xref: /openbmc/linux/arch/s390/kvm/interrupt.c (revision c9933d494c54f72290831191c09bb8488bfd5905)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * handling kvm guest interrupts
4  *
5  * Copyright IBM Corp. 2008, 2020
6  *
7  *    Author(s): Carsten Otte <cotte@de.ibm.com>
8  */
9 
10 #define KMSG_COMPONENT "kvm-s390"
11 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
12 
13 #include <linux/interrupt.h>
14 #include <linux/kvm_host.h>
15 #include <linux/hrtimer.h>
16 #include <linux/mmu_context.h>
17 #include <linux/nospec.h>
18 #include <linux/signal.h>
19 #include <linux/slab.h>
20 #include <linux/bitmap.h>
21 #include <linux/vmalloc.h>
22 #include <asm/asm-offsets.h>
23 #include <asm/dis.h>
24 #include <linux/uaccess.h>
25 #include <asm/sclp.h>
26 #include <asm/isc.h>
27 #include <asm/gmap.h>
28 #include <asm/switch_to.h>
29 #include <asm/nmi.h>
30 #include <asm/airq.h>
31 #include "kvm-s390.h"
32 #include "gaccess.h"
33 #include "trace-s390.h"
34 
35 #define PFAULT_INIT 0x0600
36 #define PFAULT_DONE 0x0680
37 #define VIRTIO_PARAM 0x0d00
38 
39 static struct kvm_s390_gib *gib;
40 
41 /* handle external calls via sigp interpretation facility */
42 static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
43 {
44 	int c, scn;
45 
46 	if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND))
47 		return 0;
48 
49 	BUG_ON(!kvm_s390_use_sca_entries());
50 	read_lock(&vcpu->kvm->arch.sca_lock);
51 	if (vcpu->kvm->arch.use_esca) {
52 		struct esca_block *sca = vcpu->kvm->arch.sca;
53 		union esca_sigp_ctrl sigp_ctrl =
54 			sca->cpu[vcpu->vcpu_id].sigp_ctrl;
55 
56 		c = sigp_ctrl.c;
57 		scn = sigp_ctrl.scn;
58 	} else {
59 		struct bsca_block *sca = vcpu->kvm->arch.sca;
60 		union bsca_sigp_ctrl sigp_ctrl =
61 			sca->cpu[vcpu->vcpu_id].sigp_ctrl;
62 
63 		c = sigp_ctrl.c;
64 		scn = sigp_ctrl.scn;
65 	}
66 	read_unlock(&vcpu->kvm->arch.sca_lock);
67 
68 	if (src_id)
69 		*src_id = scn;
70 
71 	return c;
72 }
73 
74 static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
75 {
76 	int expect, rc;
77 
78 	BUG_ON(!kvm_s390_use_sca_entries());
79 	read_lock(&vcpu->kvm->arch.sca_lock);
80 	if (vcpu->kvm->arch.use_esca) {
81 		struct esca_block *sca = vcpu->kvm->arch.sca;
82 		union esca_sigp_ctrl *sigp_ctrl =
83 			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
84 		union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
85 
86 		new_val.scn = src_id;
87 		new_val.c = 1;
88 		old_val.c = 0;
89 
90 		expect = old_val.value;
91 		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
92 	} else {
93 		struct bsca_block *sca = vcpu->kvm->arch.sca;
94 		union bsca_sigp_ctrl *sigp_ctrl =
95 			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
96 		union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
97 
98 		new_val.scn = src_id;
99 		new_val.c = 1;
100 		old_val.c = 0;
101 
102 		expect = old_val.value;
103 		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
104 	}
105 	read_unlock(&vcpu->kvm->arch.sca_lock);
106 
107 	if (rc != expect) {
108 		/* another external call is pending */
109 		return -EBUSY;
110 	}
111 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
112 	return 0;
113 }
114 
115 static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
116 {
117 	int rc, expect;
118 
119 	if (!kvm_s390_use_sca_entries())
120 		return;
121 	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
122 	read_lock(&vcpu->kvm->arch.sca_lock);
123 	if (vcpu->kvm->arch.use_esca) {
124 		struct esca_block *sca = vcpu->kvm->arch.sca;
125 		union esca_sigp_ctrl *sigp_ctrl =
126 			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
127 		union esca_sigp_ctrl old = *sigp_ctrl;
128 
129 		expect = old.value;
130 		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
131 	} else {
132 		struct bsca_block *sca = vcpu->kvm->arch.sca;
133 		union bsca_sigp_ctrl *sigp_ctrl =
134 			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
135 		union bsca_sigp_ctrl old = *sigp_ctrl;
136 
137 		expect = old.value;
138 		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
139 	}
140 	read_unlock(&vcpu->kvm->arch.sca_lock);
141 	WARN_ON(rc != expect); /* cannot clear? */
142 }
143 
144 int psw_extint_disabled(struct kvm_vcpu *vcpu)
145 {
146 	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
147 }
148 
149 static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
150 {
151 	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
152 }
153 
154 static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
155 {
156 	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
157 }
158 
159 static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
160 {
161 	return psw_extint_disabled(vcpu) &&
162 	       psw_ioint_disabled(vcpu) &&
163 	       psw_mchk_disabled(vcpu);
164 }
165 
166 static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
167 {
168 	if (psw_extint_disabled(vcpu) ||
169 	    !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
170 		return 0;
171 	if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
172 		/* No timer interrupts when single stepping */
173 		return 0;
174 	return 1;
175 }
176 
177 static int ckc_irq_pending(struct kvm_vcpu *vcpu)
178 {
179 	const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
180 	const u64 ckc = vcpu->arch.sie_block->ckc;
181 
182 	if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
183 		if ((s64)ckc >= (s64)now)
184 			return 0;
185 	} else if (ckc >= now) {
186 		return 0;
187 	}
188 	return ckc_interrupts_enabled(vcpu);
189 }
190 
191 static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
192 {
193 	return !psw_extint_disabled(vcpu) &&
194 	       (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK);
195 }
196 
197 static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
198 {
199 	if (!cpu_timer_interrupts_enabled(vcpu))
200 		return 0;
201 	return kvm_s390_get_cpu_timer(vcpu) >> 63;
202 }
203 
204 static uint64_t isc_to_isc_bits(int isc)
205 {
206 	return (0x80 >> isc) << 24;
207 }
208 
209 static inline u32 isc_to_int_word(u8 isc)
210 {
211 	return ((u32)isc << 27) | 0x80000000;
212 }
213 
214 static inline u8 int_word_to_isc(u32 int_word)
215 {
216 	return (int_word & 0x38000000) >> 27;
217 }
218 
219 /*
220  * To use atomic bitmap functions, we have to provide a bitmap address
221  * that is u64 aligned. However, the ipm might be u32 aligned.
222  * Therefore, we logically start the bitmap at the very beginning of the
223  * struct and fixup the bit number.
224  */
225 #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE)
226 
227 /**
228  * gisa_set_iam - change the GISA interruption alert mask
229  *
230  * @gisa: gisa to operate on
231  * @iam: new IAM value to use
232  *
233  * Change the IAM atomically with the next alert address and the IPM
234  * of the GISA if the GISA is not part of the GIB alert list. All three
235  * fields are located in the first long word of the GISA.
236  *
237  * Returns: 0 on success
238  *          -EBUSY in case the gisa is part of the alert list
239  */
240 static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam)
241 {
242 	u64 word, _word;
243 
244 	do {
245 		word = READ_ONCE(gisa->u64.word[0]);
246 		if ((u64)gisa != word >> 32)
247 			return -EBUSY;
248 		_word = (word & ~0xffUL) | iam;
249 	} while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
250 
251 	return 0;
252 }
253 
254 /**
255  * gisa_clear_ipm - clear the GISA interruption pending mask
256  *
257  * @gisa: gisa to operate on
258  *
259  * Clear the IPM atomically with the next alert address and the IAM
260  * of the GISA unconditionally. All three fields are located in the
261  * first long word of the GISA.
262  */
263 static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa)
264 {
265 	u64 word, _word;
266 
267 	do {
268 		word = READ_ONCE(gisa->u64.word[0]);
269 		_word = word & ~(0xffUL << 24);
270 	} while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
271 }
272 
273 /**
274  * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM
275  *
276  * @gi: gisa interrupt struct to work on
277  *
278  * Atomically restores the interruption alert mask if none of the
279  * relevant ISCs are pending and return the IPM.
280  *
281  * Returns: the relevant pending ISCs
282  */
283 static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi)
284 {
285 	u8 pending_mask, alert_mask;
286 	u64 word, _word;
287 
288 	do {
289 		word = READ_ONCE(gi->origin->u64.word[0]);
290 		alert_mask = READ_ONCE(gi->alert.mask);
291 		pending_mask = (u8)(word >> 24) & alert_mask;
292 		if (pending_mask)
293 			return pending_mask;
294 		_word = (word & ~0xffUL) | alert_mask;
295 	} while (cmpxchg(&gi->origin->u64.word[0], word, _word) != word);
296 
297 	return 0;
298 }
299 
300 static inline int gisa_in_alert_list(struct kvm_s390_gisa *gisa)
301 {
302 	return READ_ONCE(gisa->next_alert) != (u32)(u64)gisa;
303 }
304 
305 static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
306 {
307 	set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
308 }
309 
310 static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa)
311 {
312 	return READ_ONCE(gisa->ipm);
313 }
314 
315 static inline void gisa_clear_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
316 {
317 	clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
318 }
319 
320 static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
321 {
322 	return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
323 }
324 
325 static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu)
326 {
327 	unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs |
328 				vcpu->arch.local_int.pending_irqs;
329 
330 	pending &= ~vcpu->kvm->arch.float_int.masked_irqs;
331 	return pending;
332 }
333 
334 static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
335 {
336 	struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
337 	unsigned long pending_mask;
338 
339 	pending_mask = pending_irqs_no_gisa(vcpu);
340 	if (gi->origin)
341 		pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7;
342 	return pending_mask;
343 }
344 
345 static inline int isc_to_irq_type(unsigned long isc)
346 {
347 	return IRQ_PEND_IO_ISC_0 - isc;
348 }
349 
350 static inline int irq_type_to_isc(unsigned long irq_type)
351 {
352 	return IRQ_PEND_IO_ISC_0 - irq_type;
353 }
354 
355 static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
356 				   unsigned long active_mask)
357 {
358 	int i;
359 
360 	for (i = 0; i <= MAX_ISC; i++)
361 		if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
362 			active_mask &= ~(1UL << (isc_to_irq_type(i)));
363 
364 	return active_mask;
365 }
366 
367 static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
368 {
369 	unsigned long active_mask;
370 
371 	active_mask = pending_irqs(vcpu);
372 	if (!active_mask)
373 		return 0;
374 
375 	if (psw_extint_disabled(vcpu))
376 		active_mask &= ~IRQ_PEND_EXT_MASK;
377 	if (psw_ioint_disabled(vcpu))
378 		active_mask &= ~IRQ_PEND_IO_MASK;
379 	else
380 		active_mask = disable_iscs(vcpu, active_mask);
381 	if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
382 		__clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
383 	if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK))
384 		__clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
385 	if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
386 		__clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
387 	if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK))
388 		__clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
389 	if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) {
390 		__clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
391 		__clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask);
392 	}
393 	if (psw_mchk_disabled(vcpu))
394 		active_mask &= ~IRQ_PEND_MCHK_MASK;
395 	/* PV guest cpus can have a single interruption injected at a time. */
396 	if (kvm_s390_pv_cpu_get_handle(vcpu) &&
397 	    vcpu->arch.sie_block->iictl != IICTL_CODE_NONE)
398 		active_mask &= ~(IRQ_PEND_EXT_II_MASK |
399 				 IRQ_PEND_IO_MASK |
400 				 IRQ_PEND_MCHK_MASK);
401 	/*
402 	 * Check both floating and local interrupt's cr14 because
403 	 * bit IRQ_PEND_MCHK_REP could be set in both cases.
404 	 */
405 	if (!(vcpu->arch.sie_block->gcr[14] &
406 	   (vcpu->kvm->arch.float_int.mchk.cr14 |
407 	   vcpu->arch.local_int.irq.mchk.cr14)))
408 		__clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
409 
410 	/*
411 	 * STOP irqs will never be actively delivered. They are triggered via
412 	 * intercept requests and cleared when the stop intercept is performed.
413 	 */
414 	__clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
415 
416 	return active_mask;
417 }
418 
419 static void __set_cpu_idle(struct kvm_vcpu *vcpu)
420 {
421 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
422 	set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
423 }
424 
425 static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
426 {
427 	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
428 	clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
429 }
430 
431 static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
432 {
433 	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT |
434 				      CPUSTAT_STOP_INT);
435 	vcpu->arch.sie_block->lctl = 0x0000;
436 	vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
437 
438 	if (guestdbg_enabled(vcpu)) {
439 		vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
440 					       LCTL_CR10 | LCTL_CR11);
441 		vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
442 	}
443 }
444 
445 static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
446 {
447 	if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK))
448 		return;
449 	if (psw_ioint_disabled(vcpu))
450 		kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT);
451 	else
452 		vcpu->arch.sie_block->lctl |= LCTL_CR6;
453 }
454 
455 static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
456 {
457 	if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK))
458 		return;
459 	if (psw_extint_disabled(vcpu))
460 		kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
461 	else
462 		vcpu->arch.sie_block->lctl |= LCTL_CR0;
463 }
464 
465 static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
466 {
467 	if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK))
468 		return;
469 	if (psw_mchk_disabled(vcpu))
470 		vcpu->arch.sie_block->ictl |= ICTL_LPSW;
471 	else
472 		vcpu->arch.sie_block->lctl |= LCTL_CR14;
473 }
474 
475 static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
476 {
477 	if (kvm_s390_is_stop_irq_pending(vcpu))
478 		kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
479 }
480 
481 /* Set interception request for non-deliverable interrupts */
482 static void set_intercept_indicators(struct kvm_vcpu *vcpu)
483 {
484 	set_intercept_indicators_io(vcpu);
485 	set_intercept_indicators_ext(vcpu);
486 	set_intercept_indicators_mchk(vcpu);
487 	set_intercept_indicators_stop(vcpu);
488 }
489 
490 static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
491 {
492 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
493 	int rc = 0;
494 
495 	vcpu->stat.deliver_cputm++;
496 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
497 					 0, 0);
498 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
499 		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
500 		vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER;
501 	} else {
502 		rc  = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
503 				   (u16 *)__LC_EXT_INT_CODE);
504 		rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
505 		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
506 				     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
507 		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
508 				    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
509 	}
510 	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
511 	return rc ? -EFAULT : 0;
512 }
513 
514 static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
515 {
516 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
517 	int rc = 0;
518 
519 	vcpu->stat.deliver_ckc++;
520 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
521 					 0, 0);
522 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
523 		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
524 		vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP;
525 	} else {
526 		rc  = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
527 				   (u16 __user *)__LC_EXT_INT_CODE);
528 		rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
529 		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
530 				     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
531 		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
532 				    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
533 	}
534 	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
535 	return rc ? -EFAULT : 0;
536 }
537 
538 static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
539 {
540 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
541 	struct kvm_s390_ext_info ext;
542 	int rc;
543 
544 	spin_lock(&li->lock);
545 	ext = li->irq.ext;
546 	clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
547 	li->irq.ext.ext_params2 = 0;
548 	spin_unlock(&li->lock);
549 
550 	VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
551 		   ext.ext_params2);
552 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
553 					 KVM_S390_INT_PFAULT_INIT,
554 					 0, ext.ext_params2);
555 
556 	rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
557 	rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
558 	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
559 			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
560 	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
561 			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
562 	rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
563 	return rc ? -EFAULT : 0;
564 }
565 
566 static int __write_machine_check(struct kvm_vcpu *vcpu,
567 				 struct kvm_s390_mchk_info *mchk)
568 {
569 	unsigned long ext_sa_addr;
570 	unsigned long lc;
571 	freg_t fprs[NUM_FPRS];
572 	union mci mci;
573 	int rc;
574 
575 	/*
576 	 * All other possible payload for a machine check (e.g. the register
577 	 * contents in the save area) will be handled by the ultravisor, as
578 	 * the hypervisor does not not have the needed information for
579 	 * protected guests.
580 	 */
581 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
582 		vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK;
583 		vcpu->arch.sie_block->mcic = mchk->mcic;
584 		vcpu->arch.sie_block->faddr = mchk->failing_storage_address;
585 		vcpu->arch.sie_block->edc = mchk->ext_damage_code;
586 		return 0;
587 	}
588 
589 	mci.val = mchk->mcic;
590 	/* take care of lazy register loading */
591 	save_fpu_regs();
592 	save_access_regs(vcpu->run->s.regs.acrs);
593 	if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
594 		save_gs_cb(current->thread.gs_cb);
595 
596 	/* Extended save area */
597 	rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
598 			   sizeof(unsigned long));
599 	/* Only bits 0 through 63-LC are used for address formation */
600 	lc = ext_sa_addr & MCESA_LC_MASK;
601 	if (test_kvm_facility(vcpu->kvm, 133)) {
602 		switch (lc) {
603 		case 0:
604 		case 10:
605 			ext_sa_addr &= ~0x3ffUL;
606 			break;
607 		case 11:
608 			ext_sa_addr &= ~0x7ffUL;
609 			break;
610 		case 12:
611 			ext_sa_addr &= ~0xfffUL;
612 			break;
613 		default:
614 			ext_sa_addr = 0;
615 			break;
616 		}
617 	} else {
618 		ext_sa_addr &= ~0x3ffUL;
619 	}
620 
621 	if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
622 		if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
623 				    512))
624 			mci.vr = 0;
625 	} else {
626 		mci.vr = 0;
627 	}
628 	if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
629 	    && (lc == 11 || lc == 12)) {
630 		if (write_guest_abs(vcpu, ext_sa_addr + 1024,
631 				    &vcpu->run->s.regs.gscb, 32))
632 			mci.gs = 0;
633 	} else {
634 		mci.gs = 0;
635 	}
636 
637 	/* General interruption information */
638 	rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
639 	rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
640 			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
641 	rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
642 			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
643 	rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
644 
645 	/* Register-save areas */
646 	if (MACHINE_HAS_VX) {
647 		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
648 		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
649 	} else {
650 		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
651 				     vcpu->run->s.regs.fprs, 128);
652 	}
653 	rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
654 			     vcpu->run->s.regs.gprs, 128);
655 	rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
656 			   (u32 __user *) __LC_FP_CREG_SAVE_AREA);
657 	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
658 			   (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
659 	rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
660 			   (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
661 	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
662 			   (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
663 	rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
664 			     &vcpu->run->s.regs.acrs, 64);
665 	rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
666 			     &vcpu->arch.sie_block->gcr, 128);
667 
668 	/* Extended interruption information */
669 	rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
670 			   (u32 __user *) __LC_EXT_DAMAGE_CODE);
671 	rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
672 			   (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
673 	rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
674 			     sizeof(mchk->fixed_logout));
675 	return rc ? -EFAULT : 0;
676 }
677 
678 static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
679 {
680 	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
681 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
682 	struct kvm_s390_mchk_info mchk = {};
683 	int deliver = 0;
684 	int rc = 0;
685 
686 	spin_lock(&fi->lock);
687 	spin_lock(&li->lock);
688 	if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
689 	    test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
690 		/*
691 		 * If there was an exigent machine check pending, then any
692 		 * repressible machine checks that might have been pending
693 		 * are indicated along with it, so always clear bits for
694 		 * repressible and exigent interrupts
695 		 */
696 		mchk = li->irq.mchk;
697 		clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
698 		clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
699 		memset(&li->irq.mchk, 0, sizeof(mchk));
700 		deliver = 1;
701 	}
702 	/*
703 	 * We indicate floating repressible conditions along with
704 	 * other pending conditions. Channel Report Pending and Channel
705 	 * Subsystem damage are the only two and and are indicated by
706 	 * bits in mcic and masked in cr14.
707 	 */
708 	if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
709 		mchk.mcic |= fi->mchk.mcic;
710 		mchk.cr14 |= fi->mchk.cr14;
711 		memset(&fi->mchk, 0, sizeof(mchk));
712 		deliver = 1;
713 	}
714 	spin_unlock(&li->lock);
715 	spin_unlock(&fi->lock);
716 
717 	if (deliver) {
718 		VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
719 			   mchk.mcic);
720 		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
721 						 KVM_S390_MCHK,
722 						 mchk.cr14, mchk.mcic);
723 		vcpu->stat.deliver_machine_check++;
724 		rc = __write_machine_check(vcpu, &mchk);
725 	}
726 	return rc;
727 }
728 
729 static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
730 {
731 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
732 	int rc = 0;
733 
734 	VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
735 	vcpu->stat.deliver_restart_signal++;
736 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
737 
738 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
739 		vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART;
740 	} else {
741 		rc  = write_guest_lc(vcpu,
742 				     offsetof(struct lowcore, restart_old_psw),
743 				     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
744 		rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
745 				    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
746 	}
747 	clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
748 	return rc ? -EFAULT : 0;
749 }
750 
751 static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
752 {
753 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
754 	struct kvm_s390_prefix_info prefix;
755 
756 	spin_lock(&li->lock);
757 	prefix = li->irq.prefix;
758 	li->irq.prefix.address = 0;
759 	clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
760 	spin_unlock(&li->lock);
761 
762 	vcpu->stat.deliver_prefix_signal++;
763 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
764 					 KVM_S390_SIGP_SET_PREFIX,
765 					 prefix.address, 0);
766 
767 	kvm_s390_set_prefix(vcpu, prefix.address);
768 	return 0;
769 }
770 
771 static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
772 {
773 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
774 	int rc;
775 	int cpu_addr;
776 
777 	spin_lock(&li->lock);
778 	cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
779 	clear_bit(cpu_addr, li->sigp_emerg_pending);
780 	if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
781 		clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
782 	spin_unlock(&li->lock);
783 
784 	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
785 	vcpu->stat.deliver_emergency_signal++;
786 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
787 					 cpu_addr, 0);
788 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
789 		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
790 		vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG;
791 		vcpu->arch.sie_block->extcpuaddr = cpu_addr;
792 		return 0;
793 	}
794 
795 	rc  = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
796 			   (u16 *)__LC_EXT_INT_CODE);
797 	rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
798 	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
799 			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
800 	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
801 			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
802 	return rc ? -EFAULT : 0;
803 }
804 
805 static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
806 {
807 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
808 	struct kvm_s390_extcall_info extcall;
809 	int rc;
810 
811 	spin_lock(&li->lock);
812 	extcall = li->irq.extcall;
813 	li->irq.extcall.code = 0;
814 	clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
815 	spin_unlock(&li->lock);
816 
817 	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
818 	vcpu->stat.deliver_external_call++;
819 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
820 					 KVM_S390_INT_EXTERNAL_CALL,
821 					 extcall.code, 0);
822 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
823 		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
824 		vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL;
825 		vcpu->arch.sie_block->extcpuaddr = extcall.code;
826 		return 0;
827 	}
828 
829 	rc  = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
830 			   (u16 *)__LC_EXT_INT_CODE);
831 	rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
832 	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
833 			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
834 	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
835 			    sizeof(psw_t));
836 	return rc ? -EFAULT : 0;
837 }
838 
839 static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code)
840 {
841 	switch (code) {
842 	case PGM_SPECIFICATION:
843 		vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION;
844 		break;
845 	case PGM_OPERAND:
846 		vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND;
847 		break;
848 	default:
849 		return -EINVAL;
850 	}
851 	return 0;
852 }
853 
854 static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
855 {
856 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
857 	struct kvm_s390_pgm_info pgm_info;
858 	int rc = 0, nullifying = false;
859 	u16 ilen;
860 
861 	spin_lock(&li->lock);
862 	pgm_info = li->irq.pgm;
863 	clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
864 	memset(&li->irq.pgm, 0, sizeof(pgm_info));
865 	spin_unlock(&li->lock);
866 
867 	ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
868 	VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
869 		   pgm_info.code, ilen);
870 	vcpu->stat.deliver_program++;
871 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
872 					 pgm_info.code, 0);
873 
874 	/* PER is handled by the ultravisor */
875 	if (kvm_s390_pv_cpu_is_protected(vcpu))
876 		return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER);
877 
878 	switch (pgm_info.code & ~PGM_PER) {
879 	case PGM_AFX_TRANSLATION:
880 	case PGM_ASX_TRANSLATION:
881 	case PGM_EX_TRANSLATION:
882 	case PGM_LFX_TRANSLATION:
883 	case PGM_LSTE_SEQUENCE:
884 	case PGM_LSX_TRANSLATION:
885 	case PGM_LX_TRANSLATION:
886 	case PGM_PRIMARY_AUTHORITY:
887 	case PGM_SECONDARY_AUTHORITY:
888 		nullifying = true;
889 		fallthrough;
890 	case PGM_SPACE_SWITCH:
891 		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
892 				  (u64 *)__LC_TRANS_EXC_CODE);
893 		break;
894 	case PGM_ALEN_TRANSLATION:
895 	case PGM_ALE_SEQUENCE:
896 	case PGM_ASTE_INSTANCE:
897 	case PGM_ASTE_SEQUENCE:
898 	case PGM_ASTE_VALIDITY:
899 	case PGM_EXTENDED_AUTHORITY:
900 		rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
901 				  (u8 *)__LC_EXC_ACCESS_ID);
902 		nullifying = true;
903 		break;
904 	case PGM_ASCE_TYPE:
905 	case PGM_PAGE_TRANSLATION:
906 	case PGM_REGION_FIRST_TRANS:
907 	case PGM_REGION_SECOND_TRANS:
908 	case PGM_REGION_THIRD_TRANS:
909 	case PGM_SEGMENT_TRANSLATION:
910 		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
911 				  (u64 *)__LC_TRANS_EXC_CODE);
912 		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
913 				   (u8 *)__LC_EXC_ACCESS_ID);
914 		rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
915 				   (u8 *)__LC_OP_ACCESS_ID);
916 		nullifying = true;
917 		break;
918 	case PGM_MONITOR:
919 		rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
920 				  (u16 *)__LC_MON_CLASS_NR);
921 		rc |= put_guest_lc(vcpu, pgm_info.mon_code,
922 				   (u64 *)__LC_MON_CODE);
923 		break;
924 	case PGM_VECTOR_PROCESSING:
925 	case PGM_DATA:
926 		rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
927 				  (u32 *)__LC_DATA_EXC_CODE);
928 		break;
929 	case PGM_PROTECTION:
930 		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
931 				  (u64 *)__LC_TRANS_EXC_CODE);
932 		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
933 				   (u8 *)__LC_EXC_ACCESS_ID);
934 		break;
935 	case PGM_STACK_FULL:
936 	case PGM_STACK_EMPTY:
937 	case PGM_STACK_SPECIFICATION:
938 	case PGM_STACK_TYPE:
939 	case PGM_STACK_OPERATION:
940 	case PGM_TRACE_TABEL:
941 	case PGM_CRYPTO_OPERATION:
942 		nullifying = true;
943 		break;
944 	}
945 
946 	if (pgm_info.code & PGM_PER) {
947 		rc |= put_guest_lc(vcpu, pgm_info.per_code,
948 				   (u8 *) __LC_PER_CODE);
949 		rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
950 				   (u8 *)__LC_PER_ATMID);
951 		rc |= put_guest_lc(vcpu, pgm_info.per_address,
952 				   (u64 *) __LC_PER_ADDRESS);
953 		rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
954 				   (u8 *) __LC_PER_ACCESS_ID);
955 	}
956 
957 	if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
958 		kvm_s390_rewind_psw(vcpu, ilen);
959 
960 	/* bit 1+2 of the target are the ilc, so we can directly use ilen */
961 	rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
962 	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
963 				 (u64 *) __LC_PGM_LAST_BREAK);
964 	rc |= put_guest_lc(vcpu, pgm_info.code,
965 			   (u16 *)__LC_PGM_INT_CODE);
966 	rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
967 			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
968 	rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
969 			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
970 	return rc ? -EFAULT : 0;
971 }
972 
973 #define SCCB_MASK 0xFFFFFFF8
974 #define SCCB_EVENT_PENDING 0x3
975 
976 static int write_sclp(struct kvm_vcpu *vcpu, u32 parm)
977 {
978 	int rc;
979 
980 	if (kvm_s390_pv_cpu_get_handle(vcpu)) {
981 		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
982 		vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG;
983 		vcpu->arch.sie_block->eiparams = parm;
984 		return 0;
985 	}
986 
987 	rc  = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
988 	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
989 	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
990 			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
991 	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
992 			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
993 	rc |= put_guest_lc(vcpu, parm,
994 			   (u32 *)__LC_EXT_PARAMS);
995 
996 	return rc ? -EFAULT : 0;
997 }
998 
999 static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
1000 {
1001 	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1002 	struct kvm_s390_ext_info ext;
1003 
1004 	spin_lock(&fi->lock);
1005 	if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) ||
1006 	    !(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
1007 		spin_unlock(&fi->lock);
1008 		return 0;
1009 	}
1010 	ext = fi->srv_signal;
1011 	memset(&fi->srv_signal, 0, sizeof(ext));
1012 	clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1013 	clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1014 	if (kvm_s390_pv_cpu_is_protected(vcpu))
1015 		set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs);
1016 	spin_unlock(&fi->lock);
1017 
1018 	VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
1019 		   ext.ext_params);
1020 	vcpu->stat.deliver_service_signal++;
1021 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
1022 					 ext.ext_params, 0);
1023 
1024 	return write_sclp(vcpu, ext.ext_params);
1025 }
1026 
1027 static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu)
1028 {
1029 	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1030 	struct kvm_s390_ext_info ext;
1031 
1032 	spin_lock(&fi->lock);
1033 	if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) {
1034 		spin_unlock(&fi->lock);
1035 		return 0;
1036 	}
1037 	ext = fi->srv_signal;
1038 	/* only clear the event bit */
1039 	fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING;
1040 	clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1041 	spin_unlock(&fi->lock);
1042 
1043 	VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event");
1044 	vcpu->stat.deliver_service_signal++;
1045 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
1046 					 ext.ext_params, 0);
1047 
1048 	return write_sclp(vcpu, SCCB_EVENT_PENDING);
1049 }
1050 
1051 static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
1052 {
1053 	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1054 	struct kvm_s390_interrupt_info *inti;
1055 	int rc = 0;
1056 
1057 	spin_lock(&fi->lock);
1058 	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
1059 					struct kvm_s390_interrupt_info,
1060 					list);
1061 	if (inti) {
1062 		list_del(&inti->list);
1063 		fi->counters[FIRQ_CNTR_PFAULT] -= 1;
1064 	}
1065 	if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
1066 		clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1067 	spin_unlock(&fi->lock);
1068 
1069 	if (inti) {
1070 		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1071 						 KVM_S390_INT_PFAULT_DONE, 0,
1072 						 inti->ext.ext_params2);
1073 		VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
1074 			   inti->ext.ext_params2);
1075 
1076 		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1077 				(u16 *)__LC_EXT_INT_CODE);
1078 		rc |= put_guest_lc(vcpu, PFAULT_DONE,
1079 				(u16 *)__LC_EXT_CPU_ADDR);
1080 		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1081 				&vcpu->arch.sie_block->gpsw,
1082 				sizeof(psw_t));
1083 		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1084 				&vcpu->arch.sie_block->gpsw,
1085 				sizeof(psw_t));
1086 		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1087 				(u64 *)__LC_EXT_PARAMS2);
1088 		kfree(inti);
1089 	}
1090 	return rc ? -EFAULT : 0;
1091 }
1092 
1093 static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
1094 {
1095 	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1096 	struct kvm_s390_interrupt_info *inti;
1097 	int rc = 0;
1098 
1099 	spin_lock(&fi->lock);
1100 	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
1101 					struct kvm_s390_interrupt_info,
1102 					list);
1103 	if (inti) {
1104 		VCPU_EVENT(vcpu, 4,
1105 			   "deliver: virtio parm: 0x%x,parm64: 0x%llx",
1106 			   inti->ext.ext_params, inti->ext.ext_params2);
1107 		vcpu->stat.deliver_virtio++;
1108 		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1109 				inti->type,
1110 				inti->ext.ext_params,
1111 				inti->ext.ext_params2);
1112 		list_del(&inti->list);
1113 		fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
1114 	}
1115 	if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
1116 		clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1117 	spin_unlock(&fi->lock);
1118 
1119 	if (inti) {
1120 		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1121 				(u16 *)__LC_EXT_INT_CODE);
1122 		rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
1123 				(u16 *)__LC_EXT_CPU_ADDR);
1124 		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1125 				&vcpu->arch.sie_block->gpsw,
1126 				sizeof(psw_t));
1127 		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1128 				&vcpu->arch.sie_block->gpsw,
1129 				sizeof(psw_t));
1130 		rc |= put_guest_lc(vcpu, inti->ext.ext_params,
1131 				(u32 *)__LC_EXT_PARAMS);
1132 		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1133 				(u64 *)__LC_EXT_PARAMS2);
1134 		kfree(inti);
1135 	}
1136 	return rc ? -EFAULT : 0;
1137 }
1138 
1139 static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io)
1140 {
1141 	int rc;
1142 
1143 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
1144 		vcpu->arch.sie_block->iictl = IICTL_CODE_IO;
1145 		vcpu->arch.sie_block->subchannel_id = io->subchannel_id;
1146 		vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr;
1147 		vcpu->arch.sie_block->io_int_parm = io->io_int_parm;
1148 		vcpu->arch.sie_block->io_int_word = io->io_int_word;
1149 		return 0;
1150 	}
1151 
1152 	rc  = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID);
1153 	rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR);
1154 	rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM);
1155 	rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD);
1156 	rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
1157 			     &vcpu->arch.sie_block->gpsw,
1158 			     sizeof(psw_t));
1159 	rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
1160 			    &vcpu->arch.sie_block->gpsw,
1161 			    sizeof(psw_t));
1162 	return rc ? -EFAULT : 0;
1163 }
1164 
1165 static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
1166 				     unsigned long irq_type)
1167 {
1168 	struct list_head *isc_list;
1169 	struct kvm_s390_float_interrupt *fi;
1170 	struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1171 	struct kvm_s390_interrupt_info *inti = NULL;
1172 	struct kvm_s390_io_info io;
1173 	u32 isc;
1174 	int rc = 0;
1175 
1176 	fi = &vcpu->kvm->arch.float_int;
1177 
1178 	spin_lock(&fi->lock);
1179 	isc = irq_type_to_isc(irq_type);
1180 	isc_list = &fi->lists[isc];
1181 	inti = list_first_entry_or_null(isc_list,
1182 					struct kvm_s390_interrupt_info,
1183 					list);
1184 	if (inti) {
1185 		if (inti->type & KVM_S390_INT_IO_AI_MASK)
1186 			VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
1187 		else
1188 			VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
1189 			inti->io.subchannel_id >> 8,
1190 			inti->io.subchannel_id >> 1 & 0x3,
1191 			inti->io.subchannel_nr);
1192 
1193 		vcpu->stat.deliver_io++;
1194 		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1195 				inti->type,
1196 				((__u32)inti->io.subchannel_id << 16) |
1197 				inti->io.subchannel_nr,
1198 				((__u64)inti->io.io_int_parm << 32) |
1199 				inti->io.io_int_word);
1200 		list_del(&inti->list);
1201 		fi->counters[FIRQ_CNTR_IO] -= 1;
1202 	}
1203 	if (list_empty(isc_list))
1204 		clear_bit(irq_type, &fi->pending_irqs);
1205 	spin_unlock(&fi->lock);
1206 
1207 	if (inti) {
1208 		rc = __do_deliver_io(vcpu, &(inti->io));
1209 		kfree(inti);
1210 		goto out;
1211 	}
1212 
1213 	if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) {
1214 		/*
1215 		 * in case an adapter interrupt was not delivered
1216 		 * in SIE context KVM will handle the delivery
1217 		 */
1218 		VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc);
1219 		memset(&io, 0, sizeof(io));
1220 		io.io_int_word = isc_to_int_word(isc);
1221 		vcpu->stat.deliver_io++;
1222 		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1223 			KVM_S390_INT_IO(1, 0, 0, 0),
1224 			((__u32)io.subchannel_id << 16) |
1225 			io.subchannel_nr,
1226 			((__u64)io.io_int_parm << 32) |
1227 			io.io_int_word);
1228 		rc = __do_deliver_io(vcpu, &io);
1229 	}
1230 out:
1231 	return rc;
1232 }
1233 
1234 /* Check whether an external call is pending (deliverable or not) */
1235 int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
1236 {
1237 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1238 
1239 	if (!sclp.has_sigpif)
1240 		return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
1241 
1242 	return sca_ext_call_pending(vcpu, NULL);
1243 }
1244 
1245 int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
1246 {
1247 	if (deliverable_irqs(vcpu))
1248 		return 1;
1249 
1250 	if (kvm_cpu_has_pending_timer(vcpu))
1251 		return 1;
1252 
1253 	/* external call pending and deliverable */
1254 	if (kvm_s390_ext_call_pending(vcpu) &&
1255 	    !psw_extint_disabled(vcpu) &&
1256 	    (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
1257 		return 1;
1258 
1259 	if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
1260 		return 1;
1261 	return 0;
1262 }
1263 
1264 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1265 {
1266 	return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
1267 }
1268 
1269 static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
1270 {
1271 	const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
1272 	const u64 ckc = vcpu->arch.sie_block->ckc;
1273 	u64 cputm, sltime = 0;
1274 
1275 	if (ckc_interrupts_enabled(vcpu)) {
1276 		if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
1277 			if ((s64)now < (s64)ckc)
1278 				sltime = tod_to_ns((s64)ckc - (s64)now);
1279 		} else if (now < ckc) {
1280 			sltime = tod_to_ns(ckc - now);
1281 		}
1282 		/* already expired */
1283 		if (!sltime)
1284 			return 0;
1285 		if (cpu_timer_interrupts_enabled(vcpu)) {
1286 			cputm = kvm_s390_get_cpu_timer(vcpu);
1287 			/* already expired? */
1288 			if (cputm >> 63)
1289 				return 0;
1290 			return min_t(u64, sltime, tod_to_ns(cputm));
1291 		}
1292 	} else if (cpu_timer_interrupts_enabled(vcpu)) {
1293 		sltime = kvm_s390_get_cpu_timer(vcpu);
1294 		/* already expired? */
1295 		if (sltime >> 63)
1296 			return 0;
1297 	}
1298 	return sltime;
1299 }
1300 
1301 int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
1302 {
1303 	struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1304 	u64 sltime;
1305 
1306 	vcpu->stat.exit_wait_state++;
1307 
1308 	/* fast path */
1309 	if (kvm_arch_vcpu_runnable(vcpu))
1310 		return 0;
1311 
1312 	if (psw_interrupts_disabled(vcpu)) {
1313 		VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1314 		return -EOPNOTSUPP; /* disabled wait */
1315 	}
1316 
1317 	if (gi->origin &&
1318 	    (gisa_get_ipm_or_restore_iam(gi) &
1319 	     vcpu->arch.sie_block->gcr[6] >> 24))
1320 		return 0;
1321 
1322 	if (!ckc_interrupts_enabled(vcpu) &&
1323 	    !cpu_timer_interrupts_enabled(vcpu)) {
1324 		VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1325 		__set_cpu_idle(vcpu);
1326 		goto no_timer;
1327 	}
1328 
1329 	sltime = __calculate_sltime(vcpu);
1330 	if (!sltime)
1331 		return 0;
1332 
1333 	__set_cpu_idle(vcpu);
1334 	hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
1335 	VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1336 no_timer:
1337 	kvm_vcpu_srcu_read_unlock(vcpu);
1338 	kvm_vcpu_halt(vcpu);
1339 	vcpu->valid_wakeup = false;
1340 	__unset_cpu_idle(vcpu);
1341 	kvm_vcpu_srcu_read_lock(vcpu);
1342 
1343 	hrtimer_cancel(&vcpu->arch.ckc_timer);
1344 	return 0;
1345 }
1346 
1347 void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
1348 {
1349 	vcpu->valid_wakeup = true;
1350 	kvm_vcpu_wake_up(vcpu);
1351 
1352 	/*
1353 	 * The VCPU might not be sleeping but rather executing VSIE. Let's
1354 	 * kick it, so it leaves the SIE to process the request.
1355 	 */
1356 	kvm_s390_vsie_kick(vcpu);
1357 }
1358 
1359 enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
1360 {
1361 	struct kvm_vcpu *vcpu;
1362 	u64 sltime;
1363 
1364 	vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1365 	sltime = __calculate_sltime(vcpu);
1366 
1367 	/*
1368 	 * If the monotonic clock runs faster than the tod clock we might be
1369 	 * woken up too early and have to go back to sleep to avoid deadlocks.
1370 	 */
1371 	if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1372 		return HRTIMER_RESTART;
1373 	kvm_s390_vcpu_wakeup(vcpu);
1374 	return HRTIMER_NORESTART;
1375 }
1376 
1377 void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
1378 {
1379 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1380 
1381 	spin_lock(&li->lock);
1382 	li->pending_irqs = 0;
1383 	bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
1384 	memset(&li->irq, 0, sizeof(li->irq));
1385 	spin_unlock(&li->lock);
1386 
1387 	sca_clear_ext_call(vcpu);
1388 }
1389 
1390 int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1391 {
1392 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1393 	int rc = 0;
1394 	unsigned long irq_type;
1395 	unsigned long irqs;
1396 
1397 	__reset_intercept_indicators(vcpu);
1398 
1399 	/* pending ckc conditions might have been invalidated */
1400 	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1401 	if (ckc_irq_pending(vcpu))
1402 		set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1403 
1404 	/* pending cpu timer conditions might have been invalidated */
1405 	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1406 	if (cpu_timer_irq_pending(vcpu))
1407 		set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1408 
1409 	while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1410 		/* bits are in the reverse order of interrupt priority */
1411 		irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT);
1412 		switch (irq_type) {
1413 		case IRQ_PEND_IO_ISC_0:
1414 		case IRQ_PEND_IO_ISC_1:
1415 		case IRQ_PEND_IO_ISC_2:
1416 		case IRQ_PEND_IO_ISC_3:
1417 		case IRQ_PEND_IO_ISC_4:
1418 		case IRQ_PEND_IO_ISC_5:
1419 		case IRQ_PEND_IO_ISC_6:
1420 		case IRQ_PEND_IO_ISC_7:
1421 			rc = __deliver_io(vcpu, irq_type);
1422 			break;
1423 		case IRQ_PEND_MCHK_EX:
1424 		case IRQ_PEND_MCHK_REP:
1425 			rc = __deliver_machine_check(vcpu);
1426 			break;
1427 		case IRQ_PEND_PROG:
1428 			rc = __deliver_prog(vcpu);
1429 			break;
1430 		case IRQ_PEND_EXT_EMERGENCY:
1431 			rc = __deliver_emergency_signal(vcpu);
1432 			break;
1433 		case IRQ_PEND_EXT_EXTERNAL:
1434 			rc = __deliver_external_call(vcpu);
1435 			break;
1436 		case IRQ_PEND_EXT_CLOCK_COMP:
1437 			rc = __deliver_ckc(vcpu);
1438 			break;
1439 		case IRQ_PEND_EXT_CPU_TIMER:
1440 			rc = __deliver_cpu_timer(vcpu);
1441 			break;
1442 		case IRQ_PEND_RESTART:
1443 			rc = __deliver_restart(vcpu);
1444 			break;
1445 		case IRQ_PEND_SET_PREFIX:
1446 			rc = __deliver_set_prefix(vcpu);
1447 			break;
1448 		case IRQ_PEND_PFAULT_INIT:
1449 			rc = __deliver_pfault_init(vcpu);
1450 			break;
1451 		case IRQ_PEND_EXT_SERVICE:
1452 			rc = __deliver_service(vcpu);
1453 			break;
1454 		case IRQ_PEND_EXT_SERVICE_EV:
1455 			rc = __deliver_service_ev(vcpu);
1456 			break;
1457 		case IRQ_PEND_PFAULT_DONE:
1458 			rc = __deliver_pfault_done(vcpu);
1459 			break;
1460 		case IRQ_PEND_VIRTIO:
1461 			rc = __deliver_virtio(vcpu);
1462 			break;
1463 		default:
1464 			WARN_ONCE(1, "Unknown pending irq type %ld", irq_type);
1465 			clear_bit(irq_type, &li->pending_irqs);
1466 		}
1467 	}
1468 
1469 	set_intercept_indicators(vcpu);
1470 
1471 	return rc;
1472 }
1473 
1474 static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1475 {
1476 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1477 
1478 	vcpu->stat.inject_program++;
1479 	VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
1480 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
1481 				   irq->u.pgm.code, 0);
1482 
1483 	if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
1484 		/* auto detection if no valid ILC was given */
1485 		irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
1486 		irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
1487 		irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
1488 	}
1489 
1490 	if (irq->u.pgm.code == PGM_PER) {
1491 		li->irq.pgm.code |= PGM_PER;
1492 		li->irq.pgm.flags = irq->u.pgm.flags;
1493 		/* only modify PER related information */
1494 		li->irq.pgm.per_address = irq->u.pgm.per_address;
1495 		li->irq.pgm.per_code = irq->u.pgm.per_code;
1496 		li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
1497 		li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
1498 	} else if (!(irq->u.pgm.code & PGM_PER)) {
1499 		li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
1500 				   irq->u.pgm.code;
1501 		li->irq.pgm.flags = irq->u.pgm.flags;
1502 		/* only modify non-PER information */
1503 		li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
1504 		li->irq.pgm.mon_code = irq->u.pgm.mon_code;
1505 		li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
1506 		li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
1507 		li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
1508 		li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
1509 	} else {
1510 		li->irq.pgm = irq->u.pgm;
1511 	}
1512 	set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1513 	return 0;
1514 }
1515 
1516 static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1517 {
1518 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1519 
1520 	vcpu->stat.inject_pfault_init++;
1521 	VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
1522 		   irq->u.ext.ext_params2);
1523 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
1524 				   irq->u.ext.ext_params,
1525 				   irq->u.ext.ext_params2);
1526 
1527 	li->irq.ext = irq->u.ext;
1528 	set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1529 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1530 	return 0;
1531 }
1532 
1533 static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1534 {
1535 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1536 	struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1537 	uint16_t src_id = irq->u.extcall.code;
1538 
1539 	vcpu->stat.inject_external_call++;
1540 	VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1541 		   src_id);
1542 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1543 				   src_id, 0);
1544 
1545 	/* sending vcpu invalid */
1546 	if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1547 		return -EINVAL;
1548 
1549 	if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu))
1550 		return sca_inject_ext_call(vcpu, src_id);
1551 
1552 	if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1553 		return -EBUSY;
1554 	*extcall = irq->u.extcall;
1555 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1556 	return 0;
1557 }
1558 
1559 static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1560 {
1561 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1562 	struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1563 
1564 	vcpu->stat.inject_set_prefix++;
1565 	VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1566 		   irq->u.prefix.address);
1567 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1568 				   irq->u.prefix.address, 0);
1569 
1570 	if (!is_vcpu_stopped(vcpu))
1571 		return -EBUSY;
1572 
1573 	*prefix = irq->u.prefix;
1574 	set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1575 	return 0;
1576 }
1577 
1578 #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
1579 static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1580 {
1581 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1582 	struct kvm_s390_stop_info *stop = &li->irq.stop;
1583 	int rc = 0;
1584 
1585 	vcpu->stat.inject_stop_signal++;
1586 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1587 
1588 	if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
1589 		return -EINVAL;
1590 
1591 	if (is_vcpu_stopped(vcpu)) {
1592 		if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
1593 			rc = kvm_s390_store_status_unloaded(vcpu,
1594 						KVM_S390_STORE_STATUS_NOADDR);
1595 		return rc;
1596 	}
1597 
1598 	if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
1599 		return -EBUSY;
1600 	stop->flags = irq->u.stop.flags;
1601 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
1602 	return 0;
1603 }
1604 
1605 static int __inject_sigp_restart(struct kvm_vcpu *vcpu)
1606 {
1607 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1608 
1609 	vcpu->stat.inject_restart++;
1610 	VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1611 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1612 
1613 	set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1614 	return 0;
1615 }
1616 
1617 static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1618 				   struct kvm_s390_irq *irq)
1619 {
1620 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1621 
1622 	vcpu->stat.inject_emergency_signal++;
1623 	VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1624 		   irq->u.emerg.code);
1625 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1626 				   irq->u.emerg.code, 0);
1627 
1628 	/* sending vcpu invalid */
1629 	if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
1630 		return -EINVAL;
1631 
1632 	set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1633 	set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1634 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1635 	return 0;
1636 }
1637 
1638 static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1639 {
1640 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1641 	struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1642 
1643 	vcpu->stat.inject_mchk++;
1644 	VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1645 		   irq->u.mchk.mcic);
1646 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1647 				   irq->u.mchk.mcic);
1648 
1649 	/*
1650 	 * Because repressible machine checks can be indicated along with
1651 	 * exigent machine checks (PoP, Chapter 11, Interruption action)
1652 	 * we need to combine cr14, mcic and external damage code.
1653 	 * Failing storage address and the logout area should not be or'ed
1654 	 * together, we just indicate the last occurrence of the corresponding
1655 	 * machine check
1656 	 */
1657 	mchk->cr14 |= irq->u.mchk.cr14;
1658 	mchk->mcic |= irq->u.mchk.mcic;
1659 	mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
1660 	mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
1661 	memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
1662 	       sizeof(mchk->fixed_logout));
1663 	if (mchk->mcic & MCHK_EX_MASK)
1664 		set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
1665 	else if (mchk->mcic & MCHK_REP_MASK)
1666 		set_bit(IRQ_PEND_MCHK_REP,  &li->pending_irqs);
1667 	return 0;
1668 }
1669 
1670 static int __inject_ckc(struct kvm_vcpu *vcpu)
1671 {
1672 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1673 
1674 	vcpu->stat.inject_ckc++;
1675 	VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1676 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1677 				   0, 0);
1678 
1679 	set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1680 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1681 	return 0;
1682 }
1683 
1684 static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1685 {
1686 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1687 
1688 	vcpu->stat.inject_cputm++;
1689 	VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1690 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1691 				   0, 0);
1692 
1693 	set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1694 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1695 	return 0;
1696 }
1697 
1698 static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
1699 						  int isc, u32 schid)
1700 {
1701 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1702 	struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1703 	struct kvm_s390_interrupt_info *iter;
1704 	u16 id = (schid & 0xffff0000U) >> 16;
1705 	u16 nr = schid & 0x0000ffffU;
1706 
1707 	spin_lock(&fi->lock);
1708 	list_for_each_entry(iter, isc_list, list) {
1709 		if (schid && (id != iter->io.subchannel_id ||
1710 			      nr != iter->io.subchannel_nr))
1711 			continue;
1712 		/* found an appropriate entry */
1713 		list_del_init(&iter->list);
1714 		fi->counters[FIRQ_CNTR_IO] -= 1;
1715 		if (list_empty(isc_list))
1716 			clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1717 		spin_unlock(&fi->lock);
1718 		return iter;
1719 	}
1720 	spin_unlock(&fi->lock);
1721 	return NULL;
1722 }
1723 
1724 static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm,
1725 						      u64 isc_mask, u32 schid)
1726 {
1727 	struct kvm_s390_interrupt_info *inti = NULL;
1728 	int isc;
1729 
1730 	for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
1731 		if (isc_mask & isc_to_isc_bits(isc))
1732 			inti = get_io_int(kvm, isc, schid);
1733 	}
1734 	return inti;
1735 }
1736 
1737 static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid)
1738 {
1739 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1740 	unsigned long active_mask;
1741 	int isc;
1742 
1743 	if (schid)
1744 		goto out;
1745 	if (!gi->origin)
1746 		goto out;
1747 
1748 	active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32;
1749 	while (active_mask) {
1750 		isc = __fls(active_mask) ^ (BITS_PER_LONG - 1);
1751 		if (gisa_tac_ipm_gisc(gi->origin, isc))
1752 			return isc;
1753 		clear_bit_inv(isc, &active_mask);
1754 	}
1755 out:
1756 	return -EINVAL;
1757 }
1758 
1759 /*
1760  * Dequeue and return an I/O interrupt matching any of the interruption
1761  * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
1762  * Take into account the interrupts pending in the interrupt list and in GISA.
1763  *
1764  * Note that for a guest that does not enable I/O interrupts
1765  * but relies on TPI, a flood of classic interrupts may starve
1766  * out adapter interrupts on the same isc. Linux does not do
1767  * that, and it is possible to work around the issue by configuring
1768  * different iscs for classic and adapter interrupts in the guest,
1769  * but we may want to revisit this in the future.
1770  */
1771 struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1772 						    u64 isc_mask, u32 schid)
1773 {
1774 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1775 	struct kvm_s390_interrupt_info *inti, *tmp_inti;
1776 	int isc;
1777 
1778 	inti = get_top_io_int(kvm, isc_mask, schid);
1779 
1780 	isc = get_top_gisa_isc(kvm, isc_mask, schid);
1781 	if (isc < 0)
1782 		/* no AI in GISA */
1783 		goto out;
1784 
1785 	if (!inti)
1786 		/* AI in GISA but no classical IO int */
1787 		goto gisa_out;
1788 
1789 	/* both types of interrupts present */
1790 	if (int_word_to_isc(inti->io.io_int_word) <= isc) {
1791 		/* classical IO int with higher priority */
1792 		gisa_set_ipm_gisc(gi->origin, isc);
1793 		goto out;
1794 	}
1795 gisa_out:
1796 	tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
1797 	if (tmp_inti) {
1798 		tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0);
1799 		tmp_inti->io.io_int_word = isc_to_int_word(isc);
1800 		if (inti)
1801 			kvm_s390_reinject_io_int(kvm, inti);
1802 		inti = tmp_inti;
1803 	} else
1804 		gisa_set_ipm_gisc(gi->origin, isc);
1805 out:
1806 	return inti;
1807 }
1808 
1809 static int __inject_service(struct kvm *kvm,
1810 			     struct kvm_s390_interrupt_info *inti)
1811 {
1812 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1813 
1814 	kvm->stat.inject_service_signal++;
1815 	spin_lock(&fi->lock);
1816 	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
1817 
1818 	/* We always allow events, track them separately from the sccb ints */
1819 	if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING)
1820 		set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1821 
1822 	/*
1823 	 * Early versions of the QEMU s390 bios will inject several
1824 	 * service interrupts after another without handling a
1825 	 * condition code indicating busy.
1826 	 * We will silently ignore those superfluous sccb values.
1827 	 * A future version of QEMU will take care of serialization
1828 	 * of servc requests
1829 	 */
1830 	if (fi->srv_signal.ext_params & SCCB_MASK)
1831 		goto out;
1832 	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
1833 	set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1834 out:
1835 	spin_unlock(&fi->lock);
1836 	kfree(inti);
1837 	return 0;
1838 }
1839 
1840 static int __inject_virtio(struct kvm *kvm,
1841 			    struct kvm_s390_interrupt_info *inti)
1842 {
1843 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1844 
1845 	kvm->stat.inject_virtio++;
1846 	spin_lock(&fi->lock);
1847 	if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
1848 		spin_unlock(&fi->lock);
1849 		return -EBUSY;
1850 	}
1851 	fi->counters[FIRQ_CNTR_VIRTIO] += 1;
1852 	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
1853 	set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1854 	spin_unlock(&fi->lock);
1855 	return 0;
1856 }
1857 
1858 static int __inject_pfault_done(struct kvm *kvm,
1859 				 struct kvm_s390_interrupt_info *inti)
1860 {
1861 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1862 
1863 	kvm->stat.inject_pfault_done++;
1864 	spin_lock(&fi->lock);
1865 	if (fi->counters[FIRQ_CNTR_PFAULT] >=
1866 		(ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
1867 		spin_unlock(&fi->lock);
1868 		return -EBUSY;
1869 	}
1870 	fi->counters[FIRQ_CNTR_PFAULT] += 1;
1871 	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
1872 	set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1873 	spin_unlock(&fi->lock);
1874 	return 0;
1875 }
1876 
1877 #define CR_PENDING_SUBCLASS 28
1878 static int __inject_float_mchk(struct kvm *kvm,
1879 				struct kvm_s390_interrupt_info *inti)
1880 {
1881 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1882 
1883 	kvm->stat.inject_float_mchk++;
1884 	spin_lock(&fi->lock);
1885 	fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
1886 	fi->mchk.mcic |= inti->mchk.mcic;
1887 	set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
1888 	spin_unlock(&fi->lock);
1889 	kfree(inti);
1890 	return 0;
1891 }
1892 
1893 static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1894 {
1895 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1896 	struct kvm_s390_float_interrupt *fi;
1897 	struct list_head *list;
1898 	int isc;
1899 
1900 	kvm->stat.inject_io++;
1901 	isc = int_word_to_isc(inti->io.io_int_word);
1902 
1903 	/*
1904 	 * We do not use the lock checking variant as this is just a
1905 	 * performance optimization and we do not hold the lock here.
1906 	 * This is ok as the code will pick interrupts from both "lists"
1907 	 * for delivery.
1908 	 */
1909 	if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) {
1910 		VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc);
1911 		gisa_set_ipm_gisc(gi->origin, isc);
1912 		kfree(inti);
1913 		return 0;
1914 	}
1915 
1916 	fi = &kvm->arch.float_int;
1917 	spin_lock(&fi->lock);
1918 	if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
1919 		spin_unlock(&fi->lock);
1920 		return -EBUSY;
1921 	}
1922 	fi->counters[FIRQ_CNTR_IO] += 1;
1923 
1924 	if (inti->type & KVM_S390_INT_IO_AI_MASK)
1925 		VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
1926 	else
1927 		VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
1928 			inti->io.subchannel_id >> 8,
1929 			inti->io.subchannel_id >> 1 & 0x3,
1930 			inti->io.subchannel_nr);
1931 	list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1932 	list_add_tail(&inti->list, list);
1933 	set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1934 	spin_unlock(&fi->lock);
1935 	return 0;
1936 }
1937 
1938 /*
1939  * Find a destination VCPU for a floating irq and kick it.
1940  */
1941 static void __floating_irq_kick(struct kvm *kvm, u64 type)
1942 {
1943 	struct kvm_vcpu *dst_vcpu;
1944 	int sigcpu, online_vcpus, nr_tries = 0;
1945 
1946 	online_vcpus = atomic_read(&kvm->online_vcpus);
1947 	if (!online_vcpus)
1948 		return;
1949 
1950 	/* find idle VCPUs first, then round robin */
1951 	sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus);
1952 	if (sigcpu == online_vcpus) {
1953 		do {
1954 			sigcpu = kvm->arch.float_int.next_rr_cpu++;
1955 			kvm->arch.float_int.next_rr_cpu %= online_vcpus;
1956 			/* avoid endless loops if all vcpus are stopped */
1957 			if (nr_tries++ >= online_vcpus)
1958 				return;
1959 		} while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
1960 	}
1961 	dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
1962 
1963 	/* make the VCPU drop out of the SIE, or wake it up if sleeping */
1964 	switch (type) {
1965 	case KVM_S390_MCHK:
1966 		kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT);
1967 		break;
1968 	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1969 		if (!(type & KVM_S390_INT_IO_AI_MASK &&
1970 		      kvm->arch.gisa_int.origin) ||
1971 		      kvm_s390_pv_cpu_get_handle(dst_vcpu))
1972 			kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT);
1973 		break;
1974 	default:
1975 		kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT);
1976 		break;
1977 	}
1978 	kvm_s390_vcpu_wakeup(dst_vcpu);
1979 }
1980 
1981 static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1982 {
1983 	u64 type = READ_ONCE(inti->type);
1984 	int rc;
1985 
1986 	switch (type) {
1987 	case KVM_S390_MCHK:
1988 		rc = __inject_float_mchk(kvm, inti);
1989 		break;
1990 	case KVM_S390_INT_VIRTIO:
1991 		rc = __inject_virtio(kvm, inti);
1992 		break;
1993 	case KVM_S390_INT_SERVICE:
1994 		rc = __inject_service(kvm, inti);
1995 		break;
1996 	case KVM_S390_INT_PFAULT_DONE:
1997 		rc = __inject_pfault_done(kvm, inti);
1998 		break;
1999 	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2000 		rc = __inject_io(kvm, inti);
2001 		break;
2002 	default:
2003 		rc = -EINVAL;
2004 	}
2005 	if (rc)
2006 		return rc;
2007 
2008 	__floating_irq_kick(kvm, type);
2009 	return 0;
2010 }
2011 
2012 int kvm_s390_inject_vm(struct kvm *kvm,
2013 		       struct kvm_s390_interrupt *s390int)
2014 {
2015 	struct kvm_s390_interrupt_info *inti;
2016 	int rc;
2017 
2018 	inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
2019 	if (!inti)
2020 		return -ENOMEM;
2021 
2022 	inti->type = s390int->type;
2023 	switch (inti->type) {
2024 	case KVM_S390_INT_VIRTIO:
2025 		VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
2026 			 s390int->parm, s390int->parm64);
2027 		inti->ext.ext_params = s390int->parm;
2028 		inti->ext.ext_params2 = s390int->parm64;
2029 		break;
2030 	case KVM_S390_INT_SERVICE:
2031 		VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
2032 		inti->ext.ext_params = s390int->parm;
2033 		break;
2034 	case KVM_S390_INT_PFAULT_DONE:
2035 		inti->ext.ext_params2 = s390int->parm64;
2036 		break;
2037 	case KVM_S390_MCHK:
2038 		VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
2039 			 s390int->parm64);
2040 		inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
2041 		inti->mchk.mcic = s390int->parm64;
2042 		break;
2043 	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2044 		inti->io.subchannel_id = s390int->parm >> 16;
2045 		inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
2046 		inti->io.io_int_parm = s390int->parm64 >> 32;
2047 		inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
2048 		break;
2049 	default:
2050 		kfree(inti);
2051 		return -EINVAL;
2052 	}
2053 	trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
2054 				 2);
2055 
2056 	rc = __inject_vm(kvm, inti);
2057 	if (rc)
2058 		kfree(inti);
2059 	return rc;
2060 }
2061 
2062 int kvm_s390_reinject_io_int(struct kvm *kvm,
2063 			      struct kvm_s390_interrupt_info *inti)
2064 {
2065 	return __inject_vm(kvm, inti);
2066 }
2067 
2068 int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
2069 		       struct kvm_s390_irq *irq)
2070 {
2071 	irq->type = s390int->type;
2072 	switch (irq->type) {
2073 	case KVM_S390_PROGRAM_INT:
2074 		if (s390int->parm & 0xffff0000)
2075 			return -EINVAL;
2076 		irq->u.pgm.code = s390int->parm;
2077 		break;
2078 	case KVM_S390_SIGP_SET_PREFIX:
2079 		irq->u.prefix.address = s390int->parm;
2080 		break;
2081 	case KVM_S390_SIGP_STOP:
2082 		irq->u.stop.flags = s390int->parm;
2083 		break;
2084 	case KVM_S390_INT_EXTERNAL_CALL:
2085 		if (s390int->parm & 0xffff0000)
2086 			return -EINVAL;
2087 		irq->u.extcall.code = s390int->parm;
2088 		break;
2089 	case KVM_S390_INT_EMERGENCY:
2090 		if (s390int->parm & 0xffff0000)
2091 			return -EINVAL;
2092 		irq->u.emerg.code = s390int->parm;
2093 		break;
2094 	case KVM_S390_MCHK:
2095 		irq->u.mchk.mcic = s390int->parm64;
2096 		break;
2097 	case KVM_S390_INT_PFAULT_INIT:
2098 		irq->u.ext.ext_params = s390int->parm;
2099 		irq->u.ext.ext_params2 = s390int->parm64;
2100 		break;
2101 	case KVM_S390_RESTART:
2102 	case KVM_S390_INT_CLOCK_COMP:
2103 	case KVM_S390_INT_CPU_TIMER:
2104 		break;
2105 	default:
2106 		return -EINVAL;
2107 	}
2108 	return 0;
2109 }
2110 
2111 int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
2112 {
2113 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2114 
2115 	return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2116 }
2117 
2118 int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu)
2119 {
2120 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2121 
2122 	return test_bit(IRQ_PEND_RESTART, &li->pending_irqs);
2123 }
2124 
2125 void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
2126 {
2127 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2128 
2129 	spin_lock(&li->lock);
2130 	li->irq.stop.flags = 0;
2131 	clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2132 	spin_unlock(&li->lock);
2133 }
2134 
2135 static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2136 {
2137 	int rc;
2138 
2139 	switch (irq->type) {
2140 	case KVM_S390_PROGRAM_INT:
2141 		rc = __inject_prog(vcpu, irq);
2142 		break;
2143 	case KVM_S390_SIGP_SET_PREFIX:
2144 		rc = __inject_set_prefix(vcpu, irq);
2145 		break;
2146 	case KVM_S390_SIGP_STOP:
2147 		rc = __inject_sigp_stop(vcpu, irq);
2148 		break;
2149 	case KVM_S390_RESTART:
2150 		rc = __inject_sigp_restart(vcpu);
2151 		break;
2152 	case KVM_S390_INT_CLOCK_COMP:
2153 		rc = __inject_ckc(vcpu);
2154 		break;
2155 	case KVM_S390_INT_CPU_TIMER:
2156 		rc = __inject_cpu_timer(vcpu);
2157 		break;
2158 	case KVM_S390_INT_EXTERNAL_CALL:
2159 		rc = __inject_extcall(vcpu, irq);
2160 		break;
2161 	case KVM_S390_INT_EMERGENCY:
2162 		rc = __inject_sigp_emergency(vcpu, irq);
2163 		break;
2164 	case KVM_S390_MCHK:
2165 		rc = __inject_mchk(vcpu, irq);
2166 		break;
2167 	case KVM_S390_INT_PFAULT_INIT:
2168 		rc = __inject_pfault_init(vcpu, irq);
2169 		break;
2170 	case KVM_S390_INT_VIRTIO:
2171 	case KVM_S390_INT_SERVICE:
2172 	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2173 	default:
2174 		rc = -EINVAL;
2175 	}
2176 
2177 	return rc;
2178 }
2179 
2180 int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2181 {
2182 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2183 	int rc;
2184 
2185 	spin_lock(&li->lock);
2186 	rc = do_inject_vcpu(vcpu, irq);
2187 	spin_unlock(&li->lock);
2188 	if (!rc)
2189 		kvm_s390_vcpu_wakeup(vcpu);
2190 	return rc;
2191 }
2192 
2193 static inline void clear_irq_list(struct list_head *_list)
2194 {
2195 	struct kvm_s390_interrupt_info *inti, *n;
2196 
2197 	list_for_each_entry_safe(inti, n, _list, list) {
2198 		list_del(&inti->list);
2199 		kfree(inti);
2200 	}
2201 }
2202 
2203 static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
2204 		       struct kvm_s390_irq *irq)
2205 {
2206 	irq->type = inti->type;
2207 	switch (inti->type) {
2208 	case KVM_S390_INT_PFAULT_INIT:
2209 	case KVM_S390_INT_PFAULT_DONE:
2210 	case KVM_S390_INT_VIRTIO:
2211 		irq->u.ext = inti->ext;
2212 		break;
2213 	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2214 		irq->u.io = inti->io;
2215 		break;
2216 	}
2217 }
2218 
2219 void kvm_s390_clear_float_irqs(struct kvm *kvm)
2220 {
2221 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2222 	int i;
2223 
2224 	mutex_lock(&kvm->lock);
2225 	if (!kvm_s390_pv_is_protected(kvm))
2226 		fi->masked_irqs = 0;
2227 	mutex_unlock(&kvm->lock);
2228 	spin_lock(&fi->lock);
2229 	fi->pending_irqs = 0;
2230 	memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
2231 	memset(&fi->mchk, 0, sizeof(fi->mchk));
2232 	for (i = 0; i < FIRQ_LIST_COUNT; i++)
2233 		clear_irq_list(&fi->lists[i]);
2234 	for (i = 0; i < FIRQ_MAX_COUNT; i++)
2235 		fi->counters[i] = 0;
2236 	spin_unlock(&fi->lock);
2237 	kvm_s390_gisa_clear(kvm);
2238 };
2239 
2240 static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
2241 {
2242 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
2243 	struct kvm_s390_interrupt_info *inti;
2244 	struct kvm_s390_float_interrupt *fi;
2245 	struct kvm_s390_irq *buf;
2246 	struct kvm_s390_irq *irq;
2247 	int max_irqs;
2248 	int ret = 0;
2249 	int n = 0;
2250 	int i;
2251 
2252 	if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
2253 		return -EINVAL;
2254 
2255 	/*
2256 	 * We are already using -ENOMEM to signal
2257 	 * userspace it may retry with a bigger buffer,
2258 	 * so we need to use something else for this case
2259 	 */
2260 	buf = vzalloc(len);
2261 	if (!buf)
2262 		return -ENOBUFS;
2263 
2264 	max_irqs = len / sizeof(struct kvm_s390_irq);
2265 
2266 	if (gi->origin && gisa_get_ipm(gi->origin)) {
2267 		for (i = 0; i <= MAX_ISC; i++) {
2268 			if (n == max_irqs) {
2269 				/* signal userspace to try again */
2270 				ret = -ENOMEM;
2271 				goto out_nolock;
2272 			}
2273 			if (gisa_tac_ipm_gisc(gi->origin, i)) {
2274 				irq = (struct kvm_s390_irq *) &buf[n];
2275 				irq->type = KVM_S390_INT_IO(1, 0, 0, 0);
2276 				irq->u.io.io_int_word = isc_to_int_word(i);
2277 				n++;
2278 			}
2279 		}
2280 	}
2281 	fi = &kvm->arch.float_int;
2282 	spin_lock(&fi->lock);
2283 	for (i = 0; i < FIRQ_LIST_COUNT; i++) {
2284 		list_for_each_entry(inti, &fi->lists[i], list) {
2285 			if (n == max_irqs) {
2286 				/* signal userspace to try again */
2287 				ret = -ENOMEM;
2288 				goto out;
2289 			}
2290 			inti_to_irq(inti, &buf[n]);
2291 			n++;
2292 		}
2293 	}
2294 	if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) ||
2295 	    test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) {
2296 		if (n == max_irqs) {
2297 			/* signal userspace to try again */
2298 			ret = -ENOMEM;
2299 			goto out;
2300 		}
2301 		irq = (struct kvm_s390_irq *) &buf[n];
2302 		irq->type = KVM_S390_INT_SERVICE;
2303 		irq->u.ext = fi->srv_signal;
2304 		n++;
2305 	}
2306 	if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
2307 		if (n == max_irqs) {
2308 				/* signal userspace to try again */
2309 				ret = -ENOMEM;
2310 				goto out;
2311 		}
2312 		irq = (struct kvm_s390_irq *) &buf[n];
2313 		irq->type = KVM_S390_MCHK;
2314 		irq->u.mchk = fi->mchk;
2315 		n++;
2316 }
2317 
2318 out:
2319 	spin_unlock(&fi->lock);
2320 out_nolock:
2321 	if (!ret && n > 0) {
2322 		if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
2323 			ret = -EFAULT;
2324 	}
2325 	vfree(buf);
2326 
2327 	return ret < 0 ? ret : n;
2328 }
2329 
2330 static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
2331 {
2332 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2333 	struct kvm_s390_ais_all ais;
2334 
2335 	if (attr->attr < sizeof(ais))
2336 		return -EINVAL;
2337 
2338 	if (!test_kvm_facility(kvm, 72))
2339 		return -EOPNOTSUPP;
2340 
2341 	mutex_lock(&fi->ais_lock);
2342 	ais.simm = fi->simm;
2343 	ais.nimm = fi->nimm;
2344 	mutex_unlock(&fi->ais_lock);
2345 
2346 	if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
2347 		return -EFAULT;
2348 
2349 	return 0;
2350 }
2351 
2352 static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2353 {
2354 	int r;
2355 
2356 	switch (attr->group) {
2357 	case KVM_DEV_FLIC_GET_ALL_IRQS:
2358 		r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
2359 					  attr->attr);
2360 		break;
2361 	case KVM_DEV_FLIC_AISM_ALL:
2362 		r = flic_ais_mode_get_all(dev->kvm, attr);
2363 		break;
2364 	default:
2365 		r = -EINVAL;
2366 	}
2367 
2368 	return r;
2369 }
2370 
2371 static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
2372 				     u64 addr)
2373 {
2374 	struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
2375 	void *target = NULL;
2376 	void __user *source;
2377 	u64 size;
2378 
2379 	if (get_user(inti->type, (u64 __user *)addr))
2380 		return -EFAULT;
2381 
2382 	switch (inti->type) {
2383 	case KVM_S390_INT_PFAULT_INIT:
2384 	case KVM_S390_INT_PFAULT_DONE:
2385 	case KVM_S390_INT_VIRTIO:
2386 	case KVM_S390_INT_SERVICE:
2387 		target = (void *) &inti->ext;
2388 		source = &uptr->u.ext;
2389 		size = sizeof(inti->ext);
2390 		break;
2391 	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2392 		target = (void *) &inti->io;
2393 		source = &uptr->u.io;
2394 		size = sizeof(inti->io);
2395 		break;
2396 	case KVM_S390_MCHK:
2397 		target = (void *) &inti->mchk;
2398 		source = &uptr->u.mchk;
2399 		size = sizeof(inti->mchk);
2400 		break;
2401 	default:
2402 		return -EINVAL;
2403 	}
2404 
2405 	if (copy_from_user(target, source, size))
2406 		return -EFAULT;
2407 
2408 	return 0;
2409 }
2410 
2411 static int enqueue_floating_irq(struct kvm_device *dev,
2412 				struct kvm_device_attr *attr)
2413 {
2414 	struct kvm_s390_interrupt_info *inti = NULL;
2415 	int r = 0;
2416 	int len = attr->attr;
2417 
2418 	if (len % sizeof(struct kvm_s390_irq) != 0)
2419 		return -EINVAL;
2420 	else if (len > KVM_S390_FLIC_MAX_BUFFER)
2421 		return -EINVAL;
2422 
2423 	while (len >= sizeof(struct kvm_s390_irq)) {
2424 		inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
2425 		if (!inti)
2426 			return -ENOMEM;
2427 
2428 		r = copy_irq_from_user(inti, attr->addr);
2429 		if (r) {
2430 			kfree(inti);
2431 			return r;
2432 		}
2433 		r = __inject_vm(dev->kvm, inti);
2434 		if (r) {
2435 			kfree(inti);
2436 			return r;
2437 		}
2438 		len -= sizeof(struct kvm_s390_irq);
2439 		attr->addr += sizeof(struct kvm_s390_irq);
2440 	}
2441 
2442 	return r;
2443 }
2444 
2445 static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
2446 {
2447 	if (id >= MAX_S390_IO_ADAPTERS)
2448 		return NULL;
2449 	id = array_index_nospec(id, MAX_S390_IO_ADAPTERS);
2450 	return kvm->arch.adapters[id];
2451 }
2452 
2453 static int register_io_adapter(struct kvm_device *dev,
2454 			       struct kvm_device_attr *attr)
2455 {
2456 	struct s390_io_adapter *adapter;
2457 	struct kvm_s390_io_adapter adapter_info;
2458 
2459 	if (copy_from_user(&adapter_info,
2460 			   (void __user *)attr->addr, sizeof(adapter_info)))
2461 		return -EFAULT;
2462 
2463 	if (adapter_info.id >= MAX_S390_IO_ADAPTERS)
2464 		return -EINVAL;
2465 
2466 	adapter_info.id = array_index_nospec(adapter_info.id,
2467 					     MAX_S390_IO_ADAPTERS);
2468 
2469 	if (dev->kvm->arch.adapters[adapter_info.id] != NULL)
2470 		return -EINVAL;
2471 
2472 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT);
2473 	if (!adapter)
2474 		return -ENOMEM;
2475 
2476 	adapter->id = adapter_info.id;
2477 	adapter->isc = adapter_info.isc;
2478 	adapter->maskable = adapter_info.maskable;
2479 	adapter->masked = false;
2480 	adapter->swap = adapter_info.swap;
2481 	adapter->suppressible = (adapter_info.flags) &
2482 				KVM_S390_ADAPTER_SUPPRESSIBLE;
2483 	dev->kvm->arch.adapters[adapter->id] = adapter;
2484 
2485 	return 0;
2486 }
2487 
2488 int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
2489 {
2490 	int ret;
2491 	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2492 
2493 	if (!adapter || !adapter->maskable)
2494 		return -EINVAL;
2495 	ret = adapter->masked;
2496 	adapter->masked = masked;
2497 	return ret;
2498 }
2499 
2500 void kvm_s390_destroy_adapters(struct kvm *kvm)
2501 {
2502 	int i;
2503 
2504 	for (i = 0; i < MAX_S390_IO_ADAPTERS; i++)
2505 		kfree(kvm->arch.adapters[i]);
2506 }
2507 
2508 static int modify_io_adapter(struct kvm_device *dev,
2509 			     struct kvm_device_attr *attr)
2510 {
2511 	struct kvm_s390_io_adapter_req req;
2512 	struct s390_io_adapter *adapter;
2513 	int ret;
2514 
2515 	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2516 		return -EFAULT;
2517 
2518 	adapter = get_io_adapter(dev->kvm, req.id);
2519 	if (!adapter)
2520 		return -EINVAL;
2521 	switch (req.type) {
2522 	case KVM_S390_IO_ADAPTER_MASK:
2523 		ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
2524 		if (ret > 0)
2525 			ret = 0;
2526 		break;
2527 	/*
2528 	 * The following operations are no longer needed and therefore no-ops.
2529 	 * The gpa to hva translation is done when an IRQ route is set up. The
2530 	 * set_irq code uses get_user_pages_remote() to do the actual write.
2531 	 */
2532 	case KVM_S390_IO_ADAPTER_MAP:
2533 	case KVM_S390_IO_ADAPTER_UNMAP:
2534 		ret = 0;
2535 		break;
2536 	default:
2537 		ret = -EINVAL;
2538 	}
2539 
2540 	return ret;
2541 }
2542 
2543 static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
2544 
2545 {
2546 	const u64 isc_mask = 0xffUL << 24; /* all iscs set */
2547 	u32 schid;
2548 
2549 	if (attr->flags)
2550 		return -EINVAL;
2551 	if (attr->attr != sizeof(schid))
2552 		return -EINVAL;
2553 	if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
2554 		return -EFAULT;
2555 	if (!schid)
2556 		return -EINVAL;
2557 	kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
2558 	/*
2559 	 * If userspace is conforming to the architecture, we can have at most
2560 	 * one pending I/O interrupt per subchannel, so this is effectively a
2561 	 * clear all.
2562 	 */
2563 	return 0;
2564 }
2565 
2566 static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
2567 {
2568 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2569 	struct kvm_s390_ais_req req;
2570 	int ret = 0;
2571 
2572 	if (!test_kvm_facility(kvm, 72))
2573 		return -EOPNOTSUPP;
2574 
2575 	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2576 		return -EFAULT;
2577 
2578 	if (req.isc > MAX_ISC)
2579 		return -EINVAL;
2580 
2581 	trace_kvm_s390_modify_ais_mode(req.isc,
2582 				       (fi->simm & AIS_MODE_MASK(req.isc)) ?
2583 				       (fi->nimm & AIS_MODE_MASK(req.isc)) ?
2584 				       2 : KVM_S390_AIS_MODE_SINGLE :
2585 				       KVM_S390_AIS_MODE_ALL, req.mode);
2586 
2587 	mutex_lock(&fi->ais_lock);
2588 	switch (req.mode) {
2589 	case KVM_S390_AIS_MODE_ALL:
2590 		fi->simm &= ~AIS_MODE_MASK(req.isc);
2591 		fi->nimm &= ~AIS_MODE_MASK(req.isc);
2592 		break;
2593 	case KVM_S390_AIS_MODE_SINGLE:
2594 		fi->simm |= AIS_MODE_MASK(req.isc);
2595 		fi->nimm &= ~AIS_MODE_MASK(req.isc);
2596 		break;
2597 	default:
2598 		ret = -EINVAL;
2599 	}
2600 	mutex_unlock(&fi->ais_lock);
2601 
2602 	return ret;
2603 }
2604 
2605 static int kvm_s390_inject_airq(struct kvm *kvm,
2606 				struct s390_io_adapter *adapter)
2607 {
2608 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2609 	struct kvm_s390_interrupt s390int = {
2610 		.type = KVM_S390_INT_IO(1, 0, 0, 0),
2611 		.parm = 0,
2612 		.parm64 = isc_to_int_word(adapter->isc),
2613 	};
2614 	int ret = 0;
2615 
2616 	if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
2617 		return kvm_s390_inject_vm(kvm, &s390int);
2618 
2619 	mutex_lock(&fi->ais_lock);
2620 	if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
2621 		trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
2622 		goto out;
2623 	}
2624 
2625 	ret = kvm_s390_inject_vm(kvm, &s390int);
2626 	if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
2627 		fi->nimm |= AIS_MODE_MASK(adapter->isc);
2628 		trace_kvm_s390_modify_ais_mode(adapter->isc,
2629 					       KVM_S390_AIS_MODE_SINGLE, 2);
2630 	}
2631 out:
2632 	mutex_unlock(&fi->ais_lock);
2633 	return ret;
2634 }
2635 
2636 static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
2637 {
2638 	unsigned int id = attr->attr;
2639 	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2640 
2641 	if (!adapter)
2642 		return -EINVAL;
2643 
2644 	return kvm_s390_inject_airq(kvm, adapter);
2645 }
2646 
2647 static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
2648 {
2649 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2650 	struct kvm_s390_ais_all ais;
2651 
2652 	if (!test_kvm_facility(kvm, 72))
2653 		return -EOPNOTSUPP;
2654 
2655 	if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
2656 		return -EFAULT;
2657 
2658 	mutex_lock(&fi->ais_lock);
2659 	fi->simm = ais.simm;
2660 	fi->nimm = ais.nimm;
2661 	mutex_unlock(&fi->ais_lock);
2662 
2663 	return 0;
2664 }
2665 
2666 static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2667 {
2668 	int r = 0;
2669 	unsigned long i;
2670 	struct kvm_vcpu *vcpu;
2671 
2672 	switch (attr->group) {
2673 	case KVM_DEV_FLIC_ENQUEUE:
2674 		r = enqueue_floating_irq(dev, attr);
2675 		break;
2676 	case KVM_DEV_FLIC_CLEAR_IRQS:
2677 		kvm_s390_clear_float_irqs(dev->kvm);
2678 		break;
2679 	case KVM_DEV_FLIC_APF_ENABLE:
2680 		dev->kvm->arch.gmap->pfault_enabled = 1;
2681 		break;
2682 	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2683 		dev->kvm->arch.gmap->pfault_enabled = 0;
2684 		/*
2685 		 * Make sure no async faults are in transition when
2686 		 * clearing the queues. So we don't need to worry
2687 		 * about late coming workers.
2688 		 */
2689 		synchronize_srcu(&dev->kvm->srcu);
2690 		kvm_for_each_vcpu(i, vcpu, dev->kvm)
2691 			kvm_clear_async_pf_completion_queue(vcpu);
2692 		break;
2693 	case KVM_DEV_FLIC_ADAPTER_REGISTER:
2694 		r = register_io_adapter(dev, attr);
2695 		break;
2696 	case KVM_DEV_FLIC_ADAPTER_MODIFY:
2697 		r = modify_io_adapter(dev, attr);
2698 		break;
2699 	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2700 		r = clear_io_irq(dev->kvm, attr);
2701 		break;
2702 	case KVM_DEV_FLIC_AISM:
2703 		r = modify_ais_mode(dev->kvm, attr);
2704 		break;
2705 	case KVM_DEV_FLIC_AIRQ_INJECT:
2706 		r = flic_inject_airq(dev->kvm, attr);
2707 		break;
2708 	case KVM_DEV_FLIC_AISM_ALL:
2709 		r = flic_ais_mode_set_all(dev->kvm, attr);
2710 		break;
2711 	default:
2712 		r = -EINVAL;
2713 	}
2714 
2715 	return r;
2716 }
2717 
2718 static int flic_has_attr(struct kvm_device *dev,
2719 			     struct kvm_device_attr *attr)
2720 {
2721 	switch (attr->group) {
2722 	case KVM_DEV_FLIC_GET_ALL_IRQS:
2723 	case KVM_DEV_FLIC_ENQUEUE:
2724 	case KVM_DEV_FLIC_CLEAR_IRQS:
2725 	case KVM_DEV_FLIC_APF_ENABLE:
2726 	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2727 	case KVM_DEV_FLIC_ADAPTER_REGISTER:
2728 	case KVM_DEV_FLIC_ADAPTER_MODIFY:
2729 	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2730 	case KVM_DEV_FLIC_AISM:
2731 	case KVM_DEV_FLIC_AIRQ_INJECT:
2732 	case KVM_DEV_FLIC_AISM_ALL:
2733 		return 0;
2734 	}
2735 	return -ENXIO;
2736 }
2737 
2738 static int flic_create(struct kvm_device *dev, u32 type)
2739 {
2740 	if (!dev)
2741 		return -EINVAL;
2742 	if (dev->kvm->arch.flic)
2743 		return -EINVAL;
2744 	dev->kvm->arch.flic = dev;
2745 	return 0;
2746 }
2747 
2748 static void flic_destroy(struct kvm_device *dev)
2749 {
2750 	dev->kvm->arch.flic = NULL;
2751 	kfree(dev);
2752 }
2753 
2754 /* s390 floating irq controller (flic) */
2755 struct kvm_device_ops kvm_flic_ops = {
2756 	.name = "kvm-flic",
2757 	.get_attr = flic_get_attr,
2758 	.set_attr = flic_set_attr,
2759 	.has_attr = flic_has_attr,
2760 	.create = flic_create,
2761 	.destroy = flic_destroy,
2762 };
2763 
2764 static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
2765 {
2766 	unsigned long bit;
2767 
2768 	bit = bit_nr + (addr % PAGE_SIZE) * 8;
2769 
2770 	return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
2771 }
2772 
2773 static struct page *get_map_page(struct kvm *kvm, u64 uaddr)
2774 {
2775 	struct page *page = NULL;
2776 
2777 	mmap_read_lock(kvm->mm);
2778 	get_user_pages_remote(kvm->mm, uaddr, 1, FOLL_WRITE,
2779 			      &page, NULL, NULL);
2780 	mmap_read_unlock(kvm->mm);
2781 	return page;
2782 }
2783 
2784 static int adapter_indicators_set(struct kvm *kvm,
2785 				  struct s390_io_adapter *adapter,
2786 				  struct kvm_s390_adapter_int *adapter_int)
2787 {
2788 	unsigned long bit;
2789 	int summary_set, idx;
2790 	struct page *ind_page, *summary_page;
2791 	void *map;
2792 
2793 	ind_page = get_map_page(kvm, adapter_int->ind_addr);
2794 	if (!ind_page)
2795 		return -1;
2796 	summary_page = get_map_page(kvm, adapter_int->summary_addr);
2797 	if (!summary_page) {
2798 		put_page(ind_page);
2799 		return -1;
2800 	}
2801 
2802 	idx = srcu_read_lock(&kvm->srcu);
2803 	map = page_address(ind_page);
2804 	bit = get_ind_bit(adapter_int->ind_addr,
2805 			  adapter_int->ind_offset, adapter->swap);
2806 	set_bit(bit, map);
2807 	mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT);
2808 	set_page_dirty_lock(ind_page);
2809 	map = page_address(summary_page);
2810 	bit = get_ind_bit(adapter_int->summary_addr,
2811 			  adapter_int->summary_offset, adapter->swap);
2812 	summary_set = test_and_set_bit(bit, map);
2813 	mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT);
2814 	set_page_dirty_lock(summary_page);
2815 	srcu_read_unlock(&kvm->srcu, idx);
2816 
2817 	put_page(ind_page);
2818 	put_page(summary_page);
2819 	return summary_set ? 0 : 1;
2820 }
2821 
2822 /*
2823  * < 0 - not injected due to error
2824  * = 0 - coalesced, summary indicator already active
2825  * > 0 - injected interrupt
2826  */
2827 static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
2828 			   struct kvm *kvm, int irq_source_id, int level,
2829 			   bool line_status)
2830 {
2831 	int ret;
2832 	struct s390_io_adapter *adapter;
2833 
2834 	/* We're only interested in the 0->1 transition. */
2835 	if (!level)
2836 		return 0;
2837 	adapter = get_io_adapter(kvm, e->adapter.adapter_id);
2838 	if (!adapter)
2839 		return -1;
2840 	ret = adapter_indicators_set(kvm, adapter, &e->adapter);
2841 	if ((ret > 0) && !adapter->masked) {
2842 		ret = kvm_s390_inject_airq(kvm, adapter);
2843 		if (ret == 0)
2844 			ret = 1;
2845 	}
2846 	return ret;
2847 }
2848 
2849 /*
2850  * Inject the machine check to the guest.
2851  */
2852 void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
2853 				     struct mcck_volatile_info *mcck_info)
2854 {
2855 	struct kvm_s390_interrupt_info inti;
2856 	struct kvm_s390_irq irq;
2857 	struct kvm_s390_mchk_info *mchk;
2858 	union mci mci;
2859 	__u64 cr14 = 0;         /* upper bits are not used */
2860 	int rc;
2861 
2862 	mci.val = mcck_info->mcic;
2863 	if (mci.sr)
2864 		cr14 |= CR14_RECOVERY_SUBMASK;
2865 	if (mci.dg)
2866 		cr14 |= CR14_DEGRADATION_SUBMASK;
2867 	if (mci.w)
2868 		cr14 |= CR14_WARNING_SUBMASK;
2869 
2870 	mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
2871 	mchk->cr14 = cr14;
2872 	mchk->mcic = mcck_info->mcic;
2873 	mchk->ext_damage_code = mcck_info->ext_damage_code;
2874 	mchk->failing_storage_address = mcck_info->failing_storage_address;
2875 	if (mci.ck) {
2876 		/* Inject the floating machine check */
2877 		inti.type = KVM_S390_MCHK;
2878 		rc = __inject_vm(vcpu->kvm, &inti);
2879 	} else {
2880 		/* Inject the machine check to specified vcpu */
2881 		irq.type = KVM_S390_MCHK;
2882 		rc = kvm_s390_inject_vcpu(vcpu, &irq);
2883 	}
2884 	WARN_ON_ONCE(rc);
2885 }
2886 
2887 int kvm_set_routing_entry(struct kvm *kvm,
2888 			  struct kvm_kernel_irq_routing_entry *e,
2889 			  const struct kvm_irq_routing_entry *ue)
2890 {
2891 	u64 uaddr;
2892 
2893 	switch (ue->type) {
2894 	/* we store the userspace addresses instead of the guest addresses */
2895 	case KVM_IRQ_ROUTING_S390_ADAPTER:
2896 		e->set = set_adapter_int;
2897 		uaddr =  gmap_translate(kvm->arch.gmap, ue->u.adapter.summary_addr);
2898 		if (uaddr == -EFAULT)
2899 			return -EFAULT;
2900 		e->adapter.summary_addr = uaddr;
2901 		uaddr =  gmap_translate(kvm->arch.gmap, ue->u.adapter.ind_addr);
2902 		if (uaddr == -EFAULT)
2903 			return -EFAULT;
2904 		e->adapter.ind_addr = uaddr;
2905 		e->adapter.summary_offset = ue->u.adapter.summary_offset;
2906 		e->adapter.ind_offset = ue->u.adapter.ind_offset;
2907 		e->adapter.adapter_id = ue->u.adapter.adapter_id;
2908 		return 0;
2909 	default:
2910 		return -EINVAL;
2911 	}
2912 }
2913 
2914 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
2915 		int irq_source_id, int level, bool line_status)
2916 {
2917 	return -EINVAL;
2918 }
2919 
2920 int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
2921 {
2922 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2923 	struct kvm_s390_irq *buf;
2924 	int r = 0;
2925 	int n;
2926 
2927 	buf = vmalloc(len);
2928 	if (!buf)
2929 		return -ENOMEM;
2930 
2931 	if (copy_from_user((void *) buf, irqstate, len)) {
2932 		r = -EFAULT;
2933 		goto out_free;
2934 	}
2935 
2936 	/*
2937 	 * Don't allow setting the interrupt state
2938 	 * when there are already interrupts pending
2939 	 */
2940 	spin_lock(&li->lock);
2941 	if (li->pending_irqs) {
2942 		r = -EBUSY;
2943 		goto out_unlock;
2944 	}
2945 
2946 	for (n = 0; n < len / sizeof(*buf); n++) {
2947 		r = do_inject_vcpu(vcpu, &buf[n]);
2948 		if (r)
2949 			break;
2950 	}
2951 
2952 out_unlock:
2953 	spin_unlock(&li->lock);
2954 out_free:
2955 	vfree(buf);
2956 
2957 	return r;
2958 }
2959 
2960 static void store_local_irq(struct kvm_s390_local_interrupt *li,
2961 			    struct kvm_s390_irq *irq,
2962 			    unsigned long irq_type)
2963 {
2964 	switch (irq_type) {
2965 	case IRQ_PEND_MCHK_EX:
2966 	case IRQ_PEND_MCHK_REP:
2967 		irq->type = KVM_S390_MCHK;
2968 		irq->u.mchk = li->irq.mchk;
2969 		break;
2970 	case IRQ_PEND_PROG:
2971 		irq->type = KVM_S390_PROGRAM_INT;
2972 		irq->u.pgm = li->irq.pgm;
2973 		break;
2974 	case IRQ_PEND_PFAULT_INIT:
2975 		irq->type = KVM_S390_INT_PFAULT_INIT;
2976 		irq->u.ext = li->irq.ext;
2977 		break;
2978 	case IRQ_PEND_EXT_EXTERNAL:
2979 		irq->type = KVM_S390_INT_EXTERNAL_CALL;
2980 		irq->u.extcall = li->irq.extcall;
2981 		break;
2982 	case IRQ_PEND_EXT_CLOCK_COMP:
2983 		irq->type = KVM_S390_INT_CLOCK_COMP;
2984 		break;
2985 	case IRQ_PEND_EXT_CPU_TIMER:
2986 		irq->type = KVM_S390_INT_CPU_TIMER;
2987 		break;
2988 	case IRQ_PEND_SIGP_STOP:
2989 		irq->type = KVM_S390_SIGP_STOP;
2990 		irq->u.stop = li->irq.stop;
2991 		break;
2992 	case IRQ_PEND_RESTART:
2993 		irq->type = KVM_S390_RESTART;
2994 		break;
2995 	case IRQ_PEND_SET_PREFIX:
2996 		irq->type = KVM_S390_SIGP_SET_PREFIX;
2997 		irq->u.prefix = li->irq.prefix;
2998 		break;
2999 	}
3000 }
3001 
3002 int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
3003 {
3004 	int scn;
3005 	DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS);
3006 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
3007 	unsigned long pending_irqs;
3008 	struct kvm_s390_irq irq;
3009 	unsigned long irq_type;
3010 	int cpuaddr;
3011 	int n = 0;
3012 
3013 	spin_lock(&li->lock);
3014 	pending_irqs = li->pending_irqs;
3015 	memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
3016 	       sizeof(sigp_emerg_pending));
3017 	spin_unlock(&li->lock);
3018 
3019 	for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
3020 		memset(&irq, 0, sizeof(irq));
3021 		if (irq_type == IRQ_PEND_EXT_EMERGENCY)
3022 			continue;
3023 		if (n + sizeof(irq) > len)
3024 			return -ENOBUFS;
3025 		store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
3026 		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3027 			return -EFAULT;
3028 		n += sizeof(irq);
3029 	}
3030 
3031 	if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
3032 		for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
3033 			memset(&irq, 0, sizeof(irq));
3034 			if (n + sizeof(irq) > len)
3035 				return -ENOBUFS;
3036 			irq.type = KVM_S390_INT_EMERGENCY;
3037 			irq.u.emerg.code = cpuaddr;
3038 			if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3039 				return -EFAULT;
3040 			n += sizeof(irq);
3041 		}
3042 	}
3043 
3044 	if (sca_ext_call_pending(vcpu, &scn)) {
3045 		if (n + sizeof(irq) > len)
3046 			return -ENOBUFS;
3047 		memset(&irq, 0, sizeof(irq));
3048 		irq.type = KVM_S390_INT_EXTERNAL_CALL;
3049 		irq.u.extcall.code = scn;
3050 		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3051 			return -EFAULT;
3052 		n += sizeof(irq);
3053 	}
3054 
3055 	return n;
3056 }
3057 
3058 static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask)
3059 {
3060 	int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus);
3061 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3062 	struct kvm_vcpu *vcpu;
3063 	u8 vcpu_isc_mask;
3064 
3065 	for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) {
3066 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
3067 		if (psw_ioint_disabled(vcpu))
3068 			continue;
3069 		vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24);
3070 		if (deliverable_mask & vcpu_isc_mask) {
3071 			/* lately kicked but not yet running */
3072 			if (test_and_set_bit(vcpu_idx, gi->kicked_mask))
3073 				return;
3074 			kvm_s390_vcpu_wakeup(vcpu);
3075 			return;
3076 		}
3077 	}
3078 }
3079 
3080 static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer)
3081 {
3082 	struct kvm_s390_gisa_interrupt *gi =
3083 		container_of(timer, struct kvm_s390_gisa_interrupt, timer);
3084 	struct kvm *kvm =
3085 		container_of(gi->origin, struct sie_page2, gisa)->kvm;
3086 	u8 pending_mask;
3087 
3088 	pending_mask = gisa_get_ipm_or_restore_iam(gi);
3089 	if (pending_mask) {
3090 		__airqs_kick_single_vcpu(kvm, pending_mask);
3091 		hrtimer_forward_now(timer, ns_to_ktime(gi->expires));
3092 		return HRTIMER_RESTART;
3093 	}
3094 
3095 	return HRTIMER_NORESTART;
3096 }
3097 
3098 #define NULL_GISA_ADDR 0x00000000UL
3099 #define NONE_GISA_ADDR 0x00000001UL
3100 #define GISA_ADDR_MASK 0xfffff000UL
3101 
3102 static void process_gib_alert_list(void)
3103 {
3104 	struct kvm_s390_gisa_interrupt *gi;
3105 	struct kvm_s390_gisa *gisa;
3106 	struct kvm *kvm;
3107 	u32 final, origin = 0UL;
3108 
3109 	do {
3110 		/*
3111 		 * If the NONE_GISA_ADDR is still stored in the alert list
3112 		 * origin, we will leave the outer loop. No further GISA has
3113 		 * been added to the alert list by millicode while processing
3114 		 * the current alert list.
3115 		 */
3116 		final = (origin & NONE_GISA_ADDR);
3117 		/*
3118 		 * Cut off the alert list and store the NONE_GISA_ADDR in the
3119 		 * alert list origin to avoid further GAL interruptions.
3120 		 * A new alert list can be build up by millicode in parallel
3121 		 * for guests not in the yet cut-off alert list. When in the
3122 		 * final loop, store the NULL_GISA_ADDR instead. This will re-
3123 		 * enable GAL interruptions on the host again.
3124 		 */
3125 		origin = xchg(&gib->alert_list_origin,
3126 			      (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR);
3127 		/*
3128 		 * Loop through the just cut-off alert list and start the
3129 		 * gisa timers to kick idle vcpus to consume the pending
3130 		 * interruptions asap.
3131 		 */
3132 		while (origin & GISA_ADDR_MASK) {
3133 			gisa = (struct kvm_s390_gisa *)(u64)origin;
3134 			origin = gisa->next_alert;
3135 			gisa->next_alert = (u32)(u64)gisa;
3136 			kvm = container_of(gisa, struct sie_page2, gisa)->kvm;
3137 			gi = &kvm->arch.gisa_int;
3138 			if (hrtimer_active(&gi->timer))
3139 				hrtimer_cancel(&gi->timer);
3140 			hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3141 		}
3142 	} while (!final);
3143 
3144 }
3145 
3146 void kvm_s390_gisa_clear(struct kvm *kvm)
3147 {
3148 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3149 
3150 	if (!gi->origin)
3151 		return;
3152 	gisa_clear_ipm(gi->origin);
3153 	VM_EVENT(kvm, 3, "gisa 0x%pK cleared", gi->origin);
3154 }
3155 
3156 void kvm_s390_gisa_init(struct kvm *kvm)
3157 {
3158 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3159 
3160 	if (!css_general_characteristics.aiv)
3161 		return;
3162 	gi->origin = &kvm->arch.sie_page2->gisa;
3163 	gi->alert.mask = 0;
3164 	spin_lock_init(&gi->alert.ref_lock);
3165 	gi->expires = 50 * 1000; /* 50 usec */
3166 	hrtimer_init(&gi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3167 	gi->timer.function = gisa_vcpu_kicker;
3168 	memset(gi->origin, 0, sizeof(struct kvm_s390_gisa));
3169 	gi->origin->next_alert = (u32)(u64)gi->origin;
3170 	VM_EVENT(kvm, 3, "gisa 0x%pK initialized", gi->origin);
3171 }
3172 
3173 void kvm_s390_gisa_enable(struct kvm *kvm)
3174 {
3175 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3176 	struct kvm_vcpu *vcpu;
3177 	unsigned long i;
3178 	u32 gisa_desc;
3179 
3180 	if (gi->origin)
3181 		return;
3182 	kvm_s390_gisa_init(kvm);
3183 	gisa_desc = kvm_s390_get_gisa_desc(kvm);
3184 	if (!gisa_desc)
3185 		return;
3186 	kvm_for_each_vcpu(i, vcpu, kvm) {
3187 		mutex_lock(&vcpu->mutex);
3188 		vcpu->arch.sie_block->gd = gisa_desc;
3189 		vcpu->arch.sie_block->eca |= ECA_AIV;
3190 		VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
3191 			   vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
3192 		mutex_unlock(&vcpu->mutex);
3193 	}
3194 }
3195 
3196 void kvm_s390_gisa_destroy(struct kvm *kvm)
3197 {
3198 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3199 	struct kvm_s390_gisa *gisa = gi->origin;
3200 
3201 	if (!gi->origin)
3202 		return;
3203 	if (gi->alert.mask)
3204 		KVM_EVENT(3, "vm 0x%pK has unexpected iam 0x%02x",
3205 			  kvm, gi->alert.mask);
3206 	while (gisa_in_alert_list(gi->origin))
3207 		cpu_relax();
3208 	hrtimer_cancel(&gi->timer);
3209 	gi->origin = NULL;
3210 	VM_EVENT(kvm, 3, "gisa 0x%pK destroyed", gisa);
3211 }
3212 
3213 void kvm_s390_gisa_disable(struct kvm *kvm)
3214 {
3215 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3216 	struct kvm_vcpu *vcpu;
3217 	unsigned long i;
3218 
3219 	if (!gi->origin)
3220 		return;
3221 	kvm_for_each_vcpu(i, vcpu, kvm) {
3222 		mutex_lock(&vcpu->mutex);
3223 		vcpu->arch.sie_block->eca &= ~ECA_AIV;
3224 		vcpu->arch.sie_block->gd = 0U;
3225 		mutex_unlock(&vcpu->mutex);
3226 		VCPU_EVENT(vcpu, 3, "AIV disabled for cpu %03u", vcpu->vcpu_id);
3227 	}
3228 	kvm_s390_gisa_destroy(kvm);
3229 }
3230 
3231 /**
3232  * kvm_s390_gisc_register - register a guest ISC
3233  *
3234  * @kvm:  the kernel vm to work with
3235  * @gisc: the guest interruption sub class to register
3236  *
3237  * The function extends the vm specific alert mask to use.
3238  * The effective IAM mask in the GISA is updated as well
3239  * in case the GISA is not part of the GIB alert list.
3240  * It will be updated latest when the IAM gets restored
3241  * by gisa_get_ipm_or_restore_iam().
3242  *
3243  * Returns: the nonspecific ISC (NISC) the gib alert mechanism
3244  *          has registered with the channel subsystem.
3245  *          -ENODEV in case the vm uses no GISA
3246  *          -ERANGE in case the guest ISC is invalid
3247  */
3248 int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc)
3249 {
3250 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3251 
3252 	if (!gi->origin)
3253 		return -ENODEV;
3254 	if (gisc > MAX_ISC)
3255 		return -ERANGE;
3256 
3257 	spin_lock(&gi->alert.ref_lock);
3258 	gi->alert.ref_count[gisc]++;
3259 	if (gi->alert.ref_count[gisc] == 1) {
3260 		gi->alert.mask |= 0x80 >> gisc;
3261 		gisa_set_iam(gi->origin, gi->alert.mask);
3262 	}
3263 	spin_unlock(&gi->alert.ref_lock);
3264 
3265 	return gib->nisc;
3266 }
3267 EXPORT_SYMBOL_GPL(kvm_s390_gisc_register);
3268 
3269 /**
3270  * kvm_s390_gisc_unregister - unregister a guest ISC
3271  *
3272  * @kvm:  the kernel vm to work with
3273  * @gisc: the guest interruption sub class to register
3274  *
3275  * The function reduces the vm specific alert mask to use.
3276  * The effective IAM mask in the GISA is updated as well
3277  * in case the GISA is not part of the GIB alert list.
3278  * It will be updated latest when the IAM gets restored
3279  * by gisa_get_ipm_or_restore_iam().
3280  *
3281  * Returns: the nonspecific ISC (NISC) the gib alert mechanism
3282  *          has registered with the channel subsystem.
3283  *          -ENODEV in case the vm uses no GISA
3284  *          -ERANGE in case the guest ISC is invalid
3285  *          -EINVAL in case the guest ISC is not registered
3286  */
3287 int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc)
3288 {
3289 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3290 	int rc = 0;
3291 
3292 	if (!gi->origin)
3293 		return -ENODEV;
3294 	if (gisc > MAX_ISC)
3295 		return -ERANGE;
3296 
3297 	spin_lock(&gi->alert.ref_lock);
3298 	if (gi->alert.ref_count[gisc] == 0) {
3299 		rc = -EINVAL;
3300 		goto out;
3301 	}
3302 	gi->alert.ref_count[gisc]--;
3303 	if (gi->alert.ref_count[gisc] == 0) {
3304 		gi->alert.mask &= ~(0x80 >> gisc);
3305 		gisa_set_iam(gi->origin, gi->alert.mask);
3306 	}
3307 out:
3308 	spin_unlock(&gi->alert.ref_lock);
3309 
3310 	return rc;
3311 }
3312 EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister);
3313 
3314 static void gib_alert_irq_handler(struct airq_struct *airq, bool floating)
3315 {
3316 	inc_irq_stat(IRQIO_GAL);
3317 	process_gib_alert_list();
3318 }
3319 
3320 static struct airq_struct gib_alert_irq = {
3321 	.handler = gib_alert_irq_handler,
3322 	.lsi_ptr = &gib_alert_irq.lsi_mask,
3323 };
3324 
3325 void kvm_s390_gib_destroy(void)
3326 {
3327 	if (!gib)
3328 		return;
3329 	chsc_sgib(0);
3330 	unregister_adapter_interrupt(&gib_alert_irq);
3331 	free_page((unsigned long)gib);
3332 	gib = NULL;
3333 }
3334 
3335 int kvm_s390_gib_init(u8 nisc)
3336 {
3337 	int rc = 0;
3338 
3339 	if (!css_general_characteristics.aiv) {
3340 		KVM_EVENT(3, "%s", "gib not initialized, no AIV facility");
3341 		goto out;
3342 	}
3343 
3344 	gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
3345 	if (!gib) {
3346 		rc = -ENOMEM;
3347 		goto out;
3348 	}
3349 
3350 	gib_alert_irq.isc = nisc;
3351 	if (register_adapter_interrupt(&gib_alert_irq)) {
3352 		pr_err("Registering the GIB alert interruption handler failed\n");
3353 		rc = -EIO;
3354 		goto out_free_gib;
3355 	}
3356 
3357 	gib->nisc = nisc;
3358 	if (chsc_sgib((u32)(u64)gib)) {
3359 		pr_err("Associating the GIB with the AIV facility failed\n");
3360 		free_page((unsigned long)gib);
3361 		gib = NULL;
3362 		rc = -EIO;
3363 		goto out_unreg_gal;
3364 	}
3365 
3366 	KVM_EVENT(3, "gib 0x%pK (nisc=%d) initialized", gib, gib->nisc);
3367 	goto out;
3368 
3369 out_unreg_gal:
3370 	unregister_adapter_interrupt(&gib_alert_irq);
3371 out_free_gib:
3372 	free_page((unsigned long)gib);
3373 	gib = NULL;
3374 out:
3375 	return rc;
3376 }
3377