1 /* 2 * hosting zSeries kernel virtual machines 3 * 4 * Copyright IBM Corp. 2008, 2009 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License (version 2 only) 8 * as published by the Free Software Foundation. 9 * 10 * Author(s): Carsten Otte <cotte@de.ibm.com> 11 * Christian Borntraeger <borntraeger@de.ibm.com> 12 * Heiko Carstens <heiko.carstens@de.ibm.com> 13 * Christian Ehrhardt <ehrhardt@de.ibm.com> 14 * Jason J. Herne <jjherne@us.ibm.com> 15 */ 16 17 #include <linux/compiler.h> 18 #include <linux/err.h> 19 #include <linux/fs.h> 20 #include <linux/hrtimer.h> 21 #include <linux/init.h> 22 #include <linux/kvm.h> 23 #include <linux/kvm_host.h> 24 #include <linux/module.h> 25 #include <linux/random.h> 26 #include <linux/slab.h> 27 #include <linux/timer.h> 28 #include <linux/vmalloc.h> 29 #include <asm/asm-offsets.h> 30 #include <asm/lowcore.h> 31 #include <asm/etr.h> 32 #include <asm/pgtable.h> 33 #include <asm/nmi.h> 34 #include <asm/switch_to.h> 35 #include <asm/isc.h> 36 #include <asm/sclp.h> 37 #include "kvm-s390.h" 38 #include "gaccess.h" 39 40 #define KMSG_COMPONENT "kvm-s390" 41 #undef pr_fmt 42 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 43 44 #define CREATE_TRACE_POINTS 45 #include "trace.h" 46 #include "trace-s390.h" 47 48 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */ 49 #define LOCAL_IRQS 32 50 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \ 51 (KVM_MAX_VCPUS + LOCAL_IRQS)) 52 53 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 54 55 struct kvm_stats_debugfs_item debugfs_entries[] = { 56 { "userspace_handled", VCPU_STAT(exit_userspace) }, 57 { "exit_null", VCPU_STAT(exit_null) }, 58 { "exit_validity", VCPU_STAT(exit_validity) }, 59 { "exit_stop_request", VCPU_STAT(exit_stop_request) }, 60 { "exit_external_request", VCPU_STAT(exit_external_request) }, 61 { "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) }, 62 { "exit_instruction", VCPU_STAT(exit_instruction) }, 63 { "exit_program_interruption", VCPU_STAT(exit_program_interruption) }, 64 { "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) }, 65 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 66 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 67 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 68 { "instruction_lctlg", VCPU_STAT(instruction_lctlg) }, 69 { "instruction_lctl", VCPU_STAT(instruction_lctl) }, 70 { "instruction_stctl", VCPU_STAT(instruction_stctl) }, 71 { "instruction_stctg", VCPU_STAT(instruction_stctg) }, 72 { "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) }, 73 { "deliver_external_call", VCPU_STAT(deliver_external_call) }, 74 { "deliver_service_signal", VCPU_STAT(deliver_service_signal) }, 75 { "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) }, 76 { "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) }, 77 { "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) }, 78 { "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) }, 79 { "deliver_program_interruption", VCPU_STAT(deliver_program_int) }, 80 { "exit_wait_state", VCPU_STAT(exit_wait_state) }, 81 { "instruction_pfmf", VCPU_STAT(instruction_pfmf) }, 82 { "instruction_stidp", VCPU_STAT(instruction_stidp) }, 83 { "instruction_spx", VCPU_STAT(instruction_spx) }, 84 { "instruction_stpx", VCPU_STAT(instruction_stpx) }, 85 { "instruction_stap", VCPU_STAT(instruction_stap) }, 86 { "instruction_storage_key", VCPU_STAT(instruction_storage_key) }, 87 { "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) }, 88 { "instruction_stsch", VCPU_STAT(instruction_stsch) }, 89 { "instruction_chsc", VCPU_STAT(instruction_chsc) }, 90 { "instruction_essa", VCPU_STAT(instruction_essa) }, 91 { "instruction_stsi", VCPU_STAT(instruction_stsi) }, 92 { "instruction_stfl", VCPU_STAT(instruction_stfl) }, 93 { "instruction_tprot", VCPU_STAT(instruction_tprot) }, 94 { "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) }, 95 { "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) }, 96 { "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) }, 97 { "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) }, 98 { "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) }, 99 { "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) }, 100 { "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) }, 101 { "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) }, 102 { "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) }, 103 { "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) }, 104 { "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) }, 105 { "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) }, 106 { "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) }, 107 { "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) }, 108 { "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) }, 109 { "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) }, 110 { "diagnose_10", VCPU_STAT(diagnose_10) }, 111 { "diagnose_44", VCPU_STAT(diagnose_44) }, 112 { "diagnose_9c", VCPU_STAT(diagnose_9c) }, 113 { "diagnose_258", VCPU_STAT(diagnose_258) }, 114 { "diagnose_308", VCPU_STAT(diagnose_308) }, 115 { "diagnose_500", VCPU_STAT(diagnose_500) }, 116 { NULL } 117 }; 118 119 /* upper facilities limit for kvm */ 120 unsigned long kvm_s390_fac_list_mask[] = { 121 0xffe6fffbfcfdfc40UL, 122 0x005e800000000000UL, 123 }; 124 125 unsigned long kvm_s390_fac_list_mask_size(void) 126 { 127 BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64); 128 return ARRAY_SIZE(kvm_s390_fac_list_mask); 129 } 130 131 static struct gmap_notifier gmap_notifier; 132 debug_info_t *kvm_s390_dbf; 133 134 /* Section: not file related */ 135 int kvm_arch_hardware_enable(void) 136 { 137 /* every s390 is virtualization enabled ;-) */ 138 return 0; 139 } 140 141 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address); 142 143 /* 144 * This callback is executed during stop_machine(). All CPUs are therefore 145 * temporarily stopped. In order not to change guest behavior, we have to 146 * disable preemption whenever we touch the epoch of kvm and the VCPUs, 147 * so a CPU won't be stopped while calculating with the epoch. 148 */ 149 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, 150 void *v) 151 { 152 struct kvm *kvm; 153 struct kvm_vcpu *vcpu; 154 int i; 155 unsigned long long *delta = v; 156 157 list_for_each_entry(kvm, &vm_list, vm_list) { 158 kvm->arch.epoch -= *delta; 159 kvm_for_each_vcpu(i, vcpu, kvm) { 160 vcpu->arch.sie_block->epoch -= *delta; 161 } 162 } 163 return NOTIFY_OK; 164 } 165 166 static struct notifier_block kvm_clock_notifier = { 167 .notifier_call = kvm_clock_sync, 168 }; 169 170 int kvm_arch_hardware_setup(void) 171 { 172 gmap_notifier.notifier_call = kvm_gmap_notifier; 173 gmap_register_ipte_notifier(&gmap_notifier); 174 atomic_notifier_chain_register(&s390_epoch_delta_notifier, 175 &kvm_clock_notifier); 176 return 0; 177 } 178 179 void kvm_arch_hardware_unsetup(void) 180 { 181 gmap_unregister_ipte_notifier(&gmap_notifier); 182 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, 183 &kvm_clock_notifier); 184 } 185 186 int kvm_arch_init(void *opaque) 187 { 188 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); 189 if (!kvm_s390_dbf) 190 return -ENOMEM; 191 192 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) { 193 debug_unregister(kvm_s390_dbf); 194 return -ENOMEM; 195 } 196 197 /* Register floating interrupt controller interface. */ 198 return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); 199 } 200 201 void kvm_arch_exit(void) 202 { 203 debug_unregister(kvm_s390_dbf); 204 } 205 206 /* Section: device related */ 207 long kvm_arch_dev_ioctl(struct file *filp, 208 unsigned int ioctl, unsigned long arg) 209 { 210 if (ioctl == KVM_S390_ENABLE_SIE) 211 return s390_enable_sie(); 212 return -EINVAL; 213 } 214 215 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 216 { 217 int r; 218 219 switch (ext) { 220 case KVM_CAP_S390_PSW: 221 case KVM_CAP_S390_GMAP: 222 case KVM_CAP_SYNC_MMU: 223 #ifdef CONFIG_KVM_S390_UCONTROL 224 case KVM_CAP_S390_UCONTROL: 225 #endif 226 case KVM_CAP_ASYNC_PF: 227 case KVM_CAP_SYNC_REGS: 228 case KVM_CAP_ONE_REG: 229 case KVM_CAP_ENABLE_CAP: 230 case KVM_CAP_S390_CSS_SUPPORT: 231 case KVM_CAP_IOEVENTFD: 232 case KVM_CAP_DEVICE_CTRL: 233 case KVM_CAP_ENABLE_CAP_VM: 234 case KVM_CAP_S390_IRQCHIP: 235 case KVM_CAP_VM_ATTRIBUTES: 236 case KVM_CAP_MP_STATE: 237 case KVM_CAP_S390_INJECT_IRQ: 238 case KVM_CAP_S390_USER_SIGP: 239 case KVM_CAP_S390_USER_STSI: 240 case KVM_CAP_S390_SKEYS: 241 case KVM_CAP_S390_IRQ_STATE: 242 r = 1; 243 break; 244 case KVM_CAP_S390_MEM_OP: 245 r = MEM_OP_MAX_SIZE; 246 break; 247 case KVM_CAP_NR_VCPUS: 248 case KVM_CAP_MAX_VCPUS: 249 r = KVM_MAX_VCPUS; 250 break; 251 case KVM_CAP_NR_MEMSLOTS: 252 r = KVM_USER_MEM_SLOTS; 253 break; 254 case KVM_CAP_S390_COW: 255 r = MACHINE_HAS_ESOP; 256 break; 257 case KVM_CAP_S390_VECTOR_REGISTERS: 258 r = MACHINE_HAS_VX; 259 break; 260 default: 261 r = 0; 262 } 263 return r; 264 } 265 266 static void kvm_s390_sync_dirty_log(struct kvm *kvm, 267 struct kvm_memory_slot *memslot) 268 { 269 gfn_t cur_gfn, last_gfn; 270 unsigned long address; 271 struct gmap *gmap = kvm->arch.gmap; 272 273 down_read(&gmap->mm->mmap_sem); 274 /* Loop over all guest pages */ 275 last_gfn = memslot->base_gfn + memslot->npages; 276 for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) { 277 address = gfn_to_hva_memslot(memslot, cur_gfn); 278 279 if (gmap_test_and_clear_dirty(address, gmap)) 280 mark_page_dirty(kvm, cur_gfn); 281 } 282 up_read(&gmap->mm->mmap_sem); 283 } 284 285 /* Section: vm related */ 286 /* 287 * Get (and clear) the dirty memory log for a memory slot. 288 */ 289 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 290 struct kvm_dirty_log *log) 291 { 292 int r; 293 unsigned long n; 294 struct kvm_memslots *slots; 295 struct kvm_memory_slot *memslot; 296 int is_dirty = 0; 297 298 mutex_lock(&kvm->slots_lock); 299 300 r = -EINVAL; 301 if (log->slot >= KVM_USER_MEM_SLOTS) 302 goto out; 303 304 slots = kvm_memslots(kvm); 305 memslot = id_to_memslot(slots, log->slot); 306 r = -ENOENT; 307 if (!memslot->dirty_bitmap) 308 goto out; 309 310 kvm_s390_sync_dirty_log(kvm, memslot); 311 r = kvm_get_dirty_log(kvm, log, &is_dirty); 312 if (r) 313 goto out; 314 315 /* Clear the dirty log */ 316 if (is_dirty) { 317 n = kvm_dirty_bitmap_bytes(memslot); 318 memset(memslot->dirty_bitmap, 0, n); 319 } 320 r = 0; 321 out: 322 mutex_unlock(&kvm->slots_lock); 323 return r; 324 } 325 326 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) 327 { 328 int r; 329 330 if (cap->flags) 331 return -EINVAL; 332 333 switch (cap->cap) { 334 case KVM_CAP_S390_IRQCHIP: 335 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP"); 336 kvm->arch.use_irqchip = 1; 337 r = 0; 338 break; 339 case KVM_CAP_S390_USER_SIGP: 340 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP"); 341 kvm->arch.user_sigp = 1; 342 r = 0; 343 break; 344 case KVM_CAP_S390_VECTOR_REGISTERS: 345 mutex_lock(&kvm->lock); 346 if (atomic_read(&kvm->online_vcpus)) { 347 r = -EBUSY; 348 } else if (MACHINE_HAS_VX) { 349 set_kvm_facility(kvm->arch.model.fac->mask, 129); 350 set_kvm_facility(kvm->arch.model.fac->list, 129); 351 r = 0; 352 } else 353 r = -EINVAL; 354 mutex_unlock(&kvm->lock); 355 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s", 356 r ? "(not available)" : "(success)"); 357 break; 358 case KVM_CAP_S390_USER_STSI: 359 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI"); 360 kvm->arch.user_stsi = 1; 361 r = 0; 362 break; 363 default: 364 r = -EINVAL; 365 break; 366 } 367 return r; 368 } 369 370 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 371 { 372 int ret; 373 374 switch (attr->attr) { 375 case KVM_S390_VM_MEM_LIMIT_SIZE: 376 ret = 0; 377 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes", 378 kvm->arch.gmap->asce_end); 379 if (put_user(kvm->arch.gmap->asce_end, (u64 __user *)attr->addr)) 380 ret = -EFAULT; 381 break; 382 default: 383 ret = -ENXIO; 384 break; 385 } 386 return ret; 387 } 388 389 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 390 { 391 int ret; 392 unsigned int idx; 393 switch (attr->attr) { 394 case KVM_S390_VM_MEM_ENABLE_CMMA: 395 /* enable CMMA only for z10 and later (EDAT_1) */ 396 ret = -EINVAL; 397 if (!MACHINE_IS_LPAR || !MACHINE_HAS_EDAT1) 398 break; 399 400 ret = -EBUSY; 401 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support"); 402 mutex_lock(&kvm->lock); 403 if (atomic_read(&kvm->online_vcpus) == 0) { 404 kvm->arch.use_cmma = 1; 405 ret = 0; 406 } 407 mutex_unlock(&kvm->lock); 408 break; 409 case KVM_S390_VM_MEM_CLR_CMMA: 410 ret = -EINVAL; 411 if (!kvm->arch.use_cmma) 412 break; 413 414 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states"); 415 mutex_lock(&kvm->lock); 416 idx = srcu_read_lock(&kvm->srcu); 417 s390_reset_cmma(kvm->arch.gmap->mm); 418 srcu_read_unlock(&kvm->srcu, idx); 419 mutex_unlock(&kvm->lock); 420 ret = 0; 421 break; 422 case KVM_S390_VM_MEM_LIMIT_SIZE: { 423 unsigned long new_limit; 424 425 if (kvm_is_ucontrol(kvm)) 426 return -EINVAL; 427 428 if (get_user(new_limit, (u64 __user *)attr->addr)) 429 return -EFAULT; 430 431 if (new_limit > kvm->arch.gmap->asce_end) 432 return -E2BIG; 433 434 ret = -EBUSY; 435 mutex_lock(&kvm->lock); 436 if (atomic_read(&kvm->online_vcpus) == 0) { 437 /* gmap_alloc will round the limit up */ 438 struct gmap *new = gmap_alloc(current->mm, new_limit); 439 440 if (!new) { 441 ret = -ENOMEM; 442 } else { 443 gmap_free(kvm->arch.gmap); 444 new->private = kvm; 445 kvm->arch.gmap = new; 446 ret = 0; 447 } 448 } 449 mutex_unlock(&kvm->lock); 450 VM_EVENT(kvm, 3, "SET: max guest memory: %lu bytes", new_limit); 451 break; 452 } 453 default: 454 ret = -ENXIO; 455 break; 456 } 457 return ret; 458 } 459 460 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu); 461 462 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr) 463 { 464 struct kvm_vcpu *vcpu; 465 int i; 466 467 if (!test_kvm_facility(kvm, 76)) 468 return -EINVAL; 469 470 mutex_lock(&kvm->lock); 471 switch (attr->attr) { 472 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 473 get_random_bytes( 474 kvm->arch.crypto.crycb->aes_wrapping_key_mask, 475 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 476 kvm->arch.crypto.aes_kw = 1; 477 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support"); 478 break; 479 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 480 get_random_bytes( 481 kvm->arch.crypto.crycb->dea_wrapping_key_mask, 482 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 483 kvm->arch.crypto.dea_kw = 1; 484 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support"); 485 break; 486 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 487 kvm->arch.crypto.aes_kw = 0; 488 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0, 489 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 490 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support"); 491 break; 492 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 493 kvm->arch.crypto.dea_kw = 0; 494 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0, 495 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 496 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support"); 497 break; 498 default: 499 mutex_unlock(&kvm->lock); 500 return -ENXIO; 501 } 502 503 kvm_for_each_vcpu(i, vcpu, kvm) { 504 kvm_s390_vcpu_crypto_setup(vcpu); 505 exit_sie(vcpu); 506 } 507 mutex_unlock(&kvm->lock); 508 return 0; 509 } 510 511 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 512 { 513 u8 gtod_high; 514 515 if (copy_from_user(>od_high, (void __user *)attr->addr, 516 sizeof(gtod_high))) 517 return -EFAULT; 518 519 if (gtod_high != 0) 520 return -EINVAL; 521 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high); 522 523 return 0; 524 } 525 526 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 527 { 528 u64 gtod; 529 530 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod))) 531 return -EFAULT; 532 533 kvm_s390_set_tod_clock(kvm, gtod); 534 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod); 535 return 0; 536 } 537 538 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr) 539 { 540 int ret; 541 542 if (attr->flags) 543 return -EINVAL; 544 545 switch (attr->attr) { 546 case KVM_S390_VM_TOD_HIGH: 547 ret = kvm_s390_set_tod_high(kvm, attr); 548 break; 549 case KVM_S390_VM_TOD_LOW: 550 ret = kvm_s390_set_tod_low(kvm, attr); 551 break; 552 default: 553 ret = -ENXIO; 554 break; 555 } 556 return ret; 557 } 558 559 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 560 { 561 u8 gtod_high = 0; 562 563 if (copy_to_user((void __user *)attr->addr, >od_high, 564 sizeof(gtod_high))) 565 return -EFAULT; 566 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high); 567 568 return 0; 569 } 570 571 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 572 { 573 u64 gtod; 574 575 gtod = kvm_s390_get_tod_clock_fast(kvm); 576 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 577 return -EFAULT; 578 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod); 579 580 return 0; 581 } 582 583 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr) 584 { 585 int ret; 586 587 if (attr->flags) 588 return -EINVAL; 589 590 switch (attr->attr) { 591 case KVM_S390_VM_TOD_HIGH: 592 ret = kvm_s390_get_tod_high(kvm, attr); 593 break; 594 case KVM_S390_VM_TOD_LOW: 595 ret = kvm_s390_get_tod_low(kvm, attr); 596 break; 597 default: 598 ret = -ENXIO; 599 break; 600 } 601 return ret; 602 } 603 604 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr) 605 { 606 struct kvm_s390_vm_cpu_processor *proc; 607 int ret = 0; 608 609 mutex_lock(&kvm->lock); 610 if (atomic_read(&kvm->online_vcpus)) { 611 ret = -EBUSY; 612 goto out; 613 } 614 proc = kzalloc(sizeof(*proc), GFP_KERNEL); 615 if (!proc) { 616 ret = -ENOMEM; 617 goto out; 618 } 619 if (!copy_from_user(proc, (void __user *)attr->addr, 620 sizeof(*proc))) { 621 memcpy(&kvm->arch.model.cpu_id, &proc->cpuid, 622 sizeof(struct cpuid)); 623 kvm->arch.model.ibc = proc->ibc; 624 memcpy(kvm->arch.model.fac->list, proc->fac_list, 625 S390_ARCH_FAC_LIST_SIZE_BYTE); 626 } else 627 ret = -EFAULT; 628 kfree(proc); 629 out: 630 mutex_unlock(&kvm->lock); 631 return ret; 632 } 633 634 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 635 { 636 int ret = -ENXIO; 637 638 switch (attr->attr) { 639 case KVM_S390_VM_CPU_PROCESSOR: 640 ret = kvm_s390_set_processor(kvm, attr); 641 break; 642 } 643 return ret; 644 } 645 646 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr) 647 { 648 struct kvm_s390_vm_cpu_processor *proc; 649 int ret = 0; 650 651 proc = kzalloc(sizeof(*proc), GFP_KERNEL); 652 if (!proc) { 653 ret = -ENOMEM; 654 goto out; 655 } 656 memcpy(&proc->cpuid, &kvm->arch.model.cpu_id, sizeof(struct cpuid)); 657 proc->ibc = kvm->arch.model.ibc; 658 memcpy(&proc->fac_list, kvm->arch.model.fac->list, S390_ARCH_FAC_LIST_SIZE_BYTE); 659 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc))) 660 ret = -EFAULT; 661 kfree(proc); 662 out: 663 return ret; 664 } 665 666 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr) 667 { 668 struct kvm_s390_vm_cpu_machine *mach; 669 int ret = 0; 670 671 mach = kzalloc(sizeof(*mach), GFP_KERNEL); 672 if (!mach) { 673 ret = -ENOMEM; 674 goto out; 675 } 676 get_cpu_id((struct cpuid *) &mach->cpuid); 677 mach->ibc = sclp.ibc; 678 memcpy(&mach->fac_mask, kvm->arch.model.fac->mask, 679 S390_ARCH_FAC_LIST_SIZE_BYTE); 680 memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list, 681 S390_ARCH_FAC_LIST_SIZE_BYTE); 682 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach))) 683 ret = -EFAULT; 684 kfree(mach); 685 out: 686 return ret; 687 } 688 689 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 690 { 691 int ret = -ENXIO; 692 693 switch (attr->attr) { 694 case KVM_S390_VM_CPU_PROCESSOR: 695 ret = kvm_s390_get_processor(kvm, attr); 696 break; 697 case KVM_S390_VM_CPU_MACHINE: 698 ret = kvm_s390_get_machine(kvm, attr); 699 break; 700 } 701 return ret; 702 } 703 704 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 705 { 706 int ret; 707 708 switch (attr->group) { 709 case KVM_S390_VM_MEM_CTRL: 710 ret = kvm_s390_set_mem_control(kvm, attr); 711 break; 712 case KVM_S390_VM_TOD: 713 ret = kvm_s390_set_tod(kvm, attr); 714 break; 715 case KVM_S390_VM_CPU_MODEL: 716 ret = kvm_s390_set_cpu_model(kvm, attr); 717 break; 718 case KVM_S390_VM_CRYPTO: 719 ret = kvm_s390_vm_set_crypto(kvm, attr); 720 break; 721 default: 722 ret = -ENXIO; 723 break; 724 } 725 726 return ret; 727 } 728 729 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr) 730 { 731 int ret; 732 733 switch (attr->group) { 734 case KVM_S390_VM_MEM_CTRL: 735 ret = kvm_s390_get_mem_control(kvm, attr); 736 break; 737 case KVM_S390_VM_TOD: 738 ret = kvm_s390_get_tod(kvm, attr); 739 break; 740 case KVM_S390_VM_CPU_MODEL: 741 ret = kvm_s390_get_cpu_model(kvm, attr); 742 break; 743 default: 744 ret = -ENXIO; 745 break; 746 } 747 748 return ret; 749 } 750 751 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 752 { 753 int ret; 754 755 switch (attr->group) { 756 case KVM_S390_VM_MEM_CTRL: 757 switch (attr->attr) { 758 case KVM_S390_VM_MEM_ENABLE_CMMA: 759 case KVM_S390_VM_MEM_CLR_CMMA: 760 case KVM_S390_VM_MEM_LIMIT_SIZE: 761 ret = 0; 762 break; 763 default: 764 ret = -ENXIO; 765 break; 766 } 767 break; 768 case KVM_S390_VM_TOD: 769 switch (attr->attr) { 770 case KVM_S390_VM_TOD_LOW: 771 case KVM_S390_VM_TOD_HIGH: 772 ret = 0; 773 break; 774 default: 775 ret = -ENXIO; 776 break; 777 } 778 break; 779 case KVM_S390_VM_CPU_MODEL: 780 switch (attr->attr) { 781 case KVM_S390_VM_CPU_PROCESSOR: 782 case KVM_S390_VM_CPU_MACHINE: 783 ret = 0; 784 break; 785 default: 786 ret = -ENXIO; 787 break; 788 } 789 break; 790 case KVM_S390_VM_CRYPTO: 791 switch (attr->attr) { 792 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 793 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 794 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 795 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 796 ret = 0; 797 break; 798 default: 799 ret = -ENXIO; 800 break; 801 } 802 break; 803 default: 804 ret = -ENXIO; 805 break; 806 } 807 808 return ret; 809 } 810 811 static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 812 { 813 uint8_t *keys; 814 uint64_t hva; 815 unsigned long curkey; 816 int i, r = 0; 817 818 if (args->flags != 0) 819 return -EINVAL; 820 821 /* Is this guest using storage keys? */ 822 if (!mm_use_skey(current->mm)) 823 return KVM_S390_GET_SKEYS_NONE; 824 825 /* Enforce sane limit on memory allocation */ 826 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 827 return -EINVAL; 828 829 keys = kmalloc_array(args->count, sizeof(uint8_t), 830 GFP_KERNEL | __GFP_NOWARN); 831 if (!keys) 832 keys = vmalloc(sizeof(uint8_t) * args->count); 833 if (!keys) 834 return -ENOMEM; 835 836 for (i = 0; i < args->count; i++) { 837 hva = gfn_to_hva(kvm, args->start_gfn + i); 838 if (kvm_is_error_hva(hva)) { 839 r = -EFAULT; 840 goto out; 841 } 842 843 curkey = get_guest_storage_key(current->mm, hva); 844 if (IS_ERR_VALUE(curkey)) { 845 r = curkey; 846 goto out; 847 } 848 keys[i] = curkey; 849 } 850 851 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys, 852 sizeof(uint8_t) * args->count); 853 if (r) 854 r = -EFAULT; 855 out: 856 kvfree(keys); 857 return r; 858 } 859 860 static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 861 { 862 uint8_t *keys; 863 uint64_t hva; 864 int i, r = 0; 865 866 if (args->flags != 0) 867 return -EINVAL; 868 869 /* Enforce sane limit on memory allocation */ 870 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 871 return -EINVAL; 872 873 keys = kmalloc_array(args->count, sizeof(uint8_t), 874 GFP_KERNEL | __GFP_NOWARN); 875 if (!keys) 876 keys = vmalloc(sizeof(uint8_t) * args->count); 877 if (!keys) 878 return -ENOMEM; 879 880 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr, 881 sizeof(uint8_t) * args->count); 882 if (r) { 883 r = -EFAULT; 884 goto out; 885 } 886 887 /* Enable storage key handling for the guest */ 888 r = s390_enable_skey(); 889 if (r) 890 goto out; 891 892 for (i = 0; i < args->count; i++) { 893 hva = gfn_to_hva(kvm, args->start_gfn + i); 894 if (kvm_is_error_hva(hva)) { 895 r = -EFAULT; 896 goto out; 897 } 898 899 /* Lowest order bit is reserved */ 900 if (keys[i] & 0x01) { 901 r = -EINVAL; 902 goto out; 903 } 904 905 r = set_guest_storage_key(current->mm, hva, 906 (unsigned long)keys[i], 0); 907 if (r) 908 goto out; 909 } 910 out: 911 kvfree(keys); 912 return r; 913 } 914 915 long kvm_arch_vm_ioctl(struct file *filp, 916 unsigned int ioctl, unsigned long arg) 917 { 918 struct kvm *kvm = filp->private_data; 919 void __user *argp = (void __user *)arg; 920 struct kvm_device_attr attr; 921 int r; 922 923 switch (ioctl) { 924 case KVM_S390_INTERRUPT: { 925 struct kvm_s390_interrupt s390int; 926 927 r = -EFAULT; 928 if (copy_from_user(&s390int, argp, sizeof(s390int))) 929 break; 930 r = kvm_s390_inject_vm(kvm, &s390int); 931 break; 932 } 933 case KVM_ENABLE_CAP: { 934 struct kvm_enable_cap cap; 935 r = -EFAULT; 936 if (copy_from_user(&cap, argp, sizeof(cap))) 937 break; 938 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 939 break; 940 } 941 case KVM_CREATE_IRQCHIP: { 942 struct kvm_irq_routing_entry routing; 943 944 r = -EINVAL; 945 if (kvm->arch.use_irqchip) { 946 /* Set up dummy routing. */ 947 memset(&routing, 0, sizeof(routing)); 948 r = kvm_set_irq_routing(kvm, &routing, 0, 0); 949 } 950 break; 951 } 952 case KVM_SET_DEVICE_ATTR: { 953 r = -EFAULT; 954 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 955 break; 956 r = kvm_s390_vm_set_attr(kvm, &attr); 957 break; 958 } 959 case KVM_GET_DEVICE_ATTR: { 960 r = -EFAULT; 961 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 962 break; 963 r = kvm_s390_vm_get_attr(kvm, &attr); 964 break; 965 } 966 case KVM_HAS_DEVICE_ATTR: { 967 r = -EFAULT; 968 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 969 break; 970 r = kvm_s390_vm_has_attr(kvm, &attr); 971 break; 972 } 973 case KVM_S390_GET_SKEYS: { 974 struct kvm_s390_skeys args; 975 976 r = -EFAULT; 977 if (copy_from_user(&args, argp, 978 sizeof(struct kvm_s390_skeys))) 979 break; 980 r = kvm_s390_get_skeys(kvm, &args); 981 break; 982 } 983 case KVM_S390_SET_SKEYS: { 984 struct kvm_s390_skeys args; 985 986 r = -EFAULT; 987 if (copy_from_user(&args, argp, 988 sizeof(struct kvm_s390_skeys))) 989 break; 990 r = kvm_s390_set_skeys(kvm, &args); 991 break; 992 } 993 default: 994 r = -ENOTTY; 995 } 996 997 return r; 998 } 999 1000 static int kvm_s390_query_ap_config(u8 *config) 1001 { 1002 u32 fcn_code = 0x04000000UL; 1003 u32 cc = 0; 1004 1005 memset(config, 0, 128); 1006 asm volatile( 1007 "lgr 0,%1\n" 1008 "lgr 2,%2\n" 1009 ".long 0xb2af0000\n" /* PQAP(QCI) */ 1010 "0: ipm %0\n" 1011 "srl %0,28\n" 1012 "1:\n" 1013 EX_TABLE(0b, 1b) 1014 : "+r" (cc) 1015 : "r" (fcn_code), "r" (config) 1016 : "cc", "0", "2", "memory" 1017 ); 1018 1019 return cc; 1020 } 1021 1022 static int kvm_s390_apxa_installed(void) 1023 { 1024 u8 config[128]; 1025 int cc; 1026 1027 if (test_facility(2) && test_facility(12)) { 1028 cc = kvm_s390_query_ap_config(config); 1029 1030 if (cc) 1031 pr_err("PQAP(QCI) failed with cc=%d", cc); 1032 else 1033 return config[0] & 0x40; 1034 } 1035 1036 return 0; 1037 } 1038 1039 static void kvm_s390_set_crycb_format(struct kvm *kvm) 1040 { 1041 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb; 1042 1043 if (kvm_s390_apxa_installed()) 1044 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2; 1045 else 1046 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1; 1047 } 1048 1049 static void kvm_s390_get_cpu_id(struct cpuid *cpu_id) 1050 { 1051 get_cpu_id(cpu_id); 1052 cpu_id->version = 0xff; 1053 } 1054 1055 static int kvm_s390_crypto_init(struct kvm *kvm) 1056 { 1057 if (!test_kvm_facility(kvm, 76)) 1058 return 0; 1059 1060 kvm->arch.crypto.crycb = kzalloc(sizeof(*kvm->arch.crypto.crycb), 1061 GFP_KERNEL | GFP_DMA); 1062 if (!kvm->arch.crypto.crycb) 1063 return -ENOMEM; 1064 1065 kvm_s390_set_crycb_format(kvm); 1066 1067 /* Enable AES/DEA protected key functions by default */ 1068 kvm->arch.crypto.aes_kw = 1; 1069 kvm->arch.crypto.dea_kw = 1; 1070 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 1071 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1072 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 1073 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1074 1075 return 0; 1076 } 1077 1078 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 1079 { 1080 int i, rc; 1081 char debug_name[16]; 1082 static unsigned long sca_offset; 1083 1084 rc = -EINVAL; 1085 #ifdef CONFIG_KVM_S390_UCONTROL 1086 if (type & ~KVM_VM_S390_UCONTROL) 1087 goto out_err; 1088 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN))) 1089 goto out_err; 1090 #else 1091 if (type) 1092 goto out_err; 1093 #endif 1094 1095 rc = s390_enable_sie(); 1096 if (rc) 1097 goto out_err; 1098 1099 rc = -ENOMEM; 1100 1101 kvm->arch.sca = (struct sca_block *) get_zeroed_page(GFP_KERNEL); 1102 if (!kvm->arch.sca) 1103 goto out_err; 1104 spin_lock(&kvm_lock); 1105 sca_offset += 16; 1106 if (sca_offset + sizeof(struct sca_block) > PAGE_SIZE) 1107 sca_offset = 0; 1108 kvm->arch.sca = (struct sca_block *) ((char *) kvm->arch.sca + sca_offset); 1109 spin_unlock(&kvm_lock); 1110 1111 sprintf(debug_name, "kvm-%u", current->pid); 1112 1113 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long)); 1114 if (!kvm->arch.dbf) 1115 goto out_err; 1116 1117 /* 1118 * The architectural maximum amount of facilities is 16 kbit. To store 1119 * this amount, 2 kbyte of memory is required. Thus we need a full 1120 * page to hold the guest facility list (arch.model.fac->list) and the 1121 * facility mask (arch.model.fac->mask). Its address size has to be 1122 * 31 bits and word aligned. 1123 */ 1124 kvm->arch.model.fac = 1125 (struct kvm_s390_fac *) get_zeroed_page(GFP_KERNEL | GFP_DMA); 1126 if (!kvm->arch.model.fac) 1127 goto out_err; 1128 1129 /* Populate the facility mask initially. */ 1130 memcpy(kvm->arch.model.fac->mask, S390_lowcore.stfle_fac_list, 1131 S390_ARCH_FAC_LIST_SIZE_BYTE); 1132 for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) { 1133 if (i < kvm_s390_fac_list_mask_size()) 1134 kvm->arch.model.fac->mask[i] &= kvm_s390_fac_list_mask[i]; 1135 else 1136 kvm->arch.model.fac->mask[i] = 0UL; 1137 } 1138 1139 /* Populate the facility list initially. */ 1140 memcpy(kvm->arch.model.fac->list, kvm->arch.model.fac->mask, 1141 S390_ARCH_FAC_LIST_SIZE_BYTE); 1142 1143 kvm_s390_get_cpu_id(&kvm->arch.model.cpu_id); 1144 kvm->arch.model.ibc = sclp.ibc & 0x0fff; 1145 1146 if (kvm_s390_crypto_init(kvm) < 0) 1147 goto out_err; 1148 1149 spin_lock_init(&kvm->arch.float_int.lock); 1150 for (i = 0; i < FIRQ_LIST_COUNT; i++) 1151 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]); 1152 init_waitqueue_head(&kvm->arch.ipte_wq); 1153 mutex_init(&kvm->arch.ipte_mutex); 1154 1155 debug_register_view(kvm->arch.dbf, &debug_sprintf_view); 1156 VM_EVENT(kvm, 3, "vm created with type %lu", type); 1157 1158 if (type & KVM_VM_S390_UCONTROL) { 1159 kvm->arch.gmap = NULL; 1160 } else { 1161 kvm->arch.gmap = gmap_alloc(current->mm, (1UL << 44) - 1); 1162 if (!kvm->arch.gmap) 1163 goto out_err; 1164 kvm->arch.gmap->private = kvm; 1165 kvm->arch.gmap->pfault_enabled = 0; 1166 } 1167 1168 kvm->arch.css_support = 0; 1169 kvm->arch.use_irqchip = 0; 1170 kvm->arch.epoch = 0; 1171 1172 spin_lock_init(&kvm->arch.start_stop_lock); 1173 KVM_EVENT(3, "vm 0x%p created by pid %u", kvm, current->pid); 1174 1175 return 0; 1176 out_err: 1177 kfree(kvm->arch.crypto.crycb); 1178 free_page((unsigned long)kvm->arch.model.fac); 1179 debug_unregister(kvm->arch.dbf); 1180 free_page((unsigned long)(kvm->arch.sca)); 1181 KVM_EVENT(3, "creation of vm failed: %d", rc); 1182 return rc; 1183 } 1184 1185 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 1186 { 1187 VCPU_EVENT(vcpu, 3, "%s", "free cpu"); 1188 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id); 1189 kvm_s390_clear_local_irqs(vcpu); 1190 kvm_clear_async_pf_completion_queue(vcpu); 1191 if (!kvm_is_ucontrol(vcpu->kvm)) { 1192 clear_bit(63 - vcpu->vcpu_id, 1193 (unsigned long *) &vcpu->kvm->arch.sca->mcn); 1194 if (vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda == 1195 (__u64) vcpu->arch.sie_block) 1196 vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda = 0; 1197 } 1198 smp_mb(); 1199 1200 if (kvm_is_ucontrol(vcpu->kvm)) 1201 gmap_free(vcpu->arch.gmap); 1202 1203 if (vcpu->kvm->arch.use_cmma) 1204 kvm_s390_vcpu_unsetup_cmma(vcpu); 1205 free_page((unsigned long)(vcpu->arch.sie_block)); 1206 1207 kvm_vcpu_uninit(vcpu); 1208 kmem_cache_free(kvm_vcpu_cache, vcpu); 1209 } 1210 1211 static void kvm_free_vcpus(struct kvm *kvm) 1212 { 1213 unsigned int i; 1214 struct kvm_vcpu *vcpu; 1215 1216 kvm_for_each_vcpu(i, vcpu, kvm) 1217 kvm_arch_vcpu_destroy(vcpu); 1218 1219 mutex_lock(&kvm->lock); 1220 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 1221 kvm->vcpus[i] = NULL; 1222 1223 atomic_set(&kvm->online_vcpus, 0); 1224 mutex_unlock(&kvm->lock); 1225 } 1226 1227 void kvm_arch_destroy_vm(struct kvm *kvm) 1228 { 1229 kvm_free_vcpus(kvm); 1230 free_page((unsigned long)kvm->arch.model.fac); 1231 free_page((unsigned long)(kvm->arch.sca)); 1232 debug_unregister(kvm->arch.dbf); 1233 kfree(kvm->arch.crypto.crycb); 1234 if (!kvm_is_ucontrol(kvm)) 1235 gmap_free(kvm->arch.gmap); 1236 kvm_s390_destroy_adapters(kvm); 1237 kvm_s390_clear_float_irqs(kvm); 1238 KVM_EVENT(3, "vm 0x%p destroyed", kvm); 1239 } 1240 1241 /* Section: vcpu related */ 1242 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) 1243 { 1244 vcpu->arch.gmap = gmap_alloc(current->mm, -1UL); 1245 if (!vcpu->arch.gmap) 1246 return -ENOMEM; 1247 vcpu->arch.gmap->private = vcpu->kvm; 1248 1249 return 0; 1250 } 1251 1252 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 1253 { 1254 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 1255 kvm_clear_async_pf_completion_queue(vcpu); 1256 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX | 1257 KVM_SYNC_GPRS | 1258 KVM_SYNC_ACRS | 1259 KVM_SYNC_CRS | 1260 KVM_SYNC_ARCH0 | 1261 KVM_SYNC_PFAULT; 1262 if (test_kvm_facility(vcpu->kvm, 129)) 1263 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS; 1264 1265 if (kvm_is_ucontrol(vcpu->kvm)) 1266 return __kvm_ucontrol_vcpu_init(vcpu); 1267 1268 return 0; 1269 } 1270 1271 /* 1272 * Backs up the current FP/VX register save area on a particular 1273 * destination. Used to switch between different register save 1274 * areas. 1275 */ 1276 static inline void save_fpu_to(struct fpu *dst) 1277 { 1278 dst->fpc = current->thread.fpu.fpc; 1279 dst->regs = current->thread.fpu.regs; 1280 } 1281 1282 /* 1283 * Switches the FP/VX register save area from which to lazy 1284 * restore register contents. 1285 */ 1286 static inline void load_fpu_from(struct fpu *from) 1287 { 1288 current->thread.fpu.fpc = from->fpc; 1289 current->thread.fpu.regs = from->regs; 1290 } 1291 1292 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1293 { 1294 /* Save host register state */ 1295 save_fpu_regs(); 1296 save_fpu_to(&vcpu->arch.host_fpregs); 1297 1298 if (test_kvm_facility(vcpu->kvm, 129)) { 1299 current->thread.fpu.fpc = vcpu->run->s.regs.fpc; 1300 /* 1301 * Use the register save area in the SIE-control block 1302 * for register restore and save in kvm_arch_vcpu_put() 1303 */ 1304 current->thread.fpu.vxrs = 1305 (__vector128 *)&vcpu->run->s.regs.vrs; 1306 } else 1307 load_fpu_from(&vcpu->arch.guest_fpregs); 1308 1309 if (test_fp_ctl(current->thread.fpu.fpc)) 1310 /* User space provided an invalid FPC, let's clear it */ 1311 current->thread.fpu.fpc = 0; 1312 1313 save_access_regs(vcpu->arch.host_acrs); 1314 restore_access_regs(vcpu->run->s.regs.acrs); 1315 gmap_enable(vcpu->arch.gmap); 1316 atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags); 1317 } 1318 1319 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 1320 { 1321 atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags); 1322 gmap_disable(vcpu->arch.gmap); 1323 1324 save_fpu_regs(); 1325 1326 if (test_kvm_facility(vcpu->kvm, 129)) 1327 /* 1328 * kvm_arch_vcpu_load() set up the register save area to 1329 * the &vcpu->run->s.regs.vrs and, thus, the vector registers 1330 * are already saved. Only the floating-point control must be 1331 * copied. 1332 */ 1333 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 1334 else 1335 save_fpu_to(&vcpu->arch.guest_fpregs); 1336 load_fpu_from(&vcpu->arch.host_fpregs); 1337 1338 save_access_regs(vcpu->run->s.regs.acrs); 1339 restore_access_regs(vcpu->arch.host_acrs); 1340 } 1341 1342 static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu) 1343 { 1344 /* this equals initial cpu reset in pop, but we don't switch to ESA */ 1345 vcpu->arch.sie_block->gpsw.mask = 0UL; 1346 vcpu->arch.sie_block->gpsw.addr = 0UL; 1347 kvm_s390_set_prefix(vcpu, 0); 1348 vcpu->arch.sie_block->cputm = 0UL; 1349 vcpu->arch.sie_block->ckc = 0UL; 1350 vcpu->arch.sie_block->todpr = 0; 1351 memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64)); 1352 vcpu->arch.sie_block->gcr[0] = 0xE0UL; 1353 vcpu->arch.sie_block->gcr[14] = 0xC2000000UL; 1354 vcpu->arch.guest_fpregs.fpc = 0; 1355 asm volatile("lfpc %0" : : "Q" (vcpu->arch.guest_fpregs.fpc)); 1356 vcpu->arch.sie_block->gbea = 1; 1357 vcpu->arch.sie_block->pp = 0; 1358 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 1359 kvm_clear_async_pf_completion_queue(vcpu); 1360 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) 1361 kvm_s390_vcpu_stop(vcpu); 1362 kvm_s390_clear_local_irqs(vcpu); 1363 } 1364 1365 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 1366 { 1367 mutex_lock(&vcpu->kvm->lock); 1368 preempt_disable(); 1369 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch; 1370 preempt_enable(); 1371 mutex_unlock(&vcpu->kvm->lock); 1372 if (!kvm_is_ucontrol(vcpu->kvm)) 1373 vcpu->arch.gmap = vcpu->kvm->arch.gmap; 1374 } 1375 1376 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) 1377 { 1378 if (!test_kvm_facility(vcpu->kvm, 76)) 1379 return; 1380 1381 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA); 1382 1383 if (vcpu->kvm->arch.crypto.aes_kw) 1384 vcpu->arch.sie_block->ecb3 |= ECB3_AES; 1385 if (vcpu->kvm->arch.crypto.dea_kw) 1386 vcpu->arch.sie_block->ecb3 |= ECB3_DEA; 1387 1388 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd; 1389 } 1390 1391 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu) 1392 { 1393 free_page(vcpu->arch.sie_block->cbrlo); 1394 vcpu->arch.sie_block->cbrlo = 0; 1395 } 1396 1397 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu) 1398 { 1399 vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL); 1400 if (!vcpu->arch.sie_block->cbrlo) 1401 return -ENOMEM; 1402 1403 vcpu->arch.sie_block->ecb2 |= 0x80; 1404 vcpu->arch.sie_block->ecb2 &= ~0x08; 1405 return 0; 1406 } 1407 1408 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu) 1409 { 1410 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model; 1411 1412 vcpu->arch.cpu_id = model->cpu_id; 1413 vcpu->arch.sie_block->ibc = model->ibc; 1414 vcpu->arch.sie_block->fac = (int) (long) model->fac->list; 1415 } 1416 1417 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 1418 { 1419 int rc = 0; 1420 1421 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH | 1422 CPUSTAT_SM | 1423 CPUSTAT_STOPPED); 1424 1425 if (test_kvm_facility(vcpu->kvm, 78)) 1426 atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags); 1427 else if (test_kvm_facility(vcpu->kvm, 8)) 1428 atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags); 1429 1430 kvm_s390_vcpu_setup_model(vcpu); 1431 1432 vcpu->arch.sie_block->ecb = 6; 1433 if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73)) 1434 vcpu->arch.sie_block->ecb |= 0x10; 1435 1436 vcpu->arch.sie_block->ecb2 = 8; 1437 vcpu->arch.sie_block->eca = 0xC1002000U; 1438 if (sclp.has_siif) 1439 vcpu->arch.sie_block->eca |= 1; 1440 if (sclp.has_sigpif) 1441 vcpu->arch.sie_block->eca |= 0x10000000U; 1442 if (test_kvm_facility(vcpu->kvm, 129)) { 1443 vcpu->arch.sie_block->eca |= 0x00020000; 1444 vcpu->arch.sie_block->ecd |= 0x20000000; 1445 } 1446 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; 1447 1448 if (vcpu->kvm->arch.use_cmma) { 1449 rc = kvm_s390_vcpu_setup_cmma(vcpu); 1450 if (rc) 1451 return rc; 1452 } 1453 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1454 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup; 1455 1456 kvm_s390_vcpu_crypto_setup(vcpu); 1457 1458 return rc; 1459 } 1460 1461 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 1462 unsigned int id) 1463 { 1464 struct kvm_vcpu *vcpu; 1465 struct sie_page *sie_page; 1466 int rc = -EINVAL; 1467 1468 if (id >= KVM_MAX_VCPUS) 1469 goto out; 1470 1471 rc = -ENOMEM; 1472 1473 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1474 if (!vcpu) 1475 goto out; 1476 1477 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL); 1478 if (!sie_page) 1479 goto out_free_cpu; 1480 1481 vcpu->arch.sie_block = &sie_page->sie_block; 1482 vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb; 1483 1484 vcpu->arch.sie_block->icpua = id; 1485 if (!kvm_is_ucontrol(kvm)) { 1486 if (!kvm->arch.sca) { 1487 WARN_ON_ONCE(1); 1488 goto out_free_cpu; 1489 } 1490 if (!kvm->arch.sca->cpu[id].sda) 1491 kvm->arch.sca->cpu[id].sda = 1492 (__u64) vcpu->arch.sie_block; 1493 vcpu->arch.sie_block->scaoh = 1494 (__u32)(((__u64)kvm->arch.sca) >> 32); 1495 vcpu->arch.sie_block->scaol = (__u32)(__u64)kvm->arch.sca; 1496 set_bit(63 - id, (unsigned long *) &kvm->arch.sca->mcn); 1497 } 1498 1499 spin_lock_init(&vcpu->arch.local_int.lock); 1500 vcpu->arch.local_int.float_int = &kvm->arch.float_int; 1501 vcpu->arch.local_int.wq = &vcpu->wq; 1502 vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags; 1503 1504 /* 1505 * Allocate a save area for floating-point registers. If the vector 1506 * extension is available, register contents are saved in the SIE 1507 * control block. The allocated save area is still required in 1508 * particular places, for example, in kvm_s390_vcpu_store_status(). 1509 */ 1510 vcpu->arch.guest_fpregs.fprs = kzalloc(sizeof(freg_t) * __NUM_FPRS, 1511 GFP_KERNEL); 1512 if (!vcpu->arch.guest_fpregs.fprs) { 1513 rc = -ENOMEM; 1514 goto out_free_sie_block; 1515 } 1516 1517 rc = kvm_vcpu_init(vcpu, kvm, id); 1518 if (rc) 1519 goto out_free_sie_block; 1520 VM_EVENT(kvm, 3, "create cpu %d at %p, sie block at %p", id, vcpu, 1521 vcpu->arch.sie_block); 1522 trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block); 1523 1524 return vcpu; 1525 out_free_sie_block: 1526 free_page((unsigned long)(vcpu->arch.sie_block)); 1527 out_free_cpu: 1528 kmem_cache_free(kvm_vcpu_cache, vcpu); 1529 out: 1530 return ERR_PTR(rc); 1531 } 1532 1533 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 1534 { 1535 return kvm_s390_vcpu_has_irq(vcpu, 0); 1536 } 1537 1538 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu) 1539 { 1540 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 1541 exit_sie(vcpu); 1542 } 1543 1544 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu) 1545 { 1546 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 1547 } 1548 1549 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu) 1550 { 1551 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 1552 exit_sie(vcpu); 1553 } 1554 1555 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu) 1556 { 1557 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 1558 } 1559 1560 /* 1561 * Kick a guest cpu out of SIE and wait until SIE is not running. 1562 * If the CPU is not running (e.g. waiting as idle) the function will 1563 * return immediately. */ 1564 void exit_sie(struct kvm_vcpu *vcpu) 1565 { 1566 atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags); 1567 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE) 1568 cpu_relax(); 1569 } 1570 1571 /* Kick a guest cpu out of SIE to process a request synchronously */ 1572 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) 1573 { 1574 kvm_make_request(req, vcpu); 1575 kvm_s390_vcpu_request(vcpu); 1576 } 1577 1578 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address) 1579 { 1580 int i; 1581 struct kvm *kvm = gmap->private; 1582 struct kvm_vcpu *vcpu; 1583 1584 kvm_for_each_vcpu(i, vcpu, kvm) { 1585 /* match against both prefix pages */ 1586 if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) { 1587 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address); 1588 kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu); 1589 } 1590 } 1591 } 1592 1593 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 1594 { 1595 /* kvm common code refers to this, but never calls it */ 1596 BUG(); 1597 return 0; 1598 } 1599 1600 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, 1601 struct kvm_one_reg *reg) 1602 { 1603 int r = -EINVAL; 1604 1605 switch (reg->id) { 1606 case KVM_REG_S390_TODPR: 1607 r = put_user(vcpu->arch.sie_block->todpr, 1608 (u32 __user *)reg->addr); 1609 break; 1610 case KVM_REG_S390_EPOCHDIFF: 1611 r = put_user(vcpu->arch.sie_block->epoch, 1612 (u64 __user *)reg->addr); 1613 break; 1614 case KVM_REG_S390_CPU_TIMER: 1615 r = put_user(vcpu->arch.sie_block->cputm, 1616 (u64 __user *)reg->addr); 1617 break; 1618 case KVM_REG_S390_CLOCK_COMP: 1619 r = put_user(vcpu->arch.sie_block->ckc, 1620 (u64 __user *)reg->addr); 1621 break; 1622 case KVM_REG_S390_PFTOKEN: 1623 r = put_user(vcpu->arch.pfault_token, 1624 (u64 __user *)reg->addr); 1625 break; 1626 case KVM_REG_S390_PFCOMPARE: 1627 r = put_user(vcpu->arch.pfault_compare, 1628 (u64 __user *)reg->addr); 1629 break; 1630 case KVM_REG_S390_PFSELECT: 1631 r = put_user(vcpu->arch.pfault_select, 1632 (u64 __user *)reg->addr); 1633 break; 1634 case KVM_REG_S390_PP: 1635 r = put_user(vcpu->arch.sie_block->pp, 1636 (u64 __user *)reg->addr); 1637 break; 1638 case KVM_REG_S390_GBEA: 1639 r = put_user(vcpu->arch.sie_block->gbea, 1640 (u64 __user *)reg->addr); 1641 break; 1642 default: 1643 break; 1644 } 1645 1646 return r; 1647 } 1648 1649 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, 1650 struct kvm_one_reg *reg) 1651 { 1652 int r = -EINVAL; 1653 1654 switch (reg->id) { 1655 case KVM_REG_S390_TODPR: 1656 r = get_user(vcpu->arch.sie_block->todpr, 1657 (u32 __user *)reg->addr); 1658 break; 1659 case KVM_REG_S390_EPOCHDIFF: 1660 r = get_user(vcpu->arch.sie_block->epoch, 1661 (u64 __user *)reg->addr); 1662 break; 1663 case KVM_REG_S390_CPU_TIMER: 1664 r = get_user(vcpu->arch.sie_block->cputm, 1665 (u64 __user *)reg->addr); 1666 break; 1667 case KVM_REG_S390_CLOCK_COMP: 1668 r = get_user(vcpu->arch.sie_block->ckc, 1669 (u64 __user *)reg->addr); 1670 break; 1671 case KVM_REG_S390_PFTOKEN: 1672 r = get_user(vcpu->arch.pfault_token, 1673 (u64 __user *)reg->addr); 1674 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 1675 kvm_clear_async_pf_completion_queue(vcpu); 1676 break; 1677 case KVM_REG_S390_PFCOMPARE: 1678 r = get_user(vcpu->arch.pfault_compare, 1679 (u64 __user *)reg->addr); 1680 break; 1681 case KVM_REG_S390_PFSELECT: 1682 r = get_user(vcpu->arch.pfault_select, 1683 (u64 __user *)reg->addr); 1684 break; 1685 case KVM_REG_S390_PP: 1686 r = get_user(vcpu->arch.sie_block->pp, 1687 (u64 __user *)reg->addr); 1688 break; 1689 case KVM_REG_S390_GBEA: 1690 r = get_user(vcpu->arch.sie_block->gbea, 1691 (u64 __user *)reg->addr); 1692 break; 1693 default: 1694 break; 1695 } 1696 1697 return r; 1698 } 1699 1700 static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu) 1701 { 1702 kvm_s390_vcpu_initial_reset(vcpu); 1703 return 0; 1704 } 1705 1706 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 1707 { 1708 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs)); 1709 return 0; 1710 } 1711 1712 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 1713 { 1714 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs)); 1715 return 0; 1716 } 1717 1718 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1719 struct kvm_sregs *sregs) 1720 { 1721 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs)); 1722 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs)); 1723 restore_access_regs(vcpu->run->s.regs.acrs); 1724 return 0; 1725 } 1726 1727 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1728 struct kvm_sregs *sregs) 1729 { 1730 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs)); 1731 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs)); 1732 return 0; 1733 } 1734 1735 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 1736 { 1737 if (test_fp_ctl(fpu->fpc)) 1738 return -EINVAL; 1739 memcpy(vcpu->arch.guest_fpregs.fprs, &fpu->fprs, sizeof(fpu->fprs)); 1740 vcpu->arch.guest_fpregs.fpc = fpu->fpc; 1741 save_fpu_regs(); 1742 load_fpu_from(&vcpu->arch.guest_fpregs); 1743 return 0; 1744 } 1745 1746 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 1747 { 1748 memcpy(&fpu->fprs, vcpu->arch.guest_fpregs.fprs, sizeof(fpu->fprs)); 1749 fpu->fpc = vcpu->arch.guest_fpregs.fpc; 1750 return 0; 1751 } 1752 1753 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw) 1754 { 1755 int rc = 0; 1756 1757 if (!is_vcpu_stopped(vcpu)) 1758 rc = -EBUSY; 1759 else { 1760 vcpu->run->psw_mask = psw.mask; 1761 vcpu->run->psw_addr = psw.addr; 1762 } 1763 return rc; 1764 } 1765 1766 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1767 struct kvm_translation *tr) 1768 { 1769 return -EINVAL; /* not implemented yet */ 1770 } 1771 1772 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \ 1773 KVM_GUESTDBG_USE_HW_BP | \ 1774 KVM_GUESTDBG_ENABLE) 1775 1776 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1777 struct kvm_guest_debug *dbg) 1778 { 1779 int rc = 0; 1780 1781 vcpu->guest_debug = 0; 1782 kvm_s390_clear_bp_data(vcpu); 1783 1784 if (dbg->control & ~VALID_GUESTDBG_FLAGS) 1785 return -EINVAL; 1786 1787 if (dbg->control & KVM_GUESTDBG_ENABLE) { 1788 vcpu->guest_debug = dbg->control; 1789 /* enforce guest PER */ 1790 atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags); 1791 1792 if (dbg->control & KVM_GUESTDBG_USE_HW_BP) 1793 rc = kvm_s390_import_bp_data(vcpu, dbg); 1794 } else { 1795 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags); 1796 vcpu->arch.guestdbg.last_bp = 0; 1797 } 1798 1799 if (rc) { 1800 vcpu->guest_debug = 0; 1801 kvm_s390_clear_bp_data(vcpu); 1802 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags); 1803 } 1804 1805 return rc; 1806 } 1807 1808 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1809 struct kvm_mp_state *mp_state) 1810 { 1811 /* CHECK_STOP and LOAD are not supported yet */ 1812 return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED : 1813 KVM_MP_STATE_OPERATING; 1814 } 1815 1816 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1817 struct kvm_mp_state *mp_state) 1818 { 1819 int rc = 0; 1820 1821 /* user space knows about this interface - let it control the state */ 1822 vcpu->kvm->arch.user_cpu_state_ctrl = 1; 1823 1824 switch (mp_state->mp_state) { 1825 case KVM_MP_STATE_STOPPED: 1826 kvm_s390_vcpu_stop(vcpu); 1827 break; 1828 case KVM_MP_STATE_OPERATING: 1829 kvm_s390_vcpu_start(vcpu); 1830 break; 1831 case KVM_MP_STATE_LOAD: 1832 case KVM_MP_STATE_CHECK_STOP: 1833 /* fall through - CHECK_STOP and LOAD are not supported yet */ 1834 default: 1835 rc = -ENXIO; 1836 } 1837 1838 return rc; 1839 } 1840 1841 static bool ibs_enabled(struct kvm_vcpu *vcpu) 1842 { 1843 return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS; 1844 } 1845 1846 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) 1847 { 1848 retry: 1849 kvm_s390_vcpu_request_handled(vcpu); 1850 if (!vcpu->requests) 1851 return 0; 1852 /* 1853 * We use MMU_RELOAD just to re-arm the ipte notifier for the 1854 * guest prefix page. gmap_ipte_notify will wait on the ptl lock. 1855 * This ensures that the ipte instruction for this request has 1856 * already finished. We might race against a second unmapper that 1857 * wants to set the blocking bit. Lets just retry the request loop. 1858 */ 1859 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) { 1860 int rc; 1861 rc = gmap_ipte_notify(vcpu->arch.gmap, 1862 kvm_s390_get_prefix(vcpu), 1863 PAGE_SIZE * 2); 1864 if (rc) 1865 return rc; 1866 goto retry; 1867 } 1868 1869 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 1870 vcpu->arch.sie_block->ihcpu = 0xffff; 1871 goto retry; 1872 } 1873 1874 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) { 1875 if (!ibs_enabled(vcpu)) { 1876 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1); 1877 atomic_or(CPUSTAT_IBS, 1878 &vcpu->arch.sie_block->cpuflags); 1879 } 1880 goto retry; 1881 } 1882 1883 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) { 1884 if (ibs_enabled(vcpu)) { 1885 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0); 1886 atomic_andnot(CPUSTAT_IBS, 1887 &vcpu->arch.sie_block->cpuflags); 1888 } 1889 goto retry; 1890 } 1891 1892 /* nothing to do, just clear the request */ 1893 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 1894 1895 return 0; 1896 } 1897 1898 void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod) 1899 { 1900 struct kvm_vcpu *vcpu; 1901 int i; 1902 1903 mutex_lock(&kvm->lock); 1904 preempt_disable(); 1905 kvm->arch.epoch = tod - get_tod_clock(); 1906 kvm_s390_vcpu_block_all(kvm); 1907 kvm_for_each_vcpu(i, vcpu, kvm) 1908 vcpu->arch.sie_block->epoch = kvm->arch.epoch; 1909 kvm_s390_vcpu_unblock_all(kvm); 1910 preempt_enable(); 1911 mutex_unlock(&kvm->lock); 1912 } 1913 1914 /** 1915 * kvm_arch_fault_in_page - fault-in guest page if necessary 1916 * @vcpu: The corresponding virtual cpu 1917 * @gpa: Guest physical address 1918 * @writable: Whether the page should be writable or not 1919 * 1920 * Make sure that a guest page has been faulted-in on the host. 1921 * 1922 * Return: Zero on success, negative error code otherwise. 1923 */ 1924 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable) 1925 { 1926 return gmap_fault(vcpu->arch.gmap, gpa, 1927 writable ? FAULT_FLAG_WRITE : 0); 1928 } 1929 1930 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token, 1931 unsigned long token) 1932 { 1933 struct kvm_s390_interrupt inti; 1934 struct kvm_s390_irq irq; 1935 1936 if (start_token) { 1937 irq.u.ext.ext_params2 = token; 1938 irq.type = KVM_S390_INT_PFAULT_INIT; 1939 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq)); 1940 } else { 1941 inti.type = KVM_S390_INT_PFAULT_DONE; 1942 inti.parm64 = token; 1943 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti)); 1944 } 1945 } 1946 1947 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 1948 struct kvm_async_pf *work) 1949 { 1950 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token); 1951 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token); 1952 } 1953 1954 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 1955 struct kvm_async_pf *work) 1956 { 1957 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token); 1958 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token); 1959 } 1960 1961 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 1962 struct kvm_async_pf *work) 1963 { 1964 /* s390 will always inject the page directly */ 1965 } 1966 1967 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 1968 { 1969 /* 1970 * s390 will always inject the page directly, 1971 * but we still want check_async_completion to cleanup 1972 */ 1973 return true; 1974 } 1975 1976 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu) 1977 { 1978 hva_t hva; 1979 struct kvm_arch_async_pf arch; 1980 int rc; 1981 1982 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 1983 return 0; 1984 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) != 1985 vcpu->arch.pfault_compare) 1986 return 0; 1987 if (psw_extint_disabled(vcpu)) 1988 return 0; 1989 if (kvm_s390_vcpu_has_irq(vcpu, 0)) 1990 return 0; 1991 if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul)) 1992 return 0; 1993 if (!vcpu->arch.gmap->pfault_enabled) 1994 return 0; 1995 1996 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr)); 1997 hva += current->thread.gmap_addr & ~PAGE_MASK; 1998 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8)) 1999 return 0; 2000 2001 rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch); 2002 return rc; 2003 } 2004 2005 static int vcpu_pre_run(struct kvm_vcpu *vcpu) 2006 { 2007 int rc, cpuflags; 2008 2009 /* 2010 * On s390 notifications for arriving pages will be delivered directly 2011 * to the guest but the house keeping for completed pfaults is 2012 * handled outside the worker. 2013 */ 2014 kvm_check_async_pf_completion(vcpu); 2015 2016 memcpy(&vcpu->arch.sie_block->gg14, &vcpu->run->s.regs.gprs[14], 16); 2017 2018 if (need_resched()) 2019 schedule(); 2020 2021 if (test_cpu_flag(CIF_MCCK_PENDING)) 2022 s390_handle_mcck(); 2023 2024 if (!kvm_is_ucontrol(vcpu->kvm)) { 2025 rc = kvm_s390_deliver_pending_interrupts(vcpu); 2026 if (rc) 2027 return rc; 2028 } 2029 2030 rc = kvm_s390_handle_requests(vcpu); 2031 if (rc) 2032 return rc; 2033 2034 if (guestdbg_enabled(vcpu)) { 2035 kvm_s390_backup_guest_per_regs(vcpu); 2036 kvm_s390_patch_guest_per_regs(vcpu); 2037 } 2038 2039 vcpu->arch.sie_block->icptcode = 0; 2040 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags); 2041 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags); 2042 trace_kvm_s390_sie_enter(vcpu, cpuflags); 2043 2044 return 0; 2045 } 2046 2047 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu) 2048 { 2049 psw_t *psw = &vcpu->arch.sie_block->gpsw; 2050 u8 opcode; 2051 int rc; 2052 2053 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction"); 2054 trace_kvm_s390_sie_fault(vcpu); 2055 2056 /* 2057 * We want to inject an addressing exception, which is defined as a 2058 * suppressing or terminating exception. However, since we came here 2059 * by a DAT access exception, the PSW still points to the faulting 2060 * instruction since DAT exceptions are nullifying. So we've got 2061 * to look up the current opcode to get the length of the instruction 2062 * to be able to forward the PSW. 2063 */ 2064 rc = read_guest(vcpu, psw->addr, 0, &opcode, 1); 2065 if (rc) 2066 return kvm_s390_inject_prog_cond(vcpu, rc); 2067 psw->addr = __rewind_psw(*psw, -insn_length(opcode)); 2068 2069 return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); 2070 } 2071 2072 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason) 2073 { 2074 int rc = -1; 2075 2076 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d", 2077 vcpu->arch.sie_block->icptcode); 2078 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode); 2079 2080 if (guestdbg_enabled(vcpu)) 2081 kvm_s390_restore_guest_per_regs(vcpu); 2082 2083 if (exit_reason >= 0) { 2084 rc = 0; 2085 } else if (kvm_is_ucontrol(vcpu->kvm)) { 2086 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL; 2087 vcpu->run->s390_ucontrol.trans_exc_code = 2088 current->thread.gmap_addr; 2089 vcpu->run->s390_ucontrol.pgm_code = 0x10; 2090 rc = -EREMOTE; 2091 2092 } else if (current->thread.gmap_pfault) { 2093 trace_kvm_s390_major_guest_pfault(vcpu); 2094 current->thread.gmap_pfault = 0; 2095 if (kvm_arch_setup_async_pf(vcpu)) { 2096 rc = 0; 2097 } else { 2098 gpa_t gpa = current->thread.gmap_addr; 2099 rc = kvm_arch_fault_in_page(vcpu, gpa, 1); 2100 } 2101 } 2102 2103 if (rc == -1) 2104 rc = vcpu_post_run_fault_in_sie(vcpu); 2105 2106 memcpy(&vcpu->run->s.regs.gprs[14], &vcpu->arch.sie_block->gg14, 16); 2107 2108 if (rc == 0) { 2109 if (kvm_is_ucontrol(vcpu->kvm)) 2110 /* Don't exit for host interrupts. */ 2111 rc = vcpu->arch.sie_block->icptcode ? -EOPNOTSUPP : 0; 2112 else 2113 rc = kvm_handle_sie_intercept(vcpu); 2114 } 2115 2116 return rc; 2117 } 2118 2119 static int __vcpu_run(struct kvm_vcpu *vcpu) 2120 { 2121 int rc, exit_reason; 2122 2123 /* 2124 * We try to hold kvm->srcu during most of vcpu_run (except when run- 2125 * ning the guest), so that memslots (and other stuff) are protected 2126 */ 2127 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2128 2129 do { 2130 rc = vcpu_pre_run(vcpu); 2131 if (rc) 2132 break; 2133 2134 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 2135 /* 2136 * As PF_VCPU will be used in fault handler, between 2137 * guest_enter and guest_exit should be no uaccess. 2138 */ 2139 local_irq_disable(); 2140 __kvm_guest_enter(); 2141 local_irq_enable(); 2142 exit_reason = sie64a(vcpu->arch.sie_block, 2143 vcpu->run->s.regs.gprs); 2144 local_irq_disable(); 2145 __kvm_guest_exit(); 2146 local_irq_enable(); 2147 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2148 2149 rc = vcpu_post_run(vcpu, exit_reason); 2150 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc); 2151 2152 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 2153 return rc; 2154 } 2155 2156 static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 2157 { 2158 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask; 2159 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr; 2160 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) 2161 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix); 2162 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) { 2163 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128); 2164 /* some control register changes require a tlb flush */ 2165 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 2166 } 2167 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 2168 vcpu->arch.sie_block->cputm = kvm_run->s.regs.cputm; 2169 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc; 2170 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr; 2171 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp; 2172 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea; 2173 } 2174 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) { 2175 vcpu->arch.pfault_token = kvm_run->s.regs.pft; 2176 vcpu->arch.pfault_select = kvm_run->s.regs.pfs; 2177 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc; 2178 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 2179 kvm_clear_async_pf_completion_queue(vcpu); 2180 } 2181 kvm_run->kvm_dirty_regs = 0; 2182 } 2183 2184 static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 2185 { 2186 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask; 2187 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr; 2188 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu); 2189 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128); 2190 kvm_run->s.regs.cputm = vcpu->arch.sie_block->cputm; 2191 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc; 2192 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr; 2193 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp; 2194 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea; 2195 kvm_run->s.regs.pft = vcpu->arch.pfault_token; 2196 kvm_run->s.regs.pfs = vcpu->arch.pfault_select; 2197 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare; 2198 } 2199 2200 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 2201 { 2202 int rc; 2203 sigset_t sigsaved; 2204 2205 if (guestdbg_exit_pending(vcpu)) { 2206 kvm_s390_prepare_debug_exit(vcpu); 2207 return 0; 2208 } 2209 2210 if (vcpu->sigset_active) 2211 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 2212 2213 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) { 2214 kvm_s390_vcpu_start(vcpu); 2215 } else if (is_vcpu_stopped(vcpu)) { 2216 pr_err_ratelimited("can't run stopped vcpu %d\n", 2217 vcpu->vcpu_id); 2218 return -EINVAL; 2219 } 2220 2221 sync_regs(vcpu, kvm_run); 2222 2223 might_fault(); 2224 rc = __vcpu_run(vcpu); 2225 2226 if (signal_pending(current) && !rc) { 2227 kvm_run->exit_reason = KVM_EXIT_INTR; 2228 rc = -EINTR; 2229 } 2230 2231 if (guestdbg_exit_pending(vcpu) && !rc) { 2232 kvm_s390_prepare_debug_exit(vcpu); 2233 rc = 0; 2234 } 2235 2236 if (rc == -EOPNOTSUPP) { 2237 /* intercept cannot be handled in-kernel, prepare kvm-run */ 2238 kvm_run->exit_reason = KVM_EXIT_S390_SIEIC; 2239 kvm_run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode; 2240 kvm_run->s390_sieic.ipa = vcpu->arch.sie_block->ipa; 2241 kvm_run->s390_sieic.ipb = vcpu->arch.sie_block->ipb; 2242 rc = 0; 2243 } 2244 2245 if (rc == -EREMOTE) { 2246 /* intercept was handled, but userspace support is needed 2247 * kvm_run has been prepared by the handler */ 2248 rc = 0; 2249 } 2250 2251 store_regs(vcpu, kvm_run); 2252 2253 if (vcpu->sigset_active) 2254 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 2255 2256 vcpu->stat.exit_userspace++; 2257 return rc; 2258 } 2259 2260 /* 2261 * store status at address 2262 * we use have two special cases: 2263 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit 2264 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix 2265 */ 2266 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa) 2267 { 2268 unsigned char archmode = 1; 2269 unsigned int px; 2270 u64 clkcomp; 2271 int rc; 2272 2273 if (gpa == KVM_S390_STORE_STATUS_NOADDR) { 2274 if (write_guest_abs(vcpu, 163, &archmode, 1)) 2275 return -EFAULT; 2276 gpa = SAVE_AREA_BASE; 2277 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) { 2278 if (write_guest_real(vcpu, 163, &archmode, 1)) 2279 return -EFAULT; 2280 gpa = kvm_s390_real_to_abs(vcpu, SAVE_AREA_BASE); 2281 } 2282 rc = write_guest_abs(vcpu, gpa + offsetof(struct save_area, fp_regs), 2283 vcpu->arch.guest_fpregs.fprs, 128); 2284 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, gp_regs), 2285 vcpu->run->s.regs.gprs, 128); 2286 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, psw), 2287 &vcpu->arch.sie_block->gpsw, 16); 2288 px = kvm_s390_get_prefix(vcpu); 2289 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, pref_reg), 2290 &px, 4); 2291 rc |= write_guest_abs(vcpu, 2292 gpa + offsetof(struct save_area, fp_ctrl_reg), 2293 &vcpu->arch.guest_fpregs.fpc, 4); 2294 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, tod_reg), 2295 &vcpu->arch.sie_block->todpr, 4); 2296 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, timer), 2297 &vcpu->arch.sie_block->cputm, 8); 2298 clkcomp = vcpu->arch.sie_block->ckc >> 8; 2299 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, clk_cmp), 2300 &clkcomp, 8); 2301 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, acc_regs), 2302 &vcpu->run->s.regs.acrs, 64); 2303 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, ctrl_regs), 2304 &vcpu->arch.sie_block->gcr, 128); 2305 return rc ? -EFAULT : 0; 2306 } 2307 2308 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr) 2309 { 2310 /* 2311 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy 2312 * copying in vcpu load/put. Lets update our copies before we save 2313 * it into the save area 2314 */ 2315 save_fpu_regs(); 2316 if (test_kvm_facility(vcpu->kvm, 129)) { 2317 /* 2318 * If the vector extension is available, the vector registers 2319 * which overlaps with floating-point registers are saved in 2320 * the SIE-control block. Hence, extract the floating-point 2321 * registers and the FPC value and store them in the 2322 * guest_fpregs structure. 2323 */ 2324 vcpu->arch.guest_fpregs.fpc = current->thread.fpu.fpc; 2325 convert_vx_to_fp(vcpu->arch.guest_fpregs.fprs, 2326 current->thread.fpu.vxrs); 2327 } else 2328 save_fpu_to(&vcpu->arch.guest_fpregs); 2329 save_access_regs(vcpu->run->s.regs.acrs); 2330 2331 return kvm_s390_store_status_unloaded(vcpu, addr); 2332 } 2333 2334 /* 2335 * store additional status at address 2336 */ 2337 int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu, 2338 unsigned long gpa) 2339 { 2340 /* Only bits 0-53 are used for address formation */ 2341 if (!(gpa & ~0x3ff)) 2342 return 0; 2343 2344 return write_guest_abs(vcpu, gpa & ~0x3ff, 2345 (void *)&vcpu->run->s.regs.vrs, 512); 2346 } 2347 2348 int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr) 2349 { 2350 if (!test_kvm_facility(vcpu->kvm, 129)) 2351 return 0; 2352 2353 /* 2354 * The guest VXRS are in the host VXRs due to the lazy 2355 * copying in vcpu load/put. We can simply call save_fpu_regs() 2356 * to save the current register state because we are in the 2357 * middle of a load/put cycle. 2358 * 2359 * Let's update our copies before we save it into the save area. 2360 */ 2361 save_fpu_regs(); 2362 2363 return kvm_s390_store_adtl_status_unloaded(vcpu, addr); 2364 } 2365 2366 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 2367 { 2368 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu); 2369 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu); 2370 } 2371 2372 static void __disable_ibs_on_all_vcpus(struct kvm *kvm) 2373 { 2374 unsigned int i; 2375 struct kvm_vcpu *vcpu; 2376 2377 kvm_for_each_vcpu(i, vcpu, kvm) { 2378 __disable_ibs_on_vcpu(vcpu); 2379 } 2380 } 2381 2382 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 2383 { 2384 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu); 2385 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu); 2386 } 2387 2388 void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu) 2389 { 2390 int i, online_vcpus, started_vcpus = 0; 2391 2392 if (!is_vcpu_stopped(vcpu)) 2393 return; 2394 2395 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1); 2396 /* Only one cpu at a time may enter/leave the STOPPED state. */ 2397 spin_lock(&vcpu->kvm->arch.start_stop_lock); 2398 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 2399 2400 for (i = 0; i < online_vcpus; i++) { 2401 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) 2402 started_vcpus++; 2403 } 2404 2405 if (started_vcpus == 0) { 2406 /* we're the only active VCPU -> speed it up */ 2407 __enable_ibs_on_vcpu(vcpu); 2408 } else if (started_vcpus == 1) { 2409 /* 2410 * As we are starting a second VCPU, we have to disable 2411 * the IBS facility on all VCPUs to remove potentially 2412 * oustanding ENABLE requests. 2413 */ 2414 __disable_ibs_on_all_vcpus(vcpu->kvm); 2415 } 2416 2417 atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags); 2418 /* 2419 * Another VCPU might have used IBS while we were offline. 2420 * Let's play safe and flush the VCPU at startup. 2421 */ 2422 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 2423 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 2424 return; 2425 } 2426 2427 void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu) 2428 { 2429 int i, online_vcpus, started_vcpus = 0; 2430 struct kvm_vcpu *started_vcpu = NULL; 2431 2432 if (is_vcpu_stopped(vcpu)) 2433 return; 2434 2435 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0); 2436 /* Only one cpu at a time may enter/leave the STOPPED state. */ 2437 spin_lock(&vcpu->kvm->arch.start_stop_lock); 2438 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 2439 2440 /* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */ 2441 kvm_s390_clear_stop_irq(vcpu); 2442 2443 atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags); 2444 __disable_ibs_on_vcpu(vcpu); 2445 2446 for (i = 0; i < online_vcpus; i++) { 2447 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) { 2448 started_vcpus++; 2449 started_vcpu = vcpu->kvm->vcpus[i]; 2450 } 2451 } 2452 2453 if (started_vcpus == 1) { 2454 /* 2455 * As we only have one VCPU left, we want to enable the 2456 * IBS facility for that VCPU to speed it up. 2457 */ 2458 __enable_ibs_on_vcpu(started_vcpu); 2459 } 2460 2461 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 2462 return; 2463 } 2464 2465 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 2466 struct kvm_enable_cap *cap) 2467 { 2468 int r; 2469 2470 if (cap->flags) 2471 return -EINVAL; 2472 2473 switch (cap->cap) { 2474 case KVM_CAP_S390_CSS_SUPPORT: 2475 if (!vcpu->kvm->arch.css_support) { 2476 vcpu->kvm->arch.css_support = 1; 2477 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support"); 2478 trace_kvm_s390_enable_css(vcpu->kvm); 2479 } 2480 r = 0; 2481 break; 2482 default: 2483 r = -EINVAL; 2484 break; 2485 } 2486 return r; 2487 } 2488 2489 static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu, 2490 struct kvm_s390_mem_op *mop) 2491 { 2492 void __user *uaddr = (void __user *)mop->buf; 2493 void *tmpbuf = NULL; 2494 int r, srcu_idx; 2495 const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION 2496 | KVM_S390_MEMOP_F_CHECK_ONLY; 2497 2498 if (mop->flags & ~supported_flags) 2499 return -EINVAL; 2500 2501 if (mop->size > MEM_OP_MAX_SIZE) 2502 return -E2BIG; 2503 2504 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 2505 tmpbuf = vmalloc(mop->size); 2506 if (!tmpbuf) 2507 return -ENOMEM; 2508 } 2509 2510 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2511 2512 switch (mop->op) { 2513 case KVM_S390_MEMOP_LOGICAL_READ: 2514 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 2515 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, false); 2516 break; 2517 } 2518 r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size); 2519 if (r == 0) { 2520 if (copy_to_user(uaddr, tmpbuf, mop->size)) 2521 r = -EFAULT; 2522 } 2523 break; 2524 case KVM_S390_MEMOP_LOGICAL_WRITE: 2525 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 2526 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, true); 2527 break; 2528 } 2529 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 2530 r = -EFAULT; 2531 break; 2532 } 2533 r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size); 2534 break; 2535 default: 2536 r = -EINVAL; 2537 } 2538 2539 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 2540 2541 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0) 2542 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); 2543 2544 vfree(tmpbuf); 2545 return r; 2546 } 2547 2548 long kvm_arch_vcpu_ioctl(struct file *filp, 2549 unsigned int ioctl, unsigned long arg) 2550 { 2551 struct kvm_vcpu *vcpu = filp->private_data; 2552 void __user *argp = (void __user *)arg; 2553 int idx; 2554 long r; 2555 2556 switch (ioctl) { 2557 case KVM_S390_IRQ: { 2558 struct kvm_s390_irq s390irq; 2559 2560 r = -EFAULT; 2561 if (copy_from_user(&s390irq, argp, sizeof(s390irq))) 2562 break; 2563 r = kvm_s390_inject_vcpu(vcpu, &s390irq); 2564 break; 2565 } 2566 case KVM_S390_INTERRUPT: { 2567 struct kvm_s390_interrupt s390int; 2568 struct kvm_s390_irq s390irq; 2569 2570 r = -EFAULT; 2571 if (copy_from_user(&s390int, argp, sizeof(s390int))) 2572 break; 2573 if (s390int_to_s390irq(&s390int, &s390irq)) 2574 return -EINVAL; 2575 r = kvm_s390_inject_vcpu(vcpu, &s390irq); 2576 break; 2577 } 2578 case KVM_S390_STORE_STATUS: 2579 idx = srcu_read_lock(&vcpu->kvm->srcu); 2580 r = kvm_s390_vcpu_store_status(vcpu, arg); 2581 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2582 break; 2583 case KVM_S390_SET_INITIAL_PSW: { 2584 psw_t psw; 2585 2586 r = -EFAULT; 2587 if (copy_from_user(&psw, argp, sizeof(psw))) 2588 break; 2589 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw); 2590 break; 2591 } 2592 case KVM_S390_INITIAL_RESET: 2593 r = kvm_arch_vcpu_ioctl_initial_reset(vcpu); 2594 break; 2595 case KVM_SET_ONE_REG: 2596 case KVM_GET_ONE_REG: { 2597 struct kvm_one_reg reg; 2598 r = -EFAULT; 2599 if (copy_from_user(®, argp, sizeof(reg))) 2600 break; 2601 if (ioctl == KVM_SET_ONE_REG) 2602 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®); 2603 else 2604 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®); 2605 break; 2606 } 2607 #ifdef CONFIG_KVM_S390_UCONTROL 2608 case KVM_S390_UCAS_MAP: { 2609 struct kvm_s390_ucas_mapping ucasmap; 2610 2611 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 2612 r = -EFAULT; 2613 break; 2614 } 2615 2616 if (!kvm_is_ucontrol(vcpu->kvm)) { 2617 r = -EINVAL; 2618 break; 2619 } 2620 2621 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr, 2622 ucasmap.vcpu_addr, ucasmap.length); 2623 break; 2624 } 2625 case KVM_S390_UCAS_UNMAP: { 2626 struct kvm_s390_ucas_mapping ucasmap; 2627 2628 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 2629 r = -EFAULT; 2630 break; 2631 } 2632 2633 if (!kvm_is_ucontrol(vcpu->kvm)) { 2634 r = -EINVAL; 2635 break; 2636 } 2637 2638 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr, 2639 ucasmap.length); 2640 break; 2641 } 2642 #endif 2643 case KVM_S390_VCPU_FAULT: { 2644 r = gmap_fault(vcpu->arch.gmap, arg, 0); 2645 break; 2646 } 2647 case KVM_ENABLE_CAP: 2648 { 2649 struct kvm_enable_cap cap; 2650 r = -EFAULT; 2651 if (copy_from_user(&cap, argp, sizeof(cap))) 2652 break; 2653 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 2654 break; 2655 } 2656 case KVM_S390_MEM_OP: { 2657 struct kvm_s390_mem_op mem_op; 2658 2659 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 2660 r = kvm_s390_guest_mem_op(vcpu, &mem_op); 2661 else 2662 r = -EFAULT; 2663 break; 2664 } 2665 case KVM_S390_SET_IRQ_STATE: { 2666 struct kvm_s390_irq_state irq_state; 2667 2668 r = -EFAULT; 2669 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 2670 break; 2671 if (irq_state.len > VCPU_IRQS_MAX_BUF || 2672 irq_state.len == 0 || 2673 irq_state.len % sizeof(struct kvm_s390_irq) > 0) { 2674 r = -EINVAL; 2675 break; 2676 } 2677 r = kvm_s390_set_irq_state(vcpu, 2678 (void __user *) irq_state.buf, 2679 irq_state.len); 2680 break; 2681 } 2682 case KVM_S390_GET_IRQ_STATE: { 2683 struct kvm_s390_irq_state irq_state; 2684 2685 r = -EFAULT; 2686 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 2687 break; 2688 if (irq_state.len == 0) { 2689 r = -EINVAL; 2690 break; 2691 } 2692 r = kvm_s390_get_irq_state(vcpu, 2693 (__u8 __user *) irq_state.buf, 2694 irq_state.len); 2695 break; 2696 } 2697 default: 2698 r = -ENOTTY; 2699 } 2700 return r; 2701 } 2702 2703 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2704 { 2705 #ifdef CONFIG_KVM_S390_UCONTROL 2706 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET) 2707 && (kvm_is_ucontrol(vcpu->kvm))) { 2708 vmf->page = virt_to_page(vcpu->arch.sie_block); 2709 get_page(vmf->page); 2710 return 0; 2711 } 2712 #endif 2713 return VM_FAULT_SIGBUS; 2714 } 2715 2716 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 2717 unsigned long npages) 2718 { 2719 return 0; 2720 } 2721 2722 /* Section: memory related */ 2723 int kvm_arch_prepare_memory_region(struct kvm *kvm, 2724 struct kvm_memory_slot *memslot, 2725 const struct kvm_userspace_memory_region *mem, 2726 enum kvm_mr_change change) 2727 { 2728 /* A few sanity checks. We can have memory slots which have to be 2729 located/ended at a segment boundary (1MB). The memory in userland is 2730 ok to be fragmented into various different vmas. It is okay to mmap() 2731 and munmap() stuff in this slot after doing this call at any time */ 2732 2733 if (mem->userspace_addr & 0xffffful) 2734 return -EINVAL; 2735 2736 if (mem->memory_size & 0xffffful) 2737 return -EINVAL; 2738 2739 return 0; 2740 } 2741 2742 void kvm_arch_commit_memory_region(struct kvm *kvm, 2743 const struct kvm_userspace_memory_region *mem, 2744 const struct kvm_memory_slot *old, 2745 const struct kvm_memory_slot *new, 2746 enum kvm_mr_change change) 2747 { 2748 int rc; 2749 2750 /* If the basics of the memslot do not change, we do not want 2751 * to update the gmap. Every update causes several unnecessary 2752 * segment translation exceptions. This is usually handled just 2753 * fine by the normal fault handler + gmap, but it will also 2754 * cause faults on the prefix page of running guest CPUs. 2755 */ 2756 if (old->userspace_addr == mem->userspace_addr && 2757 old->base_gfn * PAGE_SIZE == mem->guest_phys_addr && 2758 old->npages * PAGE_SIZE == mem->memory_size) 2759 return; 2760 2761 rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr, 2762 mem->guest_phys_addr, mem->memory_size); 2763 if (rc) 2764 pr_warn("failed to commit memory region\n"); 2765 return; 2766 } 2767 2768 static int __init kvm_s390_init(void) 2769 { 2770 return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 2771 } 2772 2773 static void __exit kvm_s390_exit(void) 2774 { 2775 kvm_exit(); 2776 } 2777 2778 module_init(kvm_s390_init); 2779 module_exit(kvm_s390_exit); 2780 2781 /* 2782 * Enable autoloading of the kvm module. 2783 * Note that we add the module alias here instead of virt/kvm/kvm_main.c 2784 * since x86 takes a different approach. 2785 */ 2786 #include <linux/miscdevice.h> 2787 MODULE_ALIAS_MISCDEV(KVM_MINOR); 2788 MODULE_ALIAS("devname:kvm"); 2789