1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * handling kvm guest interrupts 4 * 5 * Copyright IBM Corp. 2008, 2015 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 */ 9 10 #define KMSG_COMPONENT "kvm-s390" 11 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 12 13 #include <linux/interrupt.h> 14 #include <linux/kvm_host.h> 15 #include <linux/hrtimer.h> 16 #include <linux/mmu_context.h> 17 #include <linux/nospec.h> 18 #include <linux/signal.h> 19 #include <linux/slab.h> 20 #include <linux/bitmap.h> 21 #include <linux/vmalloc.h> 22 #include <asm/asm-offsets.h> 23 #include <asm/dis.h> 24 #include <linux/uaccess.h> 25 #include <asm/sclp.h> 26 #include <asm/isc.h> 27 #include <asm/gmap.h> 28 #include <asm/switch_to.h> 29 #include <asm/nmi.h> 30 #include <asm/airq.h> 31 #include "kvm-s390.h" 32 #include "gaccess.h" 33 #include "trace-s390.h" 34 35 #define PFAULT_INIT 0x0600 36 #define PFAULT_DONE 0x0680 37 #define VIRTIO_PARAM 0x0d00 38 39 static struct kvm_s390_gib *gib; 40 41 /* handle external calls via sigp interpretation facility */ 42 static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id) 43 { 44 int c, scn; 45 46 if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND)) 47 return 0; 48 49 BUG_ON(!kvm_s390_use_sca_entries()); 50 read_lock(&vcpu->kvm->arch.sca_lock); 51 if (vcpu->kvm->arch.use_esca) { 52 struct esca_block *sca = vcpu->kvm->arch.sca; 53 union esca_sigp_ctrl sigp_ctrl = 54 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 55 56 c = sigp_ctrl.c; 57 scn = sigp_ctrl.scn; 58 } else { 59 struct bsca_block *sca = vcpu->kvm->arch.sca; 60 union bsca_sigp_ctrl sigp_ctrl = 61 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 62 63 c = sigp_ctrl.c; 64 scn = sigp_ctrl.scn; 65 } 66 read_unlock(&vcpu->kvm->arch.sca_lock); 67 68 if (src_id) 69 *src_id = scn; 70 71 return c; 72 } 73 74 static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id) 75 { 76 int expect, rc; 77 78 BUG_ON(!kvm_s390_use_sca_entries()); 79 read_lock(&vcpu->kvm->arch.sca_lock); 80 if (vcpu->kvm->arch.use_esca) { 81 struct esca_block *sca = vcpu->kvm->arch.sca; 82 union esca_sigp_ctrl *sigp_ctrl = 83 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 84 union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl; 85 86 new_val.scn = src_id; 87 new_val.c = 1; 88 old_val.c = 0; 89 90 expect = old_val.value; 91 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 92 } else { 93 struct bsca_block *sca = vcpu->kvm->arch.sca; 94 union bsca_sigp_ctrl *sigp_ctrl = 95 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 96 union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl; 97 98 new_val.scn = src_id; 99 new_val.c = 1; 100 old_val.c = 0; 101 102 expect = old_val.value; 103 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 104 } 105 read_unlock(&vcpu->kvm->arch.sca_lock); 106 107 if (rc != expect) { 108 /* another external call is pending */ 109 return -EBUSY; 110 } 111 kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 112 return 0; 113 } 114 115 static void sca_clear_ext_call(struct kvm_vcpu *vcpu) 116 { 117 int rc, expect; 118 119 if (!kvm_s390_use_sca_entries()) 120 return; 121 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 122 read_lock(&vcpu->kvm->arch.sca_lock); 123 if (vcpu->kvm->arch.use_esca) { 124 struct esca_block *sca = vcpu->kvm->arch.sca; 125 union esca_sigp_ctrl *sigp_ctrl = 126 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 127 union esca_sigp_ctrl old = *sigp_ctrl; 128 129 expect = old.value; 130 rc = cmpxchg(&sigp_ctrl->value, old.value, 0); 131 } else { 132 struct bsca_block *sca = vcpu->kvm->arch.sca; 133 union bsca_sigp_ctrl *sigp_ctrl = 134 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 135 union bsca_sigp_ctrl old = *sigp_ctrl; 136 137 expect = old.value; 138 rc = cmpxchg(&sigp_ctrl->value, old.value, 0); 139 } 140 read_unlock(&vcpu->kvm->arch.sca_lock); 141 WARN_ON(rc != expect); /* cannot clear? */ 142 } 143 144 int psw_extint_disabled(struct kvm_vcpu *vcpu) 145 { 146 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT); 147 } 148 149 static int psw_ioint_disabled(struct kvm_vcpu *vcpu) 150 { 151 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO); 152 } 153 154 static int psw_mchk_disabled(struct kvm_vcpu *vcpu) 155 { 156 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK); 157 } 158 159 static int psw_interrupts_disabled(struct kvm_vcpu *vcpu) 160 { 161 return psw_extint_disabled(vcpu) && 162 psw_ioint_disabled(vcpu) && 163 psw_mchk_disabled(vcpu); 164 } 165 166 static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu) 167 { 168 if (psw_extint_disabled(vcpu) || 169 !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 170 return 0; 171 if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu)) 172 /* No timer interrupts when single stepping */ 173 return 0; 174 return 1; 175 } 176 177 static int ckc_irq_pending(struct kvm_vcpu *vcpu) 178 { 179 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 180 const u64 ckc = vcpu->arch.sie_block->ckc; 181 182 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 183 if ((s64)ckc >= (s64)now) 184 return 0; 185 } else if (ckc >= now) { 186 return 0; 187 } 188 return ckc_interrupts_enabled(vcpu); 189 } 190 191 static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu) 192 { 193 return !psw_extint_disabled(vcpu) && 194 (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK); 195 } 196 197 static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu) 198 { 199 if (!cpu_timer_interrupts_enabled(vcpu)) 200 return 0; 201 return kvm_s390_get_cpu_timer(vcpu) >> 63; 202 } 203 204 static uint64_t isc_to_isc_bits(int isc) 205 { 206 return (0x80 >> isc) << 24; 207 } 208 209 static inline u32 isc_to_int_word(u8 isc) 210 { 211 return ((u32)isc << 27) | 0x80000000; 212 } 213 214 static inline u8 int_word_to_isc(u32 int_word) 215 { 216 return (int_word & 0x38000000) >> 27; 217 } 218 219 /* 220 * To use atomic bitmap functions, we have to provide a bitmap address 221 * that is u64 aligned. However, the ipm might be u32 aligned. 222 * Therefore, we logically start the bitmap at the very beginning of the 223 * struct and fixup the bit number. 224 */ 225 #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE) 226 227 /** 228 * gisa_set_iam - change the GISA interruption alert mask 229 * 230 * @gisa: gisa to operate on 231 * @iam: new IAM value to use 232 * 233 * Change the IAM atomically with the next alert address and the IPM 234 * of the GISA if the GISA is not part of the GIB alert list. All three 235 * fields are located in the first long word of the GISA. 236 * 237 * Returns: 0 on success 238 * -EBUSY in case the gisa is part of the alert list 239 */ 240 static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam) 241 { 242 u64 word, _word; 243 244 do { 245 word = READ_ONCE(gisa->u64.word[0]); 246 if ((u64)gisa != word >> 32) 247 return -EBUSY; 248 _word = (word & ~0xffUL) | iam; 249 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word); 250 251 return 0; 252 } 253 254 /** 255 * gisa_clear_ipm - clear the GISA interruption pending mask 256 * 257 * @gisa: gisa to operate on 258 * 259 * Clear the IPM atomically with the next alert address and the IAM 260 * of the GISA unconditionally. All three fields are located in the 261 * first long word of the GISA. 262 */ 263 static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa) 264 { 265 u64 word, _word; 266 267 do { 268 word = READ_ONCE(gisa->u64.word[0]); 269 _word = word & ~(0xffUL << 24); 270 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word); 271 } 272 273 /** 274 * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM 275 * 276 * @gi: gisa interrupt struct to work on 277 * 278 * Atomically restores the interruption alert mask if none of the 279 * relevant ISCs are pending and return the IPM. 280 * 281 * Returns: the relevant pending ISCs 282 */ 283 static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi) 284 { 285 u8 pending_mask, alert_mask; 286 u64 word, _word; 287 288 do { 289 word = READ_ONCE(gi->origin->u64.word[0]); 290 alert_mask = READ_ONCE(gi->alert.mask); 291 pending_mask = (u8)(word >> 24) & alert_mask; 292 if (pending_mask) 293 return pending_mask; 294 _word = (word & ~0xffUL) | alert_mask; 295 } while (cmpxchg(&gi->origin->u64.word[0], word, _word) != word); 296 297 return 0; 298 } 299 300 static inline int gisa_in_alert_list(struct kvm_s390_gisa *gisa) 301 { 302 return READ_ONCE(gisa->next_alert) != (u32)(u64)gisa; 303 } 304 305 static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 306 { 307 set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 308 } 309 310 static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa) 311 { 312 return READ_ONCE(gisa->ipm); 313 } 314 315 static inline void gisa_clear_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 316 { 317 clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 318 } 319 320 static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 321 { 322 return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 323 } 324 325 static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu) 326 { 327 return vcpu->kvm->arch.float_int.pending_irqs | 328 vcpu->arch.local_int.pending_irqs; 329 } 330 331 static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu) 332 { 333 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 334 unsigned long pending_mask; 335 336 pending_mask = pending_irqs_no_gisa(vcpu); 337 if (gi->origin) 338 pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7; 339 return pending_mask; 340 } 341 342 static inline int isc_to_irq_type(unsigned long isc) 343 { 344 return IRQ_PEND_IO_ISC_0 - isc; 345 } 346 347 static inline int irq_type_to_isc(unsigned long irq_type) 348 { 349 return IRQ_PEND_IO_ISC_0 - irq_type; 350 } 351 352 static unsigned long disable_iscs(struct kvm_vcpu *vcpu, 353 unsigned long active_mask) 354 { 355 int i; 356 357 for (i = 0; i <= MAX_ISC; i++) 358 if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i))) 359 active_mask &= ~(1UL << (isc_to_irq_type(i))); 360 361 return active_mask; 362 } 363 364 static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu) 365 { 366 unsigned long active_mask; 367 368 active_mask = pending_irqs(vcpu); 369 if (!active_mask) 370 return 0; 371 372 if (psw_extint_disabled(vcpu)) 373 active_mask &= ~IRQ_PEND_EXT_MASK; 374 if (psw_ioint_disabled(vcpu)) 375 active_mask &= ~IRQ_PEND_IO_MASK; 376 else 377 active_mask = disable_iscs(vcpu, active_mask); 378 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 379 __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask); 380 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK)) 381 __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask); 382 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 383 __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask); 384 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK)) 385 __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask); 386 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) 387 __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask); 388 if (psw_mchk_disabled(vcpu)) 389 active_mask &= ~IRQ_PEND_MCHK_MASK; 390 /* 391 * Check both floating and local interrupt's cr14 because 392 * bit IRQ_PEND_MCHK_REP could be set in both cases. 393 */ 394 if (!(vcpu->arch.sie_block->gcr[14] & 395 (vcpu->kvm->arch.float_int.mchk.cr14 | 396 vcpu->arch.local_int.irq.mchk.cr14))) 397 __clear_bit(IRQ_PEND_MCHK_REP, &active_mask); 398 399 /* 400 * STOP irqs will never be actively delivered. They are triggered via 401 * intercept requests and cleared when the stop intercept is performed. 402 */ 403 __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask); 404 405 return active_mask; 406 } 407 408 static void __set_cpu_idle(struct kvm_vcpu *vcpu) 409 { 410 kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT); 411 set_bit(vcpu->vcpu_id, vcpu->kvm->arch.idle_mask); 412 } 413 414 static void __unset_cpu_idle(struct kvm_vcpu *vcpu) 415 { 416 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT); 417 clear_bit(vcpu->vcpu_id, vcpu->kvm->arch.idle_mask); 418 } 419 420 static void __reset_intercept_indicators(struct kvm_vcpu *vcpu) 421 { 422 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT | 423 CPUSTAT_STOP_INT); 424 vcpu->arch.sie_block->lctl = 0x0000; 425 vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT); 426 427 if (guestdbg_enabled(vcpu)) { 428 vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 | 429 LCTL_CR10 | LCTL_CR11); 430 vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT); 431 } 432 } 433 434 static void set_intercept_indicators_io(struct kvm_vcpu *vcpu) 435 { 436 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK)) 437 return; 438 if (psw_ioint_disabled(vcpu)) 439 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT); 440 else 441 vcpu->arch.sie_block->lctl |= LCTL_CR6; 442 } 443 444 static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu) 445 { 446 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK)) 447 return; 448 if (psw_extint_disabled(vcpu)) 449 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 450 else 451 vcpu->arch.sie_block->lctl |= LCTL_CR0; 452 } 453 454 static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu) 455 { 456 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK)) 457 return; 458 if (psw_mchk_disabled(vcpu)) 459 vcpu->arch.sie_block->ictl |= ICTL_LPSW; 460 else 461 vcpu->arch.sie_block->lctl |= LCTL_CR14; 462 } 463 464 static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu) 465 { 466 if (kvm_s390_is_stop_irq_pending(vcpu)) 467 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 468 } 469 470 /* Set interception request for non-deliverable interrupts */ 471 static void set_intercept_indicators(struct kvm_vcpu *vcpu) 472 { 473 set_intercept_indicators_io(vcpu); 474 set_intercept_indicators_ext(vcpu); 475 set_intercept_indicators_mchk(vcpu); 476 set_intercept_indicators_stop(vcpu); 477 } 478 479 static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu) 480 { 481 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 482 int rc; 483 484 vcpu->stat.deliver_cputm++; 485 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 486 0, 0); 487 488 rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER, 489 (u16 *)__LC_EXT_INT_CODE); 490 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 491 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 492 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 493 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 494 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 495 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 496 return rc ? -EFAULT : 0; 497 } 498 499 static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu) 500 { 501 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 502 int rc; 503 504 vcpu->stat.deliver_ckc++; 505 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 506 0, 0); 507 508 rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP, 509 (u16 __user *)__LC_EXT_INT_CODE); 510 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 511 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 512 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 513 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 514 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 515 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 516 return rc ? -EFAULT : 0; 517 } 518 519 static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu) 520 { 521 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 522 struct kvm_s390_ext_info ext; 523 int rc; 524 525 spin_lock(&li->lock); 526 ext = li->irq.ext; 527 clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 528 li->irq.ext.ext_params2 = 0; 529 spin_unlock(&li->lock); 530 531 VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx", 532 ext.ext_params2); 533 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 534 KVM_S390_INT_PFAULT_INIT, 535 0, ext.ext_params2); 536 537 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE); 538 rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR); 539 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 540 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 541 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 542 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 543 rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2); 544 return rc ? -EFAULT : 0; 545 } 546 547 static int __write_machine_check(struct kvm_vcpu *vcpu, 548 struct kvm_s390_mchk_info *mchk) 549 { 550 unsigned long ext_sa_addr; 551 unsigned long lc; 552 freg_t fprs[NUM_FPRS]; 553 union mci mci; 554 int rc; 555 556 mci.val = mchk->mcic; 557 /* take care of lazy register loading */ 558 save_fpu_regs(); 559 save_access_regs(vcpu->run->s.regs.acrs); 560 if (MACHINE_HAS_GS && vcpu->arch.gs_enabled) 561 save_gs_cb(current->thread.gs_cb); 562 563 /* Extended save area */ 564 rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr, 565 sizeof(unsigned long)); 566 /* Only bits 0 through 63-LC are used for address formation */ 567 lc = ext_sa_addr & MCESA_LC_MASK; 568 if (test_kvm_facility(vcpu->kvm, 133)) { 569 switch (lc) { 570 case 0: 571 case 10: 572 ext_sa_addr &= ~0x3ffUL; 573 break; 574 case 11: 575 ext_sa_addr &= ~0x7ffUL; 576 break; 577 case 12: 578 ext_sa_addr &= ~0xfffUL; 579 break; 580 default: 581 ext_sa_addr = 0; 582 break; 583 } 584 } else { 585 ext_sa_addr &= ~0x3ffUL; 586 } 587 588 if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) { 589 if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs, 590 512)) 591 mci.vr = 0; 592 } else { 593 mci.vr = 0; 594 } 595 if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133) 596 && (lc == 11 || lc == 12)) { 597 if (write_guest_abs(vcpu, ext_sa_addr + 1024, 598 &vcpu->run->s.regs.gscb, 32)) 599 mci.gs = 0; 600 } else { 601 mci.gs = 0; 602 } 603 604 /* General interruption information */ 605 rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID); 606 rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW, 607 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 608 rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW, 609 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 610 rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE); 611 612 /* Register-save areas */ 613 if (MACHINE_HAS_VX) { 614 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 615 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128); 616 } else { 617 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, 618 vcpu->run->s.regs.fprs, 128); 619 } 620 rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA, 621 vcpu->run->s.regs.gprs, 128); 622 rc |= put_guest_lc(vcpu, current->thread.fpu.fpc, 623 (u32 __user *) __LC_FP_CREG_SAVE_AREA); 624 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr, 625 (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA); 626 rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu), 627 (u64 __user *) __LC_CPU_TIMER_SAVE_AREA); 628 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8, 629 (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA); 630 rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA, 631 &vcpu->run->s.regs.acrs, 64); 632 rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA, 633 &vcpu->arch.sie_block->gcr, 128); 634 635 /* Extended interruption information */ 636 rc |= put_guest_lc(vcpu, mchk->ext_damage_code, 637 (u32 __user *) __LC_EXT_DAMAGE_CODE); 638 rc |= put_guest_lc(vcpu, mchk->failing_storage_address, 639 (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR); 640 rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout, 641 sizeof(mchk->fixed_logout)); 642 return rc ? -EFAULT : 0; 643 } 644 645 static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu) 646 { 647 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 648 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 649 struct kvm_s390_mchk_info mchk = {}; 650 int deliver = 0; 651 int rc = 0; 652 653 spin_lock(&fi->lock); 654 spin_lock(&li->lock); 655 if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) || 656 test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) { 657 /* 658 * If there was an exigent machine check pending, then any 659 * repressible machine checks that might have been pending 660 * are indicated along with it, so always clear bits for 661 * repressible and exigent interrupts 662 */ 663 mchk = li->irq.mchk; 664 clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 665 clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 666 memset(&li->irq.mchk, 0, sizeof(mchk)); 667 deliver = 1; 668 } 669 /* 670 * We indicate floating repressible conditions along with 671 * other pending conditions. Channel Report Pending and Channel 672 * Subsystem damage are the only two and and are indicated by 673 * bits in mcic and masked in cr14. 674 */ 675 if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 676 mchk.mcic |= fi->mchk.mcic; 677 mchk.cr14 |= fi->mchk.cr14; 678 memset(&fi->mchk, 0, sizeof(mchk)); 679 deliver = 1; 680 } 681 spin_unlock(&li->lock); 682 spin_unlock(&fi->lock); 683 684 if (deliver) { 685 VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx", 686 mchk.mcic); 687 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 688 KVM_S390_MCHK, 689 mchk.cr14, mchk.mcic); 690 vcpu->stat.deliver_machine_check++; 691 rc = __write_machine_check(vcpu, &mchk); 692 } 693 return rc; 694 } 695 696 static int __must_check __deliver_restart(struct kvm_vcpu *vcpu) 697 { 698 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 699 int rc; 700 701 VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart"); 702 vcpu->stat.deliver_restart_signal++; 703 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 704 705 rc = write_guest_lc(vcpu, 706 offsetof(struct lowcore, restart_old_psw), 707 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 708 rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw), 709 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 710 clear_bit(IRQ_PEND_RESTART, &li->pending_irqs); 711 return rc ? -EFAULT : 0; 712 } 713 714 static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu) 715 { 716 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 717 struct kvm_s390_prefix_info prefix; 718 719 spin_lock(&li->lock); 720 prefix = li->irq.prefix; 721 li->irq.prefix.address = 0; 722 clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 723 spin_unlock(&li->lock); 724 725 vcpu->stat.deliver_prefix_signal++; 726 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 727 KVM_S390_SIGP_SET_PREFIX, 728 prefix.address, 0); 729 730 kvm_s390_set_prefix(vcpu, prefix.address); 731 return 0; 732 } 733 734 static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu) 735 { 736 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 737 int rc; 738 int cpu_addr; 739 740 spin_lock(&li->lock); 741 cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS); 742 clear_bit(cpu_addr, li->sigp_emerg_pending); 743 if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS)) 744 clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 745 spin_unlock(&li->lock); 746 747 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg"); 748 vcpu->stat.deliver_emergency_signal++; 749 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 750 cpu_addr, 0); 751 752 rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG, 753 (u16 *)__LC_EXT_INT_CODE); 754 rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR); 755 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 756 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 757 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 758 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 759 return rc ? -EFAULT : 0; 760 } 761 762 static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu) 763 { 764 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 765 struct kvm_s390_extcall_info extcall; 766 int rc; 767 768 spin_lock(&li->lock); 769 extcall = li->irq.extcall; 770 li->irq.extcall.code = 0; 771 clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 772 spin_unlock(&li->lock); 773 774 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call"); 775 vcpu->stat.deliver_external_call++; 776 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 777 KVM_S390_INT_EXTERNAL_CALL, 778 extcall.code, 0); 779 780 rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL, 781 (u16 *)__LC_EXT_INT_CODE); 782 rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR); 783 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 784 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 785 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, 786 sizeof(psw_t)); 787 return rc ? -EFAULT : 0; 788 } 789 790 static int __must_check __deliver_prog(struct kvm_vcpu *vcpu) 791 { 792 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 793 struct kvm_s390_pgm_info pgm_info; 794 int rc = 0, nullifying = false; 795 u16 ilen; 796 797 spin_lock(&li->lock); 798 pgm_info = li->irq.pgm; 799 clear_bit(IRQ_PEND_PROG, &li->pending_irqs); 800 memset(&li->irq.pgm, 0, sizeof(pgm_info)); 801 spin_unlock(&li->lock); 802 803 ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK; 804 VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d", 805 pgm_info.code, ilen); 806 vcpu->stat.deliver_program++; 807 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 808 pgm_info.code, 0); 809 810 switch (pgm_info.code & ~PGM_PER) { 811 case PGM_AFX_TRANSLATION: 812 case PGM_ASX_TRANSLATION: 813 case PGM_EX_TRANSLATION: 814 case PGM_LFX_TRANSLATION: 815 case PGM_LSTE_SEQUENCE: 816 case PGM_LSX_TRANSLATION: 817 case PGM_LX_TRANSLATION: 818 case PGM_PRIMARY_AUTHORITY: 819 case PGM_SECONDARY_AUTHORITY: 820 nullifying = true; 821 /* fall through */ 822 case PGM_SPACE_SWITCH: 823 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 824 (u64 *)__LC_TRANS_EXC_CODE); 825 break; 826 case PGM_ALEN_TRANSLATION: 827 case PGM_ALE_SEQUENCE: 828 case PGM_ASTE_INSTANCE: 829 case PGM_ASTE_SEQUENCE: 830 case PGM_ASTE_VALIDITY: 831 case PGM_EXTENDED_AUTHORITY: 832 rc = put_guest_lc(vcpu, pgm_info.exc_access_id, 833 (u8 *)__LC_EXC_ACCESS_ID); 834 nullifying = true; 835 break; 836 case PGM_ASCE_TYPE: 837 case PGM_PAGE_TRANSLATION: 838 case PGM_REGION_FIRST_TRANS: 839 case PGM_REGION_SECOND_TRANS: 840 case PGM_REGION_THIRD_TRANS: 841 case PGM_SEGMENT_TRANSLATION: 842 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 843 (u64 *)__LC_TRANS_EXC_CODE); 844 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 845 (u8 *)__LC_EXC_ACCESS_ID); 846 rc |= put_guest_lc(vcpu, pgm_info.op_access_id, 847 (u8 *)__LC_OP_ACCESS_ID); 848 nullifying = true; 849 break; 850 case PGM_MONITOR: 851 rc = put_guest_lc(vcpu, pgm_info.mon_class_nr, 852 (u16 *)__LC_MON_CLASS_NR); 853 rc |= put_guest_lc(vcpu, pgm_info.mon_code, 854 (u64 *)__LC_MON_CODE); 855 break; 856 case PGM_VECTOR_PROCESSING: 857 case PGM_DATA: 858 rc = put_guest_lc(vcpu, pgm_info.data_exc_code, 859 (u32 *)__LC_DATA_EXC_CODE); 860 break; 861 case PGM_PROTECTION: 862 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 863 (u64 *)__LC_TRANS_EXC_CODE); 864 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 865 (u8 *)__LC_EXC_ACCESS_ID); 866 break; 867 case PGM_STACK_FULL: 868 case PGM_STACK_EMPTY: 869 case PGM_STACK_SPECIFICATION: 870 case PGM_STACK_TYPE: 871 case PGM_STACK_OPERATION: 872 case PGM_TRACE_TABEL: 873 case PGM_CRYPTO_OPERATION: 874 nullifying = true; 875 break; 876 } 877 878 if (pgm_info.code & PGM_PER) { 879 rc |= put_guest_lc(vcpu, pgm_info.per_code, 880 (u8 *) __LC_PER_CODE); 881 rc |= put_guest_lc(vcpu, pgm_info.per_atmid, 882 (u8 *)__LC_PER_ATMID); 883 rc |= put_guest_lc(vcpu, pgm_info.per_address, 884 (u64 *) __LC_PER_ADDRESS); 885 rc |= put_guest_lc(vcpu, pgm_info.per_access_id, 886 (u8 *) __LC_PER_ACCESS_ID); 887 } 888 889 if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND)) 890 kvm_s390_rewind_psw(vcpu, ilen); 891 892 /* bit 1+2 of the target are the ilc, so we can directly use ilen */ 893 rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC); 894 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea, 895 (u64 *) __LC_LAST_BREAK); 896 rc |= put_guest_lc(vcpu, pgm_info.code, 897 (u16 *)__LC_PGM_INT_CODE); 898 rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW, 899 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 900 rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW, 901 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 902 return rc ? -EFAULT : 0; 903 } 904 905 static int __must_check __deliver_service(struct kvm_vcpu *vcpu) 906 { 907 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 908 struct kvm_s390_ext_info ext; 909 int rc = 0; 910 911 spin_lock(&fi->lock); 912 if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) { 913 spin_unlock(&fi->lock); 914 return 0; 915 } 916 ext = fi->srv_signal; 917 memset(&fi->srv_signal, 0, sizeof(ext)); 918 clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 919 spin_unlock(&fi->lock); 920 921 VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x", 922 ext.ext_params); 923 vcpu->stat.deliver_service_signal++; 924 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, 925 ext.ext_params, 0); 926 927 rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE); 928 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 929 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 930 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 931 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 932 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 933 rc |= put_guest_lc(vcpu, ext.ext_params, 934 (u32 *)__LC_EXT_PARAMS); 935 936 return rc ? -EFAULT : 0; 937 } 938 939 static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu) 940 { 941 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 942 struct kvm_s390_interrupt_info *inti; 943 int rc = 0; 944 945 spin_lock(&fi->lock); 946 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT], 947 struct kvm_s390_interrupt_info, 948 list); 949 if (inti) { 950 list_del(&inti->list); 951 fi->counters[FIRQ_CNTR_PFAULT] -= 1; 952 } 953 if (list_empty(&fi->lists[FIRQ_LIST_PFAULT])) 954 clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 955 spin_unlock(&fi->lock); 956 957 if (inti) { 958 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 959 KVM_S390_INT_PFAULT_DONE, 0, 960 inti->ext.ext_params2); 961 VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx", 962 inti->ext.ext_params2); 963 964 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 965 (u16 *)__LC_EXT_INT_CODE); 966 rc |= put_guest_lc(vcpu, PFAULT_DONE, 967 (u16 *)__LC_EXT_CPU_ADDR); 968 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 969 &vcpu->arch.sie_block->gpsw, 970 sizeof(psw_t)); 971 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 972 &vcpu->arch.sie_block->gpsw, 973 sizeof(psw_t)); 974 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 975 (u64 *)__LC_EXT_PARAMS2); 976 kfree(inti); 977 } 978 return rc ? -EFAULT : 0; 979 } 980 981 static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu) 982 { 983 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 984 struct kvm_s390_interrupt_info *inti; 985 int rc = 0; 986 987 spin_lock(&fi->lock); 988 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO], 989 struct kvm_s390_interrupt_info, 990 list); 991 if (inti) { 992 VCPU_EVENT(vcpu, 4, 993 "deliver: virtio parm: 0x%x,parm64: 0x%llx", 994 inti->ext.ext_params, inti->ext.ext_params2); 995 vcpu->stat.deliver_virtio++; 996 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 997 inti->type, 998 inti->ext.ext_params, 999 inti->ext.ext_params2); 1000 list_del(&inti->list); 1001 fi->counters[FIRQ_CNTR_VIRTIO] -= 1; 1002 } 1003 if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO])) 1004 clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1005 spin_unlock(&fi->lock); 1006 1007 if (inti) { 1008 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 1009 (u16 *)__LC_EXT_INT_CODE); 1010 rc |= put_guest_lc(vcpu, VIRTIO_PARAM, 1011 (u16 *)__LC_EXT_CPU_ADDR); 1012 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 1013 &vcpu->arch.sie_block->gpsw, 1014 sizeof(psw_t)); 1015 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 1016 &vcpu->arch.sie_block->gpsw, 1017 sizeof(psw_t)); 1018 rc |= put_guest_lc(vcpu, inti->ext.ext_params, 1019 (u32 *)__LC_EXT_PARAMS); 1020 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 1021 (u64 *)__LC_EXT_PARAMS2); 1022 kfree(inti); 1023 } 1024 return rc ? -EFAULT : 0; 1025 } 1026 1027 static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io) 1028 { 1029 int rc; 1030 1031 rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID); 1032 rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR); 1033 rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM); 1034 rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD); 1035 rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW, 1036 &vcpu->arch.sie_block->gpsw, 1037 sizeof(psw_t)); 1038 rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW, 1039 &vcpu->arch.sie_block->gpsw, 1040 sizeof(psw_t)); 1041 return rc ? -EFAULT : 0; 1042 } 1043 1044 static int __must_check __deliver_io(struct kvm_vcpu *vcpu, 1045 unsigned long irq_type) 1046 { 1047 struct list_head *isc_list; 1048 struct kvm_s390_float_interrupt *fi; 1049 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1050 struct kvm_s390_interrupt_info *inti = NULL; 1051 struct kvm_s390_io_info io; 1052 u32 isc; 1053 int rc = 0; 1054 1055 fi = &vcpu->kvm->arch.float_int; 1056 1057 spin_lock(&fi->lock); 1058 isc = irq_type_to_isc(irq_type); 1059 isc_list = &fi->lists[isc]; 1060 inti = list_first_entry_or_null(isc_list, 1061 struct kvm_s390_interrupt_info, 1062 list); 1063 if (inti) { 1064 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1065 VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)"); 1066 else 1067 VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x", 1068 inti->io.subchannel_id >> 8, 1069 inti->io.subchannel_id >> 1 & 0x3, 1070 inti->io.subchannel_nr); 1071 1072 vcpu->stat.deliver_io++; 1073 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1074 inti->type, 1075 ((__u32)inti->io.subchannel_id << 16) | 1076 inti->io.subchannel_nr, 1077 ((__u64)inti->io.io_int_parm << 32) | 1078 inti->io.io_int_word); 1079 list_del(&inti->list); 1080 fi->counters[FIRQ_CNTR_IO] -= 1; 1081 } 1082 if (list_empty(isc_list)) 1083 clear_bit(irq_type, &fi->pending_irqs); 1084 spin_unlock(&fi->lock); 1085 1086 if (inti) { 1087 rc = __do_deliver_io(vcpu, &(inti->io)); 1088 kfree(inti); 1089 goto out; 1090 } 1091 1092 if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) { 1093 /* 1094 * in case an adapter interrupt was not delivered 1095 * in SIE context KVM will handle the delivery 1096 */ 1097 VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc); 1098 memset(&io, 0, sizeof(io)); 1099 io.io_int_word = isc_to_int_word(isc); 1100 vcpu->stat.deliver_io++; 1101 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1102 KVM_S390_INT_IO(1, 0, 0, 0), 1103 ((__u32)io.subchannel_id << 16) | 1104 io.subchannel_nr, 1105 ((__u64)io.io_int_parm << 32) | 1106 io.io_int_word); 1107 rc = __do_deliver_io(vcpu, &io); 1108 } 1109 out: 1110 return rc; 1111 } 1112 1113 /* Check whether an external call is pending (deliverable or not) */ 1114 int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu) 1115 { 1116 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1117 1118 if (!sclp.has_sigpif) 1119 return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 1120 1121 return sca_ext_call_pending(vcpu, NULL); 1122 } 1123 1124 int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop) 1125 { 1126 if (deliverable_irqs(vcpu)) 1127 return 1; 1128 1129 if (kvm_cpu_has_pending_timer(vcpu)) 1130 return 1; 1131 1132 /* external call pending and deliverable */ 1133 if (kvm_s390_ext_call_pending(vcpu) && 1134 !psw_extint_disabled(vcpu) && 1135 (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 1136 return 1; 1137 1138 if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu)) 1139 return 1; 1140 return 0; 1141 } 1142 1143 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 1144 { 1145 return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu); 1146 } 1147 1148 static u64 __calculate_sltime(struct kvm_vcpu *vcpu) 1149 { 1150 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 1151 const u64 ckc = vcpu->arch.sie_block->ckc; 1152 u64 cputm, sltime = 0; 1153 1154 if (ckc_interrupts_enabled(vcpu)) { 1155 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 1156 if ((s64)now < (s64)ckc) 1157 sltime = tod_to_ns((s64)ckc - (s64)now); 1158 } else if (now < ckc) { 1159 sltime = tod_to_ns(ckc - now); 1160 } 1161 /* already expired */ 1162 if (!sltime) 1163 return 0; 1164 if (cpu_timer_interrupts_enabled(vcpu)) { 1165 cputm = kvm_s390_get_cpu_timer(vcpu); 1166 /* already expired? */ 1167 if (cputm >> 63) 1168 return 0; 1169 return min(sltime, tod_to_ns(cputm)); 1170 } 1171 } else if (cpu_timer_interrupts_enabled(vcpu)) { 1172 sltime = kvm_s390_get_cpu_timer(vcpu); 1173 /* already expired? */ 1174 if (sltime >> 63) 1175 return 0; 1176 } 1177 return sltime; 1178 } 1179 1180 int kvm_s390_handle_wait(struct kvm_vcpu *vcpu) 1181 { 1182 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1183 u64 sltime; 1184 1185 vcpu->stat.exit_wait_state++; 1186 1187 /* fast path */ 1188 if (kvm_arch_vcpu_runnable(vcpu)) 1189 return 0; 1190 1191 if (psw_interrupts_disabled(vcpu)) { 1192 VCPU_EVENT(vcpu, 3, "%s", "disabled wait"); 1193 return -EOPNOTSUPP; /* disabled wait */ 1194 } 1195 1196 if (gi->origin && 1197 (gisa_get_ipm_or_restore_iam(gi) & 1198 vcpu->arch.sie_block->gcr[6] >> 24)) 1199 return 0; 1200 1201 if (!ckc_interrupts_enabled(vcpu) && 1202 !cpu_timer_interrupts_enabled(vcpu)) { 1203 VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer"); 1204 __set_cpu_idle(vcpu); 1205 goto no_timer; 1206 } 1207 1208 sltime = __calculate_sltime(vcpu); 1209 if (!sltime) 1210 return 0; 1211 1212 __set_cpu_idle(vcpu); 1213 hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL); 1214 VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime); 1215 no_timer: 1216 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 1217 kvm_vcpu_block(vcpu); 1218 __unset_cpu_idle(vcpu); 1219 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1220 1221 hrtimer_cancel(&vcpu->arch.ckc_timer); 1222 return 0; 1223 } 1224 1225 void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu) 1226 { 1227 vcpu->valid_wakeup = true; 1228 kvm_vcpu_wake_up(vcpu); 1229 1230 /* 1231 * The VCPU might not be sleeping but rather executing VSIE. Let's 1232 * kick it, so it leaves the SIE to process the request. 1233 */ 1234 kvm_s390_vsie_kick(vcpu); 1235 } 1236 1237 enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer) 1238 { 1239 struct kvm_vcpu *vcpu; 1240 u64 sltime; 1241 1242 vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer); 1243 sltime = __calculate_sltime(vcpu); 1244 1245 /* 1246 * If the monotonic clock runs faster than the tod clock we might be 1247 * woken up too early and have to go back to sleep to avoid deadlocks. 1248 */ 1249 if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime))) 1250 return HRTIMER_RESTART; 1251 kvm_s390_vcpu_wakeup(vcpu); 1252 return HRTIMER_NORESTART; 1253 } 1254 1255 void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu) 1256 { 1257 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1258 1259 spin_lock(&li->lock); 1260 li->pending_irqs = 0; 1261 bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS); 1262 memset(&li->irq, 0, sizeof(li->irq)); 1263 spin_unlock(&li->lock); 1264 1265 sca_clear_ext_call(vcpu); 1266 } 1267 1268 int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu) 1269 { 1270 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1271 int rc = 0; 1272 unsigned long irq_type; 1273 unsigned long irqs; 1274 1275 __reset_intercept_indicators(vcpu); 1276 1277 /* pending ckc conditions might have been invalidated */ 1278 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1279 if (ckc_irq_pending(vcpu)) 1280 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1281 1282 /* pending cpu timer conditions might have been invalidated */ 1283 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1284 if (cpu_timer_irq_pending(vcpu)) 1285 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1286 1287 while ((irqs = deliverable_irqs(vcpu)) && !rc) { 1288 /* bits are in the reverse order of interrupt priority */ 1289 irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT); 1290 switch (irq_type) { 1291 case IRQ_PEND_IO_ISC_0: 1292 case IRQ_PEND_IO_ISC_1: 1293 case IRQ_PEND_IO_ISC_2: 1294 case IRQ_PEND_IO_ISC_3: 1295 case IRQ_PEND_IO_ISC_4: 1296 case IRQ_PEND_IO_ISC_5: 1297 case IRQ_PEND_IO_ISC_6: 1298 case IRQ_PEND_IO_ISC_7: 1299 rc = __deliver_io(vcpu, irq_type); 1300 break; 1301 case IRQ_PEND_MCHK_EX: 1302 case IRQ_PEND_MCHK_REP: 1303 rc = __deliver_machine_check(vcpu); 1304 break; 1305 case IRQ_PEND_PROG: 1306 rc = __deliver_prog(vcpu); 1307 break; 1308 case IRQ_PEND_EXT_EMERGENCY: 1309 rc = __deliver_emergency_signal(vcpu); 1310 break; 1311 case IRQ_PEND_EXT_EXTERNAL: 1312 rc = __deliver_external_call(vcpu); 1313 break; 1314 case IRQ_PEND_EXT_CLOCK_COMP: 1315 rc = __deliver_ckc(vcpu); 1316 break; 1317 case IRQ_PEND_EXT_CPU_TIMER: 1318 rc = __deliver_cpu_timer(vcpu); 1319 break; 1320 case IRQ_PEND_RESTART: 1321 rc = __deliver_restart(vcpu); 1322 break; 1323 case IRQ_PEND_SET_PREFIX: 1324 rc = __deliver_set_prefix(vcpu); 1325 break; 1326 case IRQ_PEND_PFAULT_INIT: 1327 rc = __deliver_pfault_init(vcpu); 1328 break; 1329 case IRQ_PEND_EXT_SERVICE: 1330 rc = __deliver_service(vcpu); 1331 break; 1332 case IRQ_PEND_PFAULT_DONE: 1333 rc = __deliver_pfault_done(vcpu); 1334 break; 1335 case IRQ_PEND_VIRTIO: 1336 rc = __deliver_virtio(vcpu); 1337 break; 1338 default: 1339 WARN_ONCE(1, "Unknown pending irq type %ld", irq_type); 1340 clear_bit(irq_type, &li->pending_irqs); 1341 } 1342 } 1343 1344 set_intercept_indicators(vcpu); 1345 1346 return rc; 1347 } 1348 1349 static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1350 { 1351 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1352 1353 vcpu->stat.inject_program++; 1354 VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code); 1355 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 1356 irq->u.pgm.code, 0); 1357 1358 if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) { 1359 /* auto detection if no valid ILC was given */ 1360 irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK; 1361 irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu); 1362 irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID; 1363 } 1364 1365 if (irq->u.pgm.code == PGM_PER) { 1366 li->irq.pgm.code |= PGM_PER; 1367 li->irq.pgm.flags = irq->u.pgm.flags; 1368 /* only modify PER related information */ 1369 li->irq.pgm.per_address = irq->u.pgm.per_address; 1370 li->irq.pgm.per_code = irq->u.pgm.per_code; 1371 li->irq.pgm.per_atmid = irq->u.pgm.per_atmid; 1372 li->irq.pgm.per_access_id = irq->u.pgm.per_access_id; 1373 } else if (!(irq->u.pgm.code & PGM_PER)) { 1374 li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) | 1375 irq->u.pgm.code; 1376 li->irq.pgm.flags = irq->u.pgm.flags; 1377 /* only modify non-PER information */ 1378 li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code; 1379 li->irq.pgm.mon_code = irq->u.pgm.mon_code; 1380 li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code; 1381 li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr; 1382 li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id; 1383 li->irq.pgm.op_access_id = irq->u.pgm.op_access_id; 1384 } else { 1385 li->irq.pgm = irq->u.pgm; 1386 } 1387 set_bit(IRQ_PEND_PROG, &li->pending_irqs); 1388 return 0; 1389 } 1390 1391 static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1392 { 1393 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1394 1395 vcpu->stat.inject_pfault_init++; 1396 VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx", 1397 irq->u.ext.ext_params2); 1398 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT, 1399 irq->u.ext.ext_params, 1400 irq->u.ext.ext_params2); 1401 1402 li->irq.ext = irq->u.ext; 1403 set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 1404 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1405 return 0; 1406 } 1407 1408 static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1409 { 1410 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1411 struct kvm_s390_extcall_info *extcall = &li->irq.extcall; 1412 uint16_t src_id = irq->u.extcall.code; 1413 1414 vcpu->stat.inject_external_call++; 1415 VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u", 1416 src_id); 1417 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL, 1418 src_id, 0); 1419 1420 /* sending vcpu invalid */ 1421 if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL) 1422 return -EINVAL; 1423 1424 if (sclp.has_sigpif) 1425 return sca_inject_ext_call(vcpu, src_id); 1426 1427 if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs)) 1428 return -EBUSY; 1429 *extcall = irq->u.extcall; 1430 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1431 return 0; 1432 } 1433 1434 static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1435 { 1436 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1437 struct kvm_s390_prefix_info *prefix = &li->irq.prefix; 1438 1439 vcpu->stat.inject_set_prefix++; 1440 VCPU_EVENT(vcpu, 3, "inject: set prefix to %x", 1441 irq->u.prefix.address); 1442 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX, 1443 irq->u.prefix.address, 0); 1444 1445 if (!is_vcpu_stopped(vcpu)) 1446 return -EBUSY; 1447 1448 *prefix = irq->u.prefix; 1449 set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 1450 return 0; 1451 } 1452 1453 #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS) 1454 static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1455 { 1456 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1457 struct kvm_s390_stop_info *stop = &li->irq.stop; 1458 int rc = 0; 1459 1460 vcpu->stat.inject_stop_signal++; 1461 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0); 1462 1463 if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS) 1464 return -EINVAL; 1465 1466 if (is_vcpu_stopped(vcpu)) { 1467 if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS) 1468 rc = kvm_s390_store_status_unloaded(vcpu, 1469 KVM_S390_STORE_STATUS_NOADDR); 1470 return rc; 1471 } 1472 1473 if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs)) 1474 return -EBUSY; 1475 stop->flags = irq->u.stop.flags; 1476 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 1477 return 0; 1478 } 1479 1480 static int __inject_sigp_restart(struct kvm_vcpu *vcpu) 1481 { 1482 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1483 1484 vcpu->stat.inject_restart++; 1485 VCPU_EVENT(vcpu, 3, "%s", "inject: restart int"); 1486 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 1487 1488 set_bit(IRQ_PEND_RESTART, &li->pending_irqs); 1489 return 0; 1490 } 1491 1492 static int __inject_sigp_emergency(struct kvm_vcpu *vcpu, 1493 struct kvm_s390_irq *irq) 1494 { 1495 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1496 1497 vcpu->stat.inject_emergency_signal++; 1498 VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u", 1499 irq->u.emerg.code); 1500 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 1501 irq->u.emerg.code, 0); 1502 1503 /* sending vcpu invalid */ 1504 if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL) 1505 return -EINVAL; 1506 1507 set_bit(irq->u.emerg.code, li->sigp_emerg_pending); 1508 set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 1509 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1510 return 0; 1511 } 1512 1513 static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1514 { 1515 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1516 struct kvm_s390_mchk_info *mchk = &li->irq.mchk; 1517 1518 vcpu->stat.inject_mchk++; 1519 VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx", 1520 irq->u.mchk.mcic); 1521 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0, 1522 irq->u.mchk.mcic); 1523 1524 /* 1525 * Because repressible machine checks can be indicated along with 1526 * exigent machine checks (PoP, Chapter 11, Interruption action) 1527 * we need to combine cr14, mcic and external damage code. 1528 * Failing storage address and the logout area should not be or'ed 1529 * together, we just indicate the last occurrence of the corresponding 1530 * machine check 1531 */ 1532 mchk->cr14 |= irq->u.mchk.cr14; 1533 mchk->mcic |= irq->u.mchk.mcic; 1534 mchk->ext_damage_code |= irq->u.mchk.ext_damage_code; 1535 mchk->failing_storage_address = irq->u.mchk.failing_storage_address; 1536 memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout, 1537 sizeof(mchk->fixed_logout)); 1538 if (mchk->mcic & MCHK_EX_MASK) 1539 set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 1540 else if (mchk->mcic & MCHK_REP_MASK) 1541 set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 1542 return 0; 1543 } 1544 1545 static int __inject_ckc(struct kvm_vcpu *vcpu) 1546 { 1547 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1548 1549 vcpu->stat.inject_ckc++; 1550 VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external"); 1551 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 1552 0, 0); 1553 1554 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1555 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1556 return 0; 1557 } 1558 1559 static int __inject_cpu_timer(struct kvm_vcpu *vcpu) 1560 { 1561 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1562 1563 vcpu->stat.inject_cputm++; 1564 VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external"); 1565 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 1566 0, 0); 1567 1568 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1569 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1570 return 0; 1571 } 1572 1573 static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm, 1574 int isc, u32 schid) 1575 { 1576 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1577 struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1578 struct kvm_s390_interrupt_info *iter; 1579 u16 id = (schid & 0xffff0000U) >> 16; 1580 u16 nr = schid & 0x0000ffffU; 1581 1582 spin_lock(&fi->lock); 1583 list_for_each_entry(iter, isc_list, list) { 1584 if (schid && (id != iter->io.subchannel_id || 1585 nr != iter->io.subchannel_nr)) 1586 continue; 1587 /* found an appropriate entry */ 1588 list_del_init(&iter->list); 1589 fi->counters[FIRQ_CNTR_IO] -= 1; 1590 if (list_empty(isc_list)) 1591 clear_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1592 spin_unlock(&fi->lock); 1593 return iter; 1594 } 1595 spin_unlock(&fi->lock); 1596 return NULL; 1597 } 1598 1599 static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm, 1600 u64 isc_mask, u32 schid) 1601 { 1602 struct kvm_s390_interrupt_info *inti = NULL; 1603 int isc; 1604 1605 for (isc = 0; isc <= MAX_ISC && !inti; isc++) { 1606 if (isc_mask & isc_to_isc_bits(isc)) 1607 inti = get_io_int(kvm, isc, schid); 1608 } 1609 return inti; 1610 } 1611 1612 static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid) 1613 { 1614 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1615 unsigned long active_mask; 1616 int isc; 1617 1618 if (schid) 1619 goto out; 1620 if (!gi->origin) 1621 goto out; 1622 1623 active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32; 1624 while (active_mask) { 1625 isc = __fls(active_mask) ^ (BITS_PER_LONG - 1); 1626 if (gisa_tac_ipm_gisc(gi->origin, isc)) 1627 return isc; 1628 clear_bit_inv(isc, &active_mask); 1629 } 1630 out: 1631 return -EINVAL; 1632 } 1633 1634 /* 1635 * Dequeue and return an I/O interrupt matching any of the interruption 1636 * subclasses as designated by the isc mask in cr6 and the schid (if != 0). 1637 * Take into account the interrupts pending in the interrupt list and in GISA. 1638 * 1639 * Note that for a guest that does not enable I/O interrupts 1640 * but relies on TPI, a flood of classic interrupts may starve 1641 * out adapter interrupts on the same isc. Linux does not do 1642 * that, and it is possible to work around the issue by configuring 1643 * different iscs for classic and adapter interrupts in the guest, 1644 * but we may want to revisit this in the future. 1645 */ 1646 struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm, 1647 u64 isc_mask, u32 schid) 1648 { 1649 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1650 struct kvm_s390_interrupt_info *inti, *tmp_inti; 1651 int isc; 1652 1653 inti = get_top_io_int(kvm, isc_mask, schid); 1654 1655 isc = get_top_gisa_isc(kvm, isc_mask, schid); 1656 if (isc < 0) 1657 /* no AI in GISA */ 1658 goto out; 1659 1660 if (!inti) 1661 /* AI in GISA but no classical IO int */ 1662 goto gisa_out; 1663 1664 /* both types of interrupts present */ 1665 if (int_word_to_isc(inti->io.io_int_word) <= isc) { 1666 /* classical IO int with higher priority */ 1667 gisa_set_ipm_gisc(gi->origin, isc); 1668 goto out; 1669 } 1670 gisa_out: 1671 tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL); 1672 if (tmp_inti) { 1673 tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0); 1674 tmp_inti->io.io_int_word = isc_to_int_word(isc); 1675 if (inti) 1676 kvm_s390_reinject_io_int(kvm, inti); 1677 inti = tmp_inti; 1678 } else 1679 gisa_set_ipm_gisc(gi->origin, isc); 1680 out: 1681 return inti; 1682 } 1683 1684 #define SCCB_MASK 0xFFFFFFF8 1685 #define SCCB_EVENT_PENDING 0x3 1686 1687 static int __inject_service(struct kvm *kvm, 1688 struct kvm_s390_interrupt_info *inti) 1689 { 1690 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1691 1692 kvm->stat.inject_service_signal++; 1693 spin_lock(&fi->lock); 1694 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING; 1695 /* 1696 * Early versions of the QEMU s390 bios will inject several 1697 * service interrupts after another without handling a 1698 * condition code indicating busy. 1699 * We will silently ignore those superfluous sccb values. 1700 * A future version of QEMU will take care of serialization 1701 * of servc requests 1702 */ 1703 if (fi->srv_signal.ext_params & SCCB_MASK) 1704 goto out; 1705 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK; 1706 set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 1707 out: 1708 spin_unlock(&fi->lock); 1709 kfree(inti); 1710 return 0; 1711 } 1712 1713 static int __inject_virtio(struct kvm *kvm, 1714 struct kvm_s390_interrupt_info *inti) 1715 { 1716 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1717 1718 kvm->stat.inject_virtio++; 1719 spin_lock(&fi->lock); 1720 if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) { 1721 spin_unlock(&fi->lock); 1722 return -EBUSY; 1723 } 1724 fi->counters[FIRQ_CNTR_VIRTIO] += 1; 1725 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]); 1726 set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1727 spin_unlock(&fi->lock); 1728 return 0; 1729 } 1730 1731 static int __inject_pfault_done(struct kvm *kvm, 1732 struct kvm_s390_interrupt_info *inti) 1733 { 1734 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1735 1736 kvm->stat.inject_pfault_done++; 1737 spin_lock(&fi->lock); 1738 if (fi->counters[FIRQ_CNTR_PFAULT] >= 1739 (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) { 1740 spin_unlock(&fi->lock); 1741 return -EBUSY; 1742 } 1743 fi->counters[FIRQ_CNTR_PFAULT] += 1; 1744 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]); 1745 set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 1746 spin_unlock(&fi->lock); 1747 return 0; 1748 } 1749 1750 #define CR_PENDING_SUBCLASS 28 1751 static int __inject_float_mchk(struct kvm *kvm, 1752 struct kvm_s390_interrupt_info *inti) 1753 { 1754 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1755 1756 kvm->stat.inject_float_mchk++; 1757 spin_lock(&fi->lock); 1758 fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS); 1759 fi->mchk.mcic |= inti->mchk.mcic; 1760 set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs); 1761 spin_unlock(&fi->lock); 1762 kfree(inti); 1763 return 0; 1764 } 1765 1766 static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1767 { 1768 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1769 struct kvm_s390_float_interrupt *fi; 1770 struct list_head *list; 1771 int isc; 1772 1773 kvm->stat.inject_io++; 1774 isc = int_word_to_isc(inti->io.io_int_word); 1775 1776 if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) { 1777 VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc); 1778 gisa_set_ipm_gisc(gi->origin, isc); 1779 kfree(inti); 1780 return 0; 1781 } 1782 1783 fi = &kvm->arch.float_int; 1784 spin_lock(&fi->lock); 1785 if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) { 1786 spin_unlock(&fi->lock); 1787 return -EBUSY; 1788 } 1789 fi->counters[FIRQ_CNTR_IO] += 1; 1790 1791 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1792 VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)"); 1793 else 1794 VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x", 1795 inti->io.subchannel_id >> 8, 1796 inti->io.subchannel_id >> 1 & 0x3, 1797 inti->io.subchannel_nr); 1798 list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1799 list_add_tail(&inti->list, list); 1800 set_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1801 spin_unlock(&fi->lock); 1802 return 0; 1803 } 1804 1805 /* 1806 * Find a destination VCPU for a floating irq and kick it. 1807 */ 1808 static void __floating_irq_kick(struct kvm *kvm, u64 type) 1809 { 1810 struct kvm_vcpu *dst_vcpu; 1811 int sigcpu, online_vcpus, nr_tries = 0; 1812 1813 online_vcpus = atomic_read(&kvm->online_vcpus); 1814 if (!online_vcpus) 1815 return; 1816 1817 /* find idle VCPUs first, then round robin */ 1818 sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus); 1819 if (sigcpu == online_vcpus) { 1820 do { 1821 sigcpu = kvm->arch.float_int.next_rr_cpu++; 1822 kvm->arch.float_int.next_rr_cpu %= online_vcpus; 1823 /* avoid endless loops if all vcpus are stopped */ 1824 if (nr_tries++ >= online_vcpus) 1825 return; 1826 } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu))); 1827 } 1828 dst_vcpu = kvm_get_vcpu(kvm, sigcpu); 1829 1830 /* make the VCPU drop out of the SIE, or wake it up if sleeping */ 1831 switch (type) { 1832 case KVM_S390_MCHK: 1833 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT); 1834 break; 1835 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1836 if (!(type & KVM_S390_INT_IO_AI_MASK && 1837 kvm->arch.gisa_int.origin)) 1838 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT); 1839 break; 1840 default: 1841 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT); 1842 break; 1843 } 1844 kvm_s390_vcpu_wakeup(dst_vcpu); 1845 } 1846 1847 static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1848 { 1849 u64 type = READ_ONCE(inti->type); 1850 int rc; 1851 1852 switch (type) { 1853 case KVM_S390_MCHK: 1854 rc = __inject_float_mchk(kvm, inti); 1855 break; 1856 case KVM_S390_INT_VIRTIO: 1857 rc = __inject_virtio(kvm, inti); 1858 break; 1859 case KVM_S390_INT_SERVICE: 1860 rc = __inject_service(kvm, inti); 1861 break; 1862 case KVM_S390_INT_PFAULT_DONE: 1863 rc = __inject_pfault_done(kvm, inti); 1864 break; 1865 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1866 rc = __inject_io(kvm, inti); 1867 break; 1868 default: 1869 rc = -EINVAL; 1870 } 1871 if (rc) 1872 return rc; 1873 1874 __floating_irq_kick(kvm, type); 1875 return 0; 1876 } 1877 1878 int kvm_s390_inject_vm(struct kvm *kvm, 1879 struct kvm_s390_interrupt *s390int) 1880 { 1881 struct kvm_s390_interrupt_info *inti; 1882 int rc; 1883 1884 inti = kzalloc(sizeof(*inti), GFP_KERNEL); 1885 if (!inti) 1886 return -ENOMEM; 1887 1888 inti->type = s390int->type; 1889 switch (inti->type) { 1890 case KVM_S390_INT_VIRTIO: 1891 VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx", 1892 s390int->parm, s390int->parm64); 1893 inti->ext.ext_params = s390int->parm; 1894 inti->ext.ext_params2 = s390int->parm64; 1895 break; 1896 case KVM_S390_INT_SERVICE: 1897 VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm); 1898 inti->ext.ext_params = s390int->parm; 1899 break; 1900 case KVM_S390_INT_PFAULT_DONE: 1901 inti->ext.ext_params2 = s390int->parm64; 1902 break; 1903 case KVM_S390_MCHK: 1904 VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx", 1905 s390int->parm64); 1906 inti->mchk.cr14 = s390int->parm; /* upper bits are not used */ 1907 inti->mchk.mcic = s390int->parm64; 1908 break; 1909 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1910 inti->io.subchannel_id = s390int->parm >> 16; 1911 inti->io.subchannel_nr = s390int->parm & 0x0000ffffu; 1912 inti->io.io_int_parm = s390int->parm64 >> 32; 1913 inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull; 1914 break; 1915 default: 1916 kfree(inti); 1917 return -EINVAL; 1918 } 1919 trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64, 1920 2); 1921 1922 rc = __inject_vm(kvm, inti); 1923 if (rc) 1924 kfree(inti); 1925 return rc; 1926 } 1927 1928 int kvm_s390_reinject_io_int(struct kvm *kvm, 1929 struct kvm_s390_interrupt_info *inti) 1930 { 1931 return __inject_vm(kvm, inti); 1932 } 1933 1934 int s390int_to_s390irq(struct kvm_s390_interrupt *s390int, 1935 struct kvm_s390_irq *irq) 1936 { 1937 irq->type = s390int->type; 1938 switch (irq->type) { 1939 case KVM_S390_PROGRAM_INT: 1940 if (s390int->parm & 0xffff0000) 1941 return -EINVAL; 1942 irq->u.pgm.code = s390int->parm; 1943 break; 1944 case KVM_S390_SIGP_SET_PREFIX: 1945 irq->u.prefix.address = s390int->parm; 1946 break; 1947 case KVM_S390_SIGP_STOP: 1948 irq->u.stop.flags = s390int->parm; 1949 break; 1950 case KVM_S390_INT_EXTERNAL_CALL: 1951 if (s390int->parm & 0xffff0000) 1952 return -EINVAL; 1953 irq->u.extcall.code = s390int->parm; 1954 break; 1955 case KVM_S390_INT_EMERGENCY: 1956 if (s390int->parm & 0xffff0000) 1957 return -EINVAL; 1958 irq->u.emerg.code = s390int->parm; 1959 break; 1960 case KVM_S390_MCHK: 1961 irq->u.mchk.mcic = s390int->parm64; 1962 break; 1963 case KVM_S390_INT_PFAULT_INIT: 1964 irq->u.ext.ext_params = s390int->parm; 1965 irq->u.ext.ext_params2 = s390int->parm64; 1966 break; 1967 case KVM_S390_RESTART: 1968 case KVM_S390_INT_CLOCK_COMP: 1969 case KVM_S390_INT_CPU_TIMER: 1970 break; 1971 default: 1972 return -EINVAL; 1973 } 1974 return 0; 1975 } 1976 1977 int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu) 1978 { 1979 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1980 1981 return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 1982 } 1983 1984 void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu) 1985 { 1986 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1987 1988 spin_lock(&li->lock); 1989 li->irq.stop.flags = 0; 1990 clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 1991 spin_unlock(&li->lock); 1992 } 1993 1994 static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1995 { 1996 int rc; 1997 1998 switch (irq->type) { 1999 case KVM_S390_PROGRAM_INT: 2000 rc = __inject_prog(vcpu, irq); 2001 break; 2002 case KVM_S390_SIGP_SET_PREFIX: 2003 rc = __inject_set_prefix(vcpu, irq); 2004 break; 2005 case KVM_S390_SIGP_STOP: 2006 rc = __inject_sigp_stop(vcpu, irq); 2007 break; 2008 case KVM_S390_RESTART: 2009 rc = __inject_sigp_restart(vcpu); 2010 break; 2011 case KVM_S390_INT_CLOCK_COMP: 2012 rc = __inject_ckc(vcpu); 2013 break; 2014 case KVM_S390_INT_CPU_TIMER: 2015 rc = __inject_cpu_timer(vcpu); 2016 break; 2017 case KVM_S390_INT_EXTERNAL_CALL: 2018 rc = __inject_extcall(vcpu, irq); 2019 break; 2020 case KVM_S390_INT_EMERGENCY: 2021 rc = __inject_sigp_emergency(vcpu, irq); 2022 break; 2023 case KVM_S390_MCHK: 2024 rc = __inject_mchk(vcpu, irq); 2025 break; 2026 case KVM_S390_INT_PFAULT_INIT: 2027 rc = __inject_pfault_init(vcpu, irq); 2028 break; 2029 case KVM_S390_INT_VIRTIO: 2030 case KVM_S390_INT_SERVICE: 2031 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2032 default: 2033 rc = -EINVAL; 2034 } 2035 2036 return rc; 2037 } 2038 2039 int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 2040 { 2041 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2042 int rc; 2043 2044 spin_lock(&li->lock); 2045 rc = do_inject_vcpu(vcpu, irq); 2046 spin_unlock(&li->lock); 2047 if (!rc) 2048 kvm_s390_vcpu_wakeup(vcpu); 2049 return rc; 2050 } 2051 2052 static inline void clear_irq_list(struct list_head *_list) 2053 { 2054 struct kvm_s390_interrupt_info *inti, *n; 2055 2056 list_for_each_entry_safe(inti, n, _list, list) { 2057 list_del(&inti->list); 2058 kfree(inti); 2059 } 2060 } 2061 2062 static void inti_to_irq(struct kvm_s390_interrupt_info *inti, 2063 struct kvm_s390_irq *irq) 2064 { 2065 irq->type = inti->type; 2066 switch (inti->type) { 2067 case KVM_S390_INT_PFAULT_INIT: 2068 case KVM_S390_INT_PFAULT_DONE: 2069 case KVM_S390_INT_VIRTIO: 2070 irq->u.ext = inti->ext; 2071 break; 2072 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2073 irq->u.io = inti->io; 2074 break; 2075 } 2076 } 2077 2078 void kvm_s390_clear_float_irqs(struct kvm *kvm) 2079 { 2080 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2081 int i; 2082 2083 spin_lock(&fi->lock); 2084 fi->pending_irqs = 0; 2085 memset(&fi->srv_signal, 0, sizeof(fi->srv_signal)); 2086 memset(&fi->mchk, 0, sizeof(fi->mchk)); 2087 for (i = 0; i < FIRQ_LIST_COUNT; i++) 2088 clear_irq_list(&fi->lists[i]); 2089 for (i = 0; i < FIRQ_MAX_COUNT; i++) 2090 fi->counters[i] = 0; 2091 spin_unlock(&fi->lock); 2092 kvm_s390_gisa_clear(kvm); 2093 }; 2094 2095 static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len) 2096 { 2097 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 2098 struct kvm_s390_interrupt_info *inti; 2099 struct kvm_s390_float_interrupt *fi; 2100 struct kvm_s390_irq *buf; 2101 struct kvm_s390_irq *irq; 2102 int max_irqs; 2103 int ret = 0; 2104 int n = 0; 2105 int i; 2106 2107 if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0) 2108 return -EINVAL; 2109 2110 /* 2111 * We are already using -ENOMEM to signal 2112 * userspace it may retry with a bigger buffer, 2113 * so we need to use something else for this case 2114 */ 2115 buf = vzalloc(len); 2116 if (!buf) 2117 return -ENOBUFS; 2118 2119 max_irqs = len / sizeof(struct kvm_s390_irq); 2120 2121 if (gi->origin && gisa_get_ipm(gi->origin)) { 2122 for (i = 0; i <= MAX_ISC; i++) { 2123 if (n == max_irqs) { 2124 /* signal userspace to try again */ 2125 ret = -ENOMEM; 2126 goto out_nolock; 2127 } 2128 if (gisa_tac_ipm_gisc(gi->origin, i)) { 2129 irq = (struct kvm_s390_irq *) &buf[n]; 2130 irq->type = KVM_S390_INT_IO(1, 0, 0, 0); 2131 irq->u.io.io_int_word = isc_to_int_word(i); 2132 n++; 2133 } 2134 } 2135 } 2136 fi = &kvm->arch.float_int; 2137 spin_lock(&fi->lock); 2138 for (i = 0; i < FIRQ_LIST_COUNT; i++) { 2139 list_for_each_entry(inti, &fi->lists[i], list) { 2140 if (n == max_irqs) { 2141 /* signal userspace to try again */ 2142 ret = -ENOMEM; 2143 goto out; 2144 } 2145 inti_to_irq(inti, &buf[n]); 2146 n++; 2147 } 2148 } 2149 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) { 2150 if (n == max_irqs) { 2151 /* signal userspace to try again */ 2152 ret = -ENOMEM; 2153 goto out; 2154 } 2155 irq = (struct kvm_s390_irq *) &buf[n]; 2156 irq->type = KVM_S390_INT_SERVICE; 2157 irq->u.ext = fi->srv_signal; 2158 n++; 2159 } 2160 if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 2161 if (n == max_irqs) { 2162 /* signal userspace to try again */ 2163 ret = -ENOMEM; 2164 goto out; 2165 } 2166 irq = (struct kvm_s390_irq *) &buf[n]; 2167 irq->type = KVM_S390_MCHK; 2168 irq->u.mchk = fi->mchk; 2169 n++; 2170 } 2171 2172 out: 2173 spin_unlock(&fi->lock); 2174 out_nolock: 2175 if (!ret && n > 0) { 2176 if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n)) 2177 ret = -EFAULT; 2178 } 2179 vfree(buf); 2180 2181 return ret < 0 ? ret : n; 2182 } 2183 2184 static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr) 2185 { 2186 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2187 struct kvm_s390_ais_all ais; 2188 2189 if (attr->attr < sizeof(ais)) 2190 return -EINVAL; 2191 2192 if (!test_kvm_facility(kvm, 72)) 2193 return -EOPNOTSUPP; 2194 2195 mutex_lock(&fi->ais_lock); 2196 ais.simm = fi->simm; 2197 ais.nimm = fi->nimm; 2198 mutex_unlock(&fi->ais_lock); 2199 2200 if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais))) 2201 return -EFAULT; 2202 2203 return 0; 2204 } 2205 2206 static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2207 { 2208 int r; 2209 2210 switch (attr->group) { 2211 case KVM_DEV_FLIC_GET_ALL_IRQS: 2212 r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr, 2213 attr->attr); 2214 break; 2215 case KVM_DEV_FLIC_AISM_ALL: 2216 r = flic_ais_mode_get_all(dev->kvm, attr); 2217 break; 2218 default: 2219 r = -EINVAL; 2220 } 2221 2222 return r; 2223 } 2224 2225 static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti, 2226 u64 addr) 2227 { 2228 struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr; 2229 void *target = NULL; 2230 void __user *source; 2231 u64 size; 2232 2233 if (get_user(inti->type, (u64 __user *)addr)) 2234 return -EFAULT; 2235 2236 switch (inti->type) { 2237 case KVM_S390_INT_PFAULT_INIT: 2238 case KVM_S390_INT_PFAULT_DONE: 2239 case KVM_S390_INT_VIRTIO: 2240 case KVM_S390_INT_SERVICE: 2241 target = (void *) &inti->ext; 2242 source = &uptr->u.ext; 2243 size = sizeof(inti->ext); 2244 break; 2245 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2246 target = (void *) &inti->io; 2247 source = &uptr->u.io; 2248 size = sizeof(inti->io); 2249 break; 2250 case KVM_S390_MCHK: 2251 target = (void *) &inti->mchk; 2252 source = &uptr->u.mchk; 2253 size = sizeof(inti->mchk); 2254 break; 2255 default: 2256 return -EINVAL; 2257 } 2258 2259 if (copy_from_user(target, source, size)) 2260 return -EFAULT; 2261 2262 return 0; 2263 } 2264 2265 static int enqueue_floating_irq(struct kvm_device *dev, 2266 struct kvm_device_attr *attr) 2267 { 2268 struct kvm_s390_interrupt_info *inti = NULL; 2269 int r = 0; 2270 int len = attr->attr; 2271 2272 if (len % sizeof(struct kvm_s390_irq) != 0) 2273 return -EINVAL; 2274 else if (len > KVM_S390_FLIC_MAX_BUFFER) 2275 return -EINVAL; 2276 2277 while (len >= sizeof(struct kvm_s390_irq)) { 2278 inti = kzalloc(sizeof(*inti), GFP_KERNEL); 2279 if (!inti) 2280 return -ENOMEM; 2281 2282 r = copy_irq_from_user(inti, attr->addr); 2283 if (r) { 2284 kfree(inti); 2285 return r; 2286 } 2287 r = __inject_vm(dev->kvm, inti); 2288 if (r) { 2289 kfree(inti); 2290 return r; 2291 } 2292 len -= sizeof(struct kvm_s390_irq); 2293 attr->addr += sizeof(struct kvm_s390_irq); 2294 } 2295 2296 return r; 2297 } 2298 2299 static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id) 2300 { 2301 if (id >= MAX_S390_IO_ADAPTERS) 2302 return NULL; 2303 id = array_index_nospec(id, MAX_S390_IO_ADAPTERS); 2304 return kvm->arch.adapters[id]; 2305 } 2306 2307 static int register_io_adapter(struct kvm_device *dev, 2308 struct kvm_device_attr *attr) 2309 { 2310 struct s390_io_adapter *adapter; 2311 struct kvm_s390_io_adapter adapter_info; 2312 2313 if (copy_from_user(&adapter_info, 2314 (void __user *)attr->addr, sizeof(adapter_info))) 2315 return -EFAULT; 2316 2317 if (adapter_info.id >= MAX_S390_IO_ADAPTERS) 2318 return -EINVAL; 2319 2320 adapter_info.id = array_index_nospec(adapter_info.id, 2321 MAX_S390_IO_ADAPTERS); 2322 2323 if (dev->kvm->arch.adapters[adapter_info.id] != NULL) 2324 return -EINVAL; 2325 2326 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 2327 if (!adapter) 2328 return -ENOMEM; 2329 2330 INIT_LIST_HEAD(&adapter->maps); 2331 init_rwsem(&adapter->maps_lock); 2332 atomic_set(&adapter->nr_maps, 0); 2333 adapter->id = adapter_info.id; 2334 adapter->isc = adapter_info.isc; 2335 adapter->maskable = adapter_info.maskable; 2336 adapter->masked = false; 2337 adapter->swap = adapter_info.swap; 2338 adapter->suppressible = (adapter_info.flags) & 2339 KVM_S390_ADAPTER_SUPPRESSIBLE; 2340 dev->kvm->arch.adapters[adapter->id] = adapter; 2341 2342 return 0; 2343 } 2344 2345 int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked) 2346 { 2347 int ret; 2348 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2349 2350 if (!adapter || !adapter->maskable) 2351 return -EINVAL; 2352 ret = adapter->masked; 2353 adapter->masked = masked; 2354 return ret; 2355 } 2356 2357 static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr) 2358 { 2359 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2360 struct s390_map_info *map; 2361 int ret; 2362 2363 if (!adapter || !addr) 2364 return -EINVAL; 2365 2366 map = kzalloc(sizeof(*map), GFP_KERNEL); 2367 if (!map) { 2368 ret = -ENOMEM; 2369 goto out; 2370 } 2371 INIT_LIST_HEAD(&map->list); 2372 map->guest_addr = addr; 2373 map->addr = gmap_translate(kvm->arch.gmap, addr); 2374 if (map->addr == -EFAULT) { 2375 ret = -EFAULT; 2376 goto out; 2377 } 2378 ret = get_user_pages_fast(map->addr, 1, FOLL_WRITE, &map->page); 2379 if (ret < 0) 2380 goto out; 2381 BUG_ON(ret != 1); 2382 down_write(&adapter->maps_lock); 2383 if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) { 2384 list_add_tail(&map->list, &adapter->maps); 2385 ret = 0; 2386 } else { 2387 put_page(map->page); 2388 ret = -EINVAL; 2389 } 2390 up_write(&adapter->maps_lock); 2391 out: 2392 if (ret) 2393 kfree(map); 2394 return ret; 2395 } 2396 2397 static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr) 2398 { 2399 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2400 struct s390_map_info *map, *tmp; 2401 int found = 0; 2402 2403 if (!adapter || !addr) 2404 return -EINVAL; 2405 2406 down_write(&adapter->maps_lock); 2407 list_for_each_entry_safe(map, tmp, &adapter->maps, list) { 2408 if (map->guest_addr == addr) { 2409 found = 1; 2410 atomic_dec(&adapter->nr_maps); 2411 list_del(&map->list); 2412 put_page(map->page); 2413 kfree(map); 2414 break; 2415 } 2416 } 2417 up_write(&adapter->maps_lock); 2418 2419 return found ? 0 : -EINVAL; 2420 } 2421 2422 void kvm_s390_destroy_adapters(struct kvm *kvm) 2423 { 2424 int i; 2425 struct s390_map_info *map, *tmp; 2426 2427 for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) { 2428 if (!kvm->arch.adapters[i]) 2429 continue; 2430 list_for_each_entry_safe(map, tmp, 2431 &kvm->arch.adapters[i]->maps, list) { 2432 list_del(&map->list); 2433 put_page(map->page); 2434 kfree(map); 2435 } 2436 kfree(kvm->arch.adapters[i]); 2437 } 2438 } 2439 2440 static int modify_io_adapter(struct kvm_device *dev, 2441 struct kvm_device_attr *attr) 2442 { 2443 struct kvm_s390_io_adapter_req req; 2444 struct s390_io_adapter *adapter; 2445 int ret; 2446 2447 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2448 return -EFAULT; 2449 2450 adapter = get_io_adapter(dev->kvm, req.id); 2451 if (!adapter) 2452 return -EINVAL; 2453 switch (req.type) { 2454 case KVM_S390_IO_ADAPTER_MASK: 2455 ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask); 2456 if (ret > 0) 2457 ret = 0; 2458 break; 2459 case KVM_S390_IO_ADAPTER_MAP: 2460 ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr); 2461 break; 2462 case KVM_S390_IO_ADAPTER_UNMAP: 2463 ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr); 2464 break; 2465 default: 2466 ret = -EINVAL; 2467 } 2468 2469 return ret; 2470 } 2471 2472 static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr) 2473 2474 { 2475 const u64 isc_mask = 0xffUL << 24; /* all iscs set */ 2476 u32 schid; 2477 2478 if (attr->flags) 2479 return -EINVAL; 2480 if (attr->attr != sizeof(schid)) 2481 return -EINVAL; 2482 if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid))) 2483 return -EFAULT; 2484 if (!schid) 2485 return -EINVAL; 2486 kfree(kvm_s390_get_io_int(kvm, isc_mask, schid)); 2487 /* 2488 * If userspace is conforming to the architecture, we can have at most 2489 * one pending I/O interrupt per subchannel, so this is effectively a 2490 * clear all. 2491 */ 2492 return 0; 2493 } 2494 2495 static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr) 2496 { 2497 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2498 struct kvm_s390_ais_req req; 2499 int ret = 0; 2500 2501 if (!test_kvm_facility(kvm, 72)) 2502 return -EOPNOTSUPP; 2503 2504 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2505 return -EFAULT; 2506 2507 if (req.isc > MAX_ISC) 2508 return -EINVAL; 2509 2510 trace_kvm_s390_modify_ais_mode(req.isc, 2511 (fi->simm & AIS_MODE_MASK(req.isc)) ? 2512 (fi->nimm & AIS_MODE_MASK(req.isc)) ? 2513 2 : KVM_S390_AIS_MODE_SINGLE : 2514 KVM_S390_AIS_MODE_ALL, req.mode); 2515 2516 mutex_lock(&fi->ais_lock); 2517 switch (req.mode) { 2518 case KVM_S390_AIS_MODE_ALL: 2519 fi->simm &= ~AIS_MODE_MASK(req.isc); 2520 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2521 break; 2522 case KVM_S390_AIS_MODE_SINGLE: 2523 fi->simm |= AIS_MODE_MASK(req.isc); 2524 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2525 break; 2526 default: 2527 ret = -EINVAL; 2528 } 2529 mutex_unlock(&fi->ais_lock); 2530 2531 return ret; 2532 } 2533 2534 static int kvm_s390_inject_airq(struct kvm *kvm, 2535 struct s390_io_adapter *adapter) 2536 { 2537 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2538 struct kvm_s390_interrupt s390int = { 2539 .type = KVM_S390_INT_IO(1, 0, 0, 0), 2540 .parm = 0, 2541 .parm64 = isc_to_int_word(adapter->isc), 2542 }; 2543 int ret = 0; 2544 2545 if (!test_kvm_facility(kvm, 72) || !adapter->suppressible) 2546 return kvm_s390_inject_vm(kvm, &s390int); 2547 2548 mutex_lock(&fi->ais_lock); 2549 if (fi->nimm & AIS_MODE_MASK(adapter->isc)) { 2550 trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc); 2551 goto out; 2552 } 2553 2554 ret = kvm_s390_inject_vm(kvm, &s390int); 2555 if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) { 2556 fi->nimm |= AIS_MODE_MASK(adapter->isc); 2557 trace_kvm_s390_modify_ais_mode(adapter->isc, 2558 KVM_S390_AIS_MODE_SINGLE, 2); 2559 } 2560 out: 2561 mutex_unlock(&fi->ais_lock); 2562 return ret; 2563 } 2564 2565 static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr) 2566 { 2567 unsigned int id = attr->attr; 2568 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2569 2570 if (!adapter) 2571 return -EINVAL; 2572 2573 return kvm_s390_inject_airq(kvm, adapter); 2574 } 2575 2576 static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr) 2577 { 2578 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2579 struct kvm_s390_ais_all ais; 2580 2581 if (!test_kvm_facility(kvm, 72)) 2582 return -EOPNOTSUPP; 2583 2584 if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais))) 2585 return -EFAULT; 2586 2587 mutex_lock(&fi->ais_lock); 2588 fi->simm = ais.simm; 2589 fi->nimm = ais.nimm; 2590 mutex_unlock(&fi->ais_lock); 2591 2592 return 0; 2593 } 2594 2595 static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2596 { 2597 int r = 0; 2598 unsigned int i; 2599 struct kvm_vcpu *vcpu; 2600 2601 switch (attr->group) { 2602 case KVM_DEV_FLIC_ENQUEUE: 2603 r = enqueue_floating_irq(dev, attr); 2604 break; 2605 case KVM_DEV_FLIC_CLEAR_IRQS: 2606 kvm_s390_clear_float_irqs(dev->kvm); 2607 break; 2608 case KVM_DEV_FLIC_APF_ENABLE: 2609 dev->kvm->arch.gmap->pfault_enabled = 1; 2610 break; 2611 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2612 dev->kvm->arch.gmap->pfault_enabled = 0; 2613 /* 2614 * Make sure no async faults are in transition when 2615 * clearing the queues. So we don't need to worry 2616 * about late coming workers. 2617 */ 2618 synchronize_srcu(&dev->kvm->srcu); 2619 kvm_for_each_vcpu(i, vcpu, dev->kvm) 2620 kvm_clear_async_pf_completion_queue(vcpu); 2621 break; 2622 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2623 r = register_io_adapter(dev, attr); 2624 break; 2625 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2626 r = modify_io_adapter(dev, attr); 2627 break; 2628 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2629 r = clear_io_irq(dev->kvm, attr); 2630 break; 2631 case KVM_DEV_FLIC_AISM: 2632 r = modify_ais_mode(dev->kvm, attr); 2633 break; 2634 case KVM_DEV_FLIC_AIRQ_INJECT: 2635 r = flic_inject_airq(dev->kvm, attr); 2636 break; 2637 case KVM_DEV_FLIC_AISM_ALL: 2638 r = flic_ais_mode_set_all(dev->kvm, attr); 2639 break; 2640 default: 2641 r = -EINVAL; 2642 } 2643 2644 return r; 2645 } 2646 2647 static int flic_has_attr(struct kvm_device *dev, 2648 struct kvm_device_attr *attr) 2649 { 2650 switch (attr->group) { 2651 case KVM_DEV_FLIC_GET_ALL_IRQS: 2652 case KVM_DEV_FLIC_ENQUEUE: 2653 case KVM_DEV_FLIC_CLEAR_IRQS: 2654 case KVM_DEV_FLIC_APF_ENABLE: 2655 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2656 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2657 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2658 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2659 case KVM_DEV_FLIC_AISM: 2660 case KVM_DEV_FLIC_AIRQ_INJECT: 2661 case KVM_DEV_FLIC_AISM_ALL: 2662 return 0; 2663 } 2664 return -ENXIO; 2665 } 2666 2667 static int flic_create(struct kvm_device *dev, u32 type) 2668 { 2669 if (!dev) 2670 return -EINVAL; 2671 if (dev->kvm->arch.flic) 2672 return -EINVAL; 2673 dev->kvm->arch.flic = dev; 2674 return 0; 2675 } 2676 2677 static void flic_destroy(struct kvm_device *dev) 2678 { 2679 dev->kvm->arch.flic = NULL; 2680 kfree(dev); 2681 } 2682 2683 /* s390 floating irq controller (flic) */ 2684 struct kvm_device_ops kvm_flic_ops = { 2685 .name = "kvm-flic", 2686 .get_attr = flic_get_attr, 2687 .set_attr = flic_set_attr, 2688 .has_attr = flic_has_attr, 2689 .create = flic_create, 2690 .destroy = flic_destroy, 2691 }; 2692 2693 static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap) 2694 { 2695 unsigned long bit; 2696 2697 bit = bit_nr + (addr % PAGE_SIZE) * 8; 2698 2699 return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit; 2700 } 2701 2702 static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter, 2703 u64 addr) 2704 { 2705 struct s390_map_info *map; 2706 2707 if (!adapter) 2708 return NULL; 2709 2710 list_for_each_entry(map, &adapter->maps, list) { 2711 if (map->guest_addr == addr) 2712 return map; 2713 } 2714 return NULL; 2715 } 2716 2717 static int adapter_indicators_set(struct kvm *kvm, 2718 struct s390_io_adapter *adapter, 2719 struct kvm_s390_adapter_int *adapter_int) 2720 { 2721 unsigned long bit; 2722 int summary_set, idx; 2723 struct s390_map_info *info; 2724 void *map; 2725 2726 info = get_map_info(adapter, adapter_int->ind_addr); 2727 if (!info) 2728 return -1; 2729 map = page_address(info->page); 2730 bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap); 2731 set_bit(bit, map); 2732 idx = srcu_read_lock(&kvm->srcu); 2733 mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT); 2734 set_page_dirty_lock(info->page); 2735 info = get_map_info(adapter, adapter_int->summary_addr); 2736 if (!info) { 2737 srcu_read_unlock(&kvm->srcu, idx); 2738 return -1; 2739 } 2740 map = page_address(info->page); 2741 bit = get_ind_bit(info->addr, adapter_int->summary_offset, 2742 adapter->swap); 2743 summary_set = test_and_set_bit(bit, map); 2744 mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT); 2745 set_page_dirty_lock(info->page); 2746 srcu_read_unlock(&kvm->srcu, idx); 2747 return summary_set ? 0 : 1; 2748 } 2749 2750 /* 2751 * < 0 - not injected due to error 2752 * = 0 - coalesced, summary indicator already active 2753 * > 0 - injected interrupt 2754 */ 2755 static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e, 2756 struct kvm *kvm, int irq_source_id, int level, 2757 bool line_status) 2758 { 2759 int ret; 2760 struct s390_io_adapter *adapter; 2761 2762 /* We're only interested in the 0->1 transition. */ 2763 if (!level) 2764 return 0; 2765 adapter = get_io_adapter(kvm, e->adapter.adapter_id); 2766 if (!adapter) 2767 return -1; 2768 down_read(&adapter->maps_lock); 2769 ret = adapter_indicators_set(kvm, adapter, &e->adapter); 2770 up_read(&adapter->maps_lock); 2771 if ((ret > 0) && !adapter->masked) { 2772 ret = kvm_s390_inject_airq(kvm, adapter); 2773 if (ret == 0) 2774 ret = 1; 2775 } 2776 return ret; 2777 } 2778 2779 /* 2780 * Inject the machine check to the guest. 2781 */ 2782 void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu, 2783 struct mcck_volatile_info *mcck_info) 2784 { 2785 struct kvm_s390_interrupt_info inti; 2786 struct kvm_s390_irq irq; 2787 struct kvm_s390_mchk_info *mchk; 2788 union mci mci; 2789 __u64 cr14 = 0; /* upper bits are not used */ 2790 int rc; 2791 2792 mci.val = mcck_info->mcic; 2793 if (mci.sr) 2794 cr14 |= CR14_RECOVERY_SUBMASK; 2795 if (mci.dg) 2796 cr14 |= CR14_DEGRADATION_SUBMASK; 2797 if (mci.w) 2798 cr14 |= CR14_WARNING_SUBMASK; 2799 2800 mchk = mci.ck ? &inti.mchk : &irq.u.mchk; 2801 mchk->cr14 = cr14; 2802 mchk->mcic = mcck_info->mcic; 2803 mchk->ext_damage_code = mcck_info->ext_damage_code; 2804 mchk->failing_storage_address = mcck_info->failing_storage_address; 2805 if (mci.ck) { 2806 /* Inject the floating machine check */ 2807 inti.type = KVM_S390_MCHK; 2808 rc = __inject_vm(vcpu->kvm, &inti); 2809 } else { 2810 /* Inject the machine check to specified vcpu */ 2811 irq.type = KVM_S390_MCHK; 2812 rc = kvm_s390_inject_vcpu(vcpu, &irq); 2813 } 2814 WARN_ON_ONCE(rc); 2815 } 2816 2817 int kvm_set_routing_entry(struct kvm *kvm, 2818 struct kvm_kernel_irq_routing_entry *e, 2819 const struct kvm_irq_routing_entry *ue) 2820 { 2821 int ret; 2822 2823 switch (ue->type) { 2824 case KVM_IRQ_ROUTING_S390_ADAPTER: 2825 e->set = set_adapter_int; 2826 e->adapter.summary_addr = ue->u.adapter.summary_addr; 2827 e->adapter.ind_addr = ue->u.adapter.ind_addr; 2828 e->adapter.summary_offset = ue->u.adapter.summary_offset; 2829 e->adapter.ind_offset = ue->u.adapter.ind_offset; 2830 e->adapter.adapter_id = ue->u.adapter.adapter_id; 2831 ret = 0; 2832 break; 2833 default: 2834 ret = -EINVAL; 2835 } 2836 2837 return ret; 2838 } 2839 2840 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, 2841 int irq_source_id, int level, bool line_status) 2842 { 2843 return -EINVAL; 2844 } 2845 2846 int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len) 2847 { 2848 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2849 struct kvm_s390_irq *buf; 2850 int r = 0; 2851 int n; 2852 2853 buf = vmalloc(len); 2854 if (!buf) 2855 return -ENOMEM; 2856 2857 if (copy_from_user((void *) buf, irqstate, len)) { 2858 r = -EFAULT; 2859 goto out_free; 2860 } 2861 2862 /* 2863 * Don't allow setting the interrupt state 2864 * when there are already interrupts pending 2865 */ 2866 spin_lock(&li->lock); 2867 if (li->pending_irqs) { 2868 r = -EBUSY; 2869 goto out_unlock; 2870 } 2871 2872 for (n = 0; n < len / sizeof(*buf); n++) { 2873 r = do_inject_vcpu(vcpu, &buf[n]); 2874 if (r) 2875 break; 2876 } 2877 2878 out_unlock: 2879 spin_unlock(&li->lock); 2880 out_free: 2881 vfree(buf); 2882 2883 return r; 2884 } 2885 2886 static void store_local_irq(struct kvm_s390_local_interrupt *li, 2887 struct kvm_s390_irq *irq, 2888 unsigned long irq_type) 2889 { 2890 switch (irq_type) { 2891 case IRQ_PEND_MCHK_EX: 2892 case IRQ_PEND_MCHK_REP: 2893 irq->type = KVM_S390_MCHK; 2894 irq->u.mchk = li->irq.mchk; 2895 break; 2896 case IRQ_PEND_PROG: 2897 irq->type = KVM_S390_PROGRAM_INT; 2898 irq->u.pgm = li->irq.pgm; 2899 break; 2900 case IRQ_PEND_PFAULT_INIT: 2901 irq->type = KVM_S390_INT_PFAULT_INIT; 2902 irq->u.ext = li->irq.ext; 2903 break; 2904 case IRQ_PEND_EXT_EXTERNAL: 2905 irq->type = KVM_S390_INT_EXTERNAL_CALL; 2906 irq->u.extcall = li->irq.extcall; 2907 break; 2908 case IRQ_PEND_EXT_CLOCK_COMP: 2909 irq->type = KVM_S390_INT_CLOCK_COMP; 2910 break; 2911 case IRQ_PEND_EXT_CPU_TIMER: 2912 irq->type = KVM_S390_INT_CPU_TIMER; 2913 break; 2914 case IRQ_PEND_SIGP_STOP: 2915 irq->type = KVM_S390_SIGP_STOP; 2916 irq->u.stop = li->irq.stop; 2917 break; 2918 case IRQ_PEND_RESTART: 2919 irq->type = KVM_S390_RESTART; 2920 break; 2921 case IRQ_PEND_SET_PREFIX: 2922 irq->type = KVM_S390_SIGP_SET_PREFIX; 2923 irq->u.prefix = li->irq.prefix; 2924 break; 2925 } 2926 } 2927 2928 int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len) 2929 { 2930 int scn; 2931 DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS); 2932 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2933 unsigned long pending_irqs; 2934 struct kvm_s390_irq irq; 2935 unsigned long irq_type; 2936 int cpuaddr; 2937 int n = 0; 2938 2939 spin_lock(&li->lock); 2940 pending_irqs = li->pending_irqs; 2941 memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending, 2942 sizeof(sigp_emerg_pending)); 2943 spin_unlock(&li->lock); 2944 2945 for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) { 2946 memset(&irq, 0, sizeof(irq)); 2947 if (irq_type == IRQ_PEND_EXT_EMERGENCY) 2948 continue; 2949 if (n + sizeof(irq) > len) 2950 return -ENOBUFS; 2951 store_local_irq(&vcpu->arch.local_int, &irq, irq_type); 2952 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 2953 return -EFAULT; 2954 n += sizeof(irq); 2955 } 2956 2957 if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) { 2958 for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) { 2959 memset(&irq, 0, sizeof(irq)); 2960 if (n + sizeof(irq) > len) 2961 return -ENOBUFS; 2962 irq.type = KVM_S390_INT_EMERGENCY; 2963 irq.u.emerg.code = cpuaddr; 2964 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 2965 return -EFAULT; 2966 n += sizeof(irq); 2967 } 2968 } 2969 2970 if (sca_ext_call_pending(vcpu, &scn)) { 2971 if (n + sizeof(irq) > len) 2972 return -ENOBUFS; 2973 memset(&irq, 0, sizeof(irq)); 2974 irq.type = KVM_S390_INT_EXTERNAL_CALL; 2975 irq.u.extcall.code = scn; 2976 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 2977 return -EFAULT; 2978 n += sizeof(irq); 2979 } 2980 2981 return n; 2982 } 2983 2984 static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask) 2985 { 2986 int vcpu_id, online_vcpus = atomic_read(&kvm->online_vcpus); 2987 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 2988 struct kvm_vcpu *vcpu; 2989 2990 for_each_set_bit(vcpu_id, kvm->arch.idle_mask, online_vcpus) { 2991 vcpu = kvm_get_vcpu(kvm, vcpu_id); 2992 if (psw_ioint_disabled(vcpu)) 2993 continue; 2994 deliverable_mask &= (u8)(vcpu->arch.sie_block->gcr[6] >> 24); 2995 if (deliverable_mask) { 2996 /* lately kicked but not yet running */ 2997 if (test_and_set_bit(vcpu_id, gi->kicked_mask)) 2998 return; 2999 kvm_s390_vcpu_wakeup(vcpu); 3000 return; 3001 } 3002 } 3003 } 3004 3005 static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer) 3006 { 3007 struct kvm_s390_gisa_interrupt *gi = 3008 container_of(timer, struct kvm_s390_gisa_interrupt, timer); 3009 struct kvm *kvm = 3010 container_of(gi->origin, struct sie_page2, gisa)->kvm; 3011 u8 pending_mask; 3012 3013 pending_mask = gisa_get_ipm_or_restore_iam(gi); 3014 if (pending_mask) { 3015 __airqs_kick_single_vcpu(kvm, pending_mask); 3016 hrtimer_forward_now(timer, ns_to_ktime(gi->expires)); 3017 return HRTIMER_RESTART; 3018 }; 3019 3020 return HRTIMER_NORESTART; 3021 } 3022 3023 #define NULL_GISA_ADDR 0x00000000UL 3024 #define NONE_GISA_ADDR 0x00000001UL 3025 #define GISA_ADDR_MASK 0xfffff000UL 3026 3027 static void process_gib_alert_list(void) 3028 { 3029 struct kvm_s390_gisa_interrupt *gi; 3030 struct kvm_s390_gisa *gisa; 3031 struct kvm *kvm; 3032 u32 final, origin = 0UL; 3033 3034 do { 3035 /* 3036 * If the NONE_GISA_ADDR is still stored in the alert list 3037 * origin, we will leave the outer loop. No further GISA has 3038 * been added to the alert list by millicode while processing 3039 * the current alert list. 3040 */ 3041 final = (origin & NONE_GISA_ADDR); 3042 /* 3043 * Cut off the alert list and store the NONE_GISA_ADDR in the 3044 * alert list origin to avoid further GAL interruptions. 3045 * A new alert list can be build up by millicode in parallel 3046 * for guests not in the yet cut-off alert list. When in the 3047 * final loop, store the NULL_GISA_ADDR instead. This will re- 3048 * enable GAL interruptions on the host again. 3049 */ 3050 origin = xchg(&gib->alert_list_origin, 3051 (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR); 3052 /* 3053 * Loop through the just cut-off alert list and start the 3054 * gisa timers to kick idle vcpus to consume the pending 3055 * interruptions asap. 3056 */ 3057 while (origin & GISA_ADDR_MASK) { 3058 gisa = (struct kvm_s390_gisa *)(u64)origin; 3059 origin = gisa->next_alert; 3060 gisa->next_alert = (u32)(u64)gisa; 3061 kvm = container_of(gisa, struct sie_page2, gisa)->kvm; 3062 gi = &kvm->arch.gisa_int; 3063 if (hrtimer_active(&gi->timer)) 3064 hrtimer_cancel(&gi->timer); 3065 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); 3066 } 3067 } while (!final); 3068 3069 } 3070 3071 void kvm_s390_gisa_clear(struct kvm *kvm) 3072 { 3073 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3074 3075 if (!gi->origin) 3076 return; 3077 gisa_clear_ipm(gi->origin); 3078 VM_EVENT(kvm, 3, "gisa 0x%pK cleared", gi->origin); 3079 } 3080 3081 void kvm_s390_gisa_init(struct kvm *kvm) 3082 { 3083 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3084 3085 if (!css_general_characteristics.aiv) 3086 return; 3087 gi->origin = &kvm->arch.sie_page2->gisa; 3088 gi->alert.mask = 0; 3089 spin_lock_init(&gi->alert.ref_lock); 3090 gi->expires = 50 * 1000; /* 50 usec */ 3091 hrtimer_init(&gi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3092 gi->timer.function = gisa_vcpu_kicker; 3093 memset(gi->origin, 0, sizeof(struct kvm_s390_gisa)); 3094 gi->origin->next_alert = (u32)(u64)gi->origin; 3095 VM_EVENT(kvm, 3, "gisa 0x%pK initialized", gi->origin); 3096 } 3097 3098 void kvm_s390_gisa_destroy(struct kvm *kvm) 3099 { 3100 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3101 3102 if (!gi->origin) 3103 return; 3104 if (gi->alert.mask) 3105 KVM_EVENT(3, "vm 0x%pK has unexpected iam 0x%02x", 3106 kvm, gi->alert.mask); 3107 while (gisa_in_alert_list(gi->origin)) 3108 cpu_relax(); 3109 hrtimer_cancel(&gi->timer); 3110 gi->origin = NULL; 3111 } 3112 3113 /** 3114 * kvm_s390_gisc_register - register a guest ISC 3115 * 3116 * @kvm: the kernel vm to work with 3117 * @gisc: the guest interruption sub class to register 3118 * 3119 * The function extends the vm specific alert mask to use. 3120 * The effective IAM mask in the GISA is updated as well 3121 * in case the GISA is not part of the GIB alert list. 3122 * It will be updated latest when the IAM gets restored 3123 * by gisa_get_ipm_or_restore_iam(). 3124 * 3125 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3126 * has registered with the channel subsystem. 3127 * -ENODEV in case the vm uses no GISA 3128 * -ERANGE in case the guest ISC is invalid 3129 */ 3130 int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc) 3131 { 3132 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3133 3134 if (!gi->origin) 3135 return -ENODEV; 3136 if (gisc > MAX_ISC) 3137 return -ERANGE; 3138 3139 spin_lock(&gi->alert.ref_lock); 3140 gi->alert.ref_count[gisc]++; 3141 if (gi->alert.ref_count[gisc] == 1) { 3142 gi->alert.mask |= 0x80 >> gisc; 3143 gisa_set_iam(gi->origin, gi->alert.mask); 3144 } 3145 spin_unlock(&gi->alert.ref_lock); 3146 3147 return gib->nisc; 3148 } 3149 EXPORT_SYMBOL_GPL(kvm_s390_gisc_register); 3150 3151 /** 3152 * kvm_s390_gisc_unregister - unregister a guest ISC 3153 * 3154 * @kvm: the kernel vm to work with 3155 * @gisc: the guest interruption sub class to register 3156 * 3157 * The function reduces the vm specific alert mask to use. 3158 * The effective IAM mask in the GISA is updated as well 3159 * in case the GISA is not part of the GIB alert list. 3160 * It will be updated latest when the IAM gets restored 3161 * by gisa_get_ipm_or_restore_iam(). 3162 * 3163 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3164 * has registered with the channel subsystem. 3165 * -ENODEV in case the vm uses no GISA 3166 * -ERANGE in case the guest ISC is invalid 3167 * -EINVAL in case the guest ISC is not registered 3168 */ 3169 int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc) 3170 { 3171 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3172 int rc = 0; 3173 3174 if (!gi->origin) 3175 return -ENODEV; 3176 if (gisc > MAX_ISC) 3177 return -ERANGE; 3178 3179 spin_lock(&gi->alert.ref_lock); 3180 if (gi->alert.ref_count[gisc] == 0) { 3181 rc = -EINVAL; 3182 goto out; 3183 } 3184 gi->alert.ref_count[gisc]--; 3185 if (gi->alert.ref_count[gisc] == 0) { 3186 gi->alert.mask &= ~(0x80 >> gisc); 3187 gisa_set_iam(gi->origin, gi->alert.mask); 3188 } 3189 out: 3190 spin_unlock(&gi->alert.ref_lock); 3191 3192 return rc; 3193 } 3194 EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister); 3195 3196 static void gib_alert_irq_handler(struct airq_struct *airq, bool floating) 3197 { 3198 inc_irq_stat(IRQIO_GAL); 3199 process_gib_alert_list(); 3200 } 3201 3202 static struct airq_struct gib_alert_irq = { 3203 .handler = gib_alert_irq_handler, 3204 .lsi_ptr = &gib_alert_irq.lsi_mask, 3205 }; 3206 3207 void kvm_s390_gib_destroy(void) 3208 { 3209 if (!gib) 3210 return; 3211 chsc_sgib(0); 3212 unregister_adapter_interrupt(&gib_alert_irq); 3213 free_page((unsigned long)gib); 3214 gib = NULL; 3215 } 3216 3217 int kvm_s390_gib_init(u8 nisc) 3218 { 3219 int rc = 0; 3220 3221 if (!css_general_characteristics.aiv) { 3222 KVM_EVENT(3, "%s", "gib not initialized, no AIV facility"); 3223 goto out; 3224 } 3225 3226 gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL | GFP_DMA); 3227 if (!gib) { 3228 rc = -ENOMEM; 3229 goto out; 3230 } 3231 3232 gib_alert_irq.isc = nisc; 3233 if (register_adapter_interrupt(&gib_alert_irq)) { 3234 pr_err("Registering the GIB alert interruption handler failed\n"); 3235 rc = -EIO; 3236 goto out_free_gib; 3237 } 3238 3239 gib->nisc = nisc; 3240 if (chsc_sgib((u32)(u64)gib)) { 3241 pr_err("Associating the GIB with the AIV facility failed\n"); 3242 free_page((unsigned long)gib); 3243 gib = NULL; 3244 rc = -EIO; 3245 goto out_unreg_gal; 3246 } 3247 3248 KVM_EVENT(3, "gib 0x%pK (nisc=%d) initialized", gib, gib->nisc); 3249 goto out; 3250 3251 out_unreg_gal: 3252 unregister_adapter_interrupt(&gib_alert_irq); 3253 out_free_gib: 3254 free_page((unsigned long)gib); 3255 gib = NULL; 3256 out: 3257 return rc; 3258 } 3259