1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * handling kvm guest interrupts 4 * 5 * Copyright IBM Corp. 2008, 2020 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 */ 9 10 #define KMSG_COMPONENT "kvm-s390" 11 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 12 13 #include <linux/interrupt.h> 14 #include <linux/kvm_host.h> 15 #include <linux/hrtimer.h> 16 #include <linux/mmu_context.h> 17 #include <linux/nospec.h> 18 #include <linux/signal.h> 19 #include <linux/slab.h> 20 #include <linux/bitmap.h> 21 #include <linux/vmalloc.h> 22 #include <asm/asm-offsets.h> 23 #include <asm/dis.h> 24 #include <linux/uaccess.h> 25 #include <asm/sclp.h> 26 #include <asm/isc.h> 27 #include <asm/gmap.h> 28 #include <asm/switch_to.h> 29 #include <asm/nmi.h> 30 #include <asm/airq.h> 31 #include <asm/tpi.h> 32 #include "kvm-s390.h" 33 #include "gaccess.h" 34 #include "trace-s390.h" 35 #include "pci.h" 36 37 #define PFAULT_INIT 0x0600 38 #define PFAULT_DONE 0x0680 39 #define VIRTIO_PARAM 0x0d00 40 41 static struct kvm_s390_gib *gib; 42 43 /* handle external calls via sigp interpretation facility */ 44 static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id) 45 { 46 int c, scn; 47 48 if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND)) 49 return 0; 50 51 BUG_ON(!kvm_s390_use_sca_entries()); 52 read_lock(&vcpu->kvm->arch.sca_lock); 53 if (vcpu->kvm->arch.use_esca) { 54 struct esca_block *sca = vcpu->kvm->arch.sca; 55 union esca_sigp_ctrl sigp_ctrl = 56 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 57 58 c = sigp_ctrl.c; 59 scn = sigp_ctrl.scn; 60 } else { 61 struct bsca_block *sca = vcpu->kvm->arch.sca; 62 union bsca_sigp_ctrl sigp_ctrl = 63 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 64 65 c = sigp_ctrl.c; 66 scn = sigp_ctrl.scn; 67 } 68 read_unlock(&vcpu->kvm->arch.sca_lock); 69 70 if (src_id) 71 *src_id = scn; 72 73 return c; 74 } 75 76 static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id) 77 { 78 int expect, rc; 79 80 BUG_ON(!kvm_s390_use_sca_entries()); 81 read_lock(&vcpu->kvm->arch.sca_lock); 82 if (vcpu->kvm->arch.use_esca) { 83 struct esca_block *sca = vcpu->kvm->arch.sca; 84 union esca_sigp_ctrl *sigp_ctrl = 85 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 86 union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl; 87 88 new_val.scn = src_id; 89 new_val.c = 1; 90 old_val.c = 0; 91 92 expect = old_val.value; 93 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 94 } else { 95 struct bsca_block *sca = vcpu->kvm->arch.sca; 96 union bsca_sigp_ctrl *sigp_ctrl = 97 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 98 union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl; 99 100 new_val.scn = src_id; 101 new_val.c = 1; 102 old_val.c = 0; 103 104 expect = old_val.value; 105 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 106 } 107 read_unlock(&vcpu->kvm->arch.sca_lock); 108 109 if (rc != expect) { 110 /* another external call is pending */ 111 return -EBUSY; 112 } 113 kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 114 return 0; 115 } 116 117 static void sca_clear_ext_call(struct kvm_vcpu *vcpu) 118 { 119 int rc, expect; 120 121 if (!kvm_s390_use_sca_entries()) 122 return; 123 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 124 read_lock(&vcpu->kvm->arch.sca_lock); 125 if (vcpu->kvm->arch.use_esca) { 126 struct esca_block *sca = vcpu->kvm->arch.sca; 127 union esca_sigp_ctrl *sigp_ctrl = 128 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 129 union esca_sigp_ctrl old = *sigp_ctrl; 130 131 expect = old.value; 132 rc = cmpxchg(&sigp_ctrl->value, old.value, 0); 133 } else { 134 struct bsca_block *sca = vcpu->kvm->arch.sca; 135 union bsca_sigp_ctrl *sigp_ctrl = 136 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 137 union bsca_sigp_ctrl old = *sigp_ctrl; 138 139 expect = old.value; 140 rc = cmpxchg(&sigp_ctrl->value, old.value, 0); 141 } 142 read_unlock(&vcpu->kvm->arch.sca_lock); 143 WARN_ON(rc != expect); /* cannot clear? */ 144 } 145 146 int psw_extint_disabled(struct kvm_vcpu *vcpu) 147 { 148 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT); 149 } 150 151 static int psw_ioint_disabled(struct kvm_vcpu *vcpu) 152 { 153 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO); 154 } 155 156 static int psw_mchk_disabled(struct kvm_vcpu *vcpu) 157 { 158 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK); 159 } 160 161 static int psw_interrupts_disabled(struct kvm_vcpu *vcpu) 162 { 163 return psw_extint_disabled(vcpu) && 164 psw_ioint_disabled(vcpu) && 165 psw_mchk_disabled(vcpu); 166 } 167 168 static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu) 169 { 170 if (psw_extint_disabled(vcpu) || 171 !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 172 return 0; 173 if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu)) 174 /* No timer interrupts when single stepping */ 175 return 0; 176 return 1; 177 } 178 179 static int ckc_irq_pending(struct kvm_vcpu *vcpu) 180 { 181 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 182 const u64 ckc = vcpu->arch.sie_block->ckc; 183 184 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 185 if ((s64)ckc >= (s64)now) 186 return 0; 187 } else if (ckc >= now) { 188 return 0; 189 } 190 return ckc_interrupts_enabled(vcpu); 191 } 192 193 static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu) 194 { 195 return !psw_extint_disabled(vcpu) && 196 (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK); 197 } 198 199 static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu) 200 { 201 if (!cpu_timer_interrupts_enabled(vcpu)) 202 return 0; 203 return kvm_s390_get_cpu_timer(vcpu) >> 63; 204 } 205 206 static uint64_t isc_to_isc_bits(int isc) 207 { 208 return (0x80 >> isc) << 24; 209 } 210 211 static inline u32 isc_to_int_word(u8 isc) 212 { 213 return ((u32)isc << 27) | 0x80000000; 214 } 215 216 static inline u8 int_word_to_isc(u32 int_word) 217 { 218 return (int_word & 0x38000000) >> 27; 219 } 220 221 /* 222 * To use atomic bitmap functions, we have to provide a bitmap address 223 * that is u64 aligned. However, the ipm might be u32 aligned. 224 * Therefore, we logically start the bitmap at the very beginning of the 225 * struct and fixup the bit number. 226 */ 227 #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE) 228 229 /** 230 * gisa_set_iam - change the GISA interruption alert mask 231 * 232 * @gisa: gisa to operate on 233 * @iam: new IAM value to use 234 * 235 * Change the IAM atomically with the next alert address and the IPM 236 * of the GISA if the GISA is not part of the GIB alert list. All three 237 * fields are located in the first long word of the GISA. 238 * 239 * Returns: 0 on success 240 * -EBUSY in case the gisa is part of the alert list 241 */ 242 static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam) 243 { 244 u64 word, _word; 245 246 do { 247 word = READ_ONCE(gisa->u64.word[0]); 248 if ((u64)gisa != word >> 32) 249 return -EBUSY; 250 _word = (word & ~0xffUL) | iam; 251 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word); 252 253 return 0; 254 } 255 256 /** 257 * gisa_clear_ipm - clear the GISA interruption pending mask 258 * 259 * @gisa: gisa to operate on 260 * 261 * Clear the IPM atomically with the next alert address and the IAM 262 * of the GISA unconditionally. All three fields are located in the 263 * first long word of the GISA. 264 */ 265 static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa) 266 { 267 u64 word, _word; 268 269 do { 270 word = READ_ONCE(gisa->u64.word[0]); 271 _word = word & ~(0xffUL << 24); 272 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word); 273 } 274 275 /** 276 * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM 277 * 278 * @gi: gisa interrupt struct to work on 279 * 280 * Atomically restores the interruption alert mask if none of the 281 * relevant ISCs are pending and return the IPM. 282 * 283 * Returns: the relevant pending ISCs 284 */ 285 static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi) 286 { 287 u8 pending_mask, alert_mask; 288 u64 word, _word; 289 290 do { 291 word = READ_ONCE(gi->origin->u64.word[0]); 292 alert_mask = READ_ONCE(gi->alert.mask); 293 pending_mask = (u8)(word >> 24) & alert_mask; 294 if (pending_mask) 295 return pending_mask; 296 _word = (word & ~0xffUL) | alert_mask; 297 } while (cmpxchg(&gi->origin->u64.word[0], word, _word) != word); 298 299 return 0; 300 } 301 302 static inline int gisa_in_alert_list(struct kvm_s390_gisa *gisa) 303 { 304 return READ_ONCE(gisa->next_alert) != (u32)(u64)gisa; 305 } 306 307 static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 308 { 309 set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 310 } 311 312 static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa) 313 { 314 return READ_ONCE(gisa->ipm); 315 } 316 317 static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 318 { 319 return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 320 } 321 322 static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu) 323 { 324 unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs | 325 vcpu->arch.local_int.pending_irqs; 326 327 pending &= ~vcpu->kvm->arch.float_int.masked_irqs; 328 return pending; 329 } 330 331 static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu) 332 { 333 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 334 unsigned long pending_mask; 335 336 pending_mask = pending_irqs_no_gisa(vcpu); 337 if (gi->origin) 338 pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7; 339 return pending_mask; 340 } 341 342 static inline int isc_to_irq_type(unsigned long isc) 343 { 344 return IRQ_PEND_IO_ISC_0 - isc; 345 } 346 347 static inline int irq_type_to_isc(unsigned long irq_type) 348 { 349 return IRQ_PEND_IO_ISC_0 - irq_type; 350 } 351 352 static unsigned long disable_iscs(struct kvm_vcpu *vcpu, 353 unsigned long active_mask) 354 { 355 int i; 356 357 for (i = 0; i <= MAX_ISC; i++) 358 if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i))) 359 active_mask &= ~(1UL << (isc_to_irq_type(i))); 360 361 return active_mask; 362 } 363 364 static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu) 365 { 366 unsigned long active_mask; 367 368 active_mask = pending_irqs(vcpu); 369 if (!active_mask) 370 return 0; 371 372 if (psw_extint_disabled(vcpu)) 373 active_mask &= ~IRQ_PEND_EXT_MASK; 374 if (psw_ioint_disabled(vcpu)) 375 active_mask &= ~IRQ_PEND_IO_MASK; 376 else 377 active_mask = disable_iscs(vcpu, active_mask); 378 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 379 __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask); 380 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK)) 381 __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask); 382 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 383 __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask); 384 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK)) 385 __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask); 386 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) { 387 __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask); 388 __clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask); 389 } 390 if (psw_mchk_disabled(vcpu)) 391 active_mask &= ~IRQ_PEND_MCHK_MASK; 392 /* PV guest cpus can have a single interruption injected at a time. */ 393 if (kvm_s390_pv_cpu_get_handle(vcpu) && 394 vcpu->arch.sie_block->iictl != IICTL_CODE_NONE) 395 active_mask &= ~(IRQ_PEND_EXT_II_MASK | 396 IRQ_PEND_IO_MASK | 397 IRQ_PEND_MCHK_MASK); 398 /* 399 * Check both floating and local interrupt's cr14 because 400 * bit IRQ_PEND_MCHK_REP could be set in both cases. 401 */ 402 if (!(vcpu->arch.sie_block->gcr[14] & 403 (vcpu->kvm->arch.float_int.mchk.cr14 | 404 vcpu->arch.local_int.irq.mchk.cr14))) 405 __clear_bit(IRQ_PEND_MCHK_REP, &active_mask); 406 407 /* 408 * STOP irqs will never be actively delivered. They are triggered via 409 * intercept requests and cleared when the stop intercept is performed. 410 */ 411 __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask); 412 413 return active_mask; 414 } 415 416 static void __set_cpu_idle(struct kvm_vcpu *vcpu) 417 { 418 kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT); 419 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask); 420 } 421 422 static void __unset_cpu_idle(struct kvm_vcpu *vcpu) 423 { 424 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT); 425 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask); 426 } 427 428 static void __reset_intercept_indicators(struct kvm_vcpu *vcpu) 429 { 430 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT | 431 CPUSTAT_STOP_INT); 432 vcpu->arch.sie_block->lctl = 0x0000; 433 vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT); 434 435 if (guestdbg_enabled(vcpu)) { 436 vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 | 437 LCTL_CR10 | LCTL_CR11); 438 vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT); 439 } 440 } 441 442 static void set_intercept_indicators_io(struct kvm_vcpu *vcpu) 443 { 444 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK)) 445 return; 446 if (psw_ioint_disabled(vcpu)) 447 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT); 448 else 449 vcpu->arch.sie_block->lctl |= LCTL_CR6; 450 } 451 452 static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu) 453 { 454 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK)) 455 return; 456 if (psw_extint_disabled(vcpu)) 457 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 458 else 459 vcpu->arch.sie_block->lctl |= LCTL_CR0; 460 } 461 462 static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu) 463 { 464 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK)) 465 return; 466 if (psw_mchk_disabled(vcpu)) 467 vcpu->arch.sie_block->ictl |= ICTL_LPSW; 468 else 469 vcpu->arch.sie_block->lctl |= LCTL_CR14; 470 } 471 472 static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu) 473 { 474 if (kvm_s390_is_stop_irq_pending(vcpu)) 475 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 476 } 477 478 /* Set interception request for non-deliverable interrupts */ 479 static void set_intercept_indicators(struct kvm_vcpu *vcpu) 480 { 481 set_intercept_indicators_io(vcpu); 482 set_intercept_indicators_ext(vcpu); 483 set_intercept_indicators_mchk(vcpu); 484 set_intercept_indicators_stop(vcpu); 485 } 486 487 static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu) 488 { 489 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 490 int rc = 0; 491 492 vcpu->stat.deliver_cputm++; 493 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 494 0, 0); 495 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 496 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 497 vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER; 498 } else { 499 rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER, 500 (u16 *)__LC_EXT_INT_CODE); 501 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 502 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 503 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 504 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 505 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 506 } 507 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 508 return rc ? -EFAULT : 0; 509 } 510 511 static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu) 512 { 513 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 514 int rc = 0; 515 516 vcpu->stat.deliver_ckc++; 517 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 518 0, 0); 519 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 520 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 521 vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP; 522 } else { 523 rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP, 524 (u16 __user *)__LC_EXT_INT_CODE); 525 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 526 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 527 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 528 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 529 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 530 } 531 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 532 return rc ? -EFAULT : 0; 533 } 534 535 static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu) 536 { 537 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 538 struct kvm_s390_ext_info ext; 539 int rc; 540 541 spin_lock(&li->lock); 542 ext = li->irq.ext; 543 clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 544 li->irq.ext.ext_params2 = 0; 545 spin_unlock(&li->lock); 546 547 VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx", 548 ext.ext_params2); 549 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 550 KVM_S390_INT_PFAULT_INIT, 551 0, ext.ext_params2); 552 553 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE); 554 rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR); 555 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 556 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 557 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 558 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 559 rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2); 560 return rc ? -EFAULT : 0; 561 } 562 563 static int __write_machine_check(struct kvm_vcpu *vcpu, 564 struct kvm_s390_mchk_info *mchk) 565 { 566 unsigned long ext_sa_addr; 567 unsigned long lc; 568 freg_t fprs[NUM_FPRS]; 569 union mci mci; 570 int rc; 571 572 /* 573 * All other possible payload for a machine check (e.g. the register 574 * contents in the save area) will be handled by the ultravisor, as 575 * the hypervisor does not not have the needed information for 576 * protected guests. 577 */ 578 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 579 vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK; 580 vcpu->arch.sie_block->mcic = mchk->mcic; 581 vcpu->arch.sie_block->faddr = mchk->failing_storage_address; 582 vcpu->arch.sie_block->edc = mchk->ext_damage_code; 583 return 0; 584 } 585 586 mci.val = mchk->mcic; 587 /* take care of lazy register loading */ 588 save_fpu_regs(); 589 save_access_regs(vcpu->run->s.regs.acrs); 590 if (MACHINE_HAS_GS && vcpu->arch.gs_enabled) 591 save_gs_cb(current->thread.gs_cb); 592 593 /* Extended save area */ 594 rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr, 595 sizeof(unsigned long)); 596 /* Only bits 0 through 63-LC are used for address formation */ 597 lc = ext_sa_addr & MCESA_LC_MASK; 598 if (test_kvm_facility(vcpu->kvm, 133)) { 599 switch (lc) { 600 case 0: 601 case 10: 602 ext_sa_addr &= ~0x3ffUL; 603 break; 604 case 11: 605 ext_sa_addr &= ~0x7ffUL; 606 break; 607 case 12: 608 ext_sa_addr &= ~0xfffUL; 609 break; 610 default: 611 ext_sa_addr = 0; 612 break; 613 } 614 } else { 615 ext_sa_addr &= ~0x3ffUL; 616 } 617 618 if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) { 619 if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs, 620 512)) 621 mci.vr = 0; 622 } else { 623 mci.vr = 0; 624 } 625 if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133) 626 && (lc == 11 || lc == 12)) { 627 if (write_guest_abs(vcpu, ext_sa_addr + 1024, 628 &vcpu->run->s.regs.gscb, 32)) 629 mci.gs = 0; 630 } else { 631 mci.gs = 0; 632 } 633 634 /* General interruption information */ 635 rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID); 636 rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW, 637 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 638 rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW, 639 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 640 rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE); 641 642 /* Register-save areas */ 643 if (MACHINE_HAS_VX) { 644 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 645 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128); 646 } else { 647 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, 648 vcpu->run->s.regs.fprs, 128); 649 } 650 rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA, 651 vcpu->run->s.regs.gprs, 128); 652 rc |= put_guest_lc(vcpu, current->thread.fpu.fpc, 653 (u32 __user *) __LC_FP_CREG_SAVE_AREA); 654 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr, 655 (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA); 656 rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu), 657 (u64 __user *) __LC_CPU_TIMER_SAVE_AREA); 658 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8, 659 (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA); 660 rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA, 661 &vcpu->run->s.regs.acrs, 64); 662 rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA, 663 &vcpu->arch.sie_block->gcr, 128); 664 665 /* Extended interruption information */ 666 rc |= put_guest_lc(vcpu, mchk->ext_damage_code, 667 (u32 __user *) __LC_EXT_DAMAGE_CODE); 668 rc |= put_guest_lc(vcpu, mchk->failing_storage_address, 669 (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR); 670 rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout, 671 sizeof(mchk->fixed_logout)); 672 return rc ? -EFAULT : 0; 673 } 674 675 static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu) 676 { 677 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 678 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 679 struct kvm_s390_mchk_info mchk = {}; 680 int deliver = 0; 681 int rc = 0; 682 683 spin_lock(&fi->lock); 684 spin_lock(&li->lock); 685 if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) || 686 test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) { 687 /* 688 * If there was an exigent machine check pending, then any 689 * repressible machine checks that might have been pending 690 * are indicated along with it, so always clear bits for 691 * repressible and exigent interrupts 692 */ 693 mchk = li->irq.mchk; 694 clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 695 clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 696 memset(&li->irq.mchk, 0, sizeof(mchk)); 697 deliver = 1; 698 } 699 /* 700 * We indicate floating repressible conditions along with 701 * other pending conditions. Channel Report Pending and Channel 702 * Subsystem damage are the only two and are indicated by 703 * bits in mcic and masked in cr14. 704 */ 705 if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 706 mchk.mcic |= fi->mchk.mcic; 707 mchk.cr14 |= fi->mchk.cr14; 708 memset(&fi->mchk, 0, sizeof(mchk)); 709 deliver = 1; 710 } 711 spin_unlock(&li->lock); 712 spin_unlock(&fi->lock); 713 714 if (deliver) { 715 VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx", 716 mchk.mcic); 717 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 718 KVM_S390_MCHK, 719 mchk.cr14, mchk.mcic); 720 vcpu->stat.deliver_machine_check++; 721 rc = __write_machine_check(vcpu, &mchk); 722 } 723 return rc; 724 } 725 726 static int __must_check __deliver_restart(struct kvm_vcpu *vcpu) 727 { 728 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 729 int rc = 0; 730 731 VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart"); 732 vcpu->stat.deliver_restart_signal++; 733 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 734 735 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 736 vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART; 737 } else { 738 rc = write_guest_lc(vcpu, 739 offsetof(struct lowcore, restart_old_psw), 740 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 741 rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw), 742 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 743 } 744 clear_bit(IRQ_PEND_RESTART, &li->pending_irqs); 745 return rc ? -EFAULT : 0; 746 } 747 748 static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu) 749 { 750 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 751 struct kvm_s390_prefix_info prefix; 752 753 spin_lock(&li->lock); 754 prefix = li->irq.prefix; 755 li->irq.prefix.address = 0; 756 clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 757 spin_unlock(&li->lock); 758 759 vcpu->stat.deliver_prefix_signal++; 760 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 761 KVM_S390_SIGP_SET_PREFIX, 762 prefix.address, 0); 763 764 kvm_s390_set_prefix(vcpu, prefix.address); 765 return 0; 766 } 767 768 static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu) 769 { 770 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 771 int rc; 772 int cpu_addr; 773 774 spin_lock(&li->lock); 775 cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS); 776 clear_bit(cpu_addr, li->sigp_emerg_pending); 777 if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS)) 778 clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 779 spin_unlock(&li->lock); 780 781 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg"); 782 vcpu->stat.deliver_emergency_signal++; 783 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 784 cpu_addr, 0); 785 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 786 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 787 vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG; 788 vcpu->arch.sie_block->extcpuaddr = cpu_addr; 789 return 0; 790 } 791 792 rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG, 793 (u16 *)__LC_EXT_INT_CODE); 794 rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR); 795 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 796 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 797 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 798 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 799 return rc ? -EFAULT : 0; 800 } 801 802 static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu) 803 { 804 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 805 struct kvm_s390_extcall_info extcall; 806 int rc; 807 808 spin_lock(&li->lock); 809 extcall = li->irq.extcall; 810 li->irq.extcall.code = 0; 811 clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 812 spin_unlock(&li->lock); 813 814 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call"); 815 vcpu->stat.deliver_external_call++; 816 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 817 KVM_S390_INT_EXTERNAL_CALL, 818 extcall.code, 0); 819 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 820 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 821 vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL; 822 vcpu->arch.sie_block->extcpuaddr = extcall.code; 823 return 0; 824 } 825 826 rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL, 827 (u16 *)__LC_EXT_INT_CODE); 828 rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR); 829 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 830 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 831 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, 832 sizeof(psw_t)); 833 return rc ? -EFAULT : 0; 834 } 835 836 static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code) 837 { 838 switch (code) { 839 case PGM_SPECIFICATION: 840 vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION; 841 break; 842 case PGM_OPERAND: 843 vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND; 844 break; 845 default: 846 return -EINVAL; 847 } 848 return 0; 849 } 850 851 static int __must_check __deliver_prog(struct kvm_vcpu *vcpu) 852 { 853 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 854 struct kvm_s390_pgm_info pgm_info; 855 int rc = 0, nullifying = false; 856 u16 ilen; 857 858 spin_lock(&li->lock); 859 pgm_info = li->irq.pgm; 860 clear_bit(IRQ_PEND_PROG, &li->pending_irqs); 861 memset(&li->irq.pgm, 0, sizeof(pgm_info)); 862 spin_unlock(&li->lock); 863 864 ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK; 865 VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d", 866 pgm_info.code, ilen); 867 vcpu->stat.deliver_program++; 868 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 869 pgm_info.code, 0); 870 871 /* PER is handled by the ultravisor */ 872 if (kvm_s390_pv_cpu_is_protected(vcpu)) 873 return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER); 874 875 switch (pgm_info.code & ~PGM_PER) { 876 case PGM_AFX_TRANSLATION: 877 case PGM_ASX_TRANSLATION: 878 case PGM_EX_TRANSLATION: 879 case PGM_LFX_TRANSLATION: 880 case PGM_LSTE_SEQUENCE: 881 case PGM_LSX_TRANSLATION: 882 case PGM_LX_TRANSLATION: 883 case PGM_PRIMARY_AUTHORITY: 884 case PGM_SECONDARY_AUTHORITY: 885 nullifying = true; 886 fallthrough; 887 case PGM_SPACE_SWITCH: 888 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 889 (u64 *)__LC_TRANS_EXC_CODE); 890 break; 891 case PGM_ALEN_TRANSLATION: 892 case PGM_ALE_SEQUENCE: 893 case PGM_ASTE_INSTANCE: 894 case PGM_ASTE_SEQUENCE: 895 case PGM_ASTE_VALIDITY: 896 case PGM_EXTENDED_AUTHORITY: 897 rc = put_guest_lc(vcpu, pgm_info.exc_access_id, 898 (u8 *)__LC_EXC_ACCESS_ID); 899 nullifying = true; 900 break; 901 case PGM_ASCE_TYPE: 902 case PGM_PAGE_TRANSLATION: 903 case PGM_REGION_FIRST_TRANS: 904 case PGM_REGION_SECOND_TRANS: 905 case PGM_REGION_THIRD_TRANS: 906 case PGM_SEGMENT_TRANSLATION: 907 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 908 (u64 *)__LC_TRANS_EXC_CODE); 909 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 910 (u8 *)__LC_EXC_ACCESS_ID); 911 rc |= put_guest_lc(vcpu, pgm_info.op_access_id, 912 (u8 *)__LC_OP_ACCESS_ID); 913 nullifying = true; 914 break; 915 case PGM_MONITOR: 916 rc = put_guest_lc(vcpu, pgm_info.mon_class_nr, 917 (u16 *)__LC_MON_CLASS_NR); 918 rc |= put_guest_lc(vcpu, pgm_info.mon_code, 919 (u64 *)__LC_MON_CODE); 920 break; 921 case PGM_VECTOR_PROCESSING: 922 case PGM_DATA: 923 rc = put_guest_lc(vcpu, pgm_info.data_exc_code, 924 (u32 *)__LC_DATA_EXC_CODE); 925 break; 926 case PGM_PROTECTION: 927 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 928 (u64 *)__LC_TRANS_EXC_CODE); 929 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 930 (u8 *)__LC_EXC_ACCESS_ID); 931 break; 932 case PGM_STACK_FULL: 933 case PGM_STACK_EMPTY: 934 case PGM_STACK_SPECIFICATION: 935 case PGM_STACK_TYPE: 936 case PGM_STACK_OPERATION: 937 case PGM_TRACE_TABEL: 938 case PGM_CRYPTO_OPERATION: 939 nullifying = true; 940 break; 941 } 942 943 if (pgm_info.code & PGM_PER) { 944 rc |= put_guest_lc(vcpu, pgm_info.per_code, 945 (u8 *) __LC_PER_CODE); 946 rc |= put_guest_lc(vcpu, pgm_info.per_atmid, 947 (u8 *)__LC_PER_ATMID); 948 rc |= put_guest_lc(vcpu, pgm_info.per_address, 949 (u64 *) __LC_PER_ADDRESS); 950 rc |= put_guest_lc(vcpu, pgm_info.per_access_id, 951 (u8 *) __LC_PER_ACCESS_ID); 952 } 953 954 if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND)) 955 kvm_s390_rewind_psw(vcpu, ilen); 956 957 /* bit 1+2 of the target are the ilc, so we can directly use ilen */ 958 rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC); 959 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea, 960 (u64 *) __LC_PGM_LAST_BREAK); 961 rc |= put_guest_lc(vcpu, pgm_info.code, 962 (u16 *)__LC_PGM_INT_CODE); 963 rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW, 964 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 965 rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW, 966 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 967 return rc ? -EFAULT : 0; 968 } 969 970 #define SCCB_MASK 0xFFFFFFF8 971 #define SCCB_EVENT_PENDING 0x3 972 973 static int write_sclp(struct kvm_vcpu *vcpu, u32 parm) 974 { 975 int rc; 976 977 if (kvm_s390_pv_cpu_get_handle(vcpu)) { 978 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 979 vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG; 980 vcpu->arch.sie_block->eiparams = parm; 981 return 0; 982 } 983 984 rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE); 985 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 986 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 987 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 988 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 989 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 990 rc |= put_guest_lc(vcpu, parm, 991 (u32 *)__LC_EXT_PARAMS); 992 993 return rc ? -EFAULT : 0; 994 } 995 996 static int __must_check __deliver_service(struct kvm_vcpu *vcpu) 997 { 998 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 999 struct kvm_s390_ext_info ext; 1000 1001 spin_lock(&fi->lock); 1002 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) || 1003 !(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) { 1004 spin_unlock(&fi->lock); 1005 return 0; 1006 } 1007 ext = fi->srv_signal; 1008 memset(&fi->srv_signal, 0, sizeof(ext)); 1009 clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 1010 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1011 if (kvm_s390_pv_cpu_is_protected(vcpu)) 1012 set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs); 1013 spin_unlock(&fi->lock); 1014 1015 VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x", 1016 ext.ext_params); 1017 vcpu->stat.deliver_service_signal++; 1018 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, 1019 ext.ext_params, 0); 1020 1021 return write_sclp(vcpu, ext.ext_params); 1022 } 1023 1024 static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu) 1025 { 1026 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1027 struct kvm_s390_ext_info ext; 1028 1029 spin_lock(&fi->lock); 1030 if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) { 1031 spin_unlock(&fi->lock); 1032 return 0; 1033 } 1034 ext = fi->srv_signal; 1035 /* only clear the event bit */ 1036 fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING; 1037 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1038 spin_unlock(&fi->lock); 1039 1040 VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event"); 1041 vcpu->stat.deliver_service_signal++; 1042 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, 1043 ext.ext_params, 0); 1044 1045 return write_sclp(vcpu, SCCB_EVENT_PENDING); 1046 } 1047 1048 static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu) 1049 { 1050 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1051 struct kvm_s390_interrupt_info *inti; 1052 int rc = 0; 1053 1054 spin_lock(&fi->lock); 1055 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT], 1056 struct kvm_s390_interrupt_info, 1057 list); 1058 if (inti) { 1059 list_del(&inti->list); 1060 fi->counters[FIRQ_CNTR_PFAULT] -= 1; 1061 } 1062 if (list_empty(&fi->lists[FIRQ_LIST_PFAULT])) 1063 clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 1064 spin_unlock(&fi->lock); 1065 1066 if (inti) { 1067 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1068 KVM_S390_INT_PFAULT_DONE, 0, 1069 inti->ext.ext_params2); 1070 VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx", 1071 inti->ext.ext_params2); 1072 1073 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 1074 (u16 *)__LC_EXT_INT_CODE); 1075 rc |= put_guest_lc(vcpu, PFAULT_DONE, 1076 (u16 *)__LC_EXT_CPU_ADDR); 1077 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 1078 &vcpu->arch.sie_block->gpsw, 1079 sizeof(psw_t)); 1080 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 1081 &vcpu->arch.sie_block->gpsw, 1082 sizeof(psw_t)); 1083 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 1084 (u64 *)__LC_EXT_PARAMS2); 1085 kfree(inti); 1086 } 1087 return rc ? -EFAULT : 0; 1088 } 1089 1090 static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu) 1091 { 1092 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1093 struct kvm_s390_interrupt_info *inti; 1094 int rc = 0; 1095 1096 spin_lock(&fi->lock); 1097 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO], 1098 struct kvm_s390_interrupt_info, 1099 list); 1100 if (inti) { 1101 VCPU_EVENT(vcpu, 4, 1102 "deliver: virtio parm: 0x%x,parm64: 0x%llx", 1103 inti->ext.ext_params, inti->ext.ext_params2); 1104 vcpu->stat.deliver_virtio++; 1105 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1106 inti->type, 1107 inti->ext.ext_params, 1108 inti->ext.ext_params2); 1109 list_del(&inti->list); 1110 fi->counters[FIRQ_CNTR_VIRTIO] -= 1; 1111 } 1112 if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO])) 1113 clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1114 spin_unlock(&fi->lock); 1115 1116 if (inti) { 1117 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 1118 (u16 *)__LC_EXT_INT_CODE); 1119 rc |= put_guest_lc(vcpu, VIRTIO_PARAM, 1120 (u16 *)__LC_EXT_CPU_ADDR); 1121 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 1122 &vcpu->arch.sie_block->gpsw, 1123 sizeof(psw_t)); 1124 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 1125 &vcpu->arch.sie_block->gpsw, 1126 sizeof(psw_t)); 1127 rc |= put_guest_lc(vcpu, inti->ext.ext_params, 1128 (u32 *)__LC_EXT_PARAMS); 1129 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 1130 (u64 *)__LC_EXT_PARAMS2); 1131 kfree(inti); 1132 } 1133 return rc ? -EFAULT : 0; 1134 } 1135 1136 static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io) 1137 { 1138 int rc; 1139 1140 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 1141 vcpu->arch.sie_block->iictl = IICTL_CODE_IO; 1142 vcpu->arch.sie_block->subchannel_id = io->subchannel_id; 1143 vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr; 1144 vcpu->arch.sie_block->io_int_parm = io->io_int_parm; 1145 vcpu->arch.sie_block->io_int_word = io->io_int_word; 1146 return 0; 1147 } 1148 1149 rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID); 1150 rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR); 1151 rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM); 1152 rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD); 1153 rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW, 1154 &vcpu->arch.sie_block->gpsw, 1155 sizeof(psw_t)); 1156 rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW, 1157 &vcpu->arch.sie_block->gpsw, 1158 sizeof(psw_t)); 1159 return rc ? -EFAULT : 0; 1160 } 1161 1162 static int __must_check __deliver_io(struct kvm_vcpu *vcpu, 1163 unsigned long irq_type) 1164 { 1165 struct list_head *isc_list; 1166 struct kvm_s390_float_interrupt *fi; 1167 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1168 struct kvm_s390_interrupt_info *inti = NULL; 1169 struct kvm_s390_io_info io; 1170 u32 isc; 1171 int rc = 0; 1172 1173 fi = &vcpu->kvm->arch.float_int; 1174 1175 spin_lock(&fi->lock); 1176 isc = irq_type_to_isc(irq_type); 1177 isc_list = &fi->lists[isc]; 1178 inti = list_first_entry_or_null(isc_list, 1179 struct kvm_s390_interrupt_info, 1180 list); 1181 if (inti) { 1182 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1183 VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)"); 1184 else 1185 VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x", 1186 inti->io.subchannel_id >> 8, 1187 inti->io.subchannel_id >> 1 & 0x3, 1188 inti->io.subchannel_nr); 1189 1190 vcpu->stat.deliver_io++; 1191 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1192 inti->type, 1193 ((__u32)inti->io.subchannel_id << 16) | 1194 inti->io.subchannel_nr, 1195 ((__u64)inti->io.io_int_parm << 32) | 1196 inti->io.io_int_word); 1197 list_del(&inti->list); 1198 fi->counters[FIRQ_CNTR_IO] -= 1; 1199 } 1200 if (list_empty(isc_list)) 1201 clear_bit(irq_type, &fi->pending_irqs); 1202 spin_unlock(&fi->lock); 1203 1204 if (inti) { 1205 rc = __do_deliver_io(vcpu, &(inti->io)); 1206 kfree(inti); 1207 goto out; 1208 } 1209 1210 if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) { 1211 /* 1212 * in case an adapter interrupt was not delivered 1213 * in SIE context KVM will handle the delivery 1214 */ 1215 VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc); 1216 memset(&io, 0, sizeof(io)); 1217 io.io_int_word = isc_to_int_word(isc); 1218 vcpu->stat.deliver_io++; 1219 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1220 KVM_S390_INT_IO(1, 0, 0, 0), 1221 ((__u32)io.subchannel_id << 16) | 1222 io.subchannel_nr, 1223 ((__u64)io.io_int_parm << 32) | 1224 io.io_int_word); 1225 rc = __do_deliver_io(vcpu, &io); 1226 } 1227 out: 1228 return rc; 1229 } 1230 1231 /* Check whether an external call is pending (deliverable or not) */ 1232 int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu) 1233 { 1234 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1235 1236 if (!sclp.has_sigpif) 1237 return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 1238 1239 return sca_ext_call_pending(vcpu, NULL); 1240 } 1241 1242 int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop) 1243 { 1244 if (deliverable_irqs(vcpu)) 1245 return 1; 1246 1247 if (kvm_cpu_has_pending_timer(vcpu)) 1248 return 1; 1249 1250 /* external call pending and deliverable */ 1251 if (kvm_s390_ext_call_pending(vcpu) && 1252 !psw_extint_disabled(vcpu) && 1253 (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 1254 return 1; 1255 1256 if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu)) 1257 return 1; 1258 return 0; 1259 } 1260 1261 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 1262 { 1263 return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu); 1264 } 1265 1266 static u64 __calculate_sltime(struct kvm_vcpu *vcpu) 1267 { 1268 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 1269 const u64 ckc = vcpu->arch.sie_block->ckc; 1270 u64 cputm, sltime = 0; 1271 1272 if (ckc_interrupts_enabled(vcpu)) { 1273 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 1274 if ((s64)now < (s64)ckc) 1275 sltime = tod_to_ns((s64)ckc - (s64)now); 1276 } else if (now < ckc) { 1277 sltime = tod_to_ns(ckc - now); 1278 } 1279 /* already expired */ 1280 if (!sltime) 1281 return 0; 1282 if (cpu_timer_interrupts_enabled(vcpu)) { 1283 cputm = kvm_s390_get_cpu_timer(vcpu); 1284 /* already expired? */ 1285 if (cputm >> 63) 1286 return 0; 1287 return min_t(u64, sltime, tod_to_ns(cputm)); 1288 } 1289 } else if (cpu_timer_interrupts_enabled(vcpu)) { 1290 sltime = kvm_s390_get_cpu_timer(vcpu); 1291 /* already expired? */ 1292 if (sltime >> 63) 1293 return 0; 1294 } 1295 return sltime; 1296 } 1297 1298 int kvm_s390_handle_wait(struct kvm_vcpu *vcpu) 1299 { 1300 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1301 u64 sltime; 1302 1303 vcpu->stat.exit_wait_state++; 1304 1305 /* fast path */ 1306 if (kvm_arch_vcpu_runnable(vcpu)) 1307 return 0; 1308 1309 if (psw_interrupts_disabled(vcpu)) { 1310 VCPU_EVENT(vcpu, 3, "%s", "disabled wait"); 1311 return -EOPNOTSUPP; /* disabled wait */ 1312 } 1313 1314 if (gi->origin && 1315 (gisa_get_ipm_or_restore_iam(gi) & 1316 vcpu->arch.sie_block->gcr[6] >> 24)) 1317 return 0; 1318 1319 if (!ckc_interrupts_enabled(vcpu) && 1320 !cpu_timer_interrupts_enabled(vcpu)) { 1321 VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer"); 1322 __set_cpu_idle(vcpu); 1323 goto no_timer; 1324 } 1325 1326 sltime = __calculate_sltime(vcpu); 1327 if (!sltime) 1328 return 0; 1329 1330 __set_cpu_idle(vcpu); 1331 hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL); 1332 VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime); 1333 no_timer: 1334 kvm_vcpu_srcu_read_unlock(vcpu); 1335 kvm_vcpu_halt(vcpu); 1336 vcpu->valid_wakeup = false; 1337 __unset_cpu_idle(vcpu); 1338 kvm_vcpu_srcu_read_lock(vcpu); 1339 1340 hrtimer_cancel(&vcpu->arch.ckc_timer); 1341 return 0; 1342 } 1343 1344 void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu) 1345 { 1346 vcpu->valid_wakeup = true; 1347 kvm_vcpu_wake_up(vcpu); 1348 1349 /* 1350 * The VCPU might not be sleeping but rather executing VSIE. Let's 1351 * kick it, so it leaves the SIE to process the request. 1352 */ 1353 kvm_s390_vsie_kick(vcpu); 1354 } 1355 1356 enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer) 1357 { 1358 struct kvm_vcpu *vcpu; 1359 u64 sltime; 1360 1361 vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer); 1362 sltime = __calculate_sltime(vcpu); 1363 1364 /* 1365 * If the monotonic clock runs faster than the tod clock we might be 1366 * woken up too early and have to go back to sleep to avoid deadlocks. 1367 */ 1368 if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime))) 1369 return HRTIMER_RESTART; 1370 kvm_s390_vcpu_wakeup(vcpu); 1371 return HRTIMER_NORESTART; 1372 } 1373 1374 void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu) 1375 { 1376 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1377 1378 spin_lock(&li->lock); 1379 li->pending_irqs = 0; 1380 bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS); 1381 memset(&li->irq, 0, sizeof(li->irq)); 1382 spin_unlock(&li->lock); 1383 1384 sca_clear_ext_call(vcpu); 1385 } 1386 1387 int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu) 1388 { 1389 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1390 int rc = 0; 1391 unsigned long irq_type; 1392 unsigned long irqs; 1393 1394 __reset_intercept_indicators(vcpu); 1395 1396 /* pending ckc conditions might have been invalidated */ 1397 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1398 if (ckc_irq_pending(vcpu)) 1399 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1400 1401 /* pending cpu timer conditions might have been invalidated */ 1402 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1403 if (cpu_timer_irq_pending(vcpu)) 1404 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1405 1406 while ((irqs = deliverable_irqs(vcpu)) && !rc) { 1407 /* bits are in the reverse order of interrupt priority */ 1408 irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT); 1409 switch (irq_type) { 1410 case IRQ_PEND_IO_ISC_0: 1411 case IRQ_PEND_IO_ISC_1: 1412 case IRQ_PEND_IO_ISC_2: 1413 case IRQ_PEND_IO_ISC_3: 1414 case IRQ_PEND_IO_ISC_4: 1415 case IRQ_PEND_IO_ISC_5: 1416 case IRQ_PEND_IO_ISC_6: 1417 case IRQ_PEND_IO_ISC_7: 1418 rc = __deliver_io(vcpu, irq_type); 1419 break; 1420 case IRQ_PEND_MCHK_EX: 1421 case IRQ_PEND_MCHK_REP: 1422 rc = __deliver_machine_check(vcpu); 1423 break; 1424 case IRQ_PEND_PROG: 1425 rc = __deliver_prog(vcpu); 1426 break; 1427 case IRQ_PEND_EXT_EMERGENCY: 1428 rc = __deliver_emergency_signal(vcpu); 1429 break; 1430 case IRQ_PEND_EXT_EXTERNAL: 1431 rc = __deliver_external_call(vcpu); 1432 break; 1433 case IRQ_PEND_EXT_CLOCK_COMP: 1434 rc = __deliver_ckc(vcpu); 1435 break; 1436 case IRQ_PEND_EXT_CPU_TIMER: 1437 rc = __deliver_cpu_timer(vcpu); 1438 break; 1439 case IRQ_PEND_RESTART: 1440 rc = __deliver_restart(vcpu); 1441 break; 1442 case IRQ_PEND_SET_PREFIX: 1443 rc = __deliver_set_prefix(vcpu); 1444 break; 1445 case IRQ_PEND_PFAULT_INIT: 1446 rc = __deliver_pfault_init(vcpu); 1447 break; 1448 case IRQ_PEND_EXT_SERVICE: 1449 rc = __deliver_service(vcpu); 1450 break; 1451 case IRQ_PEND_EXT_SERVICE_EV: 1452 rc = __deliver_service_ev(vcpu); 1453 break; 1454 case IRQ_PEND_PFAULT_DONE: 1455 rc = __deliver_pfault_done(vcpu); 1456 break; 1457 case IRQ_PEND_VIRTIO: 1458 rc = __deliver_virtio(vcpu); 1459 break; 1460 default: 1461 WARN_ONCE(1, "Unknown pending irq type %ld", irq_type); 1462 clear_bit(irq_type, &li->pending_irqs); 1463 } 1464 } 1465 1466 set_intercept_indicators(vcpu); 1467 1468 return rc; 1469 } 1470 1471 static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1472 { 1473 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1474 1475 vcpu->stat.inject_program++; 1476 VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code); 1477 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 1478 irq->u.pgm.code, 0); 1479 1480 if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) { 1481 /* auto detection if no valid ILC was given */ 1482 irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK; 1483 irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu); 1484 irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID; 1485 } 1486 1487 if (irq->u.pgm.code == PGM_PER) { 1488 li->irq.pgm.code |= PGM_PER; 1489 li->irq.pgm.flags = irq->u.pgm.flags; 1490 /* only modify PER related information */ 1491 li->irq.pgm.per_address = irq->u.pgm.per_address; 1492 li->irq.pgm.per_code = irq->u.pgm.per_code; 1493 li->irq.pgm.per_atmid = irq->u.pgm.per_atmid; 1494 li->irq.pgm.per_access_id = irq->u.pgm.per_access_id; 1495 } else if (!(irq->u.pgm.code & PGM_PER)) { 1496 li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) | 1497 irq->u.pgm.code; 1498 li->irq.pgm.flags = irq->u.pgm.flags; 1499 /* only modify non-PER information */ 1500 li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code; 1501 li->irq.pgm.mon_code = irq->u.pgm.mon_code; 1502 li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code; 1503 li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr; 1504 li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id; 1505 li->irq.pgm.op_access_id = irq->u.pgm.op_access_id; 1506 } else { 1507 li->irq.pgm = irq->u.pgm; 1508 } 1509 set_bit(IRQ_PEND_PROG, &li->pending_irqs); 1510 return 0; 1511 } 1512 1513 static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1514 { 1515 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1516 1517 vcpu->stat.inject_pfault_init++; 1518 VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx", 1519 irq->u.ext.ext_params2); 1520 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT, 1521 irq->u.ext.ext_params, 1522 irq->u.ext.ext_params2); 1523 1524 li->irq.ext = irq->u.ext; 1525 set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 1526 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1527 return 0; 1528 } 1529 1530 static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1531 { 1532 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1533 struct kvm_s390_extcall_info *extcall = &li->irq.extcall; 1534 uint16_t src_id = irq->u.extcall.code; 1535 1536 vcpu->stat.inject_external_call++; 1537 VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u", 1538 src_id); 1539 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL, 1540 src_id, 0); 1541 1542 /* sending vcpu invalid */ 1543 if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL) 1544 return -EINVAL; 1545 1546 if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu)) 1547 return sca_inject_ext_call(vcpu, src_id); 1548 1549 if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs)) 1550 return -EBUSY; 1551 *extcall = irq->u.extcall; 1552 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1553 return 0; 1554 } 1555 1556 static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1557 { 1558 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1559 struct kvm_s390_prefix_info *prefix = &li->irq.prefix; 1560 1561 vcpu->stat.inject_set_prefix++; 1562 VCPU_EVENT(vcpu, 3, "inject: set prefix to %x", 1563 irq->u.prefix.address); 1564 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX, 1565 irq->u.prefix.address, 0); 1566 1567 if (!is_vcpu_stopped(vcpu)) 1568 return -EBUSY; 1569 1570 *prefix = irq->u.prefix; 1571 set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 1572 return 0; 1573 } 1574 1575 #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS) 1576 static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1577 { 1578 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1579 struct kvm_s390_stop_info *stop = &li->irq.stop; 1580 int rc = 0; 1581 1582 vcpu->stat.inject_stop_signal++; 1583 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0); 1584 1585 if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS) 1586 return -EINVAL; 1587 1588 if (is_vcpu_stopped(vcpu)) { 1589 if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS) 1590 rc = kvm_s390_store_status_unloaded(vcpu, 1591 KVM_S390_STORE_STATUS_NOADDR); 1592 return rc; 1593 } 1594 1595 if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs)) 1596 return -EBUSY; 1597 stop->flags = irq->u.stop.flags; 1598 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 1599 return 0; 1600 } 1601 1602 static int __inject_sigp_restart(struct kvm_vcpu *vcpu) 1603 { 1604 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1605 1606 vcpu->stat.inject_restart++; 1607 VCPU_EVENT(vcpu, 3, "%s", "inject: restart int"); 1608 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 1609 1610 set_bit(IRQ_PEND_RESTART, &li->pending_irqs); 1611 return 0; 1612 } 1613 1614 static int __inject_sigp_emergency(struct kvm_vcpu *vcpu, 1615 struct kvm_s390_irq *irq) 1616 { 1617 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1618 1619 vcpu->stat.inject_emergency_signal++; 1620 VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u", 1621 irq->u.emerg.code); 1622 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 1623 irq->u.emerg.code, 0); 1624 1625 /* sending vcpu invalid */ 1626 if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL) 1627 return -EINVAL; 1628 1629 set_bit(irq->u.emerg.code, li->sigp_emerg_pending); 1630 set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 1631 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1632 return 0; 1633 } 1634 1635 static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1636 { 1637 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1638 struct kvm_s390_mchk_info *mchk = &li->irq.mchk; 1639 1640 vcpu->stat.inject_mchk++; 1641 VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx", 1642 irq->u.mchk.mcic); 1643 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0, 1644 irq->u.mchk.mcic); 1645 1646 /* 1647 * Because repressible machine checks can be indicated along with 1648 * exigent machine checks (PoP, Chapter 11, Interruption action) 1649 * we need to combine cr14, mcic and external damage code. 1650 * Failing storage address and the logout area should not be or'ed 1651 * together, we just indicate the last occurrence of the corresponding 1652 * machine check 1653 */ 1654 mchk->cr14 |= irq->u.mchk.cr14; 1655 mchk->mcic |= irq->u.mchk.mcic; 1656 mchk->ext_damage_code |= irq->u.mchk.ext_damage_code; 1657 mchk->failing_storage_address = irq->u.mchk.failing_storage_address; 1658 memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout, 1659 sizeof(mchk->fixed_logout)); 1660 if (mchk->mcic & MCHK_EX_MASK) 1661 set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 1662 else if (mchk->mcic & MCHK_REP_MASK) 1663 set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 1664 return 0; 1665 } 1666 1667 static int __inject_ckc(struct kvm_vcpu *vcpu) 1668 { 1669 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1670 1671 vcpu->stat.inject_ckc++; 1672 VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external"); 1673 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 1674 0, 0); 1675 1676 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1677 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1678 return 0; 1679 } 1680 1681 static int __inject_cpu_timer(struct kvm_vcpu *vcpu) 1682 { 1683 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1684 1685 vcpu->stat.inject_cputm++; 1686 VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external"); 1687 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 1688 0, 0); 1689 1690 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1691 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1692 return 0; 1693 } 1694 1695 static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm, 1696 int isc, u32 schid) 1697 { 1698 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1699 struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1700 struct kvm_s390_interrupt_info *iter; 1701 u16 id = (schid & 0xffff0000U) >> 16; 1702 u16 nr = schid & 0x0000ffffU; 1703 1704 spin_lock(&fi->lock); 1705 list_for_each_entry(iter, isc_list, list) { 1706 if (schid && (id != iter->io.subchannel_id || 1707 nr != iter->io.subchannel_nr)) 1708 continue; 1709 /* found an appropriate entry */ 1710 list_del_init(&iter->list); 1711 fi->counters[FIRQ_CNTR_IO] -= 1; 1712 if (list_empty(isc_list)) 1713 clear_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1714 spin_unlock(&fi->lock); 1715 return iter; 1716 } 1717 spin_unlock(&fi->lock); 1718 return NULL; 1719 } 1720 1721 static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm, 1722 u64 isc_mask, u32 schid) 1723 { 1724 struct kvm_s390_interrupt_info *inti = NULL; 1725 int isc; 1726 1727 for (isc = 0; isc <= MAX_ISC && !inti; isc++) { 1728 if (isc_mask & isc_to_isc_bits(isc)) 1729 inti = get_io_int(kvm, isc, schid); 1730 } 1731 return inti; 1732 } 1733 1734 static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid) 1735 { 1736 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1737 unsigned long active_mask; 1738 int isc; 1739 1740 if (schid) 1741 goto out; 1742 if (!gi->origin) 1743 goto out; 1744 1745 active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32; 1746 while (active_mask) { 1747 isc = __fls(active_mask) ^ (BITS_PER_LONG - 1); 1748 if (gisa_tac_ipm_gisc(gi->origin, isc)) 1749 return isc; 1750 clear_bit_inv(isc, &active_mask); 1751 } 1752 out: 1753 return -EINVAL; 1754 } 1755 1756 /* 1757 * Dequeue and return an I/O interrupt matching any of the interruption 1758 * subclasses as designated by the isc mask in cr6 and the schid (if != 0). 1759 * Take into account the interrupts pending in the interrupt list and in GISA. 1760 * 1761 * Note that for a guest that does not enable I/O interrupts 1762 * but relies on TPI, a flood of classic interrupts may starve 1763 * out adapter interrupts on the same isc. Linux does not do 1764 * that, and it is possible to work around the issue by configuring 1765 * different iscs for classic and adapter interrupts in the guest, 1766 * but we may want to revisit this in the future. 1767 */ 1768 struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm, 1769 u64 isc_mask, u32 schid) 1770 { 1771 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1772 struct kvm_s390_interrupt_info *inti, *tmp_inti; 1773 int isc; 1774 1775 inti = get_top_io_int(kvm, isc_mask, schid); 1776 1777 isc = get_top_gisa_isc(kvm, isc_mask, schid); 1778 if (isc < 0) 1779 /* no AI in GISA */ 1780 goto out; 1781 1782 if (!inti) 1783 /* AI in GISA but no classical IO int */ 1784 goto gisa_out; 1785 1786 /* both types of interrupts present */ 1787 if (int_word_to_isc(inti->io.io_int_word) <= isc) { 1788 /* classical IO int with higher priority */ 1789 gisa_set_ipm_gisc(gi->origin, isc); 1790 goto out; 1791 } 1792 gisa_out: 1793 tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 1794 if (tmp_inti) { 1795 tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0); 1796 tmp_inti->io.io_int_word = isc_to_int_word(isc); 1797 if (inti) 1798 kvm_s390_reinject_io_int(kvm, inti); 1799 inti = tmp_inti; 1800 } else 1801 gisa_set_ipm_gisc(gi->origin, isc); 1802 out: 1803 return inti; 1804 } 1805 1806 static int __inject_service(struct kvm *kvm, 1807 struct kvm_s390_interrupt_info *inti) 1808 { 1809 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1810 1811 kvm->stat.inject_service_signal++; 1812 spin_lock(&fi->lock); 1813 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING; 1814 1815 /* We always allow events, track them separately from the sccb ints */ 1816 if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING) 1817 set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1818 1819 /* 1820 * Early versions of the QEMU s390 bios will inject several 1821 * service interrupts after another without handling a 1822 * condition code indicating busy. 1823 * We will silently ignore those superfluous sccb values. 1824 * A future version of QEMU will take care of serialization 1825 * of servc requests 1826 */ 1827 if (fi->srv_signal.ext_params & SCCB_MASK) 1828 goto out; 1829 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK; 1830 set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 1831 out: 1832 spin_unlock(&fi->lock); 1833 kfree(inti); 1834 return 0; 1835 } 1836 1837 static int __inject_virtio(struct kvm *kvm, 1838 struct kvm_s390_interrupt_info *inti) 1839 { 1840 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1841 1842 kvm->stat.inject_virtio++; 1843 spin_lock(&fi->lock); 1844 if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) { 1845 spin_unlock(&fi->lock); 1846 return -EBUSY; 1847 } 1848 fi->counters[FIRQ_CNTR_VIRTIO] += 1; 1849 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]); 1850 set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1851 spin_unlock(&fi->lock); 1852 return 0; 1853 } 1854 1855 static int __inject_pfault_done(struct kvm *kvm, 1856 struct kvm_s390_interrupt_info *inti) 1857 { 1858 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1859 1860 kvm->stat.inject_pfault_done++; 1861 spin_lock(&fi->lock); 1862 if (fi->counters[FIRQ_CNTR_PFAULT] >= 1863 (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) { 1864 spin_unlock(&fi->lock); 1865 return -EBUSY; 1866 } 1867 fi->counters[FIRQ_CNTR_PFAULT] += 1; 1868 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]); 1869 set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 1870 spin_unlock(&fi->lock); 1871 return 0; 1872 } 1873 1874 #define CR_PENDING_SUBCLASS 28 1875 static int __inject_float_mchk(struct kvm *kvm, 1876 struct kvm_s390_interrupt_info *inti) 1877 { 1878 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1879 1880 kvm->stat.inject_float_mchk++; 1881 spin_lock(&fi->lock); 1882 fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS); 1883 fi->mchk.mcic |= inti->mchk.mcic; 1884 set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs); 1885 spin_unlock(&fi->lock); 1886 kfree(inti); 1887 return 0; 1888 } 1889 1890 static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1891 { 1892 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1893 struct kvm_s390_float_interrupt *fi; 1894 struct list_head *list; 1895 int isc; 1896 1897 kvm->stat.inject_io++; 1898 isc = int_word_to_isc(inti->io.io_int_word); 1899 1900 /* 1901 * We do not use the lock checking variant as this is just a 1902 * performance optimization and we do not hold the lock here. 1903 * This is ok as the code will pick interrupts from both "lists" 1904 * for delivery. 1905 */ 1906 if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) { 1907 VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc); 1908 gisa_set_ipm_gisc(gi->origin, isc); 1909 kfree(inti); 1910 return 0; 1911 } 1912 1913 fi = &kvm->arch.float_int; 1914 spin_lock(&fi->lock); 1915 if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) { 1916 spin_unlock(&fi->lock); 1917 return -EBUSY; 1918 } 1919 fi->counters[FIRQ_CNTR_IO] += 1; 1920 1921 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1922 VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)"); 1923 else 1924 VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x", 1925 inti->io.subchannel_id >> 8, 1926 inti->io.subchannel_id >> 1 & 0x3, 1927 inti->io.subchannel_nr); 1928 list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1929 list_add_tail(&inti->list, list); 1930 set_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1931 spin_unlock(&fi->lock); 1932 return 0; 1933 } 1934 1935 /* 1936 * Find a destination VCPU for a floating irq and kick it. 1937 */ 1938 static void __floating_irq_kick(struct kvm *kvm, u64 type) 1939 { 1940 struct kvm_vcpu *dst_vcpu; 1941 int sigcpu, online_vcpus, nr_tries = 0; 1942 1943 online_vcpus = atomic_read(&kvm->online_vcpus); 1944 if (!online_vcpus) 1945 return; 1946 1947 /* find idle VCPUs first, then round robin */ 1948 sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus); 1949 if (sigcpu == online_vcpus) { 1950 do { 1951 sigcpu = kvm->arch.float_int.next_rr_cpu++; 1952 kvm->arch.float_int.next_rr_cpu %= online_vcpus; 1953 /* avoid endless loops if all vcpus are stopped */ 1954 if (nr_tries++ >= online_vcpus) 1955 return; 1956 } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu))); 1957 } 1958 dst_vcpu = kvm_get_vcpu(kvm, sigcpu); 1959 1960 /* make the VCPU drop out of the SIE, or wake it up if sleeping */ 1961 switch (type) { 1962 case KVM_S390_MCHK: 1963 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT); 1964 break; 1965 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1966 if (!(type & KVM_S390_INT_IO_AI_MASK && 1967 kvm->arch.gisa_int.origin) || 1968 kvm_s390_pv_cpu_get_handle(dst_vcpu)) 1969 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT); 1970 break; 1971 default: 1972 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT); 1973 break; 1974 } 1975 kvm_s390_vcpu_wakeup(dst_vcpu); 1976 } 1977 1978 static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1979 { 1980 u64 type = READ_ONCE(inti->type); 1981 int rc; 1982 1983 switch (type) { 1984 case KVM_S390_MCHK: 1985 rc = __inject_float_mchk(kvm, inti); 1986 break; 1987 case KVM_S390_INT_VIRTIO: 1988 rc = __inject_virtio(kvm, inti); 1989 break; 1990 case KVM_S390_INT_SERVICE: 1991 rc = __inject_service(kvm, inti); 1992 break; 1993 case KVM_S390_INT_PFAULT_DONE: 1994 rc = __inject_pfault_done(kvm, inti); 1995 break; 1996 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1997 rc = __inject_io(kvm, inti); 1998 break; 1999 default: 2000 rc = -EINVAL; 2001 } 2002 if (rc) 2003 return rc; 2004 2005 __floating_irq_kick(kvm, type); 2006 return 0; 2007 } 2008 2009 int kvm_s390_inject_vm(struct kvm *kvm, 2010 struct kvm_s390_interrupt *s390int) 2011 { 2012 struct kvm_s390_interrupt_info *inti; 2013 int rc; 2014 2015 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 2016 if (!inti) 2017 return -ENOMEM; 2018 2019 inti->type = s390int->type; 2020 switch (inti->type) { 2021 case KVM_S390_INT_VIRTIO: 2022 VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx", 2023 s390int->parm, s390int->parm64); 2024 inti->ext.ext_params = s390int->parm; 2025 inti->ext.ext_params2 = s390int->parm64; 2026 break; 2027 case KVM_S390_INT_SERVICE: 2028 VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm); 2029 inti->ext.ext_params = s390int->parm; 2030 break; 2031 case KVM_S390_INT_PFAULT_DONE: 2032 inti->ext.ext_params2 = s390int->parm64; 2033 break; 2034 case KVM_S390_MCHK: 2035 VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx", 2036 s390int->parm64); 2037 inti->mchk.cr14 = s390int->parm; /* upper bits are not used */ 2038 inti->mchk.mcic = s390int->parm64; 2039 break; 2040 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2041 inti->io.subchannel_id = s390int->parm >> 16; 2042 inti->io.subchannel_nr = s390int->parm & 0x0000ffffu; 2043 inti->io.io_int_parm = s390int->parm64 >> 32; 2044 inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull; 2045 break; 2046 default: 2047 kfree(inti); 2048 return -EINVAL; 2049 } 2050 trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64, 2051 2); 2052 2053 rc = __inject_vm(kvm, inti); 2054 if (rc) 2055 kfree(inti); 2056 return rc; 2057 } 2058 2059 int kvm_s390_reinject_io_int(struct kvm *kvm, 2060 struct kvm_s390_interrupt_info *inti) 2061 { 2062 return __inject_vm(kvm, inti); 2063 } 2064 2065 int s390int_to_s390irq(struct kvm_s390_interrupt *s390int, 2066 struct kvm_s390_irq *irq) 2067 { 2068 irq->type = s390int->type; 2069 switch (irq->type) { 2070 case KVM_S390_PROGRAM_INT: 2071 if (s390int->parm & 0xffff0000) 2072 return -EINVAL; 2073 irq->u.pgm.code = s390int->parm; 2074 break; 2075 case KVM_S390_SIGP_SET_PREFIX: 2076 irq->u.prefix.address = s390int->parm; 2077 break; 2078 case KVM_S390_SIGP_STOP: 2079 irq->u.stop.flags = s390int->parm; 2080 break; 2081 case KVM_S390_INT_EXTERNAL_CALL: 2082 if (s390int->parm & 0xffff0000) 2083 return -EINVAL; 2084 irq->u.extcall.code = s390int->parm; 2085 break; 2086 case KVM_S390_INT_EMERGENCY: 2087 if (s390int->parm & 0xffff0000) 2088 return -EINVAL; 2089 irq->u.emerg.code = s390int->parm; 2090 break; 2091 case KVM_S390_MCHK: 2092 irq->u.mchk.mcic = s390int->parm64; 2093 break; 2094 case KVM_S390_INT_PFAULT_INIT: 2095 irq->u.ext.ext_params = s390int->parm; 2096 irq->u.ext.ext_params2 = s390int->parm64; 2097 break; 2098 case KVM_S390_RESTART: 2099 case KVM_S390_INT_CLOCK_COMP: 2100 case KVM_S390_INT_CPU_TIMER: 2101 break; 2102 default: 2103 return -EINVAL; 2104 } 2105 return 0; 2106 } 2107 2108 int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu) 2109 { 2110 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2111 2112 return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 2113 } 2114 2115 int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu) 2116 { 2117 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2118 2119 return test_bit(IRQ_PEND_RESTART, &li->pending_irqs); 2120 } 2121 2122 void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu) 2123 { 2124 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2125 2126 spin_lock(&li->lock); 2127 li->irq.stop.flags = 0; 2128 clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 2129 spin_unlock(&li->lock); 2130 } 2131 2132 static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 2133 { 2134 int rc; 2135 2136 switch (irq->type) { 2137 case KVM_S390_PROGRAM_INT: 2138 rc = __inject_prog(vcpu, irq); 2139 break; 2140 case KVM_S390_SIGP_SET_PREFIX: 2141 rc = __inject_set_prefix(vcpu, irq); 2142 break; 2143 case KVM_S390_SIGP_STOP: 2144 rc = __inject_sigp_stop(vcpu, irq); 2145 break; 2146 case KVM_S390_RESTART: 2147 rc = __inject_sigp_restart(vcpu); 2148 break; 2149 case KVM_S390_INT_CLOCK_COMP: 2150 rc = __inject_ckc(vcpu); 2151 break; 2152 case KVM_S390_INT_CPU_TIMER: 2153 rc = __inject_cpu_timer(vcpu); 2154 break; 2155 case KVM_S390_INT_EXTERNAL_CALL: 2156 rc = __inject_extcall(vcpu, irq); 2157 break; 2158 case KVM_S390_INT_EMERGENCY: 2159 rc = __inject_sigp_emergency(vcpu, irq); 2160 break; 2161 case KVM_S390_MCHK: 2162 rc = __inject_mchk(vcpu, irq); 2163 break; 2164 case KVM_S390_INT_PFAULT_INIT: 2165 rc = __inject_pfault_init(vcpu, irq); 2166 break; 2167 case KVM_S390_INT_VIRTIO: 2168 case KVM_S390_INT_SERVICE: 2169 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2170 default: 2171 rc = -EINVAL; 2172 } 2173 2174 return rc; 2175 } 2176 2177 int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 2178 { 2179 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2180 int rc; 2181 2182 spin_lock(&li->lock); 2183 rc = do_inject_vcpu(vcpu, irq); 2184 spin_unlock(&li->lock); 2185 if (!rc) 2186 kvm_s390_vcpu_wakeup(vcpu); 2187 return rc; 2188 } 2189 2190 static inline void clear_irq_list(struct list_head *_list) 2191 { 2192 struct kvm_s390_interrupt_info *inti, *n; 2193 2194 list_for_each_entry_safe(inti, n, _list, list) { 2195 list_del(&inti->list); 2196 kfree(inti); 2197 } 2198 } 2199 2200 static void inti_to_irq(struct kvm_s390_interrupt_info *inti, 2201 struct kvm_s390_irq *irq) 2202 { 2203 irq->type = inti->type; 2204 switch (inti->type) { 2205 case KVM_S390_INT_PFAULT_INIT: 2206 case KVM_S390_INT_PFAULT_DONE: 2207 case KVM_S390_INT_VIRTIO: 2208 irq->u.ext = inti->ext; 2209 break; 2210 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2211 irq->u.io = inti->io; 2212 break; 2213 } 2214 } 2215 2216 void kvm_s390_clear_float_irqs(struct kvm *kvm) 2217 { 2218 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2219 int i; 2220 2221 mutex_lock(&kvm->lock); 2222 if (!kvm_s390_pv_is_protected(kvm)) 2223 fi->masked_irqs = 0; 2224 mutex_unlock(&kvm->lock); 2225 spin_lock(&fi->lock); 2226 fi->pending_irqs = 0; 2227 memset(&fi->srv_signal, 0, sizeof(fi->srv_signal)); 2228 memset(&fi->mchk, 0, sizeof(fi->mchk)); 2229 for (i = 0; i < FIRQ_LIST_COUNT; i++) 2230 clear_irq_list(&fi->lists[i]); 2231 for (i = 0; i < FIRQ_MAX_COUNT; i++) 2232 fi->counters[i] = 0; 2233 spin_unlock(&fi->lock); 2234 kvm_s390_gisa_clear(kvm); 2235 }; 2236 2237 static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len) 2238 { 2239 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 2240 struct kvm_s390_interrupt_info *inti; 2241 struct kvm_s390_float_interrupt *fi; 2242 struct kvm_s390_irq *buf; 2243 struct kvm_s390_irq *irq; 2244 int max_irqs; 2245 int ret = 0; 2246 int n = 0; 2247 int i; 2248 2249 if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0) 2250 return -EINVAL; 2251 2252 /* 2253 * We are already using -ENOMEM to signal 2254 * userspace it may retry with a bigger buffer, 2255 * so we need to use something else for this case 2256 */ 2257 buf = vzalloc(len); 2258 if (!buf) 2259 return -ENOBUFS; 2260 2261 max_irqs = len / sizeof(struct kvm_s390_irq); 2262 2263 if (gi->origin && gisa_get_ipm(gi->origin)) { 2264 for (i = 0; i <= MAX_ISC; i++) { 2265 if (n == max_irqs) { 2266 /* signal userspace to try again */ 2267 ret = -ENOMEM; 2268 goto out_nolock; 2269 } 2270 if (gisa_tac_ipm_gisc(gi->origin, i)) { 2271 irq = (struct kvm_s390_irq *) &buf[n]; 2272 irq->type = KVM_S390_INT_IO(1, 0, 0, 0); 2273 irq->u.io.io_int_word = isc_to_int_word(i); 2274 n++; 2275 } 2276 } 2277 } 2278 fi = &kvm->arch.float_int; 2279 spin_lock(&fi->lock); 2280 for (i = 0; i < FIRQ_LIST_COUNT; i++) { 2281 list_for_each_entry(inti, &fi->lists[i], list) { 2282 if (n == max_irqs) { 2283 /* signal userspace to try again */ 2284 ret = -ENOMEM; 2285 goto out; 2286 } 2287 inti_to_irq(inti, &buf[n]); 2288 n++; 2289 } 2290 } 2291 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) || 2292 test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) { 2293 if (n == max_irqs) { 2294 /* signal userspace to try again */ 2295 ret = -ENOMEM; 2296 goto out; 2297 } 2298 irq = (struct kvm_s390_irq *) &buf[n]; 2299 irq->type = KVM_S390_INT_SERVICE; 2300 irq->u.ext = fi->srv_signal; 2301 n++; 2302 } 2303 if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 2304 if (n == max_irqs) { 2305 /* signal userspace to try again */ 2306 ret = -ENOMEM; 2307 goto out; 2308 } 2309 irq = (struct kvm_s390_irq *) &buf[n]; 2310 irq->type = KVM_S390_MCHK; 2311 irq->u.mchk = fi->mchk; 2312 n++; 2313 } 2314 2315 out: 2316 spin_unlock(&fi->lock); 2317 out_nolock: 2318 if (!ret && n > 0) { 2319 if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n)) 2320 ret = -EFAULT; 2321 } 2322 vfree(buf); 2323 2324 return ret < 0 ? ret : n; 2325 } 2326 2327 static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr) 2328 { 2329 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2330 struct kvm_s390_ais_all ais; 2331 2332 if (attr->attr < sizeof(ais)) 2333 return -EINVAL; 2334 2335 if (!test_kvm_facility(kvm, 72)) 2336 return -EOPNOTSUPP; 2337 2338 mutex_lock(&fi->ais_lock); 2339 ais.simm = fi->simm; 2340 ais.nimm = fi->nimm; 2341 mutex_unlock(&fi->ais_lock); 2342 2343 if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais))) 2344 return -EFAULT; 2345 2346 return 0; 2347 } 2348 2349 static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2350 { 2351 int r; 2352 2353 switch (attr->group) { 2354 case KVM_DEV_FLIC_GET_ALL_IRQS: 2355 r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr, 2356 attr->attr); 2357 break; 2358 case KVM_DEV_FLIC_AISM_ALL: 2359 r = flic_ais_mode_get_all(dev->kvm, attr); 2360 break; 2361 default: 2362 r = -EINVAL; 2363 } 2364 2365 return r; 2366 } 2367 2368 static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti, 2369 u64 addr) 2370 { 2371 struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr; 2372 void *target = NULL; 2373 void __user *source; 2374 u64 size; 2375 2376 if (get_user(inti->type, (u64 __user *)addr)) 2377 return -EFAULT; 2378 2379 switch (inti->type) { 2380 case KVM_S390_INT_PFAULT_INIT: 2381 case KVM_S390_INT_PFAULT_DONE: 2382 case KVM_S390_INT_VIRTIO: 2383 case KVM_S390_INT_SERVICE: 2384 target = (void *) &inti->ext; 2385 source = &uptr->u.ext; 2386 size = sizeof(inti->ext); 2387 break; 2388 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2389 target = (void *) &inti->io; 2390 source = &uptr->u.io; 2391 size = sizeof(inti->io); 2392 break; 2393 case KVM_S390_MCHK: 2394 target = (void *) &inti->mchk; 2395 source = &uptr->u.mchk; 2396 size = sizeof(inti->mchk); 2397 break; 2398 default: 2399 return -EINVAL; 2400 } 2401 2402 if (copy_from_user(target, source, size)) 2403 return -EFAULT; 2404 2405 return 0; 2406 } 2407 2408 static int enqueue_floating_irq(struct kvm_device *dev, 2409 struct kvm_device_attr *attr) 2410 { 2411 struct kvm_s390_interrupt_info *inti = NULL; 2412 int r = 0; 2413 int len = attr->attr; 2414 2415 if (len % sizeof(struct kvm_s390_irq) != 0) 2416 return -EINVAL; 2417 else if (len > KVM_S390_FLIC_MAX_BUFFER) 2418 return -EINVAL; 2419 2420 while (len >= sizeof(struct kvm_s390_irq)) { 2421 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 2422 if (!inti) 2423 return -ENOMEM; 2424 2425 r = copy_irq_from_user(inti, attr->addr); 2426 if (r) { 2427 kfree(inti); 2428 return r; 2429 } 2430 r = __inject_vm(dev->kvm, inti); 2431 if (r) { 2432 kfree(inti); 2433 return r; 2434 } 2435 len -= sizeof(struct kvm_s390_irq); 2436 attr->addr += sizeof(struct kvm_s390_irq); 2437 } 2438 2439 return r; 2440 } 2441 2442 static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id) 2443 { 2444 if (id >= MAX_S390_IO_ADAPTERS) 2445 return NULL; 2446 id = array_index_nospec(id, MAX_S390_IO_ADAPTERS); 2447 return kvm->arch.adapters[id]; 2448 } 2449 2450 static int register_io_adapter(struct kvm_device *dev, 2451 struct kvm_device_attr *attr) 2452 { 2453 struct s390_io_adapter *adapter; 2454 struct kvm_s390_io_adapter adapter_info; 2455 2456 if (copy_from_user(&adapter_info, 2457 (void __user *)attr->addr, sizeof(adapter_info))) 2458 return -EFAULT; 2459 2460 if (adapter_info.id >= MAX_S390_IO_ADAPTERS) 2461 return -EINVAL; 2462 2463 adapter_info.id = array_index_nospec(adapter_info.id, 2464 MAX_S390_IO_ADAPTERS); 2465 2466 if (dev->kvm->arch.adapters[adapter_info.id] != NULL) 2467 return -EINVAL; 2468 2469 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT); 2470 if (!adapter) 2471 return -ENOMEM; 2472 2473 adapter->id = adapter_info.id; 2474 adapter->isc = adapter_info.isc; 2475 adapter->maskable = adapter_info.maskable; 2476 adapter->masked = false; 2477 adapter->swap = adapter_info.swap; 2478 adapter->suppressible = (adapter_info.flags) & 2479 KVM_S390_ADAPTER_SUPPRESSIBLE; 2480 dev->kvm->arch.adapters[adapter->id] = adapter; 2481 2482 return 0; 2483 } 2484 2485 int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked) 2486 { 2487 int ret; 2488 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2489 2490 if (!adapter || !adapter->maskable) 2491 return -EINVAL; 2492 ret = adapter->masked; 2493 adapter->masked = masked; 2494 return ret; 2495 } 2496 2497 void kvm_s390_destroy_adapters(struct kvm *kvm) 2498 { 2499 int i; 2500 2501 for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) 2502 kfree(kvm->arch.adapters[i]); 2503 } 2504 2505 static int modify_io_adapter(struct kvm_device *dev, 2506 struct kvm_device_attr *attr) 2507 { 2508 struct kvm_s390_io_adapter_req req; 2509 struct s390_io_adapter *adapter; 2510 int ret; 2511 2512 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2513 return -EFAULT; 2514 2515 adapter = get_io_adapter(dev->kvm, req.id); 2516 if (!adapter) 2517 return -EINVAL; 2518 switch (req.type) { 2519 case KVM_S390_IO_ADAPTER_MASK: 2520 ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask); 2521 if (ret > 0) 2522 ret = 0; 2523 break; 2524 /* 2525 * The following operations are no longer needed and therefore no-ops. 2526 * The gpa to hva translation is done when an IRQ route is set up. The 2527 * set_irq code uses get_user_pages_remote() to do the actual write. 2528 */ 2529 case KVM_S390_IO_ADAPTER_MAP: 2530 case KVM_S390_IO_ADAPTER_UNMAP: 2531 ret = 0; 2532 break; 2533 default: 2534 ret = -EINVAL; 2535 } 2536 2537 return ret; 2538 } 2539 2540 static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr) 2541 2542 { 2543 const u64 isc_mask = 0xffUL << 24; /* all iscs set */ 2544 u32 schid; 2545 2546 if (attr->flags) 2547 return -EINVAL; 2548 if (attr->attr != sizeof(schid)) 2549 return -EINVAL; 2550 if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid))) 2551 return -EFAULT; 2552 if (!schid) 2553 return -EINVAL; 2554 kfree(kvm_s390_get_io_int(kvm, isc_mask, schid)); 2555 /* 2556 * If userspace is conforming to the architecture, we can have at most 2557 * one pending I/O interrupt per subchannel, so this is effectively a 2558 * clear all. 2559 */ 2560 return 0; 2561 } 2562 2563 static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr) 2564 { 2565 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2566 struct kvm_s390_ais_req req; 2567 int ret = 0; 2568 2569 if (!test_kvm_facility(kvm, 72)) 2570 return -EOPNOTSUPP; 2571 2572 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2573 return -EFAULT; 2574 2575 if (req.isc > MAX_ISC) 2576 return -EINVAL; 2577 2578 trace_kvm_s390_modify_ais_mode(req.isc, 2579 (fi->simm & AIS_MODE_MASK(req.isc)) ? 2580 (fi->nimm & AIS_MODE_MASK(req.isc)) ? 2581 2 : KVM_S390_AIS_MODE_SINGLE : 2582 KVM_S390_AIS_MODE_ALL, req.mode); 2583 2584 mutex_lock(&fi->ais_lock); 2585 switch (req.mode) { 2586 case KVM_S390_AIS_MODE_ALL: 2587 fi->simm &= ~AIS_MODE_MASK(req.isc); 2588 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2589 break; 2590 case KVM_S390_AIS_MODE_SINGLE: 2591 fi->simm |= AIS_MODE_MASK(req.isc); 2592 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2593 break; 2594 default: 2595 ret = -EINVAL; 2596 } 2597 mutex_unlock(&fi->ais_lock); 2598 2599 return ret; 2600 } 2601 2602 static int kvm_s390_inject_airq(struct kvm *kvm, 2603 struct s390_io_adapter *adapter) 2604 { 2605 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2606 struct kvm_s390_interrupt s390int = { 2607 .type = KVM_S390_INT_IO(1, 0, 0, 0), 2608 .parm = 0, 2609 .parm64 = isc_to_int_word(adapter->isc), 2610 }; 2611 int ret = 0; 2612 2613 if (!test_kvm_facility(kvm, 72) || !adapter->suppressible) 2614 return kvm_s390_inject_vm(kvm, &s390int); 2615 2616 mutex_lock(&fi->ais_lock); 2617 if (fi->nimm & AIS_MODE_MASK(adapter->isc)) { 2618 trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc); 2619 goto out; 2620 } 2621 2622 ret = kvm_s390_inject_vm(kvm, &s390int); 2623 if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) { 2624 fi->nimm |= AIS_MODE_MASK(adapter->isc); 2625 trace_kvm_s390_modify_ais_mode(adapter->isc, 2626 KVM_S390_AIS_MODE_SINGLE, 2); 2627 } 2628 out: 2629 mutex_unlock(&fi->ais_lock); 2630 return ret; 2631 } 2632 2633 static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr) 2634 { 2635 unsigned int id = attr->attr; 2636 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2637 2638 if (!adapter) 2639 return -EINVAL; 2640 2641 return kvm_s390_inject_airq(kvm, adapter); 2642 } 2643 2644 static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr) 2645 { 2646 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2647 struct kvm_s390_ais_all ais; 2648 2649 if (!test_kvm_facility(kvm, 72)) 2650 return -EOPNOTSUPP; 2651 2652 if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais))) 2653 return -EFAULT; 2654 2655 mutex_lock(&fi->ais_lock); 2656 fi->simm = ais.simm; 2657 fi->nimm = ais.nimm; 2658 mutex_unlock(&fi->ais_lock); 2659 2660 return 0; 2661 } 2662 2663 static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2664 { 2665 int r = 0; 2666 unsigned long i; 2667 struct kvm_vcpu *vcpu; 2668 2669 switch (attr->group) { 2670 case KVM_DEV_FLIC_ENQUEUE: 2671 r = enqueue_floating_irq(dev, attr); 2672 break; 2673 case KVM_DEV_FLIC_CLEAR_IRQS: 2674 kvm_s390_clear_float_irqs(dev->kvm); 2675 break; 2676 case KVM_DEV_FLIC_APF_ENABLE: 2677 dev->kvm->arch.gmap->pfault_enabled = 1; 2678 break; 2679 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2680 dev->kvm->arch.gmap->pfault_enabled = 0; 2681 /* 2682 * Make sure no async faults are in transition when 2683 * clearing the queues. So we don't need to worry 2684 * about late coming workers. 2685 */ 2686 synchronize_srcu(&dev->kvm->srcu); 2687 kvm_for_each_vcpu(i, vcpu, dev->kvm) 2688 kvm_clear_async_pf_completion_queue(vcpu); 2689 break; 2690 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2691 r = register_io_adapter(dev, attr); 2692 break; 2693 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2694 r = modify_io_adapter(dev, attr); 2695 break; 2696 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2697 r = clear_io_irq(dev->kvm, attr); 2698 break; 2699 case KVM_DEV_FLIC_AISM: 2700 r = modify_ais_mode(dev->kvm, attr); 2701 break; 2702 case KVM_DEV_FLIC_AIRQ_INJECT: 2703 r = flic_inject_airq(dev->kvm, attr); 2704 break; 2705 case KVM_DEV_FLIC_AISM_ALL: 2706 r = flic_ais_mode_set_all(dev->kvm, attr); 2707 break; 2708 default: 2709 r = -EINVAL; 2710 } 2711 2712 return r; 2713 } 2714 2715 static int flic_has_attr(struct kvm_device *dev, 2716 struct kvm_device_attr *attr) 2717 { 2718 switch (attr->group) { 2719 case KVM_DEV_FLIC_GET_ALL_IRQS: 2720 case KVM_DEV_FLIC_ENQUEUE: 2721 case KVM_DEV_FLIC_CLEAR_IRQS: 2722 case KVM_DEV_FLIC_APF_ENABLE: 2723 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2724 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2725 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2726 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2727 case KVM_DEV_FLIC_AISM: 2728 case KVM_DEV_FLIC_AIRQ_INJECT: 2729 case KVM_DEV_FLIC_AISM_ALL: 2730 return 0; 2731 } 2732 return -ENXIO; 2733 } 2734 2735 static int flic_create(struct kvm_device *dev, u32 type) 2736 { 2737 if (!dev) 2738 return -EINVAL; 2739 if (dev->kvm->arch.flic) 2740 return -EINVAL; 2741 dev->kvm->arch.flic = dev; 2742 return 0; 2743 } 2744 2745 static void flic_destroy(struct kvm_device *dev) 2746 { 2747 dev->kvm->arch.flic = NULL; 2748 kfree(dev); 2749 } 2750 2751 /* s390 floating irq controller (flic) */ 2752 struct kvm_device_ops kvm_flic_ops = { 2753 .name = "kvm-flic", 2754 .get_attr = flic_get_attr, 2755 .set_attr = flic_set_attr, 2756 .has_attr = flic_has_attr, 2757 .create = flic_create, 2758 .destroy = flic_destroy, 2759 }; 2760 2761 static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap) 2762 { 2763 unsigned long bit; 2764 2765 bit = bit_nr + (addr % PAGE_SIZE) * 8; 2766 2767 return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit; 2768 } 2769 2770 static struct page *get_map_page(struct kvm *kvm, u64 uaddr) 2771 { 2772 struct page *page = NULL; 2773 2774 mmap_read_lock(kvm->mm); 2775 get_user_pages_remote(kvm->mm, uaddr, 1, FOLL_WRITE, 2776 &page, NULL, NULL); 2777 mmap_read_unlock(kvm->mm); 2778 return page; 2779 } 2780 2781 static int adapter_indicators_set(struct kvm *kvm, 2782 struct s390_io_adapter *adapter, 2783 struct kvm_s390_adapter_int *adapter_int) 2784 { 2785 unsigned long bit; 2786 int summary_set, idx; 2787 struct page *ind_page, *summary_page; 2788 void *map; 2789 2790 ind_page = get_map_page(kvm, adapter_int->ind_addr); 2791 if (!ind_page) 2792 return -1; 2793 summary_page = get_map_page(kvm, adapter_int->summary_addr); 2794 if (!summary_page) { 2795 put_page(ind_page); 2796 return -1; 2797 } 2798 2799 idx = srcu_read_lock(&kvm->srcu); 2800 map = page_address(ind_page); 2801 bit = get_ind_bit(adapter_int->ind_addr, 2802 adapter_int->ind_offset, adapter->swap); 2803 set_bit(bit, map); 2804 mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT); 2805 set_page_dirty_lock(ind_page); 2806 map = page_address(summary_page); 2807 bit = get_ind_bit(adapter_int->summary_addr, 2808 adapter_int->summary_offset, adapter->swap); 2809 summary_set = test_and_set_bit(bit, map); 2810 mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT); 2811 set_page_dirty_lock(summary_page); 2812 srcu_read_unlock(&kvm->srcu, idx); 2813 2814 put_page(ind_page); 2815 put_page(summary_page); 2816 return summary_set ? 0 : 1; 2817 } 2818 2819 /* 2820 * < 0 - not injected due to error 2821 * = 0 - coalesced, summary indicator already active 2822 * > 0 - injected interrupt 2823 */ 2824 static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e, 2825 struct kvm *kvm, int irq_source_id, int level, 2826 bool line_status) 2827 { 2828 int ret; 2829 struct s390_io_adapter *adapter; 2830 2831 /* We're only interested in the 0->1 transition. */ 2832 if (!level) 2833 return 0; 2834 adapter = get_io_adapter(kvm, e->adapter.adapter_id); 2835 if (!adapter) 2836 return -1; 2837 ret = adapter_indicators_set(kvm, adapter, &e->adapter); 2838 if ((ret > 0) && !adapter->masked) { 2839 ret = kvm_s390_inject_airq(kvm, adapter); 2840 if (ret == 0) 2841 ret = 1; 2842 } 2843 return ret; 2844 } 2845 2846 /* 2847 * Inject the machine check to the guest. 2848 */ 2849 void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu, 2850 struct mcck_volatile_info *mcck_info) 2851 { 2852 struct kvm_s390_interrupt_info inti; 2853 struct kvm_s390_irq irq; 2854 struct kvm_s390_mchk_info *mchk; 2855 union mci mci; 2856 __u64 cr14 = 0; /* upper bits are not used */ 2857 int rc; 2858 2859 mci.val = mcck_info->mcic; 2860 if (mci.sr) 2861 cr14 |= CR14_RECOVERY_SUBMASK; 2862 if (mci.dg) 2863 cr14 |= CR14_DEGRADATION_SUBMASK; 2864 if (mci.w) 2865 cr14 |= CR14_WARNING_SUBMASK; 2866 2867 mchk = mci.ck ? &inti.mchk : &irq.u.mchk; 2868 mchk->cr14 = cr14; 2869 mchk->mcic = mcck_info->mcic; 2870 mchk->ext_damage_code = mcck_info->ext_damage_code; 2871 mchk->failing_storage_address = mcck_info->failing_storage_address; 2872 if (mci.ck) { 2873 /* Inject the floating machine check */ 2874 inti.type = KVM_S390_MCHK; 2875 rc = __inject_vm(vcpu->kvm, &inti); 2876 } else { 2877 /* Inject the machine check to specified vcpu */ 2878 irq.type = KVM_S390_MCHK; 2879 rc = kvm_s390_inject_vcpu(vcpu, &irq); 2880 } 2881 WARN_ON_ONCE(rc); 2882 } 2883 2884 int kvm_set_routing_entry(struct kvm *kvm, 2885 struct kvm_kernel_irq_routing_entry *e, 2886 const struct kvm_irq_routing_entry *ue) 2887 { 2888 u64 uaddr; 2889 2890 switch (ue->type) { 2891 /* we store the userspace addresses instead of the guest addresses */ 2892 case KVM_IRQ_ROUTING_S390_ADAPTER: 2893 e->set = set_adapter_int; 2894 uaddr = gmap_translate(kvm->arch.gmap, ue->u.adapter.summary_addr); 2895 if (uaddr == -EFAULT) 2896 return -EFAULT; 2897 e->adapter.summary_addr = uaddr; 2898 uaddr = gmap_translate(kvm->arch.gmap, ue->u.adapter.ind_addr); 2899 if (uaddr == -EFAULT) 2900 return -EFAULT; 2901 e->adapter.ind_addr = uaddr; 2902 e->adapter.summary_offset = ue->u.adapter.summary_offset; 2903 e->adapter.ind_offset = ue->u.adapter.ind_offset; 2904 e->adapter.adapter_id = ue->u.adapter.adapter_id; 2905 return 0; 2906 default: 2907 return -EINVAL; 2908 } 2909 } 2910 2911 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, 2912 int irq_source_id, int level, bool line_status) 2913 { 2914 return -EINVAL; 2915 } 2916 2917 int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len) 2918 { 2919 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2920 struct kvm_s390_irq *buf; 2921 int r = 0; 2922 int n; 2923 2924 buf = vmalloc(len); 2925 if (!buf) 2926 return -ENOMEM; 2927 2928 if (copy_from_user((void *) buf, irqstate, len)) { 2929 r = -EFAULT; 2930 goto out_free; 2931 } 2932 2933 /* 2934 * Don't allow setting the interrupt state 2935 * when there are already interrupts pending 2936 */ 2937 spin_lock(&li->lock); 2938 if (li->pending_irqs) { 2939 r = -EBUSY; 2940 goto out_unlock; 2941 } 2942 2943 for (n = 0; n < len / sizeof(*buf); n++) { 2944 r = do_inject_vcpu(vcpu, &buf[n]); 2945 if (r) 2946 break; 2947 } 2948 2949 out_unlock: 2950 spin_unlock(&li->lock); 2951 out_free: 2952 vfree(buf); 2953 2954 return r; 2955 } 2956 2957 static void store_local_irq(struct kvm_s390_local_interrupt *li, 2958 struct kvm_s390_irq *irq, 2959 unsigned long irq_type) 2960 { 2961 switch (irq_type) { 2962 case IRQ_PEND_MCHK_EX: 2963 case IRQ_PEND_MCHK_REP: 2964 irq->type = KVM_S390_MCHK; 2965 irq->u.mchk = li->irq.mchk; 2966 break; 2967 case IRQ_PEND_PROG: 2968 irq->type = KVM_S390_PROGRAM_INT; 2969 irq->u.pgm = li->irq.pgm; 2970 break; 2971 case IRQ_PEND_PFAULT_INIT: 2972 irq->type = KVM_S390_INT_PFAULT_INIT; 2973 irq->u.ext = li->irq.ext; 2974 break; 2975 case IRQ_PEND_EXT_EXTERNAL: 2976 irq->type = KVM_S390_INT_EXTERNAL_CALL; 2977 irq->u.extcall = li->irq.extcall; 2978 break; 2979 case IRQ_PEND_EXT_CLOCK_COMP: 2980 irq->type = KVM_S390_INT_CLOCK_COMP; 2981 break; 2982 case IRQ_PEND_EXT_CPU_TIMER: 2983 irq->type = KVM_S390_INT_CPU_TIMER; 2984 break; 2985 case IRQ_PEND_SIGP_STOP: 2986 irq->type = KVM_S390_SIGP_STOP; 2987 irq->u.stop = li->irq.stop; 2988 break; 2989 case IRQ_PEND_RESTART: 2990 irq->type = KVM_S390_RESTART; 2991 break; 2992 case IRQ_PEND_SET_PREFIX: 2993 irq->type = KVM_S390_SIGP_SET_PREFIX; 2994 irq->u.prefix = li->irq.prefix; 2995 break; 2996 } 2997 } 2998 2999 int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len) 3000 { 3001 int scn; 3002 DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS); 3003 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 3004 unsigned long pending_irqs; 3005 struct kvm_s390_irq irq; 3006 unsigned long irq_type; 3007 int cpuaddr; 3008 int n = 0; 3009 3010 spin_lock(&li->lock); 3011 pending_irqs = li->pending_irqs; 3012 memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending, 3013 sizeof(sigp_emerg_pending)); 3014 spin_unlock(&li->lock); 3015 3016 for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) { 3017 memset(&irq, 0, sizeof(irq)); 3018 if (irq_type == IRQ_PEND_EXT_EMERGENCY) 3019 continue; 3020 if (n + sizeof(irq) > len) 3021 return -ENOBUFS; 3022 store_local_irq(&vcpu->arch.local_int, &irq, irq_type); 3023 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3024 return -EFAULT; 3025 n += sizeof(irq); 3026 } 3027 3028 if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) { 3029 for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) { 3030 memset(&irq, 0, sizeof(irq)); 3031 if (n + sizeof(irq) > len) 3032 return -ENOBUFS; 3033 irq.type = KVM_S390_INT_EMERGENCY; 3034 irq.u.emerg.code = cpuaddr; 3035 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3036 return -EFAULT; 3037 n += sizeof(irq); 3038 } 3039 } 3040 3041 if (sca_ext_call_pending(vcpu, &scn)) { 3042 if (n + sizeof(irq) > len) 3043 return -ENOBUFS; 3044 memset(&irq, 0, sizeof(irq)); 3045 irq.type = KVM_S390_INT_EXTERNAL_CALL; 3046 irq.u.extcall.code = scn; 3047 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3048 return -EFAULT; 3049 n += sizeof(irq); 3050 } 3051 3052 return n; 3053 } 3054 3055 static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask) 3056 { 3057 int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus); 3058 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3059 struct kvm_vcpu *vcpu; 3060 u8 vcpu_isc_mask; 3061 3062 for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) { 3063 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 3064 if (psw_ioint_disabled(vcpu)) 3065 continue; 3066 vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24); 3067 if (deliverable_mask & vcpu_isc_mask) { 3068 /* lately kicked but not yet running */ 3069 if (test_and_set_bit(vcpu_idx, gi->kicked_mask)) 3070 return; 3071 kvm_s390_vcpu_wakeup(vcpu); 3072 return; 3073 } 3074 } 3075 } 3076 3077 static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer) 3078 { 3079 struct kvm_s390_gisa_interrupt *gi = 3080 container_of(timer, struct kvm_s390_gisa_interrupt, timer); 3081 struct kvm *kvm = 3082 container_of(gi->origin, struct sie_page2, gisa)->kvm; 3083 u8 pending_mask; 3084 3085 pending_mask = gisa_get_ipm_or_restore_iam(gi); 3086 if (pending_mask) { 3087 __airqs_kick_single_vcpu(kvm, pending_mask); 3088 hrtimer_forward_now(timer, ns_to_ktime(gi->expires)); 3089 return HRTIMER_RESTART; 3090 } 3091 3092 return HRTIMER_NORESTART; 3093 } 3094 3095 #define NULL_GISA_ADDR 0x00000000UL 3096 #define NONE_GISA_ADDR 0x00000001UL 3097 #define GISA_ADDR_MASK 0xfffff000UL 3098 3099 static void process_gib_alert_list(void) 3100 { 3101 struct kvm_s390_gisa_interrupt *gi; 3102 struct kvm_s390_gisa *gisa; 3103 struct kvm *kvm; 3104 u32 final, origin = 0UL; 3105 3106 do { 3107 /* 3108 * If the NONE_GISA_ADDR is still stored in the alert list 3109 * origin, we will leave the outer loop. No further GISA has 3110 * been added to the alert list by millicode while processing 3111 * the current alert list. 3112 */ 3113 final = (origin & NONE_GISA_ADDR); 3114 /* 3115 * Cut off the alert list and store the NONE_GISA_ADDR in the 3116 * alert list origin to avoid further GAL interruptions. 3117 * A new alert list can be build up by millicode in parallel 3118 * for guests not in the yet cut-off alert list. When in the 3119 * final loop, store the NULL_GISA_ADDR instead. This will re- 3120 * enable GAL interruptions on the host again. 3121 */ 3122 origin = xchg(&gib->alert_list_origin, 3123 (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR); 3124 /* 3125 * Loop through the just cut-off alert list and start the 3126 * gisa timers to kick idle vcpus to consume the pending 3127 * interruptions asap. 3128 */ 3129 while (origin & GISA_ADDR_MASK) { 3130 gisa = (struct kvm_s390_gisa *)(u64)origin; 3131 origin = gisa->next_alert; 3132 gisa->next_alert = (u32)(u64)gisa; 3133 kvm = container_of(gisa, struct sie_page2, gisa)->kvm; 3134 gi = &kvm->arch.gisa_int; 3135 if (hrtimer_active(&gi->timer)) 3136 hrtimer_cancel(&gi->timer); 3137 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); 3138 } 3139 } while (!final); 3140 3141 } 3142 3143 void kvm_s390_gisa_clear(struct kvm *kvm) 3144 { 3145 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3146 3147 if (!gi->origin) 3148 return; 3149 gisa_clear_ipm(gi->origin); 3150 VM_EVENT(kvm, 3, "gisa 0x%pK cleared", gi->origin); 3151 } 3152 3153 void kvm_s390_gisa_init(struct kvm *kvm) 3154 { 3155 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3156 3157 if (!css_general_characteristics.aiv) 3158 return; 3159 gi->origin = &kvm->arch.sie_page2->gisa; 3160 gi->alert.mask = 0; 3161 spin_lock_init(&gi->alert.ref_lock); 3162 gi->expires = 50 * 1000; /* 50 usec */ 3163 hrtimer_init(&gi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3164 gi->timer.function = gisa_vcpu_kicker; 3165 memset(gi->origin, 0, sizeof(struct kvm_s390_gisa)); 3166 gi->origin->next_alert = (u32)(u64)gi->origin; 3167 VM_EVENT(kvm, 3, "gisa 0x%pK initialized", gi->origin); 3168 } 3169 3170 void kvm_s390_gisa_enable(struct kvm *kvm) 3171 { 3172 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3173 struct kvm_vcpu *vcpu; 3174 unsigned long i; 3175 u32 gisa_desc; 3176 3177 if (gi->origin) 3178 return; 3179 kvm_s390_gisa_init(kvm); 3180 gisa_desc = kvm_s390_get_gisa_desc(kvm); 3181 if (!gisa_desc) 3182 return; 3183 kvm_for_each_vcpu(i, vcpu, kvm) { 3184 mutex_lock(&vcpu->mutex); 3185 vcpu->arch.sie_block->gd = gisa_desc; 3186 vcpu->arch.sie_block->eca |= ECA_AIV; 3187 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3188 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3189 mutex_unlock(&vcpu->mutex); 3190 } 3191 } 3192 3193 void kvm_s390_gisa_destroy(struct kvm *kvm) 3194 { 3195 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3196 struct kvm_s390_gisa *gisa = gi->origin; 3197 3198 if (!gi->origin) 3199 return; 3200 if (gi->alert.mask) 3201 KVM_EVENT(3, "vm 0x%pK has unexpected iam 0x%02x", 3202 kvm, gi->alert.mask); 3203 while (gisa_in_alert_list(gi->origin)) 3204 cpu_relax(); 3205 hrtimer_cancel(&gi->timer); 3206 gi->origin = NULL; 3207 VM_EVENT(kvm, 3, "gisa 0x%pK destroyed", gisa); 3208 } 3209 3210 void kvm_s390_gisa_disable(struct kvm *kvm) 3211 { 3212 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3213 struct kvm_vcpu *vcpu; 3214 unsigned long i; 3215 3216 if (!gi->origin) 3217 return; 3218 kvm_for_each_vcpu(i, vcpu, kvm) { 3219 mutex_lock(&vcpu->mutex); 3220 vcpu->arch.sie_block->eca &= ~ECA_AIV; 3221 vcpu->arch.sie_block->gd = 0U; 3222 mutex_unlock(&vcpu->mutex); 3223 VCPU_EVENT(vcpu, 3, "AIV disabled for cpu %03u", vcpu->vcpu_id); 3224 } 3225 kvm_s390_gisa_destroy(kvm); 3226 } 3227 3228 /** 3229 * kvm_s390_gisc_register - register a guest ISC 3230 * 3231 * @kvm: the kernel vm to work with 3232 * @gisc: the guest interruption sub class to register 3233 * 3234 * The function extends the vm specific alert mask to use. 3235 * The effective IAM mask in the GISA is updated as well 3236 * in case the GISA is not part of the GIB alert list. 3237 * It will be updated latest when the IAM gets restored 3238 * by gisa_get_ipm_or_restore_iam(). 3239 * 3240 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3241 * has registered with the channel subsystem. 3242 * -ENODEV in case the vm uses no GISA 3243 * -ERANGE in case the guest ISC is invalid 3244 */ 3245 int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc) 3246 { 3247 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3248 3249 if (!gi->origin) 3250 return -ENODEV; 3251 if (gisc > MAX_ISC) 3252 return -ERANGE; 3253 3254 spin_lock(&gi->alert.ref_lock); 3255 gi->alert.ref_count[gisc]++; 3256 if (gi->alert.ref_count[gisc] == 1) { 3257 gi->alert.mask |= 0x80 >> gisc; 3258 gisa_set_iam(gi->origin, gi->alert.mask); 3259 } 3260 spin_unlock(&gi->alert.ref_lock); 3261 3262 return gib->nisc; 3263 } 3264 EXPORT_SYMBOL_GPL(kvm_s390_gisc_register); 3265 3266 /** 3267 * kvm_s390_gisc_unregister - unregister a guest ISC 3268 * 3269 * @kvm: the kernel vm to work with 3270 * @gisc: the guest interruption sub class to register 3271 * 3272 * The function reduces the vm specific alert mask to use. 3273 * The effective IAM mask in the GISA is updated as well 3274 * in case the GISA is not part of the GIB alert list. 3275 * It will be updated latest when the IAM gets restored 3276 * by gisa_get_ipm_or_restore_iam(). 3277 * 3278 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3279 * has registered with the channel subsystem. 3280 * -ENODEV in case the vm uses no GISA 3281 * -ERANGE in case the guest ISC is invalid 3282 * -EINVAL in case the guest ISC is not registered 3283 */ 3284 int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc) 3285 { 3286 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3287 int rc = 0; 3288 3289 if (!gi->origin) 3290 return -ENODEV; 3291 if (gisc > MAX_ISC) 3292 return -ERANGE; 3293 3294 spin_lock(&gi->alert.ref_lock); 3295 if (gi->alert.ref_count[gisc] == 0) { 3296 rc = -EINVAL; 3297 goto out; 3298 } 3299 gi->alert.ref_count[gisc]--; 3300 if (gi->alert.ref_count[gisc] == 0) { 3301 gi->alert.mask &= ~(0x80 >> gisc); 3302 gisa_set_iam(gi->origin, gi->alert.mask); 3303 } 3304 out: 3305 spin_unlock(&gi->alert.ref_lock); 3306 3307 return rc; 3308 } 3309 EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister); 3310 3311 static void aen_host_forward(unsigned long si) 3312 { 3313 struct kvm_s390_gisa_interrupt *gi; 3314 struct zpci_gaite *gaite; 3315 struct kvm *kvm; 3316 3317 gaite = (struct zpci_gaite *)aift->gait + 3318 (si * sizeof(struct zpci_gaite)); 3319 if (gaite->count == 0) 3320 return; 3321 if (gaite->aisb != 0) 3322 set_bit_inv(gaite->aisbo, phys_to_virt(gaite->aisb)); 3323 3324 kvm = kvm_s390_pci_si_to_kvm(aift, si); 3325 if (!kvm) 3326 return; 3327 gi = &kvm->arch.gisa_int; 3328 3329 if (!(gi->origin->g1.simm & AIS_MODE_MASK(gaite->gisc)) || 3330 !(gi->origin->g1.nimm & AIS_MODE_MASK(gaite->gisc))) { 3331 gisa_set_ipm_gisc(gi->origin, gaite->gisc); 3332 if (hrtimer_active(&gi->timer)) 3333 hrtimer_cancel(&gi->timer); 3334 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); 3335 kvm->stat.aen_forward++; 3336 } 3337 } 3338 3339 static void aen_process_gait(u8 isc) 3340 { 3341 bool found = false, first = true; 3342 union zpci_sic_iib iib = {{0}}; 3343 unsigned long si, flags; 3344 3345 spin_lock_irqsave(&aift->gait_lock, flags); 3346 3347 if (!aift->gait) { 3348 spin_unlock_irqrestore(&aift->gait_lock, flags); 3349 return; 3350 } 3351 3352 for (si = 0;;) { 3353 /* Scan adapter summary indicator bit vector */ 3354 si = airq_iv_scan(aift->sbv, si, airq_iv_end(aift->sbv)); 3355 if (si == -1UL) { 3356 if (first || found) { 3357 /* Re-enable interrupts. */ 3358 zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, isc, 3359 &iib); 3360 first = found = false; 3361 } else { 3362 /* Interrupts on and all bits processed */ 3363 break; 3364 } 3365 found = false; 3366 si = 0; 3367 /* Scan again after re-enabling interrupts */ 3368 continue; 3369 } 3370 found = true; 3371 aen_host_forward(si); 3372 } 3373 3374 spin_unlock_irqrestore(&aift->gait_lock, flags); 3375 } 3376 3377 static void gib_alert_irq_handler(struct airq_struct *airq, 3378 struct tpi_info *tpi_info) 3379 { 3380 struct tpi_adapter_info *info = (struct tpi_adapter_info *)tpi_info; 3381 3382 inc_irq_stat(IRQIO_GAL); 3383 3384 if ((info->forward || info->error) && 3385 IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 3386 aen_process_gait(info->isc); 3387 if (info->aism != 0) 3388 process_gib_alert_list(); 3389 } else { 3390 process_gib_alert_list(); 3391 } 3392 } 3393 3394 static struct airq_struct gib_alert_irq = { 3395 .handler = gib_alert_irq_handler, 3396 .lsi_ptr = &gib_alert_irq.lsi_mask, 3397 }; 3398 3399 void kvm_s390_gib_destroy(void) 3400 { 3401 if (!gib) 3402 return; 3403 if (kvm_s390_pci_interp_allowed() && aift) { 3404 mutex_lock(&aift->aift_lock); 3405 kvm_s390_pci_aen_exit(); 3406 mutex_unlock(&aift->aift_lock); 3407 } 3408 chsc_sgib(0); 3409 unregister_adapter_interrupt(&gib_alert_irq); 3410 free_page((unsigned long)gib); 3411 gib = NULL; 3412 } 3413 3414 int kvm_s390_gib_init(u8 nisc) 3415 { 3416 int rc = 0; 3417 3418 if (!css_general_characteristics.aiv) { 3419 KVM_EVENT(3, "%s", "gib not initialized, no AIV facility"); 3420 goto out; 3421 } 3422 3423 gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); 3424 if (!gib) { 3425 rc = -ENOMEM; 3426 goto out; 3427 } 3428 3429 gib_alert_irq.isc = nisc; 3430 if (register_adapter_interrupt(&gib_alert_irq)) { 3431 pr_err("Registering the GIB alert interruption handler failed\n"); 3432 rc = -EIO; 3433 goto out_free_gib; 3434 } 3435 3436 gib->nisc = nisc; 3437 if (chsc_sgib((u32)(u64)gib)) { 3438 pr_err("Associating the GIB with the AIV facility failed\n"); 3439 free_page((unsigned long)gib); 3440 gib = NULL; 3441 rc = -EIO; 3442 goto out_unreg_gal; 3443 } 3444 3445 if (kvm_s390_pci_interp_allowed()) { 3446 if (kvm_s390_pci_aen_init(nisc)) { 3447 pr_err("Initializing AEN for PCI failed\n"); 3448 rc = -EIO; 3449 goto out_unreg_gal; 3450 } 3451 } 3452 3453 KVM_EVENT(3, "gib 0x%pK (nisc=%d) initialized", gib, gib->nisc); 3454 goto out; 3455 3456 out_unreg_gal: 3457 unregister_adapter_interrupt(&gib_alert_irq); 3458 out_free_gib: 3459 free_page((unsigned long)gib); 3460 gib = NULL; 3461 out: 3462 return rc; 3463 } 3464