set_processor(kvm, attr); 1392 break; 1393 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1394 ret = kvm_s390_set_processor_feat(kvm, attr); 1395 break; 1396 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1397 ret = kvm_s390_set_processor_subfunc(kvm, attr); 1398 break; 1399 } 1400 return ret; 1401 } 1402 1403 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1404 { 1405 struct kvm_s390_vm_cpu_processor *proc; 1406 int ret = 0; 1407 1408 proc = kzalloc(sizeof(*proc), GFP_KERNEL); 1409 if (!proc) { 1410 ret = -ENOMEM; 1411 goto out; 1412 } 1413 proc->cpuid = kvm->arch.model.cpuid; 1414 proc->ibc = kvm->arch.model.ibc; 1415 memcpy(&proc->fac_list, kvm->arch.model.fac_list, 1416 S390_ARCH_FAC_LIST_SIZE_BYTE); 1417 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1418 kvm->arch.model.ibc, 1419 kvm->arch.model.cpuid); 1420 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1421 kvm->arch.model.fac_list[0], 1422 kvm->arch.model.fac_list[1], 1423 kvm->arch.model.fac_list[2]); 1424 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc))) 1425 ret = -EFAULT; 1426 kfree(proc); 1427 out: 1428 return ret; 1429 } 1430 1431 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr) 1432 { 1433 struct kvm_s390_vm_cpu_machine *mach; 1434 int ret = 0; 1435 1436 mach = kzalloc(sizeof(*mach), GFP_KERNEL); 1437 if (!mach) { 1438 ret = -ENOMEM; 1439 goto out; 1440 } 1441 get_cpu_id((struct cpuid *) &mach->cpuid); 1442 mach->ibc = sclp.ibc; 1443 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask, 1444 S390_ARCH_FAC_LIST_SIZE_BYTE); 1445 memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list, 1446 sizeof(S390_lowcore.stfle_fac_list)); 1447 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx", 1448 kvm->arch.model.ibc, 1449 kvm->arch.model.cpuid); 1450 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx", 1451 mach->fac_mask[0], 1452 mach->fac_mask[1], 1453 mach->fac_mask[2]); 1454 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1455 mach->fac_list[0], 1456 mach->fac_list[1], 1457 mach->fac_list[2]); 1458 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach))) 1459 ret = -EFAULT; 1460 kfree(mach); 1461 out: 1462 return ret; 1463 } 1464 1465 static int kvm_s390_get_processor_feat(struct kvm *kvm, 1466 struct kvm_device_attr *attr) 1467 { 1468 struct kvm_s390_vm_cpu_feat data; 1469 1470 bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat, 1471 KVM_S390_VM_CPU_FEAT_NR_BITS); 1472 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1473 return -EFAULT; 1474 VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1475 data.feat[0], 1476 data.feat[1], 1477 data.feat[2]); 1478 return 0; 1479 } 1480 1481 static int kvm_s390_get_machine_feat(struct kvm *kvm, 1482 struct kvm_device_attr *attr) 1483 { 1484 struct kvm_s390_vm_cpu_feat data; 1485 1486 bitmap_copy((unsigned long *) data.feat, 1487 kvm_s390_available_cpu_feat, 1488 KVM_S390_VM_CPU_FEAT_NR_BITS); 1489 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1490 return -EFAULT; 1491 VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1492 data.feat[0], 1493 data.feat[1], 1494 data.feat[2]); 1495 return 0; 1496 } 1497 1498 static int kvm_s390_get_processor_subfunc(struct kvm *kvm, 1499 struct kvm_device_attr *attr) 1500 { 1501 if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs, 1502 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1503 return -EFAULT; 1504 1505 VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1506 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1507 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1508 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1509 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1510 VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1511 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1512 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1513 VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1514 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1515 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1516 VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1517 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1518 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1519 VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx", 1520 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1521 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1522 VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1523 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1524 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1525 VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1526 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1527 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1528 VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1529 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1530 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1531 VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1532 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1533 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1534 VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1535 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1536 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1537 VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1538 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1539 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1540 VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1541 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1542 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1543 VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1544 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1545 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1546 VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1547 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1548 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1549 VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1550 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1551 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1552 VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1553 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1554 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1555 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1556 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1557 VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1558 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1559 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1560 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1561 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1562 1563 return 0; 1564 } 1565 1566 static int kvm_s390_get_machine_subfunc(struct kvm *kvm, 1567 struct kvm_device_attr *attr) 1568 { 1569 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc, 1570 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1571 return -EFAULT; 1572 1573 VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1574 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0], 1575 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1], 1576 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2], 1577 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]); 1578 VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx", 1579 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0], 1580 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]); 1581 VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx", 1582 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0], 1583 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]); 1584 VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx", 1585 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0], 1586 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]); 1587 VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx", 1588 ((unsigned long *) &kvm_s390_available_subfunc.km)[0], 1589 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]); 1590 VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx", 1591 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0], 1592 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]); 1593 VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx", 1594 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0], 1595 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]); 1596 VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx", 1597 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0], 1598 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]); 1599 VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx", 1600 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0], 1601 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]); 1602 VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx", 1603 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0], 1604 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]); 1605 VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx", 1606 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0], 1607 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]); 1608 VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx", 1609 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0], 1610 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]); 1611 VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx", 1612 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0], 1613 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]); 1614 VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx", 1615 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0], 1616 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]); 1617 VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx", 1618 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0], 1619 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]); 1620 VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1621 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0], 1622 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1], 1623 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2], 1624 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]); 1625 VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1626 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0], 1627 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1], 1628 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2], 1629 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]); 1630 1631 return 0; 1632 } 1633 1634 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1635 { 1636 int ret = -ENXIO; 1637 1638 switch (attr->attr) { 1639 case KVM_S390_VM_CPU_PROCESSOR: 1640 ret = kvm_s390_get_processor(kvm, attr); 1641 break; 1642 case KVM_S390_VM_CPU_MACHINE: 1643 ret = kvm_s390_get_machine(kvm, attr); 1644 break; 1645 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1646 ret = kvm_s390_get_processor_feat(kvm, attr); 1647 break; 1648 case KVM_S390_VM_CPU_MACHINE_FEAT: 1649 ret = kvm_s390_get_machine_feat(kvm, attr); 1650 break; 1651 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1652 ret = kvm_s390_get_processor_subfunc(kvm, attr); 1653 break; 1654 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1655 ret = kvm_s390_get_machine_subfunc(kvm, attr); 1656 break; 1657 } 1658 return ret; 1659 } 1660 1661 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1662 { 1663 int ret; 1664 1665 switch (attr->group) { 1666 case KVM_S390_VM_MEM_CTRL: 1667 ret = kvm_s390_set_mem_control(kvm, attr); 1668 break; 1669 case KVM_S390_VM_TOD: 1670 ret = kvm_s390_set_tod(kvm, attr); 1671 break; 1672 case KVM_S390_VM_CPU_MODEL: 1673 ret = kvm_s390_set_cpu_model(kvm, attr); 1674 break; 1675 case KVM_S390_VM_CRYPTO: 1676 ret = kvm_s390_vm_set_crypto(kvm, attr); 1677 break; 1678 case KVM_S390_VM_MIGRATION: 1679 ret = kvm_s390_vm_set_migration(kvm, attr); 1680 break; 1681 default: 1682 ret = -ENXIO; 1683 break; 1684 } 1685 1686 return ret; 1687 } 1688 1689 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1690 { 1691 int ret; 1692 1693 switch (attr->group) { 1694 case KVM_S390_VM_MEM_CTRL: 1695 ret = kvm_s390_get_mem_control(kvm, attr); 1696 break; 1697 case KVM_S390_VM_TOD: 1698 ret = kvm_s390_get_tod(kvm, attr); 1699 break; 1700 case KVM_S390_VM_CPU_MODEL: 1701 ret = kvm_s390_get_cpu_model(kvm, attr); 1702 break; 1703 case KVM_S390_VM_MIGRATION: 1704 ret = kvm_s390_vm_get_migration(kvm, attr); 1705 break; 1706 default: 1707 ret = -ENXIO; 1708 break; 1709 } 1710 1711 return ret; 1712 } 1713 1714 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1715 { 1716 int ret; 1717 1718 switch (attr->group) { 1719 case KVM_S390_VM_MEM_CTRL: 1720 switch (attr->attr) { 1721 case KVM_S390_VM_MEM_ENABLE_CMMA: 1722 case KVM_S390_VM_MEM_CLR_CMMA: 1723 ret = sclp.has_cmma ? 0 : -ENXIO; 1724 break; 1725 case KVM_S390_VM_MEM_LIMIT_SIZE: 1726 ret = 0; 1727 break; 1728 default: 1729 ret = -ENXIO; 1730 break; 1731 } 1732 break; 1733 case KVM_S390_VM_TOD: 1734 switch (attr->attr) { 1735 case KVM_S390_VM_TOD_LOW: 1736 case KVM_S390_VM_TOD_HIGH: 1737 ret = 0; 1738 break; 1739 default: 1740 ret = -ENXIO; 1741 break; 1742 } 1743 break; 1744 case KVM_S390_VM_CPU_MODEL: 1745 switch (attr->attr) { 1746 case KVM_S390_VM_CPU_PROCESSOR: 1747 case KVM_S390_VM_CPU_MACHINE: 1748 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1749 case KVM_S390_VM_CPU_MACHINE_FEAT: 1750 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1751 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1752 ret = 0; 1753 break; 1754 default: 1755 ret = -ENXIO; 1756 break; 1757 } 1758 break; 1759 case KVM_S390_VM_CRYPTO: 1760 switch (attr->attr) { 1761 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 1762 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 1763 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 1764 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 1765 ret = 0; 1766 break; 1767 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 1768 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 1769 ret = ap_instructions_available() ? 0 : -ENXIO; 1770 break; 1771 default: 1772 ret = -ENXIO; 1773 break; 1774 } 1775 break; 1776 case KVM_S390_VM_MIGRATION: 1777 ret = 0; 1778 break; 1779 default: 1780 ret = -ENXIO; 1781 break; 1782 } 1783 1784 return ret; 1785 } 1786 1787 static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 1788 { 1789 uint8_t *keys; 1790 uint64_t hva; 1791 int srcu_idx, i, r = 0; 1792 1793 if (args->flags != 0) 1794 return -EINVAL; 1795 1796 /* Is this guest using storage keys? */ 1797 if (!mm_uses_skeys(current->mm)) 1798 return KVM_S390_GET_SKEYS_NONE; 1799 1800 /* Enforce sane limit on memory allocation */ 1801 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 1802 return -EINVAL; 1803 1804 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL); 1805 if (!keys) 1806 return -ENOMEM; 1807 1808 down_read(¤t->mm->mmap_sem); 1809 srcu_idx = srcu_read_lock(&kvm->srcu); 1810 for (i = 0; i < args->count; i++) { 1811 hva = gfn_to_hva(kvm, args->start_gfn + i); 1812 if (kvm_is_error_hva(hva)) { 1813 r = -EFAULT; 1814 break; 1815 } 1816 1817 r = get_guest_storage_key(current->mm, hva, &keys[i]); 1818 if (r) 1819 break; 1820 } 1821 srcu_read_unlock(&kvm->srcu, srcu_idx); 1822 up_read(¤t->mm->mmap_sem); 1823 1824 if (!r) { 1825 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys, 1826 sizeof(uint8_t) * args->count); 1827 if (r) 1828 r = -EFAULT; 1829 } 1830 1831 kvfree(keys); 1832 return r; 1833 } 1834 1835 static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 1836 { 1837 uint8_t *keys; 1838 uint64_t hva; 1839 int srcu_idx, i, r = 0; 1840 bool unlocked; 1841 1842 if (args->flags != 0) 1843 return -EINVAL; 1844 1845 /* Enforce sane limit on memory allocation */ 1846 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 1847 return -EINVAL; 1848 1849 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL); 1850 if (!keys) 1851 return -ENOMEM; 1852 1853 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr, 1854 sizeof(uint8_t) * args->count); 1855 if (r) { 1856 r = -EFAULT; 1857 goto out; 1858 } 1859 1860 /* Enable storage key handling for the guest */ 1861 r = s390_enable_skey(); 1862 if (r) 1863 goto out; 1864 1865 i = 0; 1866 down_read(¤t->mm->mmap_sem); 1867 srcu_idx = srcu_read_lock(&kvm->srcu); 1868 while (i < args->count) { 1869 unlocked = false; 1870 hva = gfn_to_hva(kvm, args->start_gfn + i); 1871 if (kvm_is_error_hva(hva)) { 1872 r = -EFAULT; 1873 break; 1874 } 1875 1876 /* Lowest order bit is reserved */ 1877 if (keys[i] & 0x01) { 1878 r = -EINVAL; 1879 break; 1880 } 1881 1882 r = set_guest_storage_key(current->mm, hva, keys[i], 0); 1883 if (r) { 1884 r = fixup_user_fault(current, current->mm, hva, 1885 FAULT_FLAG_WRITE, &unlocked); 1886 if (r) 1887 break; 1888 } 1889 if (!r) 1890 i++; 1891 } 1892 srcu_read_unlock(&kvm->srcu, srcu_idx); 1893 up_read(¤t->mm->mmap_sem); 1894 out: 1895 kvfree(keys); 1896 return r; 1897 } 1898 1899 /* 1900 * Base address and length must be sent at the start of each block, therefore 1901 * it's cheaper to send some clean data, as long as it's less than the size of 1902 * two longs. 1903 */ 1904 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *)) 1905 /* for consistency */ 1906 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX) 1907 1908 /* 1909 * Similar to gfn_to_memslot, but returns the index of a memslot also when the 1910 * address falls in a hole. In that case the index of one of the memslots 1911 * bordering the hole is returned. 1912 */ 1913 static int gfn_to_memslot_approx(struct kvm_memslots *slots, gfn_t gfn) 1914 { 1915 int start = 0, end = slots->used_slots; 1916 int slot = atomic_read(&slots->lru_slot); 1917 struct kvm_memory_slot *memslots = slots->memslots; 1918 1919 if (gfn >= memslots[slot].base_gfn && 1920 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1921 return slot; 1922 1923 while (start < end) { 1924 slot = start + (end - start) / 2; 1925 1926 if (gfn >= memslots[slot].base_gfn) 1927 end = slot; 1928 else 1929 start = slot + 1; 1930 } 1931 1932 if (gfn >= memslots[start].base_gfn && 1933 gfn < memslots[start].base_gfn + memslots[start].npages) { 1934 atomic_set(&slots->lru_slot, start); 1935 } 1936 1937 return start; 1938 } 1939 1940 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 1941 u8 *res, unsigned long bufsize) 1942 { 1943 unsigned long pgstev, hva, cur_gfn = args->start_gfn; 1944 1945 args->count = 0; 1946 while (args->count < bufsize) { 1947 hva = gfn_to_hva(kvm, cur_gfn); 1948 /* 1949 * We return an error if the first value was invalid, but we 1950 * return successfully if at least one value was copied. 1951 */ 1952 if (kvm_is_error_hva(hva)) 1953 return args->count ? 0 : -EFAULT; 1954 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 1955 pgstev = 0; 1956 res[args->count++] = (pgstev >> 24) & 0x43; 1957 cur_gfn++; 1958 } 1959 1960 return 0; 1961 } 1962 1963 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots, 1964 unsigned long cur_gfn) 1965 { 1966 int slotidx = gfn_to_memslot_approx(slots, cur_gfn); 1967 struct kvm_memory_slot *ms = slots->memslots + slotidx; 1968 unsigned long ofs = cur_gfn - ms->base_gfn; 1969 1970 if (ms->base_gfn + ms->npages <= cur_gfn) { 1971 slotidx--; 1972 /* If we are above the highest slot, wrap around */ 1973 if (slotidx < 0) 1974 slotidx = slots->used_slots - 1; 1975 1976 ms = slots->memslots + slotidx; 1977 ofs = 0; 1978 } 1979 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs); 1980 while ((slotidx > 0) && (ofs >= ms->npages)) { 1981 slotidx--; 1982 ms = slots->memslots + slotidx; 1983 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, 0); 1984 } 1985 return ms->base_gfn + ofs; 1986 } 1987 1988 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 1989 u8 *res, unsigned long bufsize) 1990 { 1991 unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev; 1992 struct kvm_memslots *slots = kvm_memslots(kvm); 1993 struct kvm_memory_slot *ms; 1994 1995 cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn); 1996 ms = gfn_to_memslot(kvm, cur_gfn); 1997 args->count = 0; 1998 args->start_gfn = cur_gfn; 1999 if (!ms) 2000 return 0; 2001 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2002 mem_end = slots->memslots[0].base_gfn + slots->memslots[0].npages; 2003 2004 while (args->count < bufsize) { 2005 hva = gfn_to_hva(kvm, cur_gfn); 2006 if (kvm_is_error_hva(hva)) 2007 return 0; 2008 /* Decrement only if we actually flipped the bit to 0 */ 2009 if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms))) 2010 atomic64_dec(&kvm->arch.cmma_dirty_pages); 2011 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2012 pgstev = 0; 2013 /* Save the value */ 2014 res[args->count++] = (pgstev >> 24) & 0x43; 2015 /* If the next bit is too far away, stop. */ 2016 if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE) 2017 return 0; 2018 /* If we reached the previous "next", find the next one */ 2019 if (cur_gfn == next_gfn) 2020 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2021 /* Reached the end of memory or of the buffer, stop */ 2022 if ((next_gfn >= mem_end) || 2023 (next_gfn - args->start_gfn >= bufsize)) 2024 return 0; 2025 cur_gfn++; 2026 /* Reached the end of the current memslot, take the next one. */ 2027 if (cur_gfn - ms->base_gfn >= ms->npages) { 2028 ms = gfn_to_memslot(kvm, cur_gfn); 2029 if (!ms) 2030 return 0; 2031 } 2032 } 2033 return 0; 2034 } 2035 2036 /* 2037 * This function searches for the next page with dirty CMMA attributes, and 2038 * saves the attributes in the buffer up to either the end of the buffer or 2039 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found; 2040 * no trailing clean bytes are saved. 2041 * In case no dirty bits were found, or if CMMA was not enabled or used, the 2042 * output buffer will indicate 0 as length. 2043 */ 2044 static int kvm_s390_get_cmma_bits(struct kvm *kvm, 2045 struct kvm_s390_cmma_log *args) 2046 { 2047 unsigned long bufsize; 2048 int srcu_idx, peek, ret; 2049 u8 *values; 2050 2051 if (!kvm->arch.use_cmma) 2052 return -ENXIO; 2053 /* Invalid/unsupported flags were specified */ 2054 if (args->flags & ~KVM_S390_CMMA_PEEK) 2055 return -EINVAL; 2056 /* Migration mode query, and we are not doing a migration */ 2057 peek = !!(args->flags & KVM_S390_CMMA_PEEK); 2058 if (!peek && !kvm->arch.migration_mode) 2059 return -EINVAL; 2060 /* CMMA is disabled or was not used, or the buffer has length zero */ 2061 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX); 2062 if (!bufsize || !kvm->mm->context.uses_cmm) { 2063 memset(args, 0, sizeof(*args)); 2064 return 0; 2065 } 2066 /* We are not peeking, and there are no dirty pages */ 2067 if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) { 2068 memset(args, 0, sizeof(*args)); 2069 return 0; 2070 } 2071 2072 values = vmalloc(bufsize); 2073 if (!values) 2074 return -ENOMEM; 2075 2076 down_read(&kvm->mm->mmap_sem); 2077 srcu_idx = srcu_read_lock(&kvm->srcu); 2078 if (peek) 2079 ret = kvm_s390_peek_cmma(kvm, args, values, bufsize); 2080 else 2081 ret = kvm_s390_get_cmma(kvm, args, values, bufsize); 2082 srcu_read_unlock(&kvm->srcu, srcu_idx); 2083 up_read(&kvm->mm->mmap_sem); 2084 2085 if (kvm->arch.migration_mode) 2086 args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages); 2087 else 2088 args->remaining = 0; 2089 2090 if (copy_to_user((void __user *)args->values, values, args->count)) 2091 ret = -EFAULT; 2092 2093 vfree(values); 2094 return ret; 2095 } 2096 2097 /* 2098 * This function sets the CMMA attributes for the given pages. If the input 2099 * buffer has zero length, no action is taken, otherwise the attributes are 2100 * set and the mm->context.uses_cmm flag is set. 2101 */ 2102 static int kvm_s390_set_cmma_bits(struct kvm *kvm, 2103 const struct kvm_s390_cmma_log *args) 2104 { 2105 unsigned long hva, mask, pgstev, i; 2106 uint8_t *bits; 2107 int srcu_idx, r = 0; 2108 2109 mask = args->mask; 2110 2111 if (!kvm->arch.use_cmma) 2112 return -ENXIO; 2113 /* invalid/unsupported flags */ 2114 if (args->flags != 0) 2115 return -EINVAL; 2116 /* Enforce sane limit on memory allocation */ 2117 if (args->count > KVM_S390_CMMA_SIZE_MAX) 2118 return -EINVAL; 2119 /* Nothing to do */ 2120 if (args->count == 0) 2121 return 0; 2122 2123 bits = vmalloc(array_size(sizeof(*bits), args->count)); 2124 if (!bits) 2125 return -ENOMEM; 2126 2127 r = copy_from_user(bits, (void __user *)args->values, args->count); 2128 if (r) { 2129 r = -EFAULT; 2130 goto out; 2131 } 2132 2133 down_read(&kvm->mm->mmap_sem); 2134 srcu_idx = srcu_read_lock(&kvm->srcu); 2135 for (i = 0; i < args->count; i++) { 2136 hva = gfn_to_hva(kvm, args->start_gfn + i); 2137 if (kvm_is_error_hva(hva)) { 2138 r = -EFAULT; 2139 break; 2140 } 2141 2142 pgstev = bits[i]; 2143 pgstev = pgstev << 24; 2144 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT; 2145 set_pgste_bits(kvm->mm, hva, mask, pgstev); 2146 } 2147 srcu_read_unlock(&kvm->srcu, srcu_idx); 2148 up_read(&kvm->mm->mmap_sem); 2149 2150 if (!kvm->mm->context.uses_cmm) { 2151 down_write(&kvm->mm->mmap_sem); 2152 kvm->mm->context.uses_cmm = 1; 2153 up_write(&kvm->mm->mmap_sem); 2154 } 2155 out: 2156 vfree(bits); 2157 return r; 2158 } 2159 2160 long kvm_arch_vm_ioctl(struct file *filp, 2161 unsigned int ioctl, unsigned long arg) 2162 { 2163 struct kvm *kvm = filp->private_data; 2164 void __user *argp = (void __user *)arg; 2165 struct kvm_device_attr attr; 2166 int r; 2167 2168 switch (ioctl) { 2169 case KVM_S390_INTERRUPT: { 2170 struct kvm_s390_interrupt s390int; 2171 2172 r = -EFAULT; 2173 if (copy_from_user(&s390int, argp, sizeof(s390int))) 2174 break; 2175 r = kvm_s390_inject_vm(kvm, &s390int); 2176 break; 2177 } 2178 case KVM_CREATE_IRQCHIP: { 2179 struct kvm_irq_routing_entry routing; 2180 2181 r = -EINVAL; 2182 if (kvm->arch.use_irqchip) { 2183 /* Set up dummy routing. */ 2184 memset(&routing, 0, sizeof(routing)); 2185 r = kvm_set_irq_routing(kvm, &routing, 0, 0); 2186 } 2187 break; 2188 } 2189 case KVM_SET_DEVICE_ATTR: { 2190 r = -EFAULT; 2191 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2192 break; 2193 r = kvm_s390_vm_set_attr(kvm, &attr); 2194 break; 2195 } 2196 case KVM_GET_DEVICE_ATTR: { 2197 r = -EFAULT; 2198 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2199 break; 2200 r = kvm_s390_vm_get_attr(kvm, &attr); 2201 break; 2202 } 2203 case KVM_HAS_DEVICE_ATTR: { 2204 r = -EFAULT; 2205 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2206 break; 2207 r = kvm_s390_vm_has_attr(kvm, &attr); 2208 break; 2209 } 2210 case KVM_S390_GET_SKEYS: { 2211 struct kvm_s390_skeys args; 2212 2213 r = -EFAULT; 2214 if (copy_from_user(&args, argp, 2215 sizeof(struct kvm_s390_skeys))) 2216 break; 2217 r = kvm_s390_get_skeys(kvm, &args); 2218 break; 2219 } 2220 case KVM_S390_SET_SKEYS: { 2221 struct kvm_s390_skeys args; 2222 2223 r = -EFAULT; 2224 if (copy_from_user(&args, argp, 2225 sizeof(struct kvm_s390_skeys))) 2226 break; 2227 r = kvm_s390_set_skeys(kvm, &args); 2228 break; 2229 } 2230 case KVM_S390_GET_CMMA_BITS: { 2231 struct kvm_s390_cmma_log args; 2232 2233 r = -EFAULT; 2234 if (copy_from_user(&args, argp, sizeof(args))) 2235 break; 2236 mutex_lock(&kvm->slots_lock); 2237 r = kvm_s390_get_cmma_bits(kvm, &args); 2238 mutex_unlock(&kvm->slots_lock); 2239 if (!r) { 2240 r = copy_to_user(argp, &args, sizeof(args)); 2241 if (r) 2242 r = -EFAULT; 2243 } 2244 break; 2245 } 2246 case KVM_S390_SET_CMMA_BITS: { 2247 struct kvm_s390_cmma_log args; 2248 2249 r = -EFAULT; 2250 if (copy_from_user(&args, argp, sizeof(args))) 2251 break; 2252 mutex_lock(&kvm->slots_lock); 2253 r = kvm_s390_set_cmma_bits(kvm, &args); 2254 mutex_unlock(&kvm->slots_lock); 2255 break; 2256 } 2257 default: 2258 r = -ENOTTY; 2259 } 2260 2261 return r; 2262 } 2263 2264 static int kvm_s390_apxa_installed(void) 2265 { 2266 struct ap_config_info info; 2267 2268 if (ap_instructions_available()) { 2269 if (ap_qci(&info) == 0) 2270 return info.apxa; 2271 } 2272 2273 return 0; 2274 } 2275 2276 /* 2277 * The format of the crypto control block (CRYCB) is specified in the 3 low 2278 * order bits of the CRYCB designation (CRYCBD) field as follows: 2279 * Format 0: Neither the message security assist extension 3 (MSAX3) nor the 2280 * AP extended addressing (APXA) facility are installed. 2281 * Format 1: The APXA facility is not installed but the MSAX3 facility is. 2282 * Format 2: Both the APXA and MSAX3 facilities are installed 2283 */ 2284 static void kvm_s390_set_crycb_format(struct kvm *kvm) 2285 { 2286 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb; 2287 2288 /* Clear the CRYCB format bits - i.e., set format 0 by default */ 2289 kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK); 2290 2291 /* Check whether MSAX3 is installed */ 2292 if (!test_kvm_facility(kvm, 76)) 2293 return; 2294 2295 if (kvm_s390_apxa_installed()) 2296 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2; 2297 else 2298 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1; 2299 } 2300 2301 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm, 2302 unsigned long *aqm, unsigned long *adm) 2303 { 2304 struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb; 2305 2306 mutex_lock(&kvm->lock); 2307 kvm_s390_vcpu_block_all(kvm); 2308 2309 switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) { 2310 case CRYCB_FORMAT2: /* APCB1 use 256 bits */ 2311 memcpy(crycb->apcb1.apm, apm, 32); 2312 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx", 2313 apm[0], apm[1], apm[2], apm[3]); 2314 memcpy(crycb->apcb1.aqm, aqm, 32); 2315 VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx", 2316 aqm[0], aqm[1], aqm[2], aqm[3]); 2317 memcpy(crycb->apcb1.adm, adm, 32); 2318 VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx", 2319 adm[0], adm[1], adm[2], adm[3]); 2320 break; 2321 case CRYCB_FORMAT1: 2322 case CRYCB_FORMAT0: /* Fall through both use APCB0 */ 2323 memcpy(crycb->apcb0.apm, apm, 8); 2324 memcpy(crycb->apcb0.aqm, aqm, 2); 2325 memcpy(crycb->apcb0.adm, adm, 2); 2326 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x", 2327 apm[0], *((unsigned short *)aqm), 2328 *((unsigned short *)adm)); 2329 break; 2330 default: /* Can not happen */ 2331 break; 2332 } 2333 2334 /* recreate the shadow crycb for each vcpu */ 2335 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 2336 kvm_s390_vcpu_unblock_all(kvm); 2337 mutex_unlock(&kvm->lock); 2338 } 2339 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks); 2340 2341 void kvm_arch_crypto_clear_masks(struct kvm *kvm) 2342 { 2343 mutex_lock(&kvm->lock); 2344 kvm_s390_vcpu_block_all(kvm); 2345 2346 memset(&kvm->arch.crypto.crycb->apcb0, 0, 2347 sizeof(kvm->arch.crypto.crycb->apcb0)); 2348 memset(&kvm->arch.crypto.crycb->apcb1, 0, 2349 sizeof(kvm->arch.crypto.crycb->apcb1)); 2350 2351 VM_EVENT(kvm, 3, "%s", "CLR CRYCB:"); 2352 /* recreate the shadow crycb for each vcpu */ 2353 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 2354 kvm_s390_vcpu_unblock_all(kvm); 2355 mutex_unlock(&kvm->lock); 2356 } 2357 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks); 2358 2359 static u64 kvm_s390_get_initial_cpuid(void) 2360 { 2361 struct cpuid cpuid; 2362 2363 get_cpu_id(&cpuid); 2364 cpuid.version = 0xff; 2365 return *((u64 *) &cpuid); 2366 } 2367 2368 static void kvm_s390_crypto_init(struct kvm *kvm) 2369 { 2370 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb; 2371 kvm_s390_set_crycb_format(kvm); 2372 2373 if (!test_kvm_facility(kvm, 76)) 2374 return; 2375 2376 /* Enable AES/DEA protected key functions by default */ 2377 kvm->arch.crypto.aes_kw = 1; 2378 kvm->arch.crypto.dea_kw = 1; 2379 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 2380 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 2381 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 2382 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 2383 } 2384 2385 static void sca_dispose(struct kvm *kvm) 2386 { 2387 if (kvm->arch.use_esca) 2388 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block)); 2389 else 2390 free_page((unsigned long)(kvm->arch.sca)); 2391 kvm->arch.sca = NULL; 2392 } 2393 2394 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 2395 { 2396 gfp_t alloc_flags = GFP_KERNEL; 2397 int i, rc; 2398 char debug_name[16]; 2399 static unsigned long sca_offset; 2400 2401 rc = -EINVAL; 2402 #ifdef CONFIG_KVM_S390_UCONTROL 2403 if (type & ~KVM_VM_S390_UCONTROL) 2404 goto out_err; 2405 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN))) 2406 goto out_err; 2407 #else 2408 if (type) 2409 goto out_err; 2410 #endif 2411 2412 rc = s390_enable_sie(); 2413 if (rc) 2414 goto out_err; 2415 2416 rc = -ENOMEM; 2417 2418 if (!sclp.has_64bscao) 2419 alloc_flags |= GFP_DMA; 2420 rwlock_init(&kvm->arch.sca_lock); 2421 /* start with basic SCA */ 2422 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags); 2423 if (!kvm->arch.sca) 2424 goto out_err; 2425 mutex_lock(&kvm_lock); 2426 sca_offset += 16; 2427 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE) 2428 sca_offset = 0; 2429 kvm->arch.sca = (struct bsca_block *) 2430 ((char *) kvm->arch.sca + sca_offset); 2431 mutex_unlock(&kvm_lock); 2432 2433 sprintf(debug_name, "kvm-%u", current->pid); 2434 2435 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long)); 2436 if (!kvm->arch.dbf) 2437 goto out_err; 2438 2439 BUILD_BUG_ON(sizeof(struct sie_page2) != 4096); 2440 kvm->arch.sie_page2 = 2441 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA); 2442 if (!kvm->arch.sie_page2) 2443 goto out_err; 2444 2445 kvm->arch.sie_page2->kvm = kvm; 2446 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list; 2447 2448 for (i = 0; i < kvm_s390_fac_size(); i++) { 2449 kvm->arch.model.fac_mask[i] = S390_lowcore.stfle_fac_list[i] & 2450 (kvm_s390_fac_base[i] | 2451 kvm_s390_fac_ext[i]); 2452 kvm->arch.model.fac_list[i] = S390_lowcore.stfle_fac_list[i] & 2453 kvm_s390_fac_base[i]; 2454 } 2455 kvm->arch.model.subfuncs = kvm_s390_available_subfunc; 2456 2457 /* we are always in czam mode - even on pre z14 machines */ 2458 set_kvm_facility(kvm->arch.model.fac_mask, 138); 2459 set_kvm_facility(kvm->arch.model.fac_list, 138); 2460 /* we emulate STHYI in kvm */ 2461 set_kvm_facility(kvm->arch.model.fac_mask, 74); 2462 set_kvm_facility(kvm->arch.model.fac_list, 74); 2463 if (MACHINE_HAS_TLB_GUEST) { 2464 set_kvm_facility(kvm->arch.model.fac_mask, 147); 2465 set_kvm_facility(kvm->arch.model.fac_list, 147); 2466 } 2467 2468 if (css_general_characteristics.aiv && test_facility(65)) 2469 set_kvm_facility(kvm->arch.model.fac_mask, 65); 2470 2471 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid(); 2472 kvm->arch.model.ibc = sclp.ibc & 0x0fff; 2473 2474 kvm_s390_crypto_init(kvm); 2475 2476 mutex_init(&kvm->arch.float_int.ais_lock); 2477 spin_lock_init(&kvm->arch.float_int.lock); 2478 for (i = 0; i < FIRQ_LIST_COUNT; i++) 2479 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]); 2480 init_waitqueue_head(&kvm->arch.ipte_wq); 2481 mutex_init(&kvm->arch.ipte_mutex); 2482 2483 debug_register_view(kvm->arch.dbf, &debug_sprintf_view); 2484 VM_EVENT(kvm, 3, "vm created with type %lu", type); 2485 2486 if (type & KVM_VM_S390_UCONTROL) { 2487 kvm->arch.gmap = NULL; 2488 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT; 2489 } else { 2490 if (sclp.hamax == U64_MAX) 2491 kvm->arch.mem_limit = TASK_SIZE_MAX; 2492 else 2493 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX, 2494 sclp.hamax + 1); 2495 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1); 2496 if (!kvm->arch.gmap) 2497 goto out_err; 2498 kvm->arch.gmap->private = kvm; 2499 kvm->arch.gmap->pfault_enabled = 0; 2500 } 2501 2502 kvm->arch.use_pfmfi = sclp.has_pfmfi; 2503 kvm->arch.use_skf = sclp.has_skey; 2504 spin_lock_init(&kvm->arch.start_stop_lock); 2505 kvm_s390_vsie_init(kvm); 2506 kvm_s390_gisa_init(kvm); 2507 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid); 2508 2509 return 0; 2510 out_err: 2511 free_page((unsigned long)kvm->arch.sie_page2); 2512 debug_unregister(kvm->arch.dbf); 2513 sca_dispose(kvm); 2514 KVM_EVENT(3, "creation of vm failed: %d", rc); 2515 return rc; 2516 } 2517 2518 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 2519 { 2520 VCPU_EVENT(vcpu, 3, "%s", "free cpu"); 2521 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id); 2522 kvm_s390_clear_local_irqs(vcpu); 2523 kvm_clear_async_pf_completion_queue(vcpu); 2524 if (!kvm_is_ucontrol(vcpu->kvm)) 2525 sca_del_vcpu(vcpu); 2526 2527 if (kvm_is_ucontrol(vcpu->kvm)) 2528 gmap_remove(vcpu->arch.gmap); 2529 2530 if (vcpu->kvm->arch.use_cmma) 2531 kvm_s390_vcpu_unsetup_cmma(vcpu); 2532 free_page((unsigned long)(vcpu->arch.sie_block)); 2533 2534 kvm_vcpu_uninit(vcpu); 2535 kmem_cache_free(kvm_vcpu_cache, vcpu); 2536 } 2537 2538 static void kvm_free_vcpus(struct kvm *kvm) 2539 { 2540 unsigned int i; 2541 struct kvm_vcpu *vcpu; 2542 2543 kvm_for_each_vcpu(i, vcpu, kvm) 2544 kvm_arch_vcpu_destroy(vcpu); 2545 2546 mutex_lock(&kvm->lock); 2547 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 2548 kvm->vcpus[i] = NULL; 2549 2550 atomic_set(&kvm->online_vcpus, 0); 2551 mutex_unlock(&kvm->lock); 2552 } 2553 2554 void kvm_arch_destroy_vm(struct kvm *kvm) 2555 { 2556 kvm_free_vcpus(kvm); 2557 sca_dispose(kvm); 2558 debug_unregister(kvm->arch.dbf); 2559 kvm_s390_gisa_destroy(kvm); 2560 free_page((unsigned long)kvm->arch.sie_page2); 2561 if (!kvm_is_ucontrol(kvm)) 2562 gmap_remove(kvm->arch.gmap); 2563 kvm_s390_destroy_adapters(kvm); 2564 kvm_s390_clear_float_irqs(kvm); 2565 kvm_s390_vsie_destroy(kvm); 2566 KVM_EVENT(3, "vm 0x%pK destroyed", kvm); 2567 } 2568 2569 /* Section: vcpu related */ 2570 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) 2571 { 2572 vcpu->arch.gmap = gmap_create(current->mm, -1UL); 2573 if (!vcpu->arch.gmap) 2574 return -ENOMEM; 2575 vcpu->arch.gmap->private = vcpu->kvm; 2576 2577 return 0; 2578 } 2579 2580 static void sca_del_vcpu(struct kvm_vcpu *vcpu) 2581 { 2582 if (!kvm_s390_use_sca_entries()) 2583 return; 2584 read_lock(&vcpu->kvm->arch.sca_lock); 2585 if (vcpu->kvm->arch.use_esca) { 2586 struct esca_block *sca = vcpu->kvm->arch.sca; 2587 2588 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 2589 sca->cpu[vcpu->vcpu_id].sda = 0; 2590 } else { 2591 struct bsca_block *sca = vcpu->kvm->arch.sca; 2592 2593 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 2594 sca->cpu[vcpu->vcpu_id].sda = 0; 2595 } 2596 read_unlock(&vcpu->kvm->arch.sca_lock); 2597 } 2598 2599 static void sca_add_vcpu(struct kvm_vcpu *vcpu) 2600 { 2601 if (!kvm_s390_use_sca_entries()) { 2602 struct bsca_block *sca = vcpu->kvm->arch.sca; 2603 2604 /* we still need the basic sca for the ipte control */ 2605 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); 2606 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca; 2607 return; 2608 } 2609 read_lock(&vcpu->kvm->arch.sca_lock); 2610 if (vcpu->kvm->arch.use_esca) { 2611 struct esca_block *sca = vcpu->kvm->arch.sca; 2612 2613 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block; 2614 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); 2615 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU; 2616 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 2617 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 2618 } else { 2619 struct bsca_block *sca = vcpu->kvm->arch.sca; 2620 2621 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block; 2622 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); 2623 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca; 2624 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 2625 } 2626 read_unlock(&vcpu->kvm->arch.sca_lock); 2627 } 2628 2629 /* Basic SCA to Extended SCA data copy routines */ 2630 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s) 2631 { 2632 d->sda = s->sda; 2633 d->sigp_ctrl.c = s->sigp_ctrl.c; 2634 d->sigp_ctrl.scn = s->sigp_ctrl.scn; 2635 } 2636 2637 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s) 2638 { 2639 int i; 2640 2641 d->ipte_control = s->ipte_control; 2642 d->mcn[0] = s->mcn; 2643 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++) 2644 sca_copy_entry(&d->cpu[i], &s->cpu[i]); 2645 } 2646 2647 static int sca_switch_to_extended(struct kvm *kvm) 2648 { 2649 struct bsca_block *old_sca = kvm->arch.sca; 2650 struct esca_block *new_sca; 2651 struct kvm_vcpu *vcpu; 2652 unsigned int vcpu_idx; 2653 u32 scaol, scaoh; 2654 2655 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO); 2656 if (!new_sca) 2657 return -ENOMEM; 2658 2659 scaoh = (u32)((u64)(new_sca) >> 32); 2660 scaol = (u32)(u64)(new_sca) & ~0x3fU; 2661 2662 kvm_s390_vcpu_block_all(kvm); 2663 write_lock(&kvm->arch.sca_lock); 2664 2665 sca_copy_b_to_e(new_sca, old_sca); 2666 2667 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) { 2668 vcpu->arch.sie_block->scaoh = scaoh; 2669 vcpu->arch.sie_block->scaol = scaol; 2670 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 2671 } 2672 kvm->arch.sca = new_sca; 2673 kvm->arch.use_esca = 1; 2674 2675 write_unlock(&kvm->arch.sca_lock); 2676 kvm_s390_vcpu_unblock_all(kvm); 2677 2678 free_page((unsigned long)old_sca); 2679 2680 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)", 2681 old_sca, kvm->arch.sca); 2682 return 0; 2683 } 2684 2685 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id) 2686 { 2687 int rc; 2688 2689 if (!kvm_s390_use_sca_entries()) { 2690 if (id < KVM_MAX_VCPUS) 2691 return true; 2692 return false; 2693 } 2694 if (id < KVM_S390_BSCA_CPU_SLOTS) 2695 return true; 2696 if (!sclp.has_esca || !sclp.has_64bscao) 2697 return false; 2698 2699 mutex_lock(&kvm->lock); 2700 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm); 2701 mutex_unlock(&kvm->lock); 2702 2703 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS; 2704 } 2705 2706 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 2707 { 2708 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 2709 kvm_clear_async_pf_completion_queue(vcpu); 2710 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX | 2711 KVM_SYNC_GPRS | 2712 KVM_SYNC_ACRS | 2713 KVM_SYNC_CRS | 2714 KVM_SYNC_ARCH0 | 2715 KVM_SYNC_PFAULT; 2716 kvm_s390_set_prefix(vcpu, 0); 2717 if (test_kvm_facility(vcpu->kvm, 64)) 2718 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB; 2719 if (test_kvm_facility(vcpu->kvm, 82)) 2720 vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC; 2721 if (test_kvm_facility(vcpu->kvm, 133)) 2722 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB; 2723 if (test_kvm_facility(vcpu->kvm, 156)) 2724 vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN; 2725 /* fprs can be synchronized via vrs, even if the guest has no vx. With 2726 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format. 2727 */ 2728 if (MACHINE_HAS_VX) 2729 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS; 2730 else 2731 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS; 2732 2733 if (kvm_is_ucontrol(vcpu->kvm)) 2734 return __kvm_ucontrol_vcpu_init(vcpu); 2735 2736 return 0; 2737 } 2738 2739 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 2740 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu) 2741 { 2742 WARN_ON_ONCE(vcpu->arch.cputm_start != 0); 2743 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 2744 vcpu->arch.cputm_start = get_tod_clock_fast(); 2745 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 2746 } 2747 2748 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 2749 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu) 2750 { 2751 WARN_ON_ONCE(vcpu->arch.cputm_start == 0); 2752 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 2753 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start; 2754 vcpu->arch.cputm_start = 0; 2755 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 2756 } 2757 2758 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 2759 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 2760 { 2761 WARN_ON_ONCE(vcpu->arch.cputm_enabled); 2762 vcpu->arch.cputm_enabled = true; 2763 __start_cpu_timer_accounting(vcpu); 2764 } 2765 2766 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 2767 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 2768 { 2769 WARN_ON_ONCE(!vcpu->arch.cputm_enabled); 2770 __stop_cpu_timer_accounting(vcpu); 2771 vcpu->arch.cputm_enabled = false; 2772 } 2773 2774 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 2775 { 2776 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 2777 __enable_cpu_timer_accounting(vcpu); 2778 preempt_enable(); 2779 } 2780 2781 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 2782 { 2783 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 2784 __disable_cpu_timer_accounting(vcpu); 2785 preempt_enable(); 2786 } 2787 2788 /* set the cpu timer - may only be called from the VCPU thread itself */ 2789 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm) 2790 { 2791 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 2792 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 2793 if (vcpu->arch.cputm_enabled) 2794 vcpu->arch.cputm_start = get_tod_clock_fast(); 2795 vcpu->arch.sie_block->cputm = cputm; 2796 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 2797 preempt_enable(); 2798 } 2799 2800 /* update and get the cpu timer - can also be called from other VCPU threads */ 2801 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu) 2802 { 2803 unsigned int seq; 2804 __u64 value; 2805 2806 if (unlikely(!vcpu->arch.cputm_enabled)) 2807 return vcpu->arch.sie_block->cputm; 2808 2809 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 2810 do { 2811 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount); 2812 /* 2813 * If the writer would ever execute a read in the critical 2814 * section, e.g. in irq context, we have a deadlock. 2815 */ 2816 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu); 2817 value = vcpu->arch.sie_block->cputm; 2818 /* if cputm_start is 0, accounting is being started/stopped */ 2819 if (likely(vcpu->arch.cputm_start)) 2820 value -= get_tod_clock_fast() - vcpu->arch.cputm_start; 2821 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1)); 2822 preempt_enable(); 2823 return value; 2824 } 2825 2826 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2827 { 2828 2829 gmap_enable(vcpu->arch.enabled_gmap); 2830 kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING); 2831 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 2832 __start_cpu_timer_accounting(vcpu); 2833 vcpu->cpu = cpu; 2834 } 2835 2836 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2837 { 2838 vcpu->cpu = -1; 2839 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 2840 __stop_cpu_timer_accounting(vcpu); 2841 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING); 2842 vcpu->arch.enabled_gmap = gmap_get_enabled(); 2843 gmap_disable(vcpu->arch.enabled_gmap); 2844 2845 } 2846 2847 static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu) 2848 { 2849 /* this equals initial cpu reset in pop, but we don't switch to ESA */ 2850 vcpu->arch.sie_block->gpsw.mask = 0UL; 2851 vcpu->arch.sie_block->gpsw.addr = 0UL; 2852 kvm_s390_set_prefix(vcpu, 0); 2853 kvm_s390_set_cpu_timer(vcpu, 0); 2854 vcpu->arch.sie_block->ckc = 0UL; 2855 vcpu->arch.sie_block->todpr = 0; 2856 memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64)); 2857 vcpu->arch.sie_block->gcr[0] = CR0_UNUSED_56 | 2858 CR0_INTERRUPT_KEY_SUBMASK | 2859 CR0_MEASUREMENT_ALERT_SUBMASK; 2860 vcpu->arch.sie_block->gcr[14] = CR14_UNUSED_32 | 2861 CR14_UNUSED_33 | 2862 CR14_EXTERNAL_DAMAGE_SUBMASK; 2863 /* make sure the new fpc will be lazily loaded */ 2864 save_fpu_regs(); 2865 current->thread.fpu.fpc = 0; 2866 vcpu->arch.sie_block->gbea = 1; 2867 vcpu->arch.sie_block->pp = 0; 2868 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 2869 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 2870 kvm_clear_async_pf_completion_queue(vcpu); 2871 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) 2872 kvm_s390_vcpu_stop(vcpu); 2873 kvm_s390_clear_local_irqs(vcpu); 2874 } 2875 2876 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 2877 { 2878 mutex_lock(&vcpu->kvm->lock); 2879 preempt_disable(); 2880 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch; 2881 vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx; 2882 preempt_enable(); 2883 mutex_unlock(&vcpu->kvm->lock); 2884 if (!kvm_is_ucontrol(vcpu->kvm)) { 2885 vcpu->arch.gmap = vcpu->kvm->arch.gmap; 2886 sca_add_vcpu(vcpu); 2887 } 2888 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0) 2889 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 2890 /* make vcpu_load load the right gmap on the first trigger */ 2891 vcpu->arch.enabled_gmap = vcpu->arch.gmap; 2892 } 2893 2894 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr) 2895 { 2896 if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) && 2897 test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo)) 2898 return true; 2899 return false; 2900 } 2901 2902 static bool kvm_has_pckmo_ecc(struct kvm *kvm) 2903 { 2904 /* At least one ECC subfunction must be present */ 2905 return kvm_has_pckmo_subfunc(kvm, 32) || 2906 kvm_has_pckmo_subfunc(kvm, 33) || 2907 kvm_has_pckmo_subfunc(kvm, 34) || 2908 kvm_has_pckmo_subfunc(kvm, 40) || 2909 kvm_has_pckmo_subfunc(kvm, 41); 2910 2911 } 2912 2913 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) 2914 { 2915 /* 2916 * If the AP instructions are not being interpreted and the MSAX3 2917 * facility is not configured for the guest, there is nothing to set up. 2918 */ 2919 if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76)) 2920 return; 2921 2922 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd; 2923 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA); 2924 vcpu->arch.sie_block->eca &= ~ECA_APIE; 2925 vcpu->arch.sie_block->ecd &= ~ECD_ECC; 2926 2927 if (vcpu->kvm->arch.crypto.apie) 2928 vcpu->arch.sie_block->eca |= ECA_APIE; 2929 2930 /* Set up protected key support */ 2931 if (vcpu->kvm->arch.crypto.aes_kw) { 2932 vcpu->arch.sie_block->ecb3 |= ECB3_AES; 2933 /* ecc is also wrapped with AES key */ 2934 if (kvm_has_pckmo_ecc(vcpu->kvm)) 2935 vcpu->arch.sie_block->ecd |= ECD_ECC; 2936 } 2937 2938 if (vcpu->kvm->arch.crypto.dea_kw) 2939 vcpu->arch.sie_block->ecb3 |= ECB3_DEA; 2940 } 2941 2942 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu) 2943 { 2944 free_page(vcpu->arch.sie_block->cbrlo); 2945 vcpu->arch.sie_block->cbrlo = 0; 2946 } 2947 2948 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu) 2949 { 2950 vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL); 2951 if (!vcpu->arch.sie_block->cbrlo) 2952 return -ENOMEM; 2953 return 0; 2954 } 2955 2956 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu) 2957 { 2958 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model; 2959 2960 vcpu->arch.sie_block->ibc = model->ibc; 2961 if (test_kvm_facility(vcpu->kvm, 7)) 2962 vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list; 2963 } 2964 2965 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 2966 { 2967 int rc = 0; 2968 2969 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH | 2970 CPUSTAT_SM | 2971 CPUSTAT_STOPPED); 2972 2973 if (test_kvm_facility(vcpu->kvm, 78)) 2974 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2); 2975 else if (test_kvm_facility(vcpu->kvm, 8)) 2976 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED); 2977 2978 kvm_s390_vcpu_setup_model(vcpu); 2979 2980 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */ 2981 if (MACHINE_HAS_ESOP) 2982 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT; 2983 if (test_kvm_facility(vcpu->kvm, 9)) 2984 vcpu->arch.sie_block->ecb |= ECB_SRSI; 2985 if (test_kvm_facility(vcpu->kvm, 73)) 2986 vcpu->arch.sie_block->ecb |= ECB_TE; 2987 2988 if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi) 2989 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI; 2990 if (test_kvm_facility(vcpu->kvm, 130)) 2991 vcpu->arch.sie_block->ecb2 |= ECB2_IEP; 2992 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI; 2993 if (sclp.has_cei) 2994 vcpu->arch.sie_block->eca |= ECA_CEI; 2995 if (sclp.has_ib) 2996 vcpu->arch.sie_block->eca |= ECA_IB; 2997 if (sclp.has_siif) 2998 vcpu->arch.sie_block->eca |= ECA_SII; 2999 if (sclp.has_sigpif) 3000 vcpu->arch.sie_block->eca |= ECA_SIGPI; 3001 if (test_kvm_facility(vcpu->kvm, 129)) { 3002 vcpu->arch.sie_block->eca |= ECA_VX; 3003 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 3004 } 3005 if (test_kvm_facility(vcpu->kvm, 139)) 3006 vcpu->arch.sie_block->ecd |= ECD_MEF; 3007 if (test_kvm_facility(vcpu->kvm, 156)) 3008 vcpu->arch.sie_block->ecd |= ECD_ETOKENF; 3009 if (vcpu->arch.sie_block->gd) { 3010 vcpu->arch.sie_block->eca |= ECA_AIV; 3011 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3012 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3013 } 3014 vcpu->arch.sie_block->sdnxo = ((unsigned long) &vcpu->run->s.regs.sdnx) 3015 | SDNXC; 3016 vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb; 3017 3018 if (sclp.has_kss) 3019 kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS); 3020 else 3021 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; 3022 3023 if (vcpu->kvm->arch.use_cmma) { 3024 rc = kvm_s390_vcpu_setup_cmma(vcpu); 3025 if (rc) 3026 return rc; 3027 } 3028 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3029 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup; 3030 3031 vcpu->arch.sie_block->hpid = HPID_KVM; 3032 3033 kvm_s390_vcpu_crypto_setup(vcpu); 3034 3035 return rc; 3036 } 3037 3038 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 3039 unsigned int id) 3040 { 3041 struct kvm_vcpu *vcpu; 3042 struct sie_page *sie_page; 3043 int rc = -EINVAL; 3044 3045 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id)) 3046 goto out; 3047 3048 rc = -ENOMEM; 3049 3050 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 3051 if (!vcpu) 3052 goto out; 3053 3054 BUILD_BUG_ON(sizeof(struct sie_page) != 4096); 3055 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL); 3056 if (!sie_page) 3057 goto out_free_cpu; 3058 3059 vcpu->arch.sie_block = &sie_page->sie_block; 3060 vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb; 3061 3062 /* the real guest size will always be smaller than msl */ 3063 vcpu->arch.sie_block->mso = 0; 3064 vcpu->arch.sie_block->msl = sclp.hamax; 3065 3066 vcpu->arch.sie_block->icpua = id; 3067 spin_lock_init(&vcpu->arch.local_int.lock); 3068 vcpu->arch.sie_block->gd = (u32)(u64)kvm->arch.gisa_int.origin; 3069 if (vcpu->arch.sie_block->gd && sclp.has_gisaf) 3070 vcpu->arch.sie_block->gd |= GISA_FORMAT1; 3071 seqcount_init(&vcpu->arch.cputm_seqcount); 3072 3073 rc = kvm_vcpu_init(vcpu, kvm, id); 3074 if (rc) 3075 goto out_free_sie_block; 3076 VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu, 3077 vcpu->arch.sie_block); 3078 trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block); 3079 3080 return vcpu; 3081 out_free_sie_block: 3082 free_page((unsigned long)(vcpu->arch.sie_block)); 3083 out_free_cpu: 3084 kmem_cache_free(kvm_vcpu_cache, vcpu); 3085 out: 3086 return ERR_PTR(rc); 3087 } 3088 3089 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 3090 { 3091 return kvm_s390_vcpu_has_irq(vcpu, 0); 3092 } 3093 3094 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 3095 { 3096 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE); 3097 } 3098 3099 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu) 3100 { 3101 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 3102 exit_sie(vcpu); 3103 } 3104 3105 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu) 3106 { 3107 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 3108 } 3109 3110 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu) 3111 { 3112 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 3113 exit_sie(vcpu); 3114 } 3115 3116 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu) 3117 { 3118 return atomic_read(&vcpu->arch.sie_block->prog20) & 3119 (PROG_BLOCK_SIE | PROG_REQUEST); 3120 } 3121 3122 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu) 3123 { 3124 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 3125 } 3126 3127 /* 3128 * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running. 3129 * If the CPU is not running (e.g. waiting as idle) the function will 3130 * return immediately. */ 3131 void exit_sie(struct kvm_vcpu *vcpu) 3132 { 3133 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 3134 kvm_s390_vsie_kick(vcpu); 3135 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE) 3136 cpu_relax(); 3137 } 3138 3139 /* Kick a guest cpu out of SIE to process a request synchronously */ 3140 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) 3141 { 3142 kvm_make_request(req, vcpu); 3143 kvm_s390_vcpu_request(vcpu); 3144 } 3145 3146 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 3147 unsigned long end) 3148 { 3149 struct kvm *kvm = gmap->private; 3150 struct kvm_vcpu *vcpu; 3151 unsigned long prefix; 3152 int i; 3153 3154 if (gmap_is_shadow(gmap)) 3155 return; 3156 if (start >= 1UL << 31) 3157 /* We are only interested in prefix pages */ 3158 return; 3159 kvm_for_each_vcpu(i, vcpu, kvm) { 3160 /* match against both prefix pages */ 3161 prefix = kvm_s390_get_prefix(vcpu); 3162 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) { 3163 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx", 3164 start, end); 3165 kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu); 3166 } 3167 } 3168 } 3169 3170 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 3171 { 3172 /* do not poll with more than halt_poll_max_steal percent of steal time */ 3173 if (S390_lowcore.avg_steal_timer * 100 / (TICK_USEC << 12) >= 3174 halt_poll_max_steal) { 3175 vcpu->stat.halt_no_poll_steal++; 3176 return true; 3177 } 3178 return false; 3179 } 3180 3181 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 3182 { 3183 /* kvm common code refers to this, but never calls it */ 3184 BUG(); 3185 return 0; 3186 } 3187 3188 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, 3189 struct kvm_one_reg *reg) 3190 { 3191 int r = -EINVAL; 3192 3193 switch (reg->id) { 3194 case KVM_REG_S390_TODPR: 3195 r = put_user(vcpu->arch.sie_block->todpr, 3196 (u32 __user *)reg->addr); 3197 break; 3198 case KVM_REG_S390_EPOCHDIFF: 3199 r = put_user(vcpu->arch.sie_block->epoch, 3200 (u64 __user *)reg->addr); 3201 break; 3202 case KVM_REG_S390_CPU_TIMER: 3203 r = put_user(kvm_s390_get_cpu_timer(vcpu), 3204 (u64 __user *)reg->addr); 3205 break; 3206 case KVM_REG_S390_CLOCK_COMP: 3207 r = put_user(vcpu->arch.sie_block->ckc, 3208 (u64 __user *)reg->addr); 3209 break; 3210 case KVM_REG_S390_PFTOKEN: 3211 r = put_user(vcpu->arch.pfault_token, 3212 (u64 __user *)reg->addr); 3213 break; 3214 case KVM_REG_S390_PFCOMPARE: 3215 r = put_user(vcpu->arch.pfault_compare, 3216 (u64 __user *)reg->addr); 3217 break; 3218 case KVM_REG_S390_PFSELECT: 3219 r = put_user(vcpu->arch.pfault_select, 3220 (u64 __user *)reg->addr); 3221 break; 3222 case KVM_REG_S390_PP: 3223 r = put_user(vcpu->arch.sie_block->pp, 3224 (u64 __user *)reg->addr); 3225 break; 3226 case KVM_REG_S390_GBEA: 3227 r = put_user(vcpu->arch.sie_block->gbea, 3228 (u64 __user *)reg->addr); 3229 break; 3230 default: 3231 break; 3232 } 3233 3234 return r; 3235 } 3236 3237 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, 3238 struct kvm_one_reg *reg) 3239 { 3240 int r = -EINVAL; 3241 __u64 val; 3242 3243 switch (reg->id) { 3244 case KVM_REG_S390_TODPR: 3245 r = get_user(vcpu->arch.sie_block->todpr, 3246 (u32 __user *)reg->addr); 3247 break; 3248 case KVM_REG_S390_EPOCHDIFF: 3249 r = get_user(vcpu->arch.sie_block->epoch, 3250 (u64 __user *)reg->addr); 3251 break; 3252 case KVM_REG_S390_CPU_TIMER: 3253 r = get_user(val, (u64 __user *)reg->addr); 3254 if (!r) 3255 kvm_s390_set_cpu_timer(vcpu, val); 3256 break; 3257 case KVM_REG_S390_CLOCK_COMP: 3258 r = get_user(vcpu->arch.sie_block->ckc, 3259 (u64 __user *)reg->addr); 3260 break; 3261 case KVM_REG_S390_PFTOKEN: 3262 r = get_user(vcpu->arch.pfault_token, 3263 (u64 __user *)reg->addr); 3264 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 3265 kvm_clear_async_pf_completion_queue(vcpu); 3266 break; 3267 case KVM_REG_S390_PFCOMPARE: 3268 r = get_user(vcpu->arch.pfault_compare, 3269 (u64 __user *)reg->addr); 3270 break; 3271 case KVM_REG_S390_PFSELECT: 3272 r = get_user(vcpu->arch.pfault_select, 3273 (u64 __user *)reg->addr); 3274 break; 3275 case KVM_REG_S390_PP: 3276 r = get_user(vcpu->arch.sie_block->pp, 3277 (u64 __user *)reg->addr); 3278 break; 3279 case KVM_REG_S390_GBEA: 3280 r = get_user(vcpu->arch.sie_block->gbea, 3281 (u64 __user *)reg->addr); 3282 break; 3283 default: 3284 break; 3285 } 3286 3287 return r; 3288 } 3289 3290 static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu) 3291 { 3292 kvm_s390_vcpu_initial_reset(vcpu); 3293 return 0; 3294 } 3295 3296 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 3297 { 3298 vcpu_load(vcpu); 3299 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs)); 3300 vcpu_put(vcpu); 3301 return 0; 3302 } 3303 3304 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 3305 { 3306 vcpu_load(vcpu); 3307 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs)); 3308 vcpu_put(vcpu); 3309 return 0; 3310 } 3311 3312 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 3313 struct kvm_sregs *sregs) 3314 { 3315 vcpu_load(vcpu); 3316 3317 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs)); 3318 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs)); 3319 3320 vcpu_put(vcpu); 3321 return 0; 3322 } 3323 3324 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 3325 struct kvm_sregs *sregs) 3326 { 3327 vcpu_load(vcpu); 3328 3329 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs)); 3330 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs)); 3331 3332 vcpu_put(vcpu); 3333 return 0; 3334 } 3335 3336 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 3337 { 3338 int ret = 0; 3339 3340 vcpu_load(vcpu); 3341 3342 if (test_fp_ctl(fpu->fpc)) { 3343 ret = -EINVAL; 3344 goto out; 3345 } 3346 vcpu->run->s.regs.fpc = fpu->fpc; 3347 if (MACHINE_HAS_VX) 3348 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs, 3349 (freg_t *) fpu->fprs); 3350 else 3351 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs)); 3352 3353 out: 3354 vcpu_put(vcpu); 3355 return ret; 3356 } 3357 3358 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 3359 { 3360 vcpu_load(vcpu); 3361 3362 /* make sure we have the latest values */ 3363 save_fpu_regs(); 3364 if (MACHINE_HAS_VX) 3365 convert_vx_to_fp((freg_t *) fpu->fprs, 3366 (__vector128 *) vcpu->run->s.regs.vrs); 3367 else 3368 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs)); 3369 fpu->fpc = vcpu->run->s.regs.fpc; 3370 3371 vcpu_put(vcpu); 3372 return 0; 3373 } 3374 3375 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw) 3376 { 3377 int rc = 0; 3378 3379 if (!is_vcpu_stopped(vcpu)) 3380 rc = -EBUSY; 3381 else { 3382 vcpu->run->psw_mask = psw.mask; 3383 vcpu->run->psw_addr = psw.addr; 3384 } 3385 return rc; 3386 } 3387 3388 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 3389 struct kvm_translation *tr) 3390 { 3391 return -EINVAL; /* not implemented yet */ 3392 } 3393 3394 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \ 3395 KVM_GUESTDBG_USE_HW_BP | \ 3396 KVM_GUESTDBG_ENABLE) 3397 3398 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 3399 struct kvm_guest_debug *dbg) 3400 { 3401 int rc = 0; 3402 3403 vcpu_load(vcpu); 3404 3405 vcpu->guest_debug = 0; 3406 kvm_s390_clear_bp_data(vcpu); 3407 3408 if (dbg->control & ~VALID_GUESTDBG_FLAGS) { 3409 rc = -EINVAL; 3410 goto out; 3411 } 3412 if (!sclp.has_gpere) { 3413 rc = -EINVAL; 3414 goto out; 3415 } 3416 3417 if (dbg->control & KVM_GUESTDBG_ENABLE) { 3418 vcpu->guest_debug = dbg->control; 3419 /* enforce guest PER */ 3420 kvm_s390_set_cpuflags(vcpu, CPUSTAT_P); 3421 3422 if (dbg->control & KVM_GUESTDBG_USE_HW_BP) 3423 rc = kvm_s390_import_bp_data(vcpu, dbg); 3424 } else { 3425 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 3426 vcpu->arch.guestdbg.last_bp = 0; 3427 } 3428 3429 if (rc) { 3430 vcpu->guest_debug = 0; 3431 kvm_s390_clear_bp_data(vcpu); 3432 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 3433 } 3434 3435 out: 3436 vcpu_put(vcpu); 3437 return rc; 3438 } 3439 3440 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 3441 struct kvm_mp_state *mp_state) 3442 { 3443 int ret; 3444 3445 vcpu_load(vcpu); 3446 3447 /* CHECK_STOP and LOAD are not supported yet */ 3448 ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED : 3449 KVM_MP_STATE_OPERATING; 3450 3451 vcpu_put(vcpu); 3452 return ret; 3453 } 3454 3455 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 3456 struct kvm_mp_state *mp_state) 3457 { 3458 int rc = 0; 3459 3460 vcpu_load(vcpu); 3461 3462 /* user space knows about this interface - let it control the state */ 3463 vcpu->kvm->arch.user_cpu_state_ctrl = 1; 3464 3465 switch (mp_state->mp_state) { 3466 case KVM_MP_STATE_STOPPED: 3467 kvm_s390_vcpu_stop(vcpu); 3468 break; 3469 case KVM_MP_STATE_OPERATING: 3470 kvm_s390_vcpu_start(vcpu); 3471 break; 3472 case KVM_MP_STATE_LOAD: 3473 case KVM_MP_STATE_CHECK_STOP: 3474 /* fall through - CHECK_STOP and LOAD are not supported yet */ 3475 default: 3476 rc = -ENXIO; 3477 } 3478 3479 vcpu_put(vcpu); 3480 return rc; 3481 } 3482 3483 static bool ibs_enabled(struct kvm_vcpu *vcpu) 3484 { 3485 return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS); 3486 } 3487 3488 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) 3489 { 3490 retry: 3491 kvm_s390_vcpu_request_handled(vcpu); 3492 if (!kvm_request_pending(vcpu)) 3493 return 0; 3494 /* 3495 * We use MMU_RELOAD just to re-arm the ipte notifier for the 3496 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock. 3497 * This ensures that the ipte instruction for this request has 3498 * already finished. We might race against a second unmapper that 3499 * wants to set the blocking bit. Lets just retry the request loop. 3500 */ 3501 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) { 3502 int rc; 3503 rc = gmap_mprotect_notify(vcpu->arch.gmap, 3504 kvm_s390_get_prefix(vcpu), 3505 PAGE_SIZE * 2, PROT_WRITE); 3506 if (rc) { 3507 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu); 3508 return rc; 3509 } 3510 goto retry; 3511 } 3512 3513 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 3514 vcpu->arch.sie_block->ihcpu = 0xffff; 3515 goto retry; 3516 } 3517 3518 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) { 3519 if (!ibs_enabled(vcpu)) { 3520 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1); 3521 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS); 3522 } 3523 goto retry; 3524 } 3525 3526 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) { 3527 if (ibs_enabled(vcpu)) { 3528 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0); 3529 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS); 3530 } 3531 goto retry; 3532 } 3533 3534 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) { 3535 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 3536 goto retry; 3537 } 3538 3539 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) { 3540 /* 3541 * Disable CMM virtualization; we will emulate the ESSA 3542 * instruction manually, in order to provide additional 3543 * functionalities needed for live migration. 3544 */ 3545 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA; 3546 goto retry; 3547 } 3548 3549 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) { 3550 /* 3551 * Re-enable CMM virtualization if CMMA is available and 3552 * CMM has been used. 3553 */ 3554 if ((vcpu->kvm->arch.use_cmma) && 3555 (vcpu->kvm->mm->context.uses_cmm)) 3556 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA; 3557 goto retry; 3558 } 3559 3560 /* nothing to do, just clear the request */ 3561 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 3562 /* we left the vsie handler, nothing to do, just clear the request */ 3563 kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu); 3564 3565 return 0; 3566 } 3567 3568 void kvm_s390_set_tod_clock(struct kvm *kvm, 3569 const struct kvm_s390_vm_tod_clock *gtod) 3570 { 3571 struct kvm_vcpu *vcpu; 3572 struct kvm_s390_tod_clock_ext htod; 3573 int i; 3574 3575 mutex_lock(&kvm->lock); 3576 preempt_disable(); 3577 3578 get_tod_clock_ext((char *)&htod); 3579 3580 kvm->arch.epoch = gtod->tod - htod.tod; 3581 kvm->arch.epdx = 0; 3582 if (test_kvm_facility(kvm, 139)) { 3583 kvm->arch.epdx = gtod->epoch_idx - htod.epoch_idx; 3584 if (kvm->arch.epoch > gtod->tod) 3585 kvm->arch.epdx -= 1; 3586 } 3587 3588 kvm_s390_vcpu_block_all(kvm); 3589 kvm_for_each_vcpu(i, vcpu, kvm) { 3590 vcpu->arch.sie_block->epoch = kvm->arch.epoch; 3591 vcpu->arch.sie_block->epdx = kvm->arch.epdx; 3592 } 3593 3594 kvm_s390_vcpu_unblock_all(kvm); 3595 preempt_enable(); 3596 mutex_unlock(&kvm->lock); 3597 } 3598 3599 /** 3600 * kvm_arch_fault_in_page - fault-in guest page if necessary 3601 * @vcpu: The corresponding virtual cpu 3602 * @gpa: Guest physical address 3603 * @writable: Whether the page should be writable or not 3604 * 3605 * Make sure that a guest page has been faulted-in on the host. 3606 * 3607 * Return: Zero on success, negative error code otherwise. 3608 */ 3609 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable) 3610 { 3611 return gmap_fault(vcpu->arch.gmap, gpa, 3612 writable ? FAULT_FLAG_WRITE : 0); 3613 } 3614 3615 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token, 3616 unsigned long token) 3617 { 3618 struct kvm_s390_interrupt inti; 3619 struct kvm_s390_irq irq; 3620 3621 if (start_token) { 3622 irq.u.ext.ext_params2 = token; 3623 irq.type = KVM_S390_INT_PFAULT_INIT; 3624 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq)); 3625 } else { 3626 inti.type = KVM_S390_INT_PFAULT_DONE; 3627 inti.parm64 = token; 3628 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti)); 3629 } 3630 } 3631 3632 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 3633 struct kvm_async_pf *work) 3634 { 3635 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token); 3636 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token); 3637 } 3638 3639 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 3640 struct kvm_async_pf *work) 3641 { 3642 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token); 3643 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token); 3644 } 3645 3646 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 3647 struct kvm_async_pf *work) 3648 { 3649 /* s390 will always inject the page directly */ 3650 } 3651 3652 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 3653 { 3654 /* 3655 * s390 will always inject the page directly, 3656 * but we still want check_async_completion to cleanup 3657 */ 3658 return true; 3659 } 3660 3661 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu) 3662 { 3663 hva_t hva; 3664 struct kvm_arch_async_pf arch; 3665 int rc; 3666 3667 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 3668 return 0; 3669 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) != 3670 vcpu->arch.pfault_compare) 3671 return 0; 3672 if (psw_extint_disabled(vcpu)) 3673 return 0; 3674 if (kvm_s390_vcpu_has_irq(vcpu, 0)) 3675 return 0; 3676 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) 3677 return 0; 3678 if (!vcpu->arch.gmap->pfault_enabled) 3679 return 0; 3680 3681 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr)); 3682 hva += current->thread.gmap_addr & ~PAGE_MASK; 3683 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8)) 3684 return 0; 3685 3686 rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch); 3687 return rc; 3688 } 3689 3690 static int vcpu_pre_run(struct kvm_vcpu *vcpu) 3691 { 3692 int rc, cpuflags; 3693 3694 /* 3695 * On s390 notifications for arriving pages will be delivered directly 3696 * to the guest but the house keeping for completed pfaults is 3697 * handled outside the worker. 3698 */ 3699 kvm_check_async_pf_completion(vcpu); 3700 3701 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14]; 3702 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15]; 3703 3704 if (need_resched()) 3705 schedule(); 3706 3707 if (test_cpu_flag(CIF_MCCK_PENDING)) 3708 s390_handle_mcck(); 3709 3710 if (!kvm_is_ucontrol(vcpu->kvm)) { 3711 rc = kvm_s390_deliver_pending_interrupts(vcpu); 3712 if (rc) 3713 return rc; 3714 } 3715 3716 rc = kvm_s390_handle_requests(vcpu); 3717 if (rc) 3718 return rc; 3719 3720 if (guestdbg_enabled(vcpu)) { 3721 kvm_s390_backup_guest_per_regs(vcpu); 3722 kvm_s390_patch_guest_per_regs(vcpu); 3723 } 3724 3725 clear_bit(vcpu->vcpu_id, vcpu->kvm->arch.gisa_int.kicked_mask); 3726 3727 vcpu->arch.sie_block->icptcode = 0; 3728 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags); 3729 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags); 3730 trace_kvm_s390_sie_enter(vcpu, cpuflags); 3731 3732 return 0; 3733 } 3734 3735 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu) 3736 { 3737 struct kvm_s390_pgm_info pgm_info = { 3738 .code = PGM_ADDRESSING, 3739 }; 3740 u8 opcode, ilen; 3741 int rc; 3742 3743 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction"); 3744 trace_kvm_s390_sie_fault(vcpu); 3745 3746 /* 3747 * We want to inject an addressing exception, which is defined as a 3748 * suppressing or terminating exception. However, since we came here 3749 * by a DAT access exception, the PSW still points to the faulting 3750 * instruction since DAT exceptions are nullifying. So we've got 3751 * to look up the current opcode to get the length of the instruction 3752 * to be able to forward the PSW. 3753 */ 3754 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1); 3755 ilen = insn_length(opcode); 3756 if (rc < 0) { 3757 return rc; 3758 } else if (rc) { 3759 /* Instruction-Fetching Exceptions - we can't detect the ilen. 3760 * Forward by arbitrary ilc, injection will take care of 3761 * nullification if necessary. 3762 */ 3763 pgm_info = vcpu->arch.pgm; 3764 ilen = 4; 3765 } 3766 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID; 3767 kvm_s390_forward_psw(vcpu, ilen); 3768 return kvm_s390_inject_prog_irq(vcpu, &pgm_info); 3769 } 3770 3771 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason) 3772 { 3773 struct mcck_volatile_info *mcck_info; 3774 struct sie_page *sie_page; 3775 3776 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d", 3777 vcpu->arch.sie_block->icptcode); 3778 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode); 3779 3780 if (guestdbg_enabled(vcpu)) 3781 kvm_s390_restore_guest_per_regs(vcpu); 3782 3783 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14; 3784 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15; 3785 3786 if (exit_reason == -EINTR) { 3787 VCPU_EVENT(vcpu, 3, "%s", "machine check"); 3788 sie_page = container_of(vcpu->arch.sie_block, 3789 struct sie_page, sie_block); 3790 mcck_info = &sie_page->mcck_info; 3791 kvm_s390_reinject_machine_check(vcpu, mcck_info); 3792 return 0; 3793 } 3794 3795 if (vcpu->arch.sie_block->icptcode > 0) { 3796 int rc = kvm_handle_sie_intercept(vcpu); 3797 3798 if (rc != -EOPNOTSUPP) 3799 return rc; 3800 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC; 3801 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode; 3802 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa; 3803 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb; 3804 return -EREMOTE; 3805 } else if (exit_reason != -EFAULT) { 3806 vcpu->stat.exit_null++; 3807 return 0; 3808 } else if (kvm_is_ucontrol(vcpu->kvm)) { 3809 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL; 3810 vcpu->run->s390_ucontrol.trans_exc_code = 3811 current->thread.gmap_addr; 3812 vcpu->run->s390_ucontrol.pgm_code = 0x10; 3813 return -EREMOTE; 3814 } else if (current->thread.gmap_pfault) { 3815 trace_kvm_s390_major_guest_pfault(vcpu); 3816 current->thread.gmap_pfault = 0; 3817 if (kvm_arch_setup_async_pf(vcpu)) 3818 return 0; 3819 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1); 3820 } 3821 return vcpu_post_run_fault_in_sie(vcpu); 3822 } 3823 3824 static int __vcpu_run(struct kvm_vcpu *vcpu) 3825 { 3826 int rc, exit_reason; 3827 3828 /* 3829 * We try to hold kvm->srcu during most of vcpu_run (except when run- 3830 * ning the guest), so that memslots (and other stuff) are protected 3831 */ 3832 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 3833 3834 do { 3835 rc = vcpu_pre_run(vcpu); 3836 if (rc) 3837 break; 3838 3839 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 3840 /* 3841 * As PF_VCPU will be used in fault handler, between 3842 * guest_enter and guest_exit should be no uaccess. 3843 */ 3844 local_irq_disable(); 3845 guest_enter_irqoff(); 3846 __disable_cpu_timer_accounting(vcpu); 3847 local_irq_enable(); 3848 exit_reason = sie64a(vcpu->arch.sie_block, 3849 vcpu->run->s.regs.gprs); 3850 local_irq_disable(); 3851 __enable_cpu_timer_accounting(vcpu); 3852 guest_exit_irqoff(); 3853 local_irq_enable(); 3854 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 3855 3856 rc = vcpu_post_run(vcpu, exit_reason); 3857 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc); 3858 3859 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 3860 return rc; 3861 } 3862 3863 static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 3864 { 3865 struct runtime_instr_cb *riccb; 3866 struct gs_cb *gscb; 3867 3868 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb; 3869 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb; 3870 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask; 3871 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr; 3872 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) 3873 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix); 3874 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) { 3875 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128); 3876 /* some control register changes require a tlb flush */ 3877 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 3878 } 3879 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 3880 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm); 3881 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc; 3882 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr; 3883 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp; 3884 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea; 3885 } 3886 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) { 3887 vcpu->arch.pfault_token = kvm_run->s.regs.pft; 3888 vcpu->arch.pfault_select = kvm_run->s.regs.pfs; 3889 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc; 3890 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 3891 kvm_clear_async_pf_completion_queue(vcpu); 3892 } 3893 /* 3894 * If userspace sets the riccb (e.g. after migration) to a valid state, 3895 * we should enable RI here instead of doing the lazy enablement. 3896 */ 3897 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) && 3898 test_kvm_facility(vcpu->kvm, 64) && 3899 riccb->v && 3900 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) { 3901 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)"); 3902 vcpu->arch.sie_block->ecb3 |= ECB3_RI; 3903 } 3904 /* 3905 * If userspace sets the gscb (e.g. after migration) to non-zero, 3906 * we should enable GS here instead of doing the lazy enablement. 3907 */ 3908 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) && 3909 test_kvm_facility(vcpu->kvm, 133) && 3910 gscb->gssm && 3911 !vcpu->arch.gs_enabled) { 3912 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)"); 3913 vcpu->arch.sie_block->ecb |= ECB_GS; 3914 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 3915 vcpu->arch.gs_enabled = 1; 3916 } 3917 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) && 3918 test_kvm_facility(vcpu->kvm, 82)) { 3919 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 3920 vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0; 3921 } 3922 save_access_regs(vcpu->arch.host_acrs); 3923 restore_access_regs(vcpu->run->s.regs.acrs); 3924 /* save host (userspace) fprs/vrs */ 3925 save_fpu_regs(); 3926 vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc; 3927 vcpu->arch.host_fpregs.regs = current->thread.fpu.regs; 3928 if (MACHINE_HAS_VX) 3929 current->thread.fpu.regs = vcpu->run->s.regs.vrs; 3930 else 3931 current->thread.fpu.regs = vcpu->run->s.regs.fprs; 3932 current->thread.fpu.fpc = vcpu->run->s.regs.fpc; 3933 if (test_fp_ctl(current->thread.fpu.fpc)) 3934 /* User space provided an invalid FPC, let's clear it */ 3935 current->thread.fpu.fpc = 0; 3936 if (MACHINE_HAS_GS) { 3937 preempt_disable(); 3938 __ctl_set_bit(2, 4); 3939 if (current->thread.gs_cb) { 3940 vcpu->arch.host_gscb = current->thread.gs_cb; 3941 save_gs_cb(vcpu->arch.host_gscb); 3942 } 3943 if (vcpu->arch.gs_enabled) { 3944 current->thread.gs_cb = (struct gs_cb *) 3945 &vcpu->run->s.regs.gscb; 3946 restore_gs_cb(current->thread.gs_cb); 3947 } 3948 preempt_enable(); 3949 } 3950 /* SIE will load etoken directly from SDNX and therefore kvm_run */ 3951 3952 kvm_run->kvm_dirty_regs = 0; 3953 } 3954 3955 static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 3956 { 3957 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask; 3958 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr; 3959 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu); 3960 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128); 3961 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu); 3962 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc; 3963 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr; 3964 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp; 3965 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea; 3966 kvm_run->s.regs.pft = vcpu->arch.pfault_token; 3967 kvm_run->s.regs.pfs = vcpu->arch.pfault_select; 3968 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare; 3969 kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC; 3970 save_access_regs(vcpu->run->s.regs.acrs); 3971 restore_access_regs(vcpu->arch.host_acrs); 3972 /* Save guest register state */ 3973 save_fpu_regs(); 3974 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 3975 /* Restore will be done lazily at return */ 3976 current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc; 3977 current->thread.fpu.regs = vcpu->arch.host_fpregs.regs; 3978 if (MACHINE_HAS_GS) { 3979 __ctl_set_bit(2, 4); 3980 if (vcpu->arch.gs_enabled) 3981 save_gs_cb(current->thread.gs_cb); 3982 preempt_disable(); 3983 current->thread.gs_cb = vcpu->arch.host_gscb; 3984 restore_gs_cb(vcpu->arch.host_gscb); 3985 preempt_enable(); 3986 if (!vcpu->arch.host_gscb) 3987 __ctl_clear_bit(2, 4); 3988 vcpu->arch.host_gscb = NULL; 3989 } 3990 /* SIE will save etoken directly into SDNX and therefore kvm_run */ 3991 } 3992 3993 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 3994 { 3995 int rc; 3996 3997 if (kvm_run->immediate_exit) 3998 return -EINTR; 3999 4000 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS || 4001 kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS) 4002 return -EINVAL; 4003 4004 vcpu_load(vcpu); 4005 4006 if (guestdbg_exit_pending(vcpu)) { 4007 kvm_s390_prepare_debug_exit(vcpu); 4008 rc = 0; 4009 goto out; 4010 } 4011 4012 kvm_sigset_activate(vcpu); 4013 4014 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) { 4015 kvm_s390_vcpu_start(vcpu); 4016 } else if (is_vcpu_stopped(vcpu)) { 4017 pr_err_ratelimited("can't run stopped vcpu %d\n", 4018 vcpu->vcpu_id); 4019 rc = -EINVAL; 4020 goto out; 4021 } 4022 4023 sync_regs(vcpu, kvm_run); 4024 enable_cpu_timer_accounting(vcpu); 4025 4026 might_fault(); 4027 rc = __vcpu_run(vcpu); 4028 4029 if (signal_pending(current) && !rc) { 4030 kvm_run->exit_reason = KVM_EXIT_INTR; 4031 rc = -EINTR; 4032 } 4033 4034 if (guestdbg_exit_pending(vcpu) && !rc) { 4035 kvm_s390_prepare_debug_exit(vcpu); 4036 rc = 0; 4037 } 4038 4039 if (rc == -EREMOTE) { 4040 /* userspace support is needed, kvm_run has been prepared */ 4041 rc = 0; 4042 } 4043 4044 disable_cpu_timer_accounting(vcpu); 4045 store_regs(vcpu, kvm_run); 4046 4047 kvm_sigset_deactivate(vcpu); 4048 4049 vcpu->stat.exit_userspace++; 4050 out: 4051 vcpu_put(vcpu); 4052 return rc; 4053 } 4054 4055 /* 4056 * store status at address 4057 * we use have two special cases: 4058 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit 4059 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix 4060 */ 4061 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa) 4062 { 4063 unsigned char archmode = 1; 4064 freg_t fprs[NUM_FPRS]; 4065 unsigned int px; 4066 u64 clkcomp, cputm; 4067 int rc; 4068 4069 px = kvm_s390_get_prefix(vcpu); 4070 if (gpa == KVM_S390_STORE_STATUS_NOADDR) { 4071 if (write_guest_abs(vcpu, 163, &archmode, 1)) 4072 return -EFAULT; 4073 gpa = 0; 4074 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) { 4075 if (write_guest_real(vcpu, 163, &archmode, 1)) 4076 return -EFAULT; 4077 gpa = px; 4078 } else 4079 gpa -= __LC_FPREGS_SAVE_AREA; 4080 4081 /* manually convert vector registers if necessary */ 4082 if (MACHINE_HAS_VX) { 4083 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 4084 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 4085 fprs, 128); 4086 } else { 4087 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 4088 vcpu->run->s.regs.fprs, 128); 4089 } 4090 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA, 4091 vcpu->run->s.regs.gprs, 128); 4092 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA, 4093 &vcpu->arch.sie_block->gpsw, 16); 4094 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA, 4095 &px, 4); 4096 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA, 4097 &vcpu->run->s.regs.fpc, 4); 4098 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA, 4099 &vcpu->arch.sie_block->todpr, 4); 4100 cputm = kvm_s390_get_cpu_timer(vcpu); 4101 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA, 4102 &cputm, 8); 4103 clkcomp = vcpu->arch.sie_block->ckc >> 8; 4104 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA, 4105 &clkcomp, 8); 4106 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA, 4107 &vcpu->run->s.regs.acrs, 64); 4108 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA, 4109 &vcpu->arch.sie_block->gcr, 128); 4110 return rc ? -EFAULT : 0; 4111 } 4112 4113 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr) 4114 { 4115 /* 4116 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy 4117 * switch in the run ioctl. Let's update our copies before we save 4118 * it into the save area 4119 */ 4120 save_fpu_regs(); 4121 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 4122 save_access_regs(vcpu->run->s.regs.acrs); 4123 4124 return kvm_s390_store_status_unloaded(vcpu, addr); 4125 } 4126 4127 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 4128 { 4129 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu); 4130 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu); 4131 } 4132 4133 static void __disable_ibs_on_all_vcpus(struct kvm *kvm) 4134 { 4135 unsigned int i; 4136 struct kvm_vcpu *vcpu; 4137 4138 kvm_for_each_vcpu(i, vcpu, kvm) { 4139 __disable_ibs_on_vcpu(vcpu); 4140 } 4141 } 4142 4143 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 4144 { 4145 if (!sclp.has_ibs) 4146 return; 4147 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu); 4148 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu); 4149 } 4150 4151 void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu) 4152 { 4153 int i, online_vcpus, started_vcpus = 0; 4154 4155 if (!is_vcpu_stopped(vcpu)) 4156 return; 4157 4158 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1); 4159 /* Only one cpu at a time may enter/leave the STOPPED state. */ 4160 spin_lock(&vcpu->kvm->arch.start_stop_lock); 4161 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 4162 4163 for (i = 0; i < online_vcpus; i++) { 4164 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) 4165 started_vcpus++; 4166 } 4167 4168 if (started_vcpus == 0) { 4169 /* we're the only active VCPU -> speed it up */ 4170 __enable_ibs_on_vcpu(vcpu); 4171 } else if (started_vcpus == 1) { 4172 /* 4173 * As we are starting a second VCPU, we have to disable 4174 * the IBS facility on all VCPUs to remove potentially 4175 * oustanding ENABLE requests. 4176 */ 4177 __disable_ibs_on_all_vcpus(vcpu->kvm); 4178 } 4179 4180 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED); 4181 /* 4182 * Another VCPU might have used IBS while we were offline. 4183 * Let's play safe and flush the VCPU at startup. 4184 */ 4185 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 4186 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 4187 return; 4188 } 4189 4190 void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu) 4191 { 4192 int i, online_vcpus, started_vcpus = 0; 4193 struct kvm_vcpu *started_vcpu = NULL; 4194 4195 if (is_vcpu_stopped(vcpu)) 4196 return; 4197 4198 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0); 4199 /* Only one cpu at a time may enter/leave the STOPPED state. */ 4200 spin_lock(&vcpu->kvm->arch.start_stop_lock); 4201 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 4202 4203 /* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */ 4204 kvm_s390_clear_stop_irq(vcpu); 4205 4206 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED); 4207 __disable_ibs_on_vcpu(vcpu); 4208 4209 for (i = 0; i < online_vcpus; i++) { 4210 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) { 4211 started_vcpus++; 4212 started_vcpu = vcpu->kvm->vcpus[i]; 4213 } 4214 } 4215 4216 if (started_vcpus == 1) { 4217 /* 4218 * As we only have one VCPU left, we want to enable the 4219 * IBS facility for that VCPU to speed it up. 4220 */ 4221 __enable_ibs_on_vcpu(started_vcpu); 4222 } 4223 4224 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 4225 return; 4226 } 4227 4228 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 4229 struct kvm_enable_cap *cap) 4230 { 4231 int r; 4232 4233 if (cap->flags) 4234 return -EINVAL; 4235 4236 switch (cap->cap) { 4237 case KVM_CAP_S390_CSS_SUPPORT: 4238 if (!vcpu->kvm->arch.css_support) { 4239 vcpu->kvm->arch.css_support = 1; 4240 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support"); 4241 trace_kvm_s390_enable_css(vcpu->kvm); 4242 } 4243 r = 0; 4244 break; 4245 default: 4246 r = -EINVAL; 4247 break; 4248 } 4249 return r; 4250 } 4251 4252 static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu, 4253 struct kvm_s390_mem_op *mop) 4254 { 4255 void __user *uaddr = (void __user *)mop->buf; 4256 void *tmpbuf = NULL; 4257 int r, srcu_idx; 4258 const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION 4259 | KVM_S390_MEMOP_F_CHECK_ONLY; 4260 4261 if (mop->flags & ~supported_flags || mop->ar >= NUM_ACRS || !mop->size) 4262 return -EINVAL; 4263 4264 if (mop->size > MEM_OP_MAX_SIZE) 4265 return -E2BIG; 4266 4267 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 4268 tmpbuf = vmalloc(mop->size); 4269 if (!tmpbuf) 4270 return -ENOMEM; 4271 } 4272 4273 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 4274 4275 switch (mop->op) { 4276 case KVM_S390_MEMOP_LOGICAL_READ: 4277 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 4278 r = check_gva_range(vcpu, mop->gaddr, mop->ar, 4279 mop->size, GACC_FETCH); 4280 break; 4281 } 4282 r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size); 4283 if (r == 0) { 4284 if (copy_to_user(uaddr, tmpbuf, mop->size)) 4285 r = -EFAULT; 4286 } 4287 break; 4288 case KVM_S390_MEMOP_LOGICAL_WRITE: 4289 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 4290 r = check_gva_range(vcpu, mop->gaddr, mop->ar, 4291 mop->size, GACC_STORE); 4292 break; 4293 } 4294 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 4295 r = -EFAULT; 4296 break; 4297 } 4298 r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size); 4299 break; 4300 default: 4301 r = -EINVAL; 4302 } 4303 4304 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 4305 4306 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0) 4307 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); 4308 4309 vfree(tmpbuf); 4310 return r; 4311 } 4312 4313 long kvm_arch_vcpu_async_ioctl(struct file *filp, 4314 unsigned int ioctl, unsigned long arg) 4315 { 4316 struct kvm_vcpu *vcpu = filp->private_data; 4317 void __user *argp = (void __user *)arg; 4318 4319 switch (ioctl) { 4320 case KVM_S390_IRQ: { 4321 struct kvm_s390_irq s390irq; 4322 4323 if (copy_from_user(&s390irq, argp, sizeof(s390irq))) 4324 return -EFAULT; 4325 return kvm_s390_inject_vcpu(vcpu, &s390irq); 4326 } 4327 case KVM_S390_INTERRUPT: { 4328 struct kvm_s390_interrupt s390int; 4329 struct kvm_s390_irq s390irq = {}; 4330 4331 if (copy_from_user(&s390int, argp, sizeof(s390int))) 4332 return -EFAULT; 4333 if (s390int_to_s390irq(&s390int, &s390irq)) 4334 return -EINVAL; 4335 return kvm_s390_inject_vcpu(vcpu, &s390irq); 4336 } 4337 } 4338 return -ENOIOCTLCMD; 4339 } 4340 4341 long kvm_arch_vcpu_ioctl(struct file *filp, 4342 unsigned int ioctl, unsigned long arg) 4343 { 4344 struct kvm_vcpu *vcpu = filp->private_data; 4345 void __user *argp = (void __user *)arg; 4346 int idx; 4347 long r; 4348 4349 vcpu_load(vcpu); 4350 4351 switch (ioctl) { 4352 case KVM_S390_STORE_STATUS: 4353 idx = srcu_read_lock(&vcpu->kvm->srcu); 4354 r = kvm_s390_vcpu_store_status(vcpu, arg); 4355 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4356 break; 4357 case KVM_S390_SET_INITIAL_PSW: { 4358 psw_t psw; 4359 4360 r = -EFAULT; 4361 if (copy_from_user(&psw, argp, sizeof(psw))) 4362 break; 4363 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw); 4364 break; 4365 } 4366 case KVM_S390_INITIAL_RESET: 4367 r = kvm_arch_vcpu_ioctl_initial_reset(vcpu); 4368 break; 4369 case KVM_SET_ONE_REG: 4370 case KVM_GET_ONE_REG: { 4371 struct kvm_one_reg reg; 4372 r = -EFAULT; 4373 if (copy_from_user(®, argp, sizeof(reg))) 4374 break; 4375 if (ioctl == KVM_SET_ONE_REG) 4376 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®); 4377 else 4378 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®); 4379 break; 4380 } 4381 #ifdef CONFIG_KVM_S390_UCONTROL 4382 case KVM_S390_UCAS_MAP: { 4383 struct kvm_s390_ucas_mapping ucasmap; 4384 4385 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 4386 r = -EFAULT; 4387 break; 4388 } 4389 4390 if (!kvm_is_ucontrol(vcpu->kvm)) { 4391 r = -EINVAL; 4392 break; 4393 } 4394 4395 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr, 4396 ucasmap.vcpu_addr, ucasmap.length); 4397 break; 4398 } 4399 case KVM_S390_UCAS_UNMAP: { 4400 struct kvm_s390_ucas_mapping ucasmap; 4401 4402 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 4403 r = -EFAULT; 4404 break; 4405 } 4406 4407 if (!kvm_is_ucontrol(vcpu->kvm)) { 4408 r = -EINVAL; 4409 break; 4410 } 4411 4412 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr, 4413 ucasmap.length); 4414 break; 4415 } 4416 #endif 4417 case KVM_S390_VCPU_FAULT: { 4418 r = gmap_fault(vcpu->arch.gmap, arg, 0); 4419 break; 4420 } 4421 case KVM_ENABLE_CAP: 4422 { 4423 struct kvm_enable_cap cap; 4424 r = -EFAULT; 4425 if (copy_from_user(&cap, argp, sizeof(cap))) 4426 break; 4427 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 4428 break; 4429 } 4430 case KVM_S390_MEM_OP: { 4431 struct kvm_s390_mem_op mem_op; 4432 4433 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 4434 r = kvm_s390_guest_mem_op(vcpu, &mem_op); 4435 else 4436 r = -EFAULT; 4437 break; 4438 } 4439 case KVM_S390_SET_IRQ_STATE: { 4440 struct kvm_s390_irq_state irq_state; 4441 4442 r = -EFAULT; 4443 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 4444 break; 4445 if (irq_state.len > VCPU_IRQS_MAX_BUF || 4446 irq_state.len == 0 || 4447 irq_state.len % sizeof(struct kvm_s390_irq) > 0) { 4448 r = -EINVAL; 4449 break; 4450 } 4451 /* do not use irq_state.flags, it will break old QEMUs */ 4452 r = kvm_s390_set_irq_state(vcpu, 4453 (void __user *) irq_state.buf, 4454 irq_state.len); 4455 break; 4456 } 4457 case KVM_S390_GET_IRQ_STATE: { 4458 struct kvm_s390_irq_state irq_state; 4459 4460 r = -EFAULT; 4461 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 4462 break; 4463 if (irq_state.len == 0) { 4464 r = -EINVAL; 4465 break; 4466 } 4467 /* do not use irq_state.flags, it will break old QEMUs */ 4468 r = kvm_s390_get_irq_state(vcpu, 4469 (__u8 __user *) irq_state.buf, 4470 irq_state.len); 4471 break; 4472 } 4473 default: 4474 r = -ENOTTY; 4475 } 4476 4477 vcpu_put(vcpu); 4478 return r; 4479 } 4480 4481 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 4482 { 4483 #ifdef CONFIG_KVM_S390_UCONTROL 4484 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET) 4485 && (kvm_is_ucontrol(vcpu->kvm))) { 4486 vmf->page = virt_to_page(vcpu->arch.sie_block); 4487 get_page(vmf->page); 4488 return 0; 4489 } 4490 #endif 4491 return VM_FAULT_SIGBUS; 4492 } 4493 4494 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 4495 unsigned long npages) 4496 { 4497 return 0; 4498 } 4499 4500 /* Section: memory related */ 4501 int kvm_arch_prepare_memory_region(struct kvm *kvm, 4502 struct kvm_memory_slot *memslot, 4503 const struct kvm_userspace_memory_region *mem, 4504 enum kvm_mr_change change) 4505 { 4506 /* A few sanity checks. We can have memory slots which have to be 4507 located/ended at a segment boundary (1MB). The memory in userland is 4508 ok to be fragmented into various different vmas. It is okay to mmap() 4509 and munmap() stuff in this slot after doing this call at any time */ 4510 4511 if (mem->userspace_addr & 0xffffful) 4512 return -EINVAL; 4513 4514 if (mem->memory_size & 0xffffful) 4515 return -EINVAL; 4516 4517 if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit) 4518 return -EINVAL; 4519 4520 return 0; 4521 } 4522 4523 void kvm_arch_commit_memory_region(struct kvm *kvm, 4524 const struct kvm_userspace_memory_region *mem, 4525 const struct kvm_memory_slot *old, 4526 const struct kvm_memory_slot *new, 4527 enum kvm_mr_change change) 4528 { 4529 int rc = 0; 4530 4531 switch (change) { 4532 case KVM_MR_DELETE: 4533 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 4534 old->npages * PAGE_SIZE); 4535 break; 4536 case KVM_MR_MOVE: 4537 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 4538 old->npages * PAGE_SIZE); 4539 if (rc) 4540 break; 4541 /* FALLTHROUGH */ 4542 case KVM_MR_CREATE: 4543 rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr, 4544 mem->guest_phys_addr, mem->memory_size); 4545 break; 4546 case KVM_MR_FLAGS_ONLY: 4547 break; 4548 default: 4549 WARN(1, "Unknown KVM MR CHANGE: %d\n", change); 4550 } 4551 if (rc) 4552 pr_warn("failed to commit memory region\n"); 4553 return; 4554 } 4555 4556 static inline unsigned long nonhyp_mask(int i) 4557 { 4558 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30; 4559 4560 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4); 4561 } 4562 4563 void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) 4564 { 4565 vcpu->valid_wakeup = false; 4566 } 4567 4568 static int __init kvm_s390_init(void) 4569 { 4570 int i; 4571 4572 if (!sclp.has_sief2) { 4573 pr_info("SIE is not available\n"); 4574 return -ENODEV; 4575 } 4576 4577 if (nested && hpage) { 4578 pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n"); 4579 return -EINVAL; 4580 } 4581 4582 for (i = 0; i < 16; i++) 4583 kvm_s390_fac_base[i] |= 4584 S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i); 4585 4586 return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 4587 } 4588 4589 static void __exit kvm_s390_exit(void) 4590 { 4591 kvm_exit(); 4592 } 4593 4594 module_init(kvm_s390_init); 4595 module_exit(kvm_s390_exit); 4596 4597 /* 4598 * Enable autoloading of the kvm module. 4599 * Note that we add the module alias here instead of virt/kvm/kvm_main.c 4600 * since x86 takes a different approach. 4601 */ 4602 #include <linux/miscdevice.h> 4603 MODULE_ALIAS_MISCDEV(KVM_MINOR); 4604 MODULE_ALIAS("devname:kvm"); 4605