1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * handling kvm guest interrupts 4 * 5 * Copyright IBM Corp. 2008, 2020 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 */ 9 10 #define KMSG_COMPONENT "kvm-s390" 11 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 12 13 #include <linux/interrupt.h> 14 #include <linux/kvm_host.h> 15 #include <linux/hrtimer.h> 16 #include <linux/mmu_context.h> 17 #include <linux/nospec.h> 18 #include <linux/signal.h> 19 #include <linux/slab.h> 20 #include <linux/bitmap.h> 21 #include <linux/vmalloc.h> 22 #include <asm/asm-offsets.h> 23 #include <asm/dis.h> 24 #include <linux/uaccess.h> 25 #include <asm/sclp.h> 26 #include <asm/isc.h> 27 #include <asm/gmap.h> 28 #include <asm/switch_to.h> 29 #include <asm/nmi.h> 30 #include <asm/airq.h> 31 #include <asm/tpi.h> 32 #include "kvm-s390.h" 33 #include "gaccess.h" 34 #include "trace-s390.h" 35 #include "pci.h" 36 37 #define PFAULT_INIT 0x0600 38 #define PFAULT_DONE 0x0680 39 #define VIRTIO_PARAM 0x0d00 40 41 static struct kvm_s390_gib *gib; 42 43 /* handle external calls via sigp interpretation facility */ 44 static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id) 45 { 46 int c, scn; 47 48 if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND)) 49 return 0; 50 51 BUG_ON(!kvm_s390_use_sca_entries()); 52 read_lock(&vcpu->kvm->arch.sca_lock); 53 if (vcpu->kvm->arch.use_esca) { 54 struct esca_block *sca = vcpu->kvm->arch.sca; 55 union esca_sigp_ctrl sigp_ctrl = 56 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 57 58 c = sigp_ctrl.c; 59 scn = sigp_ctrl.scn; 60 } else { 61 struct bsca_block *sca = vcpu->kvm->arch.sca; 62 union bsca_sigp_ctrl sigp_ctrl = 63 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 64 65 c = sigp_ctrl.c; 66 scn = sigp_ctrl.scn; 67 } 68 read_unlock(&vcpu->kvm->arch.sca_lock); 69 70 if (src_id) 71 *src_id = scn; 72 73 return c; 74 } 75 76 static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id) 77 { 78 int expect, rc; 79 80 BUG_ON(!kvm_s390_use_sca_entries()); 81 read_lock(&vcpu->kvm->arch.sca_lock); 82 if (vcpu->kvm->arch.use_esca) { 83 struct esca_block *sca = vcpu->kvm->arch.sca; 84 union esca_sigp_ctrl *sigp_ctrl = 85 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 86 union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl; 87 88 new_val.scn = src_id; 89 new_val.c = 1; 90 old_val.c = 0; 91 92 expect = old_val.value; 93 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 94 } else { 95 struct bsca_block *sca = vcpu->kvm->arch.sca; 96 union bsca_sigp_ctrl *sigp_ctrl = 97 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 98 union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl; 99 100 new_val.scn = src_id; 101 new_val.c = 1; 102 old_val.c = 0; 103 104 expect = old_val.value; 105 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 106 } 107 read_unlock(&vcpu->kvm->arch.sca_lock); 108 109 if (rc != expect) { 110 /* another external call is pending */ 111 return -EBUSY; 112 } 113 kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 114 return 0; 115 } 116 117 static void sca_clear_ext_call(struct kvm_vcpu *vcpu) 118 { 119 int rc, expect; 120 121 if (!kvm_s390_use_sca_entries()) 122 return; 123 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 124 read_lock(&vcpu->kvm->arch.sca_lock); 125 if (vcpu->kvm->arch.use_esca) { 126 struct esca_block *sca = vcpu->kvm->arch.sca; 127 union esca_sigp_ctrl *sigp_ctrl = 128 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 129 union esca_sigp_ctrl old = *sigp_ctrl; 130 131 expect = old.value; 132 rc = cmpxchg(&sigp_ctrl->value, old.value, 0); 133 } else { 134 struct bsca_block *sca = vcpu->kvm->arch.sca; 135 union bsca_sigp_ctrl *sigp_ctrl = 136 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 137 union bsca_sigp_ctrl old = *sigp_ctrl; 138 139 expect = old.value; 140 rc = cmpxchg(&sigp_ctrl->value, old.value, 0); 141 } 142 read_unlock(&vcpu->kvm->arch.sca_lock); 143 WARN_ON(rc != expect); /* cannot clear? */ 144 } 145 146 int psw_extint_disabled(struct kvm_vcpu *vcpu) 147 { 148 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT); 149 } 150 151 static int psw_ioint_disabled(struct kvm_vcpu *vcpu) 152 { 153 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO); 154 } 155 156 static int psw_mchk_disabled(struct kvm_vcpu *vcpu) 157 { 158 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK); 159 } 160 161 static int psw_interrupts_disabled(struct kvm_vcpu *vcpu) 162 { 163 return psw_extint_disabled(vcpu) && 164 psw_ioint_disabled(vcpu) && 165 psw_mchk_disabled(vcpu); 166 } 167 168 static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu) 169 { 170 if (psw_extint_disabled(vcpu) || 171 !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 172 return 0; 173 if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu)) 174 /* No timer interrupts when single stepping */ 175 return 0; 176 return 1; 177 } 178 179 static int ckc_irq_pending(struct kvm_vcpu *vcpu) 180 { 181 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 182 const u64 ckc = vcpu->arch.sie_block->ckc; 183 184 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 185 if ((s64)ckc >= (s64)now) 186 return 0; 187 } else if (ckc >= now) { 188 return 0; 189 } 190 return ckc_interrupts_enabled(vcpu); 191 } 192 193 static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu) 194 { 195 return !psw_extint_disabled(vcpu) && 196 (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK); 197 } 198 199 static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu) 200 { 201 if (!cpu_timer_interrupts_enabled(vcpu)) 202 return 0; 203 return kvm_s390_get_cpu_timer(vcpu) >> 63; 204 } 205 206 static uint64_t isc_to_isc_bits(int isc) 207 { 208 return (0x80 >> isc) << 24; 209 } 210 211 static inline u32 isc_to_int_word(u8 isc) 212 { 213 return ((u32)isc << 27) | 0x80000000; 214 } 215 216 static inline u8 int_word_to_isc(u32 int_word) 217 { 218 return (int_word & 0x38000000) >> 27; 219 } 220 221 /* 222 * To use atomic bitmap functions, we have to provide a bitmap address 223 * that is u64 aligned. However, the ipm might be u32 aligned. 224 * Therefore, we logically start the bitmap at the very beginning of the 225 * struct and fixup the bit number. 226 */ 227 #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE) 228 229 /** 230 * gisa_set_iam - change the GISA interruption alert mask 231 * 232 * @gisa: gisa to operate on 233 * @iam: new IAM value to use 234 * 235 * Change the IAM atomically with the next alert address and the IPM 236 * of the GISA if the GISA is not part of the GIB alert list. All three 237 * fields are located in the first long word of the GISA. 238 * 239 * Returns: 0 on success 240 * -EBUSY in case the gisa is part of the alert list 241 */ 242 static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam) 243 { 244 u64 word, _word; 245 246 do { 247 word = READ_ONCE(gisa->u64.word[0]); 248 if ((u64)gisa != word >> 32) 249 return -EBUSY; 250 _word = (word & ~0xffUL) | iam; 251 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word); 252 253 return 0; 254 } 255 256 /** 257 * gisa_clear_ipm - clear the GISA interruption pending mask 258 * 259 * @gisa: gisa to operate on 260 * 261 * Clear the IPM atomically with the next alert address and the IAM 262 * of the GISA unconditionally. All three fields are located in the 263 * first long word of the GISA. 264 */ 265 static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa) 266 { 267 u64 word, _word; 268 269 do { 270 word = READ_ONCE(gisa->u64.word[0]); 271 _word = word & ~(0xffUL << 24); 272 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word); 273 } 274 275 /** 276 * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM 277 * 278 * @gi: gisa interrupt struct to work on 279 * 280 * Atomically restores the interruption alert mask if none of the 281 * relevant ISCs are pending and return the IPM. 282 * 283 * Returns: the relevant pending ISCs 284 */ 285 static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi) 286 { 287 u8 pending_mask, alert_mask; 288 u64 word, _word; 289 290 do { 291 word = READ_ONCE(gi->origin->u64.word[0]); 292 alert_mask = READ_ONCE(gi->alert.mask); 293 pending_mask = (u8)(word >> 24) & alert_mask; 294 if (pending_mask) 295 return pending_mask; 296 _word = (word & ~0xffUL) | alert_mask; 297 } while (cmpxchg(&gi->origin->u64.word[0], word, _word) != word); 298 299 return 0; 300 } 301 302 static inline int gisa_in_alert_list(struct kvm_s390_gisa *gisa) 303 { 304 return READ_ONCE(gisa->next_alert) != (u32)(u64)gisa; 305 } 306 307 static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 308 { 309 set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 310 } 311 312 static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa) 313 { 314 return READ_ONCE(gisa->ipm); 315 } 316 317 static inline void gisa_clear_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 318 { 319 clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 320 } 321 322 static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 323 { 324 return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 325 } 326 327 static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu) 328 { 329 unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs | 330 vcpu->arch.local_int.pending_irqs; 331 332 pending &= ~vcpu->kvm->arch.float_int.masked_irqs; 333 return pending; 334 } 335 336 static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu) 337 { 338 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 339 unsigned long pending_mask; 340 341 pending_mask = pending_irqs_no_gisa(vcpu); 342 if (gi->origin) 343 pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7; 344 return pending_mask; 345 } 346 347 static inline int isc_to_irq_type(unsigned long isc) 348 { 349 return IRQ_PEND_IO_ISC_0 - isc; 350 } 351 352 static inline int irq_type_to_isc(unsigned long irq_type) 353 { 354 return IRQ_PEND_IO_ISC_0 - irq_type; 355 } 356 357 static unsigned long disable_iscs(struct kvm_vcpu *vcpu, 358 unsigned long active_mask) 359 { 360 int i; 361 362 for (i = 0; i <= MAX_ISC; i++) 363 if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i))) 364 active_mask &= ~(1UL << (isc_to_irq_type(i))); 365 366 return active_mask; 367 } 368 369 static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu) 370 { 371 unsigned long active_mask; 372 373 active_mask = pending_irqs(vcpu); 374 if (!active_mask) 375 return 0; 376 377 if (psw_extint_disabled(vcpu)) 378 active_mask &= ~IRQ_PEND_EXT_MASK; 379 if (psw_ioint_disabled(vcpu)) 380 active_mask &= ~IRQ_PEND_IO_MASK; 381 else 382 active_mask = disable_iscs(vcpu, active_mask); 383 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 384 __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask); 385 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK)) 386 __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask); 387 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 388 __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask); 389 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK)) 390 __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask); 391 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) { 392 __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask); 393 __clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask); 394 } 395 if (psw_mchk_disabled(vcpu)) 396 active_mask &= ~IRQ_PEND_MCHK_MASK; 397 /* PV guest cpus can have a single interruption injected at a time. */ 398 if (kvm_s390_pv_cpu_get_handle(vcpu) && 399 vcpu->arch.sie_block->iictl != IICTL_CODE_NONE) 400 active_mask &= ~(IRQ_PEND_EXT_II_MASK | 401 IRQ_PEND_IO_MASK | 402 IRQ_PEND_MCHK_MASK); 403 /* 404 * Check both floating and local interrupt's cr14 because 405 * bit IRQ_PEND_MCHK_REP could be set in both cases. 406 */ 407 if (!(vcpu->arch.sie_block->gcr[14] & 408 (vcpu->kvm->arch.float_int.mchk.cr14 | 409 vcpu->arch.local_int.irq.mchk.cr14))) 410 __clear_bit(IRQ_PEND_MCHK_REP, &active_mask); 411 412 /* 413 * STOP irqs will never be actively delivered. They are triggered via 414 * intercept requests and cleared when the stop intercept is performed. 415 */ 416 __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask); 417 418 return active_mask; 419 } 420 421 static void __set_cpu_idle(struct kvm_vcpu *vcpu) 422 { 423 kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT); 424 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask); 425 } 426 427 static void __unset_cpu_idle(struct kvm_vcpu *vcpu) 428 { 429 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT); 430 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask); 431 } 432 433 static void __reset_intercept_indicators(struct kvm_vcpu *vcpu) 434 { 435 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT | 436 CPUSTAT_STOP_INT); 437 vcpu->arch.sie_block->lctl = 0x0000; 438 vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT); 439 440 if (guestdbg_enabled(vcpu)) { 441 vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 | 442 LCTL_CR10 | LCTL_CR11); 443 vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT); 444 } 445 } 446 447 static void set_intercept_indicators_io(struct kvm_vcpu *vcpu) 448 { 449 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK)) 450 return; 451 if (psw_ioint_disabled(vcpu)) 452 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT); 453 else 454 vcpu->arch.sie_block->lctl |= LCTL_CR6; 455 } 456 457 static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu) 458 { 459 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK)) 460 return; 461 if (psw_extint_disabled(vcpu)) 462 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 463 else 464 vcpu->arch.sie_block->lctl |= LCTL_CR0; 465 } 466 467 static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu) 468 { 469 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK)) 470 return; 471 if (psw_mchk_disabled(vcpu)) 472 vcpu->arch.sie_block->ictl |= ICTL_LPSW; 473 else 474 vcpu->arch.sie_block->lctl |= LCTL_CR14; 475 } 476 477 static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu) 478 { 479 if (kvm_s390_is_stop_irq_pending(vcpu)) 480 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 481 } 482 483 /* Set interception request for non-deliverable interrupts */ 484 static void set_intercept_indicators(struct kvm_vcpu *vcpu) 485 { 486 set_intercept_indicators_io(vcpu); 487 set_intercept_indicators_ext(vcpu); 488 set_intercept_indicators_mchk(vcpu); 489 set_intercept_indicators_stop(vcpu); 490 } 491 492 static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu) 493 { 494 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 495 int rc = 0; 496 497 vcpu->stat.deliver_cputm++; 498 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 499 0, 0); 500 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 501 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 502 vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER; 503 } else { 504 rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER, 505 (u16 *)__LC_EXT_INT_CODE); 506 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 507 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 508 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 509 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 510 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 511 } 512 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 513 return rc ? -EFAULT : 0; 514 } 515 516 static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu) 517 { 518 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 519 int rc = 0; 520 521 vcpu->stat.deliver_ckc++; 522 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 523 0, 0); 524 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 525 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 526 vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP; 527 } else { 528 rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP, 529 (u16 __user *)__LC_EXT_INT_CODE); 530 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 531 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 532 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 533 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 534 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 535 } 536 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 537 return rc ? -EFAULT : 0; 538 } 539 540 static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu) 541 { 542 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 543 struct kvm_s390_ext_info ext; 544 int rc; 545 546 spin_lock(&li->lock); 547 ext = li->irq.ext; 548 clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 549 li->irq.ext.ext_params2 = 0; 550 spin_unlock(&li->lock); 551 552 VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx", 553 ext.ext_params2); 554 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 555 KVM_S390_INT_PFAULT_INIT, 556 0, ext.ext_params2); 557 558 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE); 559 rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR); 560 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 561 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 562 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 563 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 564 rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2); 565 return rc ? -EFAULT : 0; 566 } 567 568 static int __write_machine_check(struct kvm_vcpu *vcpu, 569 struct kvm_s390_mchk_info *mchk) 570 { 571 unsigned long ext_sa_addr; 572 unsigned long lc; 573 freg_t fprs[NUM_FPRS]; 574 union mci mci; 575 int rc; 576 577 /* 578 * All other possible payload for a machine check (e.g. the register 579 * contents in the save area) will be handled by the ultravisor, as 580 * the hypervisor does not not have the needed information for 581 * protected guests. 582 */ 583 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 584 vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK; 585 vcpu->arch.sie_block->mcic = mchk->mcic; 586 vcpu->arch.sie_block->faddr = mchk->failing_storage_address; 587 vcpu->arch.sie_block->edc = mchk->ext_damage_code; 588 return 0; 589 } 590 591 mci.val = mchk->mcic; 592 /* take care of lazy register loading */ 593 save_fpu_regs(); 594 save_access_regs(vcpu->run->s.regs.acrs); 595 if (MACHINE_HAS_GS && vcpu->arch.gs_enabled) 596 save_gs_cb(current->thread.gs_cb); 597 598 /* Extended save area */ 599 rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr, 600 sizeof(unsigned long)); 601 /* Only bits 0 through 63-LC are used for address formation */ 602 lc = ext_sa_addr & MCESA_LC_MASK; 603 if (test_kvm_facility(vcpu->kvm, 133)) { 604 switch (lc) { 605 case 0: 606 case 10: 607 ext_sa_addr &= ~0x3ffUL; 608 break; 609 case 11: 610 ext_sa_addr &= ~0x7ffUL; 611 break; 612 case 12: 613 ext_sa_addr &= ~0xfffUL; 614 break; 615 default: 616 ext_sa_addr = 0; 617 break; 618 } 619 } else { 620 ext_sa_addr &= ~0x3ffUL; 621 } 622 623 if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) { 624 if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs, 625 512)) 626 mci.vr = 0; 627 } else { 628 mci.vr = 0; 629 } 630 if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133) 631 && (lc == 11 || lc == 12)) { 632 if (write_guest_abs(vcpu, ext_sa_addr + 1024, 633 &vcpu->run->s.regs.gscb, 32)) 634 mci.gs = 0; 635 } else { 636 mci.gs = 0; 637 } 638 639 /* General interruption information */ 640 rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID); 641 rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW, 642 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 643 rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW, 644 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 645 rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE); 646 647 /* Register-save areas */ 648 if (MACHINE_HAS_VX) { 649 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 650 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128); 651 } else { 652 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, 653 vcpu->run->s.regs.fprs, 128); 654 } 655 rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA, 656 vcpu->run->s.regs.gprs, 128); 657 rc |= put_guest_lc(vcpu, current->thread.fpu.fpc, 658 (u32 __user *) __LC_FP_CREG_SAVE_AREA); 659 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr, 660 (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA); 661 rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu), 662 (u64 __user *) __LC_CPU_TIMER_SAVE_AREA); 663 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8, 664 (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA); 665 rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA, 666 &vcpu->run->s.regs.acrs, 64); 667 rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA, 668 &vcpu->arch.sie_block->gcr, 128); 669 670 /* Extended interruption information */ 671 rc |= put_guest_lc(vcpu, mchk->ext_damage_code, 672 (u32 __user *) __LC_EXT_DAMAGE_CODE); 673 rc |= put_guest_lc(vcpu, mchk->failing_storage_address, 674 (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR); 675 rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout, 676 sizeof(mchk->fixed_logout)); 677 return rc ? -EFAULT : 0; 678 } 679 680 static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu) 681 { 682 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 683 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 684 struct kvm_s390_mchk_info mchk = {}; 685 int deliver = 0; 686 int rc = 0; 687 688 spin_lock(&fi->lock); 689 spin_lock(&li->lock); 690 if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) || 691 test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) { 692 /* 693 * If there was an exigent machine check pending, then any 694 * repressible machine checks that might have been pending 695 * are indicated along with it, so always clear bits for 696 * repressible and exigent interrupts 697 */ 698 mchk = li->irq.mchk; 699 clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 700 clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 701 memset(&li->irq.mchk, 0, sizeof(mchk)); 702 deliver = 1; 703 } 704 /* 705 * We indicate floating repressible conditions along with 706 * other pending conditions. Channel Report Pending and Channel 707 * Subsystem damage are the only two and are indicated by 708 * bits in mcic and masked in cr14. 709 */ 710 if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 711 mchk.mcic |= fi->mchk.mcic; 712 mchk.cr14 |= fi->mchk.cr14; 713 memset(&fi->mchk, 0, sizeof(mchk)); 714 deliver = 1; 715 } 716 spin_unlock(&li->lock); 717 spin_unlock(&fi->lock); 718 719 if (deliver) { 720 VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx", 721 mchk.mcic); 722 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 723 KVM_S390_MCHK, 724 mchk.cr14, mchk.mcic); 725 vcpu->stat.deliver_machine_check++; 726 rc = __write_machine_check(vcpu, &mchk); 727 } 728 return rc; 729 } 730 731 static int __must_check __deliver_restart(struct kvm_vcpu *vcpu) 732 { 733 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 734 int rc = 0; 735 736 VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart"); 737 vcpu->stat.deliver_restart_signal++; 738 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 739 740 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 741 vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART; 742 } else { 743 rc = write_guest_lc(vcpu, 744 offsetof(struct lowcore, restart_old_psw), 745 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 746 rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw), 747 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 748 } 749 clear_bit(IRQ_PEND_RESTART, &li->pending_irqs); 750 return rc ? -EFAULT : 0; 751 } 752 753 static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu) 754 { 755 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 756 struct kvm_s390_prefix_info prefix; 757 758 spin_lock(&li->lock); 759 prefix = li->irq.prefix; 760 li->irq.prefix.address = 0; 761 clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 762 spin_unlock(&li->lock); 763 764 vcpu->stat.deliver_prefix_signal++; 765 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 766 KVM_S390_SIGP_SET_PREFIX, 767 prefix.address, 0); 768 769 kvm_s390_set_prefix(vcpu, prefix.address); 770 return 0; 771 } 772 773 static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu) 774 { 775 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 776 int rc; 777 int cpu_addr; 778 779 spin_lock(&li->lock); 780 cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS); 781 clear_bit(cpu_addr, li->sigp_emerg_pending); 782 if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS)) 783 clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 784 spin_unlock(&li->lock); 785 786 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg"); 787 vcpu->stat.deliver_emergency_signal++; 788 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 789 cpu_addr, 0); 790 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 791 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 792 vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG; 793 vcpu->arch.sie_block->extcpuaddr = cpu_addr; 794 return 0; 795 } 796 797 rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG, 798 (u16 *)__LC_EXT_INT_CODE); 799 rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR); 800 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 801 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 802 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 803 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 804 return rc ? -EFAULT : 0; 805 } 806 807 static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu) 808 { 809 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 810 struct kvm_s390_extcall_info extcall; 811 int rc; 812 813 spin_lock(&li->lock); 814 extcall = li->irq.extcall; 815 li->irq.extcall.code = 0; 816 clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 817 spin_unlock(&li->lock); 818 819 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call"); 820 vcpu->stat.deliver_external_call++; 821 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 822 KVM_S390_INT_EXTERNAL_CALL, 823 extcall.code, 0); 824 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 825 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 826 vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL; 827 vcpu->arch.sie_block->extcpuaddr = extcall.code; 828 return 0; 829 } 830 831 rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL, 832 (u16 *)__LC_EXT_INT_CODE); 833 rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR); 834 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 835 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 836 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, 837 sizeof(psw_t)); 838 return rc ? -EFAULT : 0; 839 } 840 841 static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code) 842 { 843 switch (code) { 844 case PGM_SPECIFICATION: 845 vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION; 846 break; 847 case PGM_OPERAND: 848 vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND; 849 break; 850 default: 851 return -EINVAL; 852 } 853 return 0; 854 } 855 856 static int __must_check __deliver_prog(struct kvm_vcpu *vcpu) 857 { 858 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 859 struct kvm_s390_pgm_info pgm_info; 860 int rc = 0, nullifying = false; 861 u16 ilen; 862 863 spin_lock(&li->lock); 864 pgm_info = li->irq.pgm; 865 clear_bit(IRQ_PEND_PROG, &li->pending_irqs); 866 memset(&li->irq.pgm, 0, sizeof(pgm_info)); 867 spin_unlock(&li->lock); 868 869 ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK; 870 VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d", 871 pgm_info.code, ilen); 872 vcpu->stat.deliver_program++; 873 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 874 pgm_info.code, 0); 875 876 /* PER is handled by the ultravisor */ 877 if (kvm_s390_pv_cpu_is_protected(vcpu)) 878 return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER); 879 880 switch (pgm_info.code & ~PGM_PER) { 881 case PGM_AFX_TRANSLATION: 882 case PGM_ASX_TRANSLATION: 883 case PGM_EX_TRANSLATION: 884 case PGM_LFX_TRANSLATION: 885 case PGM_LSTE_SEQUENCE: 886 case PGM_LSX_TRANSLATION: 887 case PGM_LX_TRANSLATION: 888 case PGM_PRIMARY_AUTHORITY: 889 case PGM_SECONDARY_AUTHORITY: 890 nullifying = true; 891 fallthrough; 892 case PGM_SPACE_SWITCH: 893 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 894 (u64 *)__LC_TRANS_EXC_CODE); 895 break; 896 case PGM_ALEN_TRANSLATION: 897 case PGM_ALE_SEQUENCE: 898 case PGM_ASTE_INSTANCE: 899 case PGM_ASTE_SEQUENCE: 900 case PGM_ASTE_VALIDITY: 901 case PGM_EXTENDED_AUTHORITY: 902 rc = put_guest_lc(vcpu, pgm_info.exc_access_id, 903 (u8 *)__LC_EXC_ACCESS_ID); 904 nullifying = true; 905 break; 906 case PGM_ASCE_TYPE: 907 case PGM_PAGE_TRANSLATION: 908 case PGM_REGION_FIRST_TRANS: 909 case PGM_REGION_SECOND_TRANS: 910 case PGM_REGION_THIRD_TRANS: 911 case PGM_SEGMENT_TRANSLATION: 912 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 913 (u64 *)__LC_TRANS_EXC_CODE); 914 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 915 (u8 *)__LC_EXC_ACCESS_ID); 916 rc |= put_guest_lc(vcpu, pgm_info.op_access_id, 917 (u8 *)__LC_OP_ACCESS_ID); 918 nullifying = true; 919 break; 920 case PGM_MONITOR: 921 rc = put_guest_lc(vcpu, pgm_info.mon_class_nr, 922 (u16 *)__LC_MON_CLASS_NR); 923 rc |= put_guest_lc(vcpu, pgm_info.mon_code, 924 (u64 *)__LC_MON_CODE); 925 break; 926 case PGM_VECTOR_PROCESSING: 927 case PGM_DATA: 928 rc = put_guest_lc(vcpu, pgm_info.data_exc_code, 929 (u32 *)__LC_DATA_EXC_CODE); 930 break; 931 case PGM_PROTECTION: 932 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 933 (u64 *)__LC_TRANS_EXC_CODE); 934 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 935 (u8 *)__LC_EXC_ACCESS_ID); 936 break; 937 case PGM_STACK_FULL: 938 case PGM_STACK_EMPTY: 939 case PGM_STACK_SPECIFICATION: 940 case PGM_STACK_TYPE: 941 case PGM_STACK_OPERATION: 942 case PGM_TRACE_TABEL: 943 case PGM_CRYPTO_OPERATION: 944 nullifying = true; 945 break; 946 } 947 948 if (pgm_info.code & PGM_PER) { 949 rc |= put_guest_lc(vcpu, pgm_info.per_code, 950 (u8 *) __LC_PER_CODE); 951 rc |= put_guest_lc(vcpu, pgm_info.per_atmid, 952 (u8 *)__LC_PER_ATMID); 953 rc |= put_guest_lc(vcpu, pgm_info.per_address, 954 (u64 *) __LC_PER_ADDRESS); 955 rc |= put_guest_lc(vcpu, pgm_info.per_access_id, 956 (u8 *) __LC_PER_ACCESS_ID); 957 } 958 959 if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND)) 960 kvm_s390_rewind_psw(vcpu, ilen); 961 962 /* bit 1+2 of the target are the ilc, so we can directly use ilen */ 963 rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC); 964 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea, 965 (u64 *) __LC_PGM_LAST_BREAK); 966 rc |= put_guest_lc(vcpu, pgm_info.code, 967 (u16 *)__LC_PGM_INT_CODE); 968 rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW, 969 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 970 rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW, 971 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 972 return rc ? -EFAULT : 0; 973 } 974 975 #define SCCB_MASK 0xFFFFFFF8 976 #define SCCB_EVENT_PENDING 0x3 977 978 static int write_sclp(struct kvm_vcpu *vcpu, u32 parm) 979 { 980 int rc; 981 982 if (kvm_s390_pv_cpu_get_handle(vcpu)) { 983 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT; 984 vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG; 985 vcpu->arch.sie_block->eiparams = parm; 986 return 0; 987 } 988 989 rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE); 990 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 991 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 992 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 993 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 994 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 995 rc |= put_guest_lc(vcpu, parm, 996 (u32 *)__LC_EXT_PARAMS); 997 998 return rc ? -EFAULT : 0; 999 } 1000 1001 static int __must_check __deliver_service(struct kvm_vcpu *vcpu) 1002 { 1003 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1004 struct kvm_s390_ext_info ext; 1005 1006 spin_lock(&fi->lock); 1007 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) || 1008 !(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) { 1009 spin_unlock(&fi->lock); 1010 return 0; 1011 } 1012 ext = fi->srv_signal; 1013 memset(&fi->srv_signal, 0, sizeof(ext)); 1014 clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 1015 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1016 if (kvm_s390_pv_cpu_is_protected(vcpu)) 1017 set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs); 1018 spin_unlock(&fi->lock); 1019 1020 VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x", 1021 ext.ext_params); 1022 vcpu->stat.deliver_service_signal++; 1023 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, 1024 ext.ext_params, 0); 1025 1026 return write_sclp(vcpu, ext.ext_params); 1027 } 1028 1029 static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu) 1030 { 1031 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1032 struct kvm_s390_ext_info ext; 1033 1034 spin_lock(&fi->lock); 1035 if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) { 1036 spin_unlock(&fi->lock); 1037 return 0; 1038 } 1039 ext = fi->srv_signal; 1040 /* only clear the event bit */ 1041 fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING; 1042 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1043 spin_unlock(&fi->lock); 1044 1045 VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event"); 1046 vcpu->stat.deliver_service_signal++; 1047 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, 1048 ext.ext_params, 0); 1049 1050 return write_sclp(vcpu, SCCB_EVENT_PENDING); 1051 } 1052 1053 static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu) 1054 { 1055 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1056 struct kvm_s390_interrupt_info *inti; 1057 int rc = 0; 1058 1059 spin_lock(&fi->lock); 1060 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT], 1061 struct kvm_s390_interrupt_info, 1062 list); 1063 if (inti) { 1064 list_del(&inti->list); 1065 fi->counters[FIRQ_CNTR_PFAULT] -= 1; 1066 } 1067 if (list_empty(&fi->lists[FIRQ_LIST_PFAULT])) 1068 clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 1069 spin_unlock(&fi->lock); 1070 1071 if (inti) { 1072 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1073 KVM_S390_INT_PFAULT_DONE, 0, 1074 inti->ext.ext_params2); 1075 VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx", 1076 inti->ext.ext_params2); 1077 1078 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 1079 (u16 *)__LC_EXT_INT_CODE); 1080 rc |= put_guest_lc(vcpu, PFAULT_DONE, 1081 (u16 *)__LC_EXT_CPU_ADDR); 1082 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 1083 &vcpu->arch.sie_block->gpsw, 1084 sizeof(psw_t)); 1085 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 1086 &vcpu->arch.sie_block->gpsw, 1087 sizeof(psw_t)); 1088 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 1089 (u64 *)__LC_EXT_PARAMS2); 1090 kfree(inti); 1091 } 1092 return rc ? -EFAULT : 0; 1093 } 1094 1095 static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu) 1096 { 1097 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 1098 struct kvm_s390_interrupt_info *inti; 1099 int rc = 0; 1100 1101 spin_lock(&fi->lock); 1102 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO], 1103 struct kvm_s390_interrupt_info, 1104 list); 1105 if (inti) { 1106 VCPU_EVENT(vcpu, 4, 1107 "deliver: virtio parm: 0x%x,parm64: 0x%llx", 1108 inti->ext.ext_params, inti->ext.ext_params2); 1109 vcpu->stat.deliver_virtio++; 1110 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1111 inti->type, 1112 inti->ext.ext_params, 1113 inti->ext.ext_params2); 1114 list_del(&inti->list); 1115 fi->counters[FIRQ_CNTR_VIRTIO] -= 1; 1116 } 1117 if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO])) 1118 clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1119 spin_unlock(&fi->lock); 1120 1121 if (inti) { 1122 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 1123 (u16 *)__LC_EXT_INT_CODE); 1124 rc |= put_guest_lc(vcpu, VIRTIO_PARAM, 1125 (u16 *)__LC_EXT_CPU_ADDR); 1126 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 1127 &vcpu->arch.sie_block->gpsw, 1128 sizeof(psw_t)); 1129 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 1130 &vcpu->arch.sie_block->gpsw, 1131 sizeof(psw_t)); 1132 rc |= put_guest_lc(vcpu, inti->ext.ext_params, 1133 (u32 *)__LC_EXT_PARAMS); 1134 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 1135 (u64 *)__LC_EXT_PARAMS2); 1136 kfree(inti); 1137 } 1138 return rc ? -EFAULT : 0; 1139 } 1140 1141 static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io) 1142 { 1143 int rc; 1144 1145 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 1146 vcpu->arch.sie_block->iictl = IICTL_CODE_IO; 1147 vcpu->arch.sie_block->subchannel_id = io->subchannel_id; 1148 vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr; 1149 vcpu->arch.sie_block->io_int_parm = io->io_int_parm; 1150 vcpu->arch.sie_block->io_int_word = io->io_int_word; 1151 return 0; 1152 } 1153 1154 rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID); 1155 rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR); 1156 rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM); 1157 rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD); 1158 rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW, 1159 &vcpu->arch.sie_block->gpsw, 1160 sizeof(psw_t)); 1161 rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW, 1162 &vcpu->arch.sie_block->gpsw, 1163 sizeof(psw_t)); 1164 return rc ? -EFAULT : 0; 1165 } 1166 1167 static int __must_check __deliver_io(struct kvm_vcpu *vcpu, 1168 unsigned long irq_type) 1169 { 1170 struct list_head *isc_list; 1171 struct kvm_s390_float_interrupt *fi; 1172 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1173 struct kvm_s390_interrupt_info *inti = NULL; 1174 struct kvm_s390_io_info io; 1175 u32 isc; 1176 int rc = 0; 1177 1178 fi = &vcpu->kvm->arch.float_int; 1179 1180 spin_lock(&fi->lock); 1181 isc = irq_type_to_isc(irq_type); 1182 isc_list = &fi->lists[isc]; 1183 inti = list_first_entry_or_null(isc_list, 1184 struct kvm_s390_interrupt_info, 1185 list); 1186 if (inti) { 1187 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1188 VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)"); 1189 else 1190 VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x", 1191 inti->io.subchannel_id >> 8, 1192 inti->io.subchannel_id >> 1 & 0x3, 1193 inti->io.subchannel_nr); 1194 1195 vcpu->stat.deliver_io++; 1196 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1197 inti->type, 1198 ((__u32)inti->io.subchannel_id << 16) | 1199 inti->io.subchannel_nr, 1200 ((__u64)inti->io.io_int_parm << 32) | 1201 inti->io.io_int_word); 1202 list_del(&inti->list); 1203 fi->counters[FIRQ_CNTR_IO] -= 1; 1204 } 1205 if (list_empty(isc_list)) 1206 clear_bit(irq_type, &fi->pending_irqs); 1207 spin_unlock(&fi->lock); 1208 1209 if (inti) { 1210 rc = __do_deliver_io(vcpu, &(inti->io)); 1211 kfree(inti); 1212 goto out; 1213 } 1214 1215 if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) { 1216 /* 1217 * in case an adapter interrupt was not delivered 1218 * in SIE context KVM will handle the delivery 1219 */ 1220 VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc); 1221 memset(&io, 0, sizeof(io)); 1222 io.io_int_word = isc_to_int_word(isc); 1223 vcpu->stat.deliver_io++; 1224 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1225 KVM_S390_INT_IO(1, 0, 0, 0), 1226 ((__u32)io.subchannel_id << 16) | 1227 io.subchannel_nr, 1228 ((__u64)io.io_int_parm << 32) | 1229 io.io_int_word); 1230 rc = __do_deliver_io(vcpu, &io); 1231 } 1232 out: 1233 return rc; 1234 } 1235 1236 /* Check whether an external call is pending (deliverable or not) */ 1237 int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu) 1238 { 1239 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1240 1241 if (!sclp.has_sigpif) 1242 return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 1243 1244 return sca_ext_call_pending(vcpu, NULL); 1245 } 1246 1247 int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop) 1248 { 1249 if (deliverable_irqs(vcpu)) 1250 return 1; 1251 1252 if (kvm_cpu_has_pending_timer(vcpu)) 1253 return 1; 1254 1255 /* external call pending and deliverable */ 1256 if (kvm_s390_ext_call_pending(vcpu) && 1257 !psw_extint_disabled(vcpu) && 1258 (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 1259 return 1; 1260 1261 if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu)) 1262 return 1; 1263 return 0; 1264 } 1265 1266 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 1267 { 1268 return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu); 1269 } 1270 1271 static u64 __calculate_sltime(struct kvm_vcpu *vcpu) 1272 { 1273 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 1274 const u64 ckc = vcpu->arch.sie_block->ckc; 1275 u64 cputm, sltime = 0; 1276 1277 if (ckc_interrupts_enabled(vcpu)) { 1278 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 1279 if ((s64)now < (s64)ckc) 1280 sltime = tod_to_ns((s64)ckc - (s64)now); 1281 } else if (now < ckc) { 1282 sltime = tod_to_ns(ckc - now); 1283 } 1284 /* already expired */ 1285 if (!sltime) 1286 return 0; 1287 if (cpu_timer_interrupts_enabled(vcpu)) { 1288 cputm = kvm_s390_get_cpu_timer(vcpu); 1289 /* already expired? */ 1290 if (cputm >> 63) 1291 return 0; 1292 return min_t(u64, sltime, tod_to_ns(cputm)); 1293 } 1294 } else if (cpu_timer_interrupts_enabled(vcpu)) { 1295 sltime = kvm_s390_get_cpu_timer(vcpu); 1296 /* already expired? */ 1297 if (sltime >> 63) 1298 return 0; 1299 } 1300 return sltime; 1301 } 1302 1303 int kvm_s390_handle_wait(struct kvm_vcpu *vcpu) 1304 { 1305 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1306 u64 sltime; 1307 1308 vcpu->stat.exit_wait_state++; 1309 1310 /* fast path */ 1311 if (kvm_arch_vcpu_runnable(vcpu)) 1312 return 0; 1313 1314 if (psw_interrupts_disabled(vcpu)) { 1315 VCPU_EVENT(vcpu, 3, "%s", "disabled wait"); 1316 return -EOPNOTSUPP; /* disabled wait */ 1317 } 1318 1319 if (gi->origin && 1320 (gisa_get_ipm_or_restore_iam(gi) & 1321 vcpu->arch.sie_block->gcr[6] >> 24)) 1322 return 0; 1323 1324 if (!ckc_interrupts_enabled(vcpu) && 1325 !cpu_timer_interrupts_enabled(vcpu)) { 1326 VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer"); 1327 __set_cpu_idle(vcpu); 1328 goto no_timer; 1329 } 1330 1331 sltime = __calculate_sltime(vcpu); 1332 if (!sltime) 1333 return 0; 1334 1335 __set_cpu_idle(vcpu); 1336 hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL); 1337 VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime); 1338 no_timer: 1339 kvm_vcpu_srcu_read_unlock(vcpu); 1340 kvm_vcpu_halt(vcpu); 1341 vcpu->valid_wakeup = false; 1342 __unset_cpu_idle(vcpu); 1343 kvm_vcpu_srcu_read_lock(vcpu); 1344 1345 hrtimer_cancel(&vcpu->arch.ckc_timer); 1346 return 0; 1347 } 1348 1349 void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu) 1350 { 1351 vcpu->valid_wakeup = true; 1352 kvm_vcpu_wake_up(vcpu); 1353 1354 /* 1355 * The VCPU might not be sleeping but rather executing VSIE. Let's 1356 * kick it, so it leaves the SIE to process the request. 1357 */ 1358 kvm_s390_vsie_kick(vcpu); 1359 } 1360 1361 enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer) 1362 { 1363 struct kvm_vcpu *vcpu; 1364 u64 sltime; 1365 1366 vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer); 1367 sltime = __calculate_sltime(vcpu); 1368 1369 /* 1370 * If the monotonic clock runs faster than the tod clock we might be 1371 * woken up too early and have to go back to sleep to avoid deadlocks. 1372 */ 1373 if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime))) 1374 return HRTIMER_RESTART; 1375 kvm_s390_vcpu_wakeup(vcpu); 1376 return HRTIMER_NORESTART; 1377 } 1378 1379 void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu) 1380 { 1381 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1382 1383 spin_lock(&li->lock); 1384 li->pending_irqs = 0; 1385 bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS); 1386 memset(&li->irq, 0, sizeof(li->irq)); 1387 spin_unlock(&li->lock); 1388 1389 sca_clear_ext_call(vcpu); 1390 } 1391 1392 int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu) 1393 { 1394 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1395 int rc = 0; 1396 unsigned long irq_type; 1397 unsigned long irqs; 1398 1399 __reset_intercept_indicators(vcpu); 1400 1401 /* pending ckc conditions might have been invalidated */ 1402 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1403 if (ckc_irq_pending(vcpu)) 1404 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1405 1406 /* pending cpu timer conditions might have been invalidated */ 1407 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1408 if (cpu_timer_irq_pending(vcpu)) 1409 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1410 1411 while ((irqs = deliverable_irqs(vcpu)) && !rc) { 1412 /* bits are in the reverse order of interrupt priority */ 1413 irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT); 1414 switch (irq_type) { 1415 case IRQ_PEND_IO_ISC_0: 1416 case IRQ_PEND_IO_ISC_1: 1417 case IRQ_PEND_IO_ISC_2: 1418 case IRQ_PEND_IO_ISC_3: 1419 case IRQ_PEND_IO_ISC_4: 1420 case IRQ_PEND_IO_ISC_5: 1421 case IRQ_PEND_IO_ISC_6: 1422 case IRQ_PEND_IO_ISC_7: 1423 rc = __deliver_io(vcpu, irq_type); 1424 break; 1425 case IRQ_PEND_MCHK_EX: 1426 case IRQ_PEND_MCHK_REP: 1427 rc = __deliver_machine_check(vcpu); 1428 break; 1429 case IRQ_PEND_PROG: 1430 rc = __deliver_prog(vcpu); 1431 break; 1432 case IRQ_PEND_EXT_EMERGENCY: 1433 rc = __deliver_emergency_signal(vcpu); 1434 break; 1435 case IRQ_PEND_EXT_EXTERNAL: 1436 rc = __deliver_external_call(vcpu); 1437 break; 1438 case IRQ_PEND_EXT_CLOCK_COMP: 1439 rc = __deliver_ckc(vcpu); 1440 break; 1441 case IRQ_PEND_EXT_CPU_TIMER: 1442 rc = __deliver_cpu_timer(vcpu); 1443 break; 1444 case IRQ_PEND_RESTART: 1445 rc = __deliver_restart(vcpu); 1446 break; 1447 case IRQ_PEND_SET_PREFIX: 1448 rc = __deliver_set_prefix(vcpu); 1449 break; 1450 case IRQ_PEND_PFAULT_INIT: 1451 rc = __deliver_pfault_init(vcpu); 1452 break; 1453 case IRQ_PEND_EXT_SERVICE: 1454 rc = __deliver_service(vcpu); 1455 break; 1456 case IRQ_PEND_EXT_SERVICE_EV: 1457 rc = __deliver_service_ev(vcpu); 1458 break; 1459 case IRQ_PEND_PFAULT_DONE: 1460 rc = __deliver_pfault_done(vcpu); 1461 break; 1462 case IRQ_PEND_VIRTIO: 1463 rc = __deliver_virtio(vcpu); 1464 break; 1465 default: 1466 WARN_ONCE(1, "Unknown pending irq type %ld", irq_type); 1467 clear_bit(irq_type, &li->pending_irqs); 1468 } 1469 } 1470 1471 set_intercept_indicators(vcpu); 1472 1473 return rc; 1474 } 1475 1476 static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1477 { 1478 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1479 1480 vcpu->stat.inject_program++; 1481 VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code); 1482 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 1483 irq->u.pgm.code, 0); 1484 1485 if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) { 1486 /* auto detection if no valid ILC was given */ 1487 irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK; 1488 irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu); 1489 irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID; 1490 } 1491 1492 if (irq->u.pgm.code == PGM_PER) { 1493 li->irq.pgm.code |= PGM_PER; 1494 li->irq.pgm.flags = irq->u.pgm.flags; 1495 /* only modify PER related information */ 1496 li->irq.pgm.per_address = irq->u.pgm.per_address; 1497 li->irq.pgm.per_code = irq->u.pgm.per_code; 1498 li->irq.pgm.per_atmid = irq->u.pgm.per_atmid; 1499 li->irq.pgm.per_access_id = irq->u.pgm.per_access_id; 1500 } else if (!(irq->u.pgm.code & PGM_PER)) { 1501 li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) | 1502 irq->u.pgm.code; 1503 li->irq.pgm.flags = irq->u.pgm.flags; 1504 /* only modify non-PER information */ 1505 li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code; 1506 li->irq.pgm.mon_code = irq->u.pgm.mon_code; 1507 li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code; 1508 li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr; 1509 li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id; 1510 li->irq.pgm.op_access_id = irq->u.pgm.op_access_id; 1511 } else { 1512 li->irq.pgm = irq->u.pgm; 1513 } 1514 set_bit(IRQ_PEND_PROG, &li->pending_irqs); 1515 return 0; 1516 } 1517 1518 static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1519 { 1520 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1521 1522 vcpu->stat.inject_pfault_init++; 1523 VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx", 1524 irq->u.ext.ext_params2); 1525 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT, 1526 irq->u.ext.ext_params, 1527 irq->u.ext.ext_params2); 1528 1529 li->irq.ext = irq->u.ext; 1530 set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 1531 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1532 return 0; 1533 } 1534 1535 static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1536 { 1537 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1538 struct kvm_s390_extcall_info *extcall = &li->irq.extcall; 1539 uint16_t src_id = irq->u.extcall.code; 1540 1541 vcpu->stat.inject_external_call++; 1542 VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u", 1543 src_id); 1544 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL, 1545 src_id, 0); 1546 1547 /* sending vcpu invalid */ 1548 if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL) 1549 return -EINVAL; 1550 1551 if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu)) 1552 return sca_inject_ext_call(vcpu, src_id); 1553 1554 if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs)) 1555 return -EBUSY; 1556 *extcall = irq->u.extcall; 1557 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1558 return 0; 1559 } 1560 1561 static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1562 { 1563 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1564 struct kvm_s390_prefix_info *prefix = &li->irq.prefix; 1565 1566 vcpu->stat.inject_set_prefix++; 1567 VCPU_EVENT(vcpu, 3, "inject: set prefix to %x", 1568 irq->u.prefix.address); 1569 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX, 1570 irq->u.prefix.address, 0); 1571 1572 if (!is_vcpu_stopped(vcpu)) 1573 return -EBUSY; 1574 1575 *prefix = irq->u.prefix; 1576 set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 1577 return 0; 1578 } 1579 1580 #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS) 1581 static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1582 { 1583 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1584 struct kvm_s390_stop_info *stop = &li->irq.stop; 1585 int rc = 0; 1586 1587 vcpu->stat.inject_stop_signal++; 1588 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0); 1589 1590 if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS) 1591 return -EINVAL; 1592 1593 if (is_vcpu_stopped(vcpu)) { 1594 if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS) 1595 rc = kvm_s390_store_status_unloaded(vcpu, 1596 KVM_S390_STORE_STATUS_NOADDR); 1597 return rc; 1598 } 1599 1600 if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs)) 1601 return -EBUSY; 1602 stop->flags = irq->u.stop.flags; 1603 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 1604 return 0; 1605 } 1606 1607 static int __inject_sigp_restart(struct kvm_vcpu *vcpu) 1608 { 1609 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1610 1611 vcpu->stat.inject_restart++; 1612 VCPU_EVENT(vcpu, 3, "%s", "inject: restart int"); 1613 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 1614 1615 set_bit(IRQ_PEND_RESTART, &li->pending_irqs); 1616 return 0; 1617 } 1618 1619 static int __inject_sigp_emergency(struct kvm_vcpu *vcpu, 1620 struct kvm_s390_irq *irq) 1621 { 1622 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1623 1624 vcpu->stat.inject_emergency_signal++; 1625 VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u", 1626 irq->u.emerg.code); 1627 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 1628 irq->u.emerg.code, 0); 1629 1630 /* sending vcpu invalid */ 1631 if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL) 1632 return -EINVAL; 1633 1634 set_bit(irq->u.emerg.code, li->sigp_emerg_pending); 1635 set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 1636 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1637 return 0; 1638 } 1639 1640 static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1641 { 1642 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1643 struct kvm_s390_mchk_info *mchk = &li->irq.mchk; 1644 1645 vcpu->stat.inject_mchk++; 1646 VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx", 1647 irq->u.mchk.mcic); 1648 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0, 1649 irq->u.mchk.mcic); 1650 1651 /* 1652 * Because repressible machine checks can be indicated along with 1653 * exigent machine checks (PoP, Chapter 11, Interruption action) 1654 * we need to combine cr14, mcic and external damage code. 1655 * Failing storage address and the logout area should not be or'ed 1656 * together, we just indicate the last occurrence of the corresponding 1657 * machine check 1658 */ 1659 mchk->cr14 |= irq->u.mchk.cr14; 1660 mchk->mcic |= irq->u.mchk.mcic; 1661 mchk->ext_damage_code |= irq->u.mchk.ext_damage_code; 1662 mchk->failing_storage_address = irq->u.mchk.failing_storage_address; 1663 memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout, 1664 sizeof(mchk->fixed_logout)); 1665 if (mchk->mcic & MCHK_EX_MASK) 1666 set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 1667 else if (mchk->mcic & MCHK_REP_MASK) 1668 set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 1669 return 0; 1670 } 1671 1672 static int __inject_ckc(struct kvm_vcpu *vcpu) 1673 { 1674 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1675 1676 vcpu->stat.inject_ckc++; 1677 VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external"); 1678 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 1679 0, 0); 1680 1681 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1682 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1683 return 0; 1684 } 1685 1686 static int __inject_cpu_timer(struct kvm_vcpu *vcpu) 1687 { 1688 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1689 1690 vcpu->stat.inject_cputm++; 1691 VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external"); 1692 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 1693 0, 0); 1694 1695 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1696 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1697 return 0; 1698 } 1699 1700 static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm, 1701 int isc, u32 schid) 1702 { 1703 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1704 struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1705 struct kvm_s390_interrupt_info *iter; 1706 u16 id = (schid & 0xffff0000U) >> 16; 1707 u16 nr = schid & 0x0000ffffU; 1708 1709 spin_lock(&fi->lock); 1710 list_for_each_entry(iter, isc_list, list) { 1711 if (schid && (id != iter->io.subchannel_id || 1712 nr != iter->io.subchannel_nr)) 1713 continue; 1714 /* found an appropriate entry */ 1715 list_del_init(&iter->list); 1716 fi->counters[FIRQ_CNTR_IO] -= 1; 1717 if (list_empty(isc_list)) 1718 clear_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1719 spin_unlock(&fi->lock); 1720 return iter; 1721 } 1722 spin_unlock(&fi->lock); 1723 return NULL; 1724 } 1725 1726 static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm, 1727 u64 isc_mask, u32 schid) 1728 { 1729 struct kvm_s390_interrupt_info *inti = NULL; 1730 int isc; 1731 1732 for (isc = 0; isc <= MAX_ISC && !inti; isc++) { 1733 if (isc_mask & isc_to_isc_bits(isc)) 1734 inti = get_io_int(kvm, isc, schid); 1735 } 1736 return inti; 1737 } 1738 1739 static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid) 1740 { 1741 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1742 unsigned long active_mask; 1743 int isc; 1744 1745 if (schid) 1746 goto out; 1747 if (!gi->origin) 1748 goto out; 1749 1750 active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32; 1751 while (active_mask) { 1752 isc = __fls(active_mask) ^ (BITS_PER_LONG - 1); 1753 if (gisa_tac_ipm_gisc(gi->origin, isc)) 1754 return isc; 1755 clear_bit_inv(isc, &active_mask); 1756 } 1757 out: 1758 return -EINVAL; 1759 } 1760 1761 /* 1762 * Dequeue and return an I/O interrupt matching any of the interruption 1763 * subclasses as designated by the isc mask in cr6 and the schid (if != 0). 1764 * Take into account the interrupts pending in the interrupt list and in GISA. 1765 * 1766 * Note that for a guest that does not enable I/O interrupts 1767 * but relies on TPI, a flood of classic interrupts may starve 1768 * out adapter interrupts on the same isc. Linux does not do 1769 * that, and it is possible to work around the issue by configuring 1770 * different iscs for classic and adapter interrupts in the guest, 1771 * but we may want to revisit this in the future. 1772 */ 1773 struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm, 1774 u64 isc_mask, u32 schid) 1775 { 1776 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1777 struct kvm_s390_interrupt_info *inti, *tmp_inti; 1778 int isc; 1779 1780 inti = get_top_io_int(kvm, isc_mask, schid); 1781 1782 isc = get_top_gisa_isc(kvm, isc_mask, schid); 1783 if (isc < 0) 1784 /* no AI in GISA */ 1785 goto out; 1786 1787 if (!inti) 1788 /* AI in GISA but no classical IO int */ 1789 goto gisa_out; 1790 1791 /* both types of interrupts present */ 1792 if (int_word_to_isc(inti->io.io_int_word) <= isc) { 1793 /* classical IO int with higher priority */ 1794 gisa_set_ipm_gisc(gi->origin, isc); 1795 goto out; 1796 } 1797 gisa_out: 1798 tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 1799 if (tmp_inti) { 1800 tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0); 1801 tmp_inti->io.io_int_word = isc_to_int_word(isc); 1802 if (inti) 1803 kvm_s390_reinject_io_int(kvm, inti); 1804 inti = tmp_inti; 1805 } else 1806 gisa_set_ipm_gisc(gi->origin, isc); 1807 out: 1808 return inti; 1809 } 1810 1811 static int __inject_service(struct kvm *kvm, 1812 struct kvm_s390_interrupt_info *inti) 1813 { 1814 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1815 1816 kvm->stat.inject_service_signal++; 1817 spin_lock(&fi->lock); 1818 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING; 1819 1820 /* We always allow events, track them separately from the sccb ints */ 1821 if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING) 1822 set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs); 1823 1824 /* 1825 * Early versions of the QEMU s390 bios will inject several 1826 * service interrupts after another without handling a 1827 * condition code indicating busy. 1828 * We will silently ignore those superfluous sccb values. 1829 * A future version of QEMU will take care of serialization 1830 * of servc requests 1831 */ 1832 if (fi->srv_signal.ext_params & SCCB_MASK) 1833 goto out; 1834 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK; 1835 set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 1836 out: 1837 spin_unlock(&fi->lock); 1838 kfree(inti); 1839 return 0; 1840 } 1841 1842 static int __inject_virtio(struct kvm *kvm, 1843 struct kvm_s390_interrupt_info *inti) 1844 { 1845 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1846 1847 kvm->stat.inject_virtio++; 1848 spin_lock(&fi->lock); 1849 if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) { 1850 spin_unlock(&fi->lock); 1851 return -EBUSY; 1852 } 1853 fi->counters[FIRQ_CNTR_VIRTIO] += 1; 1854 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]); 1855 set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1856 spin_unlock(&fi->lock); 1857 return 0; 1858 } 1859 1860 static int __inject_pfault_done(struct kvm *kvm, 1861 struct kvm_s390_interrupt_info *inti) 1862 { 1863 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1864 1865 kvm->stat.inject_pfault_done++; 1866 spin_lock(&fi->lock); 1867 if (fi->counters[FIRQ_CNTR_PFAULT] >= 1868 (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) { 1869 spin_unlock(&fi->lock); 1870 return -EBUSY; 1871 } 1872 fi->counters[FIRQ_CNTR_PFAULT] += 1; 1873 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]); 1874 set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 1875 spin_unlock(&fi->lock); 1876 return 0; 1877 } 1878 1879 #define CR_PENDING_SUBCLASS 28 1880 static int __inject_float_mchk(struct kvm *kvm, 1881 struct kvm_s390_interrupt_info *inti) 1882 { 1883 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1884 1885 kvm->stat.inject_float_mchk++; 1886 spin_lock(&fi->lock); 1887 fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS); 1888 fi->mchk.mcic |= inti->mchk.mcic; 1889 set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs); 1890 spin_unlock(&fi->lock); 1891 kfree(inti); 1892 return 0; 1893 } 1894 1895 static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1896 { 1897 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1898 struct kvm_s390_float_interrupt *fi; 1899 struct list_head *list; 1900 int isc; 1901 1902 kvm->stat.inject_io++; 1903 isc = int_word_to_isc(inti->io.io_int_word); 1904 1905 /* 1906 * We do not use the lock checking variant as this is just a 1907 * performance optimization and we do not hold the lock here. 1908 * This is ok as the code will pick interrupts from both "lists" 1909 * for delivery. 1910 */ 1911 if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) { 1912 VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc); 1913 gisa_set_ipm_gisc(gi->origin, isc); 1914 kfree(inti); 1915 return 0; 1916 } 1917 1918 fi = &kvm->arch.float_int; 1919 spin_lock(&fi->lock); 1920 if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) { 1921 spin_unlock(&fi->lock); 1922 return -EBUSY; 1923 } 1924 fi->counters[FIRQ_CNTR_IO] += 1; 1925 1926 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1927 VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)"); 1928 else 1929 VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x", 1930 inti->io.subchannel_id >> 8, 1931 inti->io.subchannel_id >> 1 & 0x3, 1932 inti->io.subchannel_nr); 1933 list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1934 list_add_tail(&inti->list, list); 1935 set_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1936 spin_unlock(&fi->lock); 1937 return 0; 1938 } 1939 1940 /* 1941 * Find a destination VCPU for a floating irq and kick it. 1942 */ 1943 static void __floating_irq_kick(struct kvm *kvm, u64 type) 1944 { 1945 struct kvm_vcpu *dst_vcpu; 1946 int sigcpu, online_vcpus, nr_tries = 0; 1947 1948 online_vcpus = atomic_read(&kvm->online_vcpus); 1949 if (!online_vcpus) 1950 return; 1951 1952 /* find idle VCPUs first, then round robin */ 1953 sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus); 1954 if (sigcpu == online_vcpus) { 1955 do { 1956 sigcpu = kvm->arch.float_int.next_rr_cpu++; 1957 kvm->arch.float_int.next_rr_cpu %= online_vcpus; 1958 /* avoid endless loops if all vcpus are stopped */ 1959 if (nr_tries++ >= online_vcpus) 1960 return; 1961 } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu))); 1962 } 1963 dst_vcpu = kvm_get_vcpu(kvm, sigcpu); 1964 1965 /* make the VCPU drop out of the SIE, or wake it up if sleeping */ 1966 switch (type) { 1967 case KVM_S390_MCHK: 1968 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT); 1969 break; 1970 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1971 if (!(type & KVM_S390_INT_IO_AI_MASK && 1972 kvm->arch.gisa_int.origin) || 1973 kvm_s390_pv_cpu_get_handle(dst_vcpu)) 1974 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT); 1975 break; 1976 default: 1977 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT); 1978 break; 1979 } 1980 kvm_s390_vcpu_wakeup(dst_vcpu); 1981 } 1982 1983 static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1984 { 1985 u64 type = READ_ONCE(inti->type); 1986 int rc; 1987 1988 switch (type) { 1989 case KVM_S390_MCHK: 1990 rc = __inject_float_mchk(kvm, inti); 1991 break; 1992 case KVM_S390_INT_VIRTIO: 1993 rc = __inject_virtio(kvm, inti); 1994 break; 1995 case KVM_S390_INT_SERVICE: 1996 rc = __inject_service(kvm, inti); 1997 break; 1998 case KVM_S390_INT_PFAULT_DONE: 1999 rc = __inject_pfault_done(kvm, inti); 2000 break; 2001 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2002 rc = __inject_io(kvm, inti); 2003 break; 2004 default: 2005 rc = -EINVAL; 2006 } 2007 if (rc) 2008 return rc; 2009 2010 __floating_irq_kick(kvm, type); 2011 return 0; 2012 } 2013 2014 int kvm_s390_inject_vm(struct kvm *kvm, 2015 struct kvm_s390_interrupt *s390int) 2016 { 2017 struct kvm_s390_interrupt_info *inti; 2018 int rc; 2019 2020 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 2021 if (!inti) 2022 return -ENOMEM; 2023 2024 inti->type = s390int->type; 2025 switch (inti->type) { 2026 case KVM_S390_INT_VIRTIO: 2027 VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx", 2028 s390int->parm, s390int->parm64); 2029 inti->ext.ext_params = s390int->parm; 2030 inti->ext.ext_params2 = s390int->parm64; 2031 break; 2032 case KVM_S390_INT_SERVICE: 2033 VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm); 2034 inti->ext.ext_params = s390int->parm; 2035 break; 2036 case KVM_S390_INT_PFAULT_DONE: 2037 inti->ext.ext_params2 = s390int->parm64; 2038 break; 2039 case KVM_S390_MCHK: 2040 VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx", 2041 s390int->parm64); 2042 inti->mchk.cr14 = s390int->parm; /* upper bits are not used */ 2043 inti->mchk.mcic = s390int->parm64; 2044 break; 2045 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2046 inti->io.subchannel_id = s390int->parm >> 16; 2047 inti->io.subchannel_nr = s390int->parm & 0x0000ffffu; 2048 inti->io.io_int_parm = s390int->parm64 >> 32; 2049 inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull; 2050 break; 2051 default: 2052 kfree(inti); 2053 return -EINVAL; 2054 } 2055 trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64, 2056 2); 2057 2058 rc = __inject_vm(kvm, inti); 2059 if (rc) 2060 kfree(inti); 2061 return rc; 2062 } 2063 2064 int kvm_s390_reinject_io_int(struct kvm *kvm, 2065 struct kvm_s390_interrupt_info *inti) 2066 { 2067 return __inject_vm(kvm, inti); 2068 } 2069 2070 int s390int_to_s390irq(struct kvm_s390_interrupt *s390int, 2071 struct kvm_s390_irq *irq) 2072 { 2073 irq->type = s390int->type; 2074 switch (irq->type) { 2075 case KVM_S390_PROGRAM_INT: 2076 if (s390int->parm & 0xffff0000) 2077 return -EINVAL; 2078 irq->u.pgm.code = s390int->parm; 2079 break; 2080 case KVM_S390_SIGP_SET_PREFIX: 2081 irq->u.prefix.address = s390int->parm; 2082 break; 2083 case KVM_S390_SIGP_STOP: 2084 irq->u.stop.flags = s390int->parm; 2085 break; 2086 case KVM_S390_INT_EXTERNAL_CALL: 2087 if (s390int->parm & 0xffff0000) 2088 return -EINVAL; 2089 irq->u.extcall.code = s390int->parm; 2090 break; 2091 case KVM_S390_INT_EMERGENCY: 2092 if (s390int->parm & 0xffff0000) 2093 return -EINVAL; 2094 irq->u.emerg.code = s390int->parm; 2095 break; 2096 case KVM_S390_MCHK: 2097 irq->u.mchk.mcic = s390int->parm64; 2098 break; 2099 case KVM_S390_INT_PFAULT_INIT: 2100 irq->u.ext.ext_params = s390int->parm; 2101 irq->u.ext.ext_params2 = s390int->parm64; 2102 break; 2103 case KVM_S390_RESTART: 2104 case KVM_S390_INT_CLOCK_COMP: 2105 case KVM_S390_INT_CPU_TIMER: 2106 break; 2107 default: 2108 return -EINVAL; 2109 } 2110 return 0; 2111 } 2112 2113 int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu) 2114 { 2115 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2116 2117 return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 2118 } 2119 2120 int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu) 2121 { 2122 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2123 2124 return test_bit(IRQ_PEND_RESTART, &li->pending_irqs); 2125 } 2126 2127 void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu) 2128 { 2129 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2130 2131 spin_lock(&li->lock); 2132 li->irq.stop.flags = 0; 2133 clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 2134 spin_unlock(&li->lock); 2135 } 2136 2137 static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 2138 { 2139 int rc; 2140 2141 switch (irq->type) { 2142 case KVM_S390_PROGRAM_INT: 2143 rc = __inject_prog(vcpu, irq); 2144 break; 2145 case KVM_S390_SIGP_SET_PREFIX: 2146 rc = __inject_set_prefix(vcpu, irq); 2147 break; 2148 case KVM_S390_SIGP_STOP: 2149 rc = __inject_sigp_stop(vcpu, irq); 2150 break; 2151 case KVM_S390_RESTART: 2152 rc = __inject_sigp_restart(vcpu); 2153 break; 2154 case KVM_S390_INT_CLOCK_COMP: 2155 rc = __inject_ckc(vcpu); 2156 break; 2157 case KVM_S390_INT_CPU_TIMER: 2158 rc = __inject_cpu_timer(vcpu); 2159 break; 2160 case KVM_S390_INT_EXTERNAL_CALL: 2161 rc = __inject_extcall(vcpu, irq); 2162 break; 2163 case KVM_S390_INT_EMERGENCY: 2164 rc = __inject_sigp_emergency(vcpu, irq); 2165 break; 2166 case KVM_S390_MCHK: 2167 rc = __inject_mchk(vcpu, irq); 2168 break; 2169 case KVM_S390_INT_PFAULT_INIT: 2170 rc = __inject_pfault_init(vcpu, irq); 2171 break; 2172 case KVM_S390_INT_VIRTIO: 2173 case KVM_S390_INT_SERVICE: 2174 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2175 default: 2176 rc = -EINVAL; 2177 } 2178 2179 return rc; 2180 } 2181 2182 int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 2183 { 2184 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2185 int rc; 2186 2187 spin_lock(&li->lock); 2188 rc = do_inject_vcpu(vcpu, irq); 2189 spin_unlock(&li->lock); 2190 if (!rc) 2191 kvm_s390_vcpu_wakeup(vcpu); 2192 return rc; 2193 } 2194 2195 static inline void clear_irq_list(struct list_head *_list) 2196 { 2197 struct kvm_s390_interrupt_info *inti, *n; 2198 2199 list_for_each_entry_safe(inti, n, _list, list) { 2200 list_del(&inti->list); 2201 kfree(inti); 2202 } 2203 } 2204 2205 static void inti_to_irq(struct kvm_s390_interrupt_info *inti, 2206 struct kvm_s390_irq *irq) 2207 { 2208 irq->type = inti->type; 2209 switch (inti->type) { 2210 case KVM_S390_INT_PFAULT_INIT: 2211 case KVM_S390_INT_PFAULT_DONE: 2212 case KVM_S390_INT_VIRTIO: 2213 irq->u.ext = inti->ext; 2214 break; 2215 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2216 irq->u.io = inti->io; 2217 break; 2218 } 2219 } 2220 2221 void kvm_s390_clear_float_irqs(struct kvm *kvm) 2222 { 2223 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2224 int i; 2225 2226 mutex_lock(&kvm->lock); 2227 if (!kvm_s390_pv_is_protected(kvm)) 2228 fi->masked_irqs = 0; 2229 mutex_unlock(&kvm->lock); 2230 spin_lock(&fi->lock); 2231 fi->pending_irqs = 0; 2232 memset(&fi->srv_signal, 0, sizeof(fi->srv_signal)); 2233 memset(&fi->mchk, 0, sizeof(fi->mchk)); 2234 for (i = 0; i < FIRQ_LIST_COUNT; i++) 2235 clear_irq_list(&fi->lists[i]); 2236 for (i = 0; i < FIRQ_MAX_COUNT; i++) 2237 fi->counters[i] = 0; 2238 spin_unlock(&fi->lock); 2239 kvm_s390_gisa_clear(kvm); 2240 }; 2241 2242 static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len) 2243 { 2244 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 2245 struct kvm_s390_interrupt_info *inti; 2246 struct kvm_s390_float_interrupt *fi; 2247 struct kvm_s390_irq *buf; 2248 struct kvm_s390_irq *irq; 2249 int max_irqs; 2250 int ret = 0; 2251 int n = 0; 2252 int i; 2253 2254 if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0) 2255 return -EINVAL; 2256 2257 /* 2258 * We are already using -ENOMEM to signal 2259 * userspace it may retry with a bigger buffer, 2260 * so we need to use something else for this case 2261 */ 2262 buf = vzalloc(len); 2263 if (!buf) 2264 return -ENOBUFS; 2265 2266 max_irqs = len / sizeof(struct kvm_s390_irq); 2267 2268 if (gi->origin && gisa_get_ipm(gi->origin)) { 2269 for (i = 0; i <= MAX_ISC; i++) { 2270 if (n == max_irqs) { 2271 /* signal userspace to try again */ 2272 ret = -ENOMEM; 2273 goto out_nolock; 2274 } 2275 if (gisa_tac_ipm_gisc(gi->origin, i)) { 2276 irq = (struct kvm_s390_irq *) &buf[n]; 2277 irq->type = KVM_S390_INT_IO(1, 0, 0, 0); 2278 irq->u.io.io_int_word = isc_to_int_word(i); 2279 n++; 2280 } 2281 } 2282 } 2283 fi = &kvm->arch.float_int; 2284 spin_lock(&fi->lock); 2285 for (i = 0; i < FIRQ_LIST_COUNT; i++) { 2286 list_for_each_entry(inti, &fi->lists[i], list) { 2287 if (n == max_irqs) { 2288 /* signal userspace to try again */ 2289 ret = -ENOMEM; 2290 goto out; 2291 } 2292 inti_to_irq(inti, &buf[n]); 2293 n++; 2294 } 2295 } 2296 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) || 2297 test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) { 2298 if (n == max_irqs) { 2299 /* signal userspace to try again */ 2300 ret = -ENOMEM; 2301 goto out; 2302 } 2303 irq = (struct kvm_s390_irq *) &buf[n]; 2304 irq->type = KVM_S390_INT_SERVICE; 2305 irq->u.ext = fi->srv_signal; 2306 n++; 2307 } 2308 if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 2309 if (n == max_irqs) { 2310 /* signal userspace to try again */ 2311 ret = -ENOMEM; 2312 goto out; 2313 } 2314 irq = (struct kvm_s390_irq *) &buf[n]; 2315 irq->type = KVM_S390_MCHK; 2316 irq->u.mchk = fi->mchk; 2317 n++; 2318 } 2319 2320 out: 2321 spin_unlock(&fi->lock); 2322 out_nolock: 2323 if (!ret && n > 0) { 2324 if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n)) 2325 ret = -EFAULT; 2326 } 2327 vfree(buf); 2328 2329 return ret < 0 ? ret : n; 2330 } 2331 2332 static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr) 2333 { 2334 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2335 struct kvm_s390_ais_all ais; 2336 2337 if (attr->attr < sizeof(ais)) 2338 return -EINVAL; 2339 2340 if (!test_kvm_facility(kvm, 72)) 2341 return -EOPNOTSUPP; 2342 2343 mutex_lock(&fi->ais_lock); 2344 ais.simm = fi->simm; 2345 ais.nimm = fi->nimm; 2346 mutex_unlock(&fi->ais_lock); 2347 2348 if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais))) 2349 return -EFAULT; 2350 2351 return 0; 2352 } 2353 2354 static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2355 { 2356 int r; 2357 2358 switch (attr->group) { 2359 case KVM_DEV_FLIC_GET_ALL_IRQS: 2360 r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr, 2361 attr->attr); 2362 break; 2363 case KVM_DEV_FLIC_AISM_ALL: 2364 r = flic_ais_mode_get_all(dev->kvm, attr); 2365 break; 2366 default: 2367 r = -EINVAL; 2368 } 2369 2370 return r; 2371 } 2372 2373 static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti, 2374 u64 addr) 2375 { 2376 struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr; 2377 void *target = NULL; 2378 void __user *source; 2379 u64 size; 2380 2381 if (get_user(inti->type, (u64 __user *)addr)) 2382 return -EFAULT; 2383 2384 switch (inti->type) { 2385 case KVM_S390_INT_PFAULT_INIT: 2386 case KVM_S390_INT_PFAULT_DONE: 2387 case KVM_S390_INT_VIRTIO: 2388 case KVM_S390_INT_SERVICE: 2389 target = (void *) &inti->ext; 2390 source = &uptr->u.ext; 2391 size = sizeof(inti->ext); 2392 break; 2393 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2394 target = (void *) &inti->io; 2395 source = &uptr->u.io; 2396 size = sizeof(inti->io); 2397 break; 2398 case KVM_S390_MCHK: 2399 target = (void *) &inti->mchk; 2400 source = &uptr->u.mchk; 2401 size = sizeof(inti->mchk); 2402 break; 2403 default: 2404 return -EINVAL; 2405 } 2406 2407 if (copy_from_user(target, source, size)) 2408 return -EFAULT; 2409 2410 return 0; 2411 } 2412 2413 static int enqueue_floating_irq(struct kvm_device *dev, 2414 struct kvm_device_attr *attr) 2415 { 2416 struct kvm_s390_interrupt_info *inti = NULL; 2417 int r = 0; 2418 int len = attr->attr; 2419 2420 if (len % sizeof(struct kvm_s390_irq) != 0) 2421 return -EINVAL; 2422 else if (len > KVM_S390_FLIC_MAX_BUFFER) 2423 return -EINVAL; 2424 2425 while (len >= sizeof(struct kvm_s390_irq)) { 2426 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT); 2427 if (!inti) 2428 return -ENOMEM; 2429 2430 r = copy_irq_from_user(inti, attr->addr); 2431 if (r) { 2432 kfree(inti); 2433 return r; 2434 } 2435 r = __inject_vm(dev->kvm, inti); 2436 if (r) { 2437 kfree(inti); 2438 return r; 2439 } 2440 len -= sizeof(struct kvm_s390_irq); 2441 attr->addr += sizeof(struct kvm_s390_irq); 2442 } 2443 2444 return r; 2445 } 2446 2447 static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id) 2448 { 2449 if (id >= MAX_S390_IO_ADAPTERS) 2450 return NULL; 2451 id = array_index_nospec(id, MAX_S390_IO_ADAPTERS); 2452 return kvm->arch.adapters[id]; 2453 } 2454 2455 static int register_io_adapter(struct kvm_device *dev, 2456 struct kvm_device_attr *attr) 2457 { 2458 struct s390_io_adapter *adapter; 2459 struct kvm_s390_io_adapter adapter_info; 2460 2461 if (copy_from_user(&adapter_info, 2462 (void __user *)attr->addr, sizeof(adapter_info))) 2463 return -EFAULT; 2464 2465 if (adapter_info.id >= MAX_S390_IO_ADAPTERS) 2466 return -EINVAL; 2467 2468 adapter_info.id = array_index_nospec(adapter_info.id, 2469 MAX_S390_IO_ADAPTERS); 2470 2471 if (dev->kvm->arch.adapters[adapter_info.id] != NULL) 2472 return -EINVAL; 2473 2474 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT); 2475 if (!adapter) 2476 return -ENOMEM; 2477 2478 adapter->id = adapter_info.id; 2479 adapter->isc = adapter_info.isc; 2480 adapter->maskable = adapter_info.maskable; 2481 adapter->masked = false; 2482 adapter->swap = adapter_info.swap; 2483 adapter->suppressible = (adapter_info.flags) & 2484 KVM_S390_ADAPTER_SUPPRESSIBLE; 2485 dev->kvm->arch.adapters[adapter->id] = adapter; 2486 2487 return 0; 2488 } 2489 2490 int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked) 2491 { 2492 int ret; 2493 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2494 2495 if (!adapter || !adapter->maskable) 2496 return -EINVAL; 2497 ret = adapter->masked; 2498 adapter->masked = masked; 2499 return ret; 2500 } 2501 2502 void kvm_s390_destroy_adapters(struct kvm *kvm) 2503 { 2504 int i; 2505 2506 for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) 2507 kfree(kvm->arch.adapters[i]); 2508 } 2509 2510 static int modify_io_adapter(struct kvm_device *dev, 2511 struct kvm_device_attr *attr) 2512 { 2513 struct kvm_s390_io_adapter_req req; 2514 struct s390_io_adapter *adapter; 2515 int ret; 2516 2517 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2518 return -EFAULT; 2519 2520 adapter = get_io_adapter(dev->kvm, req.id); 2521 if (!adapter) 2522 return -EINVAL; 2523 switch (req.type) { 2524 case KVM_S390_IO_ADAPTER_MASK: 2525 ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask); 2526 if (ret > 0) 2527 ret = 0; 2528 break; 2529 /* 2530 * The following operations are no longer needed and therefore no-ops. 2531 * The gpa to hva translation is done when an IRQ route is set up. The 2532 * set_irq code uses get_user_pages_remote() to do the actual write. 2533 */ 2534 case KVM_S390_IO_ADAPTER_MAP: 2535 case KVM_S390_IO_ADAPTER_UNMAP: 2536 ret = 0; 2537 break; 2538 default: 2539 ret = -EINVAL; 2540 } 2541 2542 return ret; 2543 } 2544 2545 static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr) 2546 2547 { 2548 const u64 isc_mask = 0xffUL << 24; /* all iscs set */ 2549 u32 schid; 2550 2551 if (attr->flags) 2552 return -EINVAL; 2553 if (attr->attr != sizeof(schid)) 2554 return -EINVAL; 2555 if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid))) 2556 return -EFAULT; 2557 if (!schid) 2558 return -EINVAL; 2559 kfree(kvm_s390_get_io_int(kvm, isc_mask, schid)); 2560 /* 2561 * If userspace is conforming to the architecture, we can have at most 2562 * one pending I/O interrupt per subchannel, so this is effectively a 2563 * clear all. 2564 */ 2565 return 0; 2566 } 2567 2568 static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr) 2569 { 2570 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2571 struct kvm_s390_ais_req req; 2572 int ret = 0; 2573 2574 if (!test_kvm_facility(kvm, 72)) 2575 return -EOPNOTSUPP; 2576 2577 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2578 return -EFAULT; 2579 2580 if (req.isc > MAX_ISC) 2581 return -EINVAL; 2582 2583 trace_kvm_s390_modify_ais_mode(req.isc, 2584 (fi->simm & AIS_MODE_MASK(req.isc)) ? 2585 (fi->nimm & AIS_MODE_MASK(req.isc)) ? 2586 2 : KVM_S390_AIS_MODE_SINGLE : 2587 KVM_S390_AIS_MODE_ALL, req.mode); 2588 2589 mutex_lock(&fi->ais_lock); 2590 switch (req.mode) { 2591 case KVM_S390_AIS_MODE_ALL: 2592 fi->simm &= ~AIS_MODE_MASK(req.isc); 2593 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2594 break; 2595 case KVM_S390_AIS_MODE_SINGLE: 2596 fi->simm |= AIS_MODE_MASK(req.isc); 2597 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2598 break; 2599 default: 2600 ret = -EINVAL; 2601 } 2602 mutex_unlock(&fi->ais_lock); 2603 2604 return ret; 2605 } 2606 2607 static int kvm_s390_inject_airq(struct kvm *kvm, 2608 struct s390_io_adapter *adapter) 2609 { 2610 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2611 struct kvm_s390_interrupt s390int = { 2612 .type = KVM_S390_INT_IO(1, 0, 0, 0), 2613 .parm = 0, 2614 .parm64 = isc_to_int_word(adapter->isc), 2615 }; 2616 int ret = 0; 2617 2618 if (!test_kvm_facility(kvm, 72) || !adapter->suppressible) 2619 return kvm_s390_inject_vm(kvm, &s390int); 2620 2621 mutex_lock(&fi->ais_lock); 2622 if (fi->nimm & AIS_MODE_MASK(adapter->isc)) { 2623 trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc); 2624 goto out; 2625 } 2626 2627 ret = kvm_s390_inject_vm(kvm, &s390int); 2628 if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) { 2629 fi->nimm |= AIS_MODE_MASK(adapter->isc); 2630 trace_kvm_s390_modify_ais_mode(adapter->isc, 2631 KVM_S390_AIS_MODE_SINGLE, 2); 2632 } 2633 out: 2634 mutex_unlock(&fi->ais_lock); 2635 return ret; 2636 } 2637 2638 static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr) 2639 { 2640 unsigned int id = attr->attr; 2641 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2642 2643 if (!adapter) 2644 return -EINVAL; 2645 2646 return kvm_s390_inject_airq(kvm, adapter); 2647 } 2648 2649 static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr) 2650 { 2651 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2652 struct kvm_s390_ais_all ais; 2653 2654 if (!test_kvm_facility(kvm, 72)) 2655 return -EOPNOTSUPP; 2656 2657 if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais))) 2658 return -EFAULT; 2659 2660 mutex_lock(&fi->ais_lock); 2661 fi->simm = ais.simm; 2662 fi->nimm = ais.nimm; 2663 mutex_unlock(&fi->ais_lock); 2664 2665 return 0; 2666 } 2667 2668 static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2669 { 2670 int r = 0; 2671 unsigned long i; 2672 struct kvm_vcpu *vcpu; 2673 2674 switch (attr->group) { 2675 case KVM_DEV_FLIC_ENQUEUE: 2676 r = enqueue_floating_irq(dev, attr); 2677 break; 2678 case KVM_DEV_FLIC_CLEAR_IRQS: 2679 kvm_s390_clear_float_irqs(dev->kvm); 2680 break; 2681 case KVM_DEV_FLIC_APF_ENABLE: 2682 dev->kvm->arch.gmap->pfault_enabled = 1; 2683 break; 2684 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2685 dev->kvm->arch.gmap->pfault_enabled = 0; 2686 /* 2687 * Make sure no async faults are in transition when 2688 * clearing the queues. So we don't need to worry 2689 * about late coming workers. 2690 */ 2691 synchronize_srcu(&dev->kvm->srcu); 2692 kvm_for_each_vcpu(i, vcpu, dev->kvm) 2693 kvm_clear_async_pf_completion_queue(vcpu); 2694 break; 2695 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2696 r = register_io_adapter(dev, attr); 2697 break; 2698 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2699 r = modify_io_adapter(dev, attr); 2700 break; 2701 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2702 r = clear_io_irq(dev->kvm, attr); 2703 break; 2704 case KVM_DEV_FLIC_AISM: 2705 r = modify_ais_mode(dev->kvm, attr); 2706 break; 2707 case KVM_DEV_FLIC_AIRQ_INJECT: 2708 r = flic_inject_airq(dev->kvm, attr); 2709 break; 2710 case KVM_DEV_FLIC_AISM_ALL: 2711 r = flic_ais_mode_set_all(dev->kvm, attr); 2712 break; 2713 default: 2714 r = -EINVAL; 2715 } 2716 2717 return r; 2718 } 2719 2720 static int flic_has_attr(struct kvm_device *dev, 2721 struct kvm_device_attr *attr) 2722 { 2723 switch (attr->group) { 2724 case KVM_DEV_FLIC_GET_ALL_IRQS: 2725 case KVM_DEV_FLIC_ENQUEUE: 2726 case KVM_DEV_FLIC_CLEAR_IRQS: 2727 case KVM_DEV_FLIC_APF_ENABLE: 2728 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2729 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2730 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2731 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2732 case KVM_DEV_FLIC_AISM: 2733 case KVM_DEV_FLIC_AIRQ_INJECT: 2734 case KVM_DEV_FLIC_AISM_ALL: 2735 return 0; 2736 } 2737 return -ENXIO; 2738 } 2739 2740 static int flic_create(struct kvm_device *dev, u32 type) 2741 { 2742 if (!dev) 2743 return -EINVAL; 2744 if (dev->kvm->arch.flic) 2745 return -EINVAL; 2746 dev->kvm->arch.flic = dev; 2747 return 0; 2748 } 2749 2750 static void flic_destroy(struct kvm_device *dev) 2751 { 2752 dev->kvm->arch.flic = NULL; 2753 kfree(dev); 2754 } 2755 2756 /* s390 floating irq controller (flic) */ 2757 struct kvm_device_ops kvm_flic_ops = { 2758 .name = "kvm-flic", 2759 .get_attr = flic_get_attr, 2760 .set_attr = flic_set_attr, 2761 .has_attr = flic_has_attr, 2762 .create = flic_create, 2763 .destroy = flic_destroy, 2764 }; 2765 2766 static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap) 2767 { 2768 unsigned long bit; 2769 2770 bit = bit_nr + (addr % PAGE_SIZE) * 8; 2771 2772 return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit; 2773 } 2774 2775 static struct page *get_map_page(struct kvm *kvm, u64 uaddr) 2776 { 2777 struct page *page = NULL; 2778 2779 mmap_read_lock(kvm->mm); 2780 get_user_pages_remote(kvm->mm, uaddr, 1, FOLL_WRITE, 2781 &page, NULL, NULL); 2782 mmap_read_unlock(kvm->mm); 2783 return page; 2784 } 2785 2786 static int adapter_indicators_set(struct kvm *kvm, 2787 struct s390_io_adapter *adapter, 2788 struct kvm_s390_adapter_int *adapter_int) 2789 { 2790 unsigned long bit; 2791 int summary_set, idx; 2792 struct page *ind_page, *summary_page; 2793 void *map; 2794 2795 ind_page = get_map_page(kvm, adapter_int->ind_addr); 2796 if (!ind_page) 2797 return -1; 2798 summary_page = get_map_page(kvm, adapter_int->summary_addr); 2799 if (!summary_page) { 2800 put_page(ind_page); 2801 return -1; 2802 } 2803 2804 idx = srcu_read_lock(&kvm->srcu); 2805 map = page_address(ind_page); 2806 bit = get_ind_bit(adapter_int->ind_addr, 2807 adapter_int->ind_offset, adapter->swap); 2808 set_bit(bit, map); 2809 mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT); 2810 set_page_dirty_lock(ind_page); 2811 map = page_address(summary_page); 2812 bit = get_ind_bit(adapter_int->summary_addr, 2813 adapter_int->summary_offset, adapter->swap); 2814 summary_set = test_and_set_bit(bit, map); 2815 mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT); 2816 set_page_dirty_lock(summary_page); 2817 srcu_read_unlock(&kvm->srcu, idx); 2818 2819 put_page(ind_page); 2820 put_page(summary_page); 2821 return summary_set ? 0 : 1; 2822 } 2823 2824 /* 2825 * < 0 - not injected due to error 2826 * = 0 - coalesced, summary indicator already active 2827 * > 0 - injected interrupt 2828 */ 2829 static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e, 2830 struct kvm *kvm, int irq_source_id, int level, 2831 bool line_status) 2832 { 2833 int ret; 2834 struct s390_io_adapter *adapter; 2835 2836 /* We're only interested in the 0->1 transition. */ 2837 if (!level) 2838 return 0; 2839 adapter = get_io_adapter(kvm, e->adapter.adapter_id); 2840 if (!adapter) 2841 return -1; 2842 ret = adapter_indicators_set(kvm, adapter, &e->adapter); 2843 if ((ret > 0) && !adapter->masked) { 2844 ret = kvm_s390_inject_airq(kvm, adapter); 2845 if (ret == 0) 2846 ret = 1; 2847 } 2848 return ret; 2849 } 2850 2851 /* 2852 * Inject the machine check to the guest. 2853 */ 2854 void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu, 2855 struct mcck_volatile_info *mcck_info) 2856 { 2857 struct kvm_s390_interrupt_info inti; 2858 struct kvm_s390_irq irq; 2859 struct kvm_s390_mchk_info *mchk; 2860 union mci mci; 2861 __u64 cr14 = 0; /* upper bits are not used */ 2862 int rc; 2863 2864 mci.val = mcck_info->mcic; 2865 if (mci.sr) 2866 cr14 |= CR14_RECOVERY_SUBMASK; 2867 if (mci.dg) 2868 cr14 |= CR14_DEGRADATION_SUBMASK; 2869 if (mci.w) 2870 cr14 |= CR14_WARNING_SUBMASK; 2871 2872 mchk = mci.ck ? &inti.mchk : &irq.u.mchk; 2873 mchk->cr14 = cr14; 2874 mchk->mcic = mcck_info->mcic; 2875 mchk->ext_damage_code = mcck_info->ext_damage_code; 2876 mchk->failing_storage_address = mcck_info->failing_storage_address; 2877 if (mci.ck) { 2878 /* Inject the floating machine check */ 2879 inti.type = KVM_S390_MCHK; 2880 rc = __inject_vm(vcpu->kvm, &inti); 2881 } else { 2882 /* Inject the machine check to specified vcpu */ 2883 irq.type = KVM_S390_MCHK; 2884 rc = kvm_s390_inject_vcpu(vcpu, &irq); 2885 } 2886 WARN_ON_ONCE(rc); 2887 } 2888 2889 int kvm_set_routing_entry(struct kvm *kvm, 2890 struct kvm_kernel_irq_routing_entry *e, 2891 const struct kvm_irq_routing_entry *ue) 2892 { 2893 u64 uaddr; 2894 2895 switch (ue->type) { 2896 /* we store the userspace addresses instead of the guest addresses */ 2897 case KVM_IRQ_ROUTING_S390_ADAPTER: 2898 e->set = set_adapter_int; 2899 uaddr = gmap_translate(kvm->arch.gmap, ue->u.adapter.summary_addr); 2900 if (uaddr == -EFAULT) 2901 return -EFAULT; 2902 e->adapter.summary_addr = uaddr; 2903 uaddr = gmap_translate(kvm->arch.gmap, ue->u.adapter.ind_addr); 2904 if (uaddr == -EFAULT) 2905 return -EFAULT; 2906 e->adapter.ind_addr = uaddr; 2907 e->adapter.summary_offset = ue->u.adapter.summary_offset; 2908 e->adapter.ind_offset = ue->u.adapter.ind_offset; 2909 e->adapter.adapter_id = ue->u.adapter.adapter_id; 2910 return 0; 2911 default: 2912 return -EINVAL; 2913 } 2914 } 2915 2916 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, 2917 int irq_source_id, int level, bool line_status) 2918 { 2919 return -EINVAL; 2920 } 2921 2922 int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len) 2923 { 2924 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2925 struct kvm_s390_irq *buf; 2926 int r = 0; 2927 int n; 2928 2929 buf = vmalloc(len); 2930 if (!buf) 2931 return -ENOMEM; 2932 2933 if (copy_from_user((void *) buf, irqstate, len)) { 2934 r = -EFAULT; 2935 goto out_free; 2936 } 2937 2938 /* 2939 * Don't allow setting the interrupt state 2940 * when there are already interrupts pending 2941 */ 2942 spin_lock(&li->lock); 2943 if (li->pending_irqs) { 2944 r = -EBUSY; 2945 goto out_unlock; 2946 } 2947 2948 for (n = 0; n < len / sizeof(*buf); n++) { 2949 r = do_inject_vcpu(vcpu, &buf[n]); 2950 if (r) 2951 break; 2952 } 2953 2954 out_unlock: 2955 spin_unlock(&li->lock); 2956 out_free: 2957 vfree(buf); 2958 2959 return r; 2960 } 2961 2962 static void store_local_irq(struct kvm_s390_local_interrupt *li, 2963 struct kvm_s390_irq *irq, 2964 unsigned long irq_type) 2965 { 2966 switch (irq_type) { 2967 case IRQ_PEND_MCHK_EX: 2968 case IRQ_PEND_MCHK_REP: 2969 irq->type = KVM_S390_MCHK; 2970 irq->u.mchk = li->irq.mchk; 2971 break; 2972 case IRQ_PEND_PROG: 2973 irq->type = KVM_S390_PROGRAM_INT; 2974 irq->u.pgm = li->irq.pgm; 2975 break; 2976 case IRQ_PEND_PFAULT_INIT: 2977 irq->type = KVM_S390_INT_PFAULT_INIT; 2978 irq->u.ext = li->irq.ext; 2979 break; 2980 case IRQ_PEND_EXT_EXTERNAL: 2981 irq->type = KVM_S390_INT_EXTERNAL_CALL; 2982 irq->u.extcall = li->irq.extcall; 2983 break; 2984 case IRQ_PEND_EXT_CLOCK_COMP: 2985 irq->type = KVM_S390_INT_CLOCK_COMP; 2986 break; 2987 case IRQ_PEND_EXT_CPU_TIMER: 2988 irq->type = KVM_S390_INT_CPU_TIMER; 2989 break; 2990 case IRQ_PEND_SIGP_STOP: 2991 irq->type = KVM_S390_SIGP_STOP; 2992 irq->u.stop = li->irq.stop; 2993 break; 2994 case IRQ_PEND_RESTART: 2995 irq->type = KVM_S390_RESTART; 2996 break; 2997 case IRQ_PEND_SET_PREFIX: 2998 irq->type = KVM_S390_SIGP_SET_PREFIX; 2999 irq->u.prefix = li->irq.prefix; 3000 break; 3001 } 3002 } 3003 3004 int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len) 3005 { 3006 int scn; 3007 DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS); 3008 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 3009 unsigned long pending_irqs; 3010 struct kvm_s390_irq irq; 3011 unsigned long irq_type; 3012 int cpuaddr; 3013 int n = 0; 3014 3015 spin_lock(&li->lock); 3016 pending_irqs = li->pending_irqs; 3017 memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending, 3018 sizeof(sigp_emerg_pending)); 3019 spin_unlock(&li->lock); 3020 3021 for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) { 3022 memset(&irq, 0, sizeof(irq)); 3023 if (irq_type == IRQ_PEND_EXT_EMERGENCY) 3024 continue; 3025 if (n + sizeof(irq) > len) 3026 return -ENOBUFS; 3027 store_local_irq(&vcpu->arch.local_int, &irq, irq_type); 3028 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3029 return -EFAULT; 3030 n += sizeof(irq); 3031 } 3032 3033 if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) { 3034 for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) { 3035 memset(&irq, 0, sizeof(irq)); 3036 if (n + sizeof(irq) > len) 3037 return -ENOBUFS; 3038 irq.type = KVM_S390_INT_EMERGENCY; 3039 irq.u.emerg.code = cpuaddr; 3040 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3041 return -EFAULT; 3042 n += sizeof(irq); 3043 } 3044 } 3045 3046 if (sca_ext_call_pending(vcpu, &scn)) { 3047 if (n + sizeof(irq) > len) 3048 return -ENOBUFS; 3049 memset(&irq, 0, sizeof(irq)); 3050 irq.type = KVM_S390_INT_EXTERNAL_CALL; 3051 irq.u.extcall.code = scn; 3052 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 3053 return -EFAULT; 3054 n += sizeof(irq); 3055 } 3056 3057 return n; 3058 } 3059 3060 static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask) 3061 { 3062 int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus); 3063 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3064 struct kvm_vcpu *vcpu; 3065 u8 vcpu_isc_mask; 3066 3067 for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) { 3068 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 3069 if (psw_ioint_disabled(vcpu)) 3070 continue; 3071 vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24); 3072 if (deliverable_mask & vcpu_isc_mask) { 3073 /* lately kicked but not yet running */ 3074 if (test_and_set_bit(vcpu_idx, gi->kicked_mask)) 3075 return; 3076 kvm_s390_vcpu_wakeup(vcpu); 3077 return; 3078 } 3079 } 3080 } 3081 3082 static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer) 3083 { 3084 struct kvm_s390_gisa_interrupt *gi = 3085 container_of(timer, struct kvm_s390_gisa_interrupt, timer); 3086 struct kvm *kvm = 3087 container_of(gi->origin, struct sie_page2, gisa)->kvm; 3088 u8 pending_mask; 3089 3090 pending_mask = gisa_get_ipm_or_restore_iam(gi); 3091 if (pending_mask) { 3092 __airqs_kick_single_vcpu(kvm, pending_mask); 3093 hrtimer_forward_now(timer, ns_to_ktime(gi->expires)); 3094 return HRTIMER_RESTART; 3095 } 3096 3097 return HRTIMER_NORESTART; 3098 } 3099 3100 #define NULL_GISA_ADDR 0x00000000UL 3101 #define NONE_GISA_ADDR 0x00000001UL 3102 #define GISA_ADDR_MASK 0xfffff000UL 3103 3104 static void process_gib_alert_list(void) 3105 { 3106 struct kvm_s390_gisa_interrupt *gi; 3107 struct kvm_s390_gisa *gisa; 3108 struct kvm *kvm; 3109 u32 final, origin = 0UL; 3110 3111 do { 3112 /* 3113 * If the NONE_GISA_ADDR is still stored in the alert list 3114 * origin, we will leave the outer loop. No further GISA has 3115 * been added to the alert list by millicode while processing 3116 * the current alert list. 3117 */ 3118 final = (origin & NONE_GISA_ADDR); 3119 /* 3120 * Cut off the alert list and store the NONE_GISA_ADDR in the 3121 * alert list origin to avoid further GAL interruptions. 3122 * A new alert list can be build up by millicode in parallel 3123 * for guests not in the yet cut-off alert list. When in the 3124 * final loop, store the NULL_GISA_ADDR instead. This will re- 3125 * enable GAL interruptions on the host again. 3126 */ 3127 origin = xchg(&gib->alert_list_origin, 3128 (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR); 3129 /* 3130 * Loop through the just cut-off alert list and start the 3131 * gisa timers to kick idle vcpus to consume the pending 3132 * interruptions asap. 3133 */ 3134 while (origin & GISA_ADDR_MASK) { 3135 gisa = (struct kvm_s390_gisa *)(u64)origin; 3136 origin = gisa->next_alert; 3137 gisa->next_alert = (u32)(u64)gisa; 3138 kvm = container_of(gisa, struct sie_page2, gisa)->kvm; 3139 gi = &kvm->arch.gisa_int; 3140 if (hrtimer_active(&gi->timer)) 3141 hrtimer_cancel(&gi->timer); 3142 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); 3143 } 3144 } while (!final); 3145 3146 } 3147 3148 void kvm_s390_gisa_clear(struct kvm *kvm) 3149 { 3150 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3151 3152 if (!gi->origin) 3153 return; 3154 gisa_clear_ipm(gi->origin); 3155 VM_EVENT(kvm, 3, "gisa 0x%pK cleared", gi->origin); 3156 } 3157 3158 void kvm_s390_gisa_init(struct kvm *kvm) 3159 { 3160 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3161 3162 if (!css_general_characteristics.aiv) 3163 return; 3164 gi->origin = &kvm->arch.sie_page2->gisa; 3165 gi->alert.mask = 0; 3166 spin_lock_init(&gi->alert.ref_lock); 3167 gi->expires = 50 * 1000; /* 50 usec */ 3168 hrtimer_init(&gi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3169 gi->timer.function = gisa_vcpu_kicker; 3170 memset(gi->origin, 0, sizeof(struct kvm_s390_gisa)); 3171 gi->origin->next_alert = (u32)(u64)gi->origin; 3172 VM_EVENT(kvm, 3, "gisa 0x%pK initialized", gi->origin); 3173 } 3174 3175 void kvm_s390_gisa_enable(struct kvm *kvm) 3176 { 3177 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3178 struct kvm_vcpu *vcpu; 3179 unsigned long i; 3180 u32 gisa_desc; 3181 3182 if (gi->origin) 3183 return; 3184 kvm_s390_gisa_init(kvm); 3185 gisa_desc = kvm_s390_get_gisa_desc(kvm); 3186 if (!gisa_desc) 3187 return; 3188 kvm_for_each_vcpu(i, vcpu, kvm) { 3189 mutex_lock(&vcpu->mutex); 3190 vcpu->arch.sie_block->gd = gisa_desc; 3191 vcpu->arch.sie_block->eca |= ECA_AIV; 3192 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3193 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3194 mutex_unlock(&vcpu->mutex); 3195 } 3196 } 3197 3198 void kvm_s390_gisa_destroy(struct kvm *kvm) 3199 { 3200 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3201 struct kvm_s390_gisa *gisa = gi->origin; 3202 3203 if (!gi->origin) 3204 return; 3205 if (gi->alert.mask) 3206 KVM_EVENT(3, "vm 0x%pK has unexpected iam 0x%02x", 3207 kvm, gi->alert.mask); 3208 while (gisa_in_alert_list(gi->origin)) 3209 cpu_relax(); 3210 hrtimer_cancel(&gi->timer); 3211 gi->origin = NULL; 3212 VM_EVENT(kvm, 3, "gisa 0x%pK destroyed", gisa); 3213 } 3214 3215 void kvm_s390_gisa_disable(struct kvm *kvm) 3216 { 3217 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3218 struct kvm_vcpu *vcpu; 3219 unsigned long i; 3220 3221 if (!gi->origin) 3222 return; 3223 kvm_for_each_vcpu(i, vcpu, kvm) { 3224 mutex_lock(&vcpu->mutex); 3225 vcpu->arch.sie_block->eca &= ~ECA_AIV; 3226 vcpu->arch.sie_block->gd = 0U; 3227 mutex_unlock(&vcpu->mutex); 3228 VCPU_EVENT(vcpu, 3, "AIV disabled for cpu %03u", vcpu->vcpu_id); 3229 } 3230 kvm_s390_gisa_destroy(kvm); 3231 } 3232 3233 /** 3234 * kvm_s390_gisc_register - register a guest ISC 3235 * 3236 * @kvm: the kernel vm to work with 3237 * @gisc: the guest interruption sub class to register 3238 * 3239 * The function extends the vm specific alert mask to use. 3240 * The effective IAM mask in the GISA is updated as well 3241 * in case the GISA is not part of the GIB alert list. 3242 * It will be updated latest when the IAM gets restored 3243 * by gisa_get_ipm_or_restore_iam(). 3244 * 3245 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3246 * has registered with the channel subsystem. 3247 * -ENODEV in case the vm uses no GISA 3248 * -ERANGE in case the guest ISC is invalid 3249 */ 3250 int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc) 3251 { 3252 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3253 3254 if (!gi->origin) 3255 return -ENODEV; 3256 if (gisc > MAX_ISC) 3257 return -ERANGE; 3258 3259 spin_lock(&gi->alert.ref_lock); 3260 gi->alert.ref_count[gisc]++; 3261 if (gi->alert.ref_count[gisc] == 1) { 3262 gi->alert.mask |= 0x80 >> gisc; 3263 gisa_set_iam(gi->origin, gi->alert.mask); 3264 } 3265 spin_unlock(&gi->alert.ref_lock); 3266 3267 return gib->nisc; 3268 } 3269 EXPORT_SYMBOL_GPL(kvm_s390_gisc_register); 3270 3271 /** 3272 * kvm_s390_gisc_unregister - unregister a guest ISC 3273 * 3274 * @kvm: the kernel vm to work with 3275 * @gisc: the guest interruption sub class to register 3276 * 3277 * The function reduces the vm specific alert mask to use. 3278 * The effective IAM mask in the GISA is updated as well 3279 * in case the GISA is not part of the GIB alert list. 3280 * It will be updated latest when the IAM gets restored 3281 * by gisa_get_ipm_or_restore_iam(). 3282 * 3283 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3284 * has registered with the channel subsystem. 3285 * -ENODEV in case the vm uses no GISA 3286 * -ERANGE in case the guest ISC is invalid 3287 * -EINVAL in case the guest ISC is not registered 3288 */ 3289 int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc) 3290 { 3291 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3292 int rc = 0; 3293 3294 if (!gi->origin) 3295 return -ENODEV; 3296 if (gisc > MAX_ISC) 3297 return -ERANGE; 3298 3299 spin_lock(&gi->alert.ref_lock); 3300 if (gi->alert.ref_count[gisc] == 0) { 3301 rc = -EINVAL; 3302 goto out; 3303 } 3304 gi->alert.ref_count[gisc]--; 3305 if (gi->alert.ref_count[gisc] == 0) { 3306 gi->alert.mask &= ~(0x80 >> gisc); 3307 gisa_set_iam(gi->origin, gi->alert.mask); 3308 } 3309 out: 3310 spin_unlock(&gi->alert.ref_lock); 3311 3312 return rc; 3313 } 3314 EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister); 3315 3316 static void aen_host_forward(unsigned long si) 3317 { 3318 struct kvm_s390_gisa_interrupt *gi; 3319 struct zpci_gaite *gaite; 3320 struct kvm *kvm; 3321 3322 gaite = (struct zpci_gaite *)aift->gait + 3323 (si * sizeof(struct zpci_gaite)); 3324 if (gaite->count == 0) 3325 return; 3326 if (gaite->aisb != 0) 3327 set_bit_inv(gaite->aisbo, phys_to_virt(gaite->aisb)); 3328 3329 kvm = kvm_s390_pci_si_to_kvm(aift, si); 3330 if (!kvm) 3331 return; 3332 gi = &kvm->arch.gisa_int; 3333 3334 if (!(gi->origin->g1.simm & AIS_MODE_MASK(gaite->gisc)) || 3335 !(gi->origin->g1.nimm & AIS_MODE_MASK(gaite->gisc))) { 3336 gisa_set_ipm_gisc(gi->origin, gaite->gisc); 3337 if (hrtimer_active(&gi->timer)) 3338 hrtimer_cancel(&gi->timer); 3339 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); 3340 kvm->stat.aen_forward++; 3341 } 3342 } 3343 3344 static void aen_process_gait(u8 isc) 3345 { 3346 bool found = false, first = true; 3347 union zpci_sic_iib iib = {{0}}; 3348 unsigned long si, flags; 3349 3350 spin_lock_irqsave(&aift->gait_lock, flags); 3351 3352 if (!aift->gait) { 3353 spin_unlock_irqrestore(&aift->gait_lock, flags); 3354 return; 3355 } 3356 3357 for (si = 0;;) { 3358 /* Scan adapter summary indicator bit vector */ 3359 si = airq_iv_scan(aift->sbv, si, airq_iv_end(aift->sbv)); 3360 if (si == -1UL) { 3361 if (first || found) { 3362 /* Re-enable interrupts. */ 3363 zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, isc, 3364 &iib); 3365 first = found = false; 3366 } else { 3367 /* Interrupts on and all bits processed */ 3368 break; 3369 } 3370 found = false; 3371 si = 0; 3372 /* Scan again after re-enabling interrupts */ 3373 continue; 3374 } 3375 found = true; 3376 aen_host_forward(si); 3377 } 3378 3379 spin_unlock_irqrestore(&aift->gait_lock, flags); 3380 } 3381 3382 static void gib_alert_irq_handler(struct airq_struct *airq, 3383 struct tpi_info *tpi_info) 3384 { 3385 struct tpi_adapter_info *info = (struct tpi_adapter_info *)tpi_info; 3386 3387 inc_irq_stat(IRQIO_GAL); 3388 3389 if ((info->forward || info->error) && 3390 IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 3391 aen_process_gait(info->isc); 3392 if (info->aism != 0) 3393 process_gib_alert_list(); 3394 } else { 3395 process_gib_alert_list(); 3396 } 3397 } 3398 3399 static struct airq_struct gib_alert_irq = { 3400 .handler = gib_alert_irq_handler, 3401 .lsi_ptr = &gib_alert_irq.lsi_mask, 3402 }; 3403 3404 void kvm_s390_gib_destroy(void) 3405 { 3406 if (!gib) 3407 return; 3408 if (kvm_s390_pci_interp_allowed() && aift) { 3409 mutex_lock(&aift->aift_lock); 3410 kvm_s390_pci_aen_exit(); 3411 mutex_unlock(&aift->aift_lock); 3412 } 3413 chsc_sgib(0); 3414 unregister_adapter_interrupt(&gib_alert_irq); 3415 free_page((unsigned long)gib); 3416 gib = NULL; 3417 } 3418 3419 int kvm_s390_gib_init(u8 nisc) 3420 { 3421 int rc = 0; 3422 3423 if (!css_general_characteristics.aiv) { 3424 KVM_EVENT(3, "%s", "gib not initialized, no AIV facility"); 3425 goto out; 3426 } 3427 3428 gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); 3429 if (!gib) { 3430 rc = -ENOMEM; 3431 goto out; 3432 } 3433 3434 gib_alert_irq.isc = nisc; 3435 if (register_adapter_interrupt(&gib_alert_irq)) { 3436 pr_err("Registering the GIB alert interruption handler failed\n"); 3437 rc = -EIO; 3438 goto out_free_gib; 3439 } 3440 3441 gib->nisc = nisc; 3442 if (chsc_sgib((u32)(u64)gib)) { 3443 pr_err("Associating the GIB with the AIV facility failed\n"); 3444 free_page((unsigned long)gib); 3445 gib = NULL; 3446 rc = -EIO; 3447 goto out_unreg_gal; 3448 } 3449 3450 if (kvm_s390_pci_interp_allowed()) { 3451 if (kvm_s390_pci_aen_init(nisc)) { 3452 pr_err("Initializing AEN for PCI failed\n"); 3453 rc = -EIO; 3454 goto out_unreg_gal; 3455 } 3456 } 3457 3458 KVM_EVENT(3, "gib 0x%pK (nisc=%d) initialized", gib, gib->nisc); 3459 goto out; 3460 3461 out_unreg_gal: 3462 unregister_adapter_interrupt(&gib_alert_irq); 3463 out_free_gib: 3464 free_page((unsigned long)gib); 3465 gib = NULL; 3466 out: 3467 return rc; 3468 } 3469