xref: /openbmc/linux/arch/s390/kvm/interrupt.c (revision 8a649e33f48e08be20c51541d9184645892ec370)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * handling kvm guest interrupts
4  *
5  * Copyright IBM Corp. 2008, 2020
6  *
7  *    Author(s): Carsten Otte <cotte@de.ibm.com>
8  */
9 
10 #define KMSG_COMPONENT "kvm-s390"
11 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
12 
13 #include <linux/interrupt.h>
14 #include <linux/kvm_host.h>
15 #include <linux/hrtimer.h>
16 #include <linux/mmu_context.h>
17 #include <linux/nospec.h>
18 #include <linux/signal.h>
19 #include <linux/slab.h>
20 #include <linux/bitmap.h>
21 #include <linux/vmalloc.h>
22 #include <asm/asm-offsets.h>
23 #include <asm/dis.h>
24 #include <linux/uaccess.h>
25 #include <asm/sclp.h>
26 #include <asm/isc.h>
27 #include <asm/gmap.h>
28 #include <asm/switch_to.h>
29 #include <asm/nmi.h>
30 #include <asm/airq.h>
31 #include <asm/tpi.h>
32 #include "kvm-s390.h"
33 #include "gaccess.h"
34 #include "trace-s390.h"
35 #include "pci.h"
36 
37 #define PFAULT_INIT 0x0600
38 #define PFAULT_DONE 0x0680
39 #define VIRTIO_PARAM 0x0d00
40 
41 static struct kvm_s390_gib *gib;
42 
43 /* handle external calls via sigp interpretation facility */
44 static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
45 {
46 	int c, scn;
47 
48 	if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND))
49 		return 0;
50 
51 	BUG_ON(!kvm_s390_use_sca_entries());
52 	read_lock(&vcpu->kvm->arch.sca_lock);
53 	if (vcpu->kvm->arch.use_esca) {
54 		struct esca_block *sca = vcpu->kvm->arch.sca;
55 		union esca_sigp_ctrl sigp_ctrl =
56 			sca->cpu[vcpu->vcpu_id].sigp_ctrl;
57 
58 		c = sigp_ctrl.c;
59 		scn = sigp_ctrl.scn;
60 	} else {
61 		struct bsca_block *sca = vcpu->kvm->arch.sca;
62 		union bsca_sigp_ctrl sigp_ctrl =
63 			sca->cpu[vcpu->vcpu_id].sigp_ctrl;
64 
65 		c = sigp_ctrl.c;
66 		scn = sigp_ctrl.scn;
67 	}
68 	read_unlock(&vcpu->kvm->arch.sca_lock);
69 
70 	if (src_id)
71 		*src_id = scn;
72 
73 	return c;
74 }
75 
76 static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
77 {
78 	int expect, rc;
79 
80 	BUG_ON(!kvm_s390_use_sca_entries());
81 	read_lock(&vcpu->kvm->arch.sca_lock);
82 	if (vcpu->kvm->arch.use_esca) {
83 		struct esca_block *sca = vcpu->kvm->arch.sca;
84 		union esca_sigp_ctrl *sigp_ctrl =
85 			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
86 		union esca_sigp_ctrl new_val = {0}, old_val;
87 
88 		old_val = READ_ONCE(*sigp_ctrl);
89 		new_val.scn = src_id;
90 		new_val.c = 1;
91 		old_val.c = 0;
92 
93 		expect = old_val.value;
94 		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
95 	} else {
96 		struct bsca_block *sca = vcpu->kvm->arch.sca;
97 		union bsca_sigp_ctrl *sigp_ctrl =
98 			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
99 		union bsca_sigp_ctrl new_val = {0}, old_val;
100 
101 		old_val = READ_ONCE(*sigp_ctrl);
102 		new_val.scn = src_id;
103 		new_val.c = 1;
104 		old_val.c = 0;
105 
106 		expect = old_val.value;
107 		rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
108 	}
109 	read_unlock(&vcpu->kvm->arch.sca_lock);
110 
111 	if (rc != expect) {
112 		/* another external call is pending */
113 		return -EBUSY;
114 	}
115 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
116 	return 0;
117 }
118 
119 static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
120 {
121 	int rc, expect;
122 
123 	if (!kvm_s390_use_sca_entries())
124 		return;
125 	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
126 	read_lock(&vcpu->kvm->arch.sca_lock);
127 	if (vcpu->kvm->arch.use_esca) {
128 		struct esca_block *sca = vcpu->kvm->arch.sca;
129 		union esca_sigp_ctrl *sigp_ctrl =
130 			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
131 		union esca_sigp_ctrl old;
132 
133 		old = READ_ONCE(*sigp_ctrl);
134 		expect = old.value;
135 		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
136 	} else {
137 		struct bsca_block *sca = vcpu->kvm->arch.sca;
138 		union bsca_sigp_ctrl *sigp_ctrl =
139 			&(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
140 		union bsca_sigp_ctrl old;
141 
142 		old = READ_ONCE(*sigp_ctrl);
143 		expect = old.value;
144 		rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
145 	}
146 	read_unlock(&vcpu->kvm->arch.sca_lock);
147 	WARN_ON(rc != expect); /* cannot clear? */
148 }
149 
150 int psw_extint_disabled(struct kvm_vcpu *vcpu)
151 {
152 	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
153 }
154 
155 static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
156 {
157 	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
158 }
159 
160 static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
161 {
162 	return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
163 }
164 
165 static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
166 {
167 	return psw_extint_disabled(vcpu) &&
168 	       psw_ioint_disabled(vcpu) &&
169 	       psw_mchk_disabled(vcpu);
170 }
171 
172 static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
173 {
174 	if (psw_extint_disabled(vcpu) ||
175 	    !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
176 		return 0;
177 	if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
178 		/* No timer interrupts when single stepping */
179 		return 0;
180 	return 1;
181 }
182 
183 static int ckc_irq_pending(struct kvm_vcpu *vcpu)
184 {
185 	const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
186 	const u64 ckc = vcpu->arch.sie_block->ckc;
187 
188 	if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
189 		if ((s64)ckc >= (s64)now)
190 			return 0;
191 	} else if (ckc >= now) {
192 		return 0;
193 	}
194 	return ckc_interrupts_enabled(vcpu);
195 }
196 
197 static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
198 {
199 	return !psw_extint_disabled(vcpu) &&
200 	       (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK);
201 }
202 
203 static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
204 {
205 	if (!cpu_timer_interrupts_enabled(vcpu))
206 		return 0;
207 	return kvm_s390_get_cpu_timer(vcpu) >> 63;
208 }
209 
210 static uint64_t isc_to_isc_bits(int isc)
211 {
212 	return (0x80 >> isc) << 24;
213 }
214 
215 static inline u32 isc_to_int_word(u8 isc)
216 {
217 	return ((u32)isc << 27) | 0x80000000;
218 }
219 
220 static inline u8 int_word_to_isc(u32 int_word)
221 {
222 	return (int_word & 0x38000000) >> 27;
223 }
224 
225 /*
226  * To use atomic bitmap functions, we have to provide a bitmap address
227  * that is u64 aligned. However, the ipm might be u32 aligned.
228  * Therefore, we logically start the bitmap at the very beginning of the
229  * struct and fixup the bit number.
230  */
231 #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE)
232 
233 /**
234  * gisa_set_iam - change the GISA interruption alert mask
235  *
236  * @gisa: gisa to operate on
237  * @iam: new IAM value to use
238  *
239  * Change the IAM atomically with the next alert address and the IPM
240  * of the GISA if the GISA is not part of the GIB alert list. All three
241  * fields are located in the first long word of the GISA.
242  *
243  * Returns: 0 on success
244  *          -EBUSY in case the gisa is part of the alert list
245  */
246 static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam)
247 {
248 	u64 word, _word;
249 
250 	do {
251 		word = READ_ONCE(gisa->u64.word[0]);
252 		if ((u64)gisa != word >> 32)
253 			return -EBUSY;
254 		_word = (word & ~0xffUL) | iam;
255 	} while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
256 
257 	return 0;
258 }
259 
260 /**
261  * gisa_clear_ipm - clear the GISA interruption pending mask
262  *
263  * @gisa: gisa to operate on
264  *
265  * Clear the IPM atomically with the next alert address and the IAM
266  * of the GISA unconditionally. All three fields are located in the
267  * first long word of the GISA.
268  */
269 static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa)
270 {
271 	u64 word, _word;
272 
273 	do {
274 		word = READ_ONCE(gisa->u64.word[0]);
275 		_word = word & ~(0xffUL << 24);
276 	} while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
277 }
278 
279 /**
280  * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM
281  *
282  * @gi: gisa interrupt struct to work on
283  *
284  * Atomically restores the interruption alert mask if none of the
285  * relevant ISCs are pending and return the IPM.
286  *
287  * Returns: the relevant pending ISCs
288  */
289 static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi)
290 {
291 	u8 pending_mask, alert_mask;
292 	u64 word, _word;
293 
294 	do {
295 		word = READ_ONCE(gi->origin->u64.word[0]);
296 		alert_mask = READ_ONCE(gi->alert.mask);
297 		pending_mask = (u8)(word >> 24) & alert_mask;
298 		if (pending_mask)
299 			return pending_mask;
300 		_word = (word & ~0xffUL) | alert_mask;
301 	} while (cmpxchg(&gi->origin->u64.word[0], word, _word) != word);
302 
303 	return 0;
304 }
305 
306 static inline int gisa_in_alert_list(struct kvm_s390_gisa *gisa)
307 {
308 	return READ_ONCE(gisa->next_alert) != (u32)virt_to_phys(gisa);
309 }
310 
311 static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
312 {
313 	set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
314 }
315 
316 static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa)
317 {
318 	return READ_ONCE(gisa->ipm);
319 }
320 
321 static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
322 {
323 	return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
324 }
325 
326 static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu)
327 {
328 	unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs |
329 				vcpu->arch.local_int.pending_irqs;
330 
331 	pending &= ~vcpu->kvm->arch.float_int.masked_irqs;
332 	return pending;
333 }
334 
335 static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
336 {
337 	struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
338 	unsigned long pending_mask;
339 
340 	pending_mask = pending_irqs_no_gisa(vcpu);
341 	if (gi->origin)
342 		pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7;
343 	return pending_mask;
344 }
345 
346 static inline int isc_to_irq_type(unsigned long isc)
347 {
348 	return IRQ_PEND_IO_ISC_0 - isc;
349 }
350 
351 static inline int irq_type_to_isc(unsigned long irq_type)
352 {
353 	return IRQ_PEND_IO_ISC_0 - irq_type;
354 }
355 
356 static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
357 				   unsigned long active_mask)
358 {
359 	int i;
360 
361 	for (i = 0; i <= MAX_ISC; i++)
362 		if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
363 			active_mask &= ~(1UL << (isc_to_irq_type(i)));
364 
365 	return active_mask;
366 }
367 
368 static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
369 {
370 	unsigned long active_mask;
371 
372 	active_mask = pending_irqs(vcpu);
373 	if (!active_mask)
374 		return 0;
375 
376 	if (psw_extint_disabled(vcpu))
377 		active_mask &= ~IRQ_PEND_EXT_MASK;
378 	if (psw_ioint_disabled(vcpu))
379 		active_mask &= ~IRQ_PEND_IO_MASK;
380 	else
381 		active_mask = disable_iscs(vcpu, active_mask);
382 	if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
383 		__clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
384 	if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK))
385 		__clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
386 	if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
387 		__clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
388 	if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK))
389 		__clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
390 	if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) {
391 		__clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
392 		__clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask);
393 	}
394 	if (psw_mchk_disabled(vcpu))
395 		active_mask &= ~IRQ_PEND_MCHK_MASK;
396 	/* PV guest cpus can have a single interruption injected at a time. */
397 	if (kvm_s390_pv_cpu_get_handle(vcpu) &&
398 	    vcpu->arch.sie_block->iictl != IICTL_CODE_NONE)
399 		active_mask &= ~(IRQ_PEND_EXT_II_MASK |
400 				 IRQ_PEND_IO_MASK |
401 				 IRQ_PEND_MCHK_MASK);
402 	/*
403 	 * Check both floating and local interrupt's cr14 because
404 	 * bit IRQ_PEND_MCHK_REP could be set in both cases.
405 	 */
406 	if (!(vcpu->arch.sie_block->gcr[14] &
407 	   (vcpu->kvm->arch.float_int.mchk.cr14 |
408 	   vcpu->arch.local_int.irq.mchk.cr14)))
409 		__clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
410 
411 	/*
412 	 * STOP irqs will never be actively delivered. They are triggered via
413 	 * intercept requests and cleared when the stop intercept is performed.
414 	 */
415 	__clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
416 
417 	return active_mask;
418 }
419 
420 static void __set_cpu_idle(struct kvm_vcpu *vcpu)
421 {
422 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
423 	set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
424 }
425 
426 static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
427 {
428 	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
429 	clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
430 }
431 
432 static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
433 {
434 	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT |
435 				      CPUSTAT_STOP_INT);
436 	vcpu->arch.sie_block->lctl = 0x0000;
437 	vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
438 
439 	if (guestdbg_enabled(vcpu)) {
440 		vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
441 					       LCTL_CR10 | LCTL_CR11);
442 		vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
443 	}
444 }
445 
446 static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
447 {
448 	if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK))
449 		return;
450 	if (psw_ioint_disabled(vcpu))
451 		kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT);
452 	else
453 		vcpu->arch.sie_block->lctl |= LCTL_CR6;
454 }
455 
456 static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
457 {
458 	if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK))
459 		return;
460 	if (psw_extint_disabled(vcpu))
461 		kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
462 	else
463 		vcpu->arch.sie_block->lctl |= LCTL_CR0;
464 }
465 
466 static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
467 {
468 	if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK))
469 		return;
470 	if (psw_mchk_disabled(vcpu))
471 		vcpu->arch.sie_block->ictl |= ICTL_LPSW;
472 	else
473 		vcpu->arch.sie_block->lctl |= LCTL_CR14;
474 }
475 
476 static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
477 {
478 	if (kvm_s390_is_stop_irq_pending(vcpu))
479 		kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
480 }
481 
482 /* Set interception request for non-deliverable interrupts */
483 static void set_intercept_indicators(struct kvm_vcpu *vcpu)
484 {
485 	set_intercept_indicators_io(vcpu);
486 	set_intercept_indicators_ext(vcpu);
487 	set_intercept_indicators_mchk(vcpu);
488 	set_intercept_indicators_stop(vcpu);
489 }
490 
491 static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
492 {
493 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
494 	int rc = 0;
495 
496 	vcpu->stat.deliver_cputm++;
497 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
498 					 0, 0);
499 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
500 		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
501 		vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER;
502 	} else {
503 		rc  = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
504 				   (u16 *)__LC_EXT_INT_CODE);
505 		rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
506 		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
507 				     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
508 		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
509 				    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
510 	}
511 	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
512 	return rc ? -EFAULT : 0;
513 }
514 
515 static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
516 {
517 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
518 	int rc = 0;
519 
520 	vcpu->stat.deliver_ckc++;
521 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
522 					 0, 0);
523 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
524 		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
525 		vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP;
526 	} else {
527 		rc  = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
528 				   (u16 __user *)__LC_EXT_INT_CODE);
529 		rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
530 		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
531 				     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
532 		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
533 				    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
534 	}
535 	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
536 	return rc ? -EFAULT : 0;
537 }
538 
539 static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
540 {
541 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
542 	struct kvm_s390_ext_info ext;
543 	int rc;
544 
545 	spin_lock(&li->lock);
546 	ext = li->irq.ext;
547 	clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
548 	li->irq.ext.ext_params2 = 0;
549 	spin_unlock(&li->lock);
550 
551 	VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
552 		   ext.ext_params2);
553 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
554 					 KVM_S390_INT_PFAULT_INIT,
555 					 0, ext.ext_params2);
556 
557 	rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
558 	rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
559 	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
560 			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
561 	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
562 			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
563 	rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
564 	return rc ? -EFAULT : 0;
565 }
566 
567 static int __write_machine_check(struct kvm_vcpu *vcpu,
568 				 struct kvm_s390_mchk_info *mchk)
569 {
570 	unsigned long ext_sa_addr;
571 	unsigned long lc;
572 	freg_t fprs[NUM_FPRS];
573 	union mci mci;
574 	int rc;
575 
576 	/*
577 	 * All other possible payload for a machine check (e.g. the register
578 	 * contents in the save area) will be handled by the ultravisor, as
579 	 * the hypervisor does not not have the needed information for
580 	 * protected guests.
581 	 */
582 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
583 		vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK;
584 		vcpu->arch.sie_block->mcic = mchk->mcic;
585 		vcpu->arch.sie_block->faddr = mchk->failing_storage_address;
586 		vcpu->arch.sie_block->edc = mchk->ext_damage_code;
587 		return 0;
588 	}
589 
590 	mci.val = mchk->mcic;
591 	/* take care of lazy register loading */
592 	save_fpu_regs();
593 	save_access_regs(vcpu->run->s.regs.acrs);
594 	if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
595 		save_gs_cb(current->thread.gs_cb);
596 
597 	/* Extended save area */
598 	rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
599 			   sizeof(unsigned long));
600 	/* Only bits 0 through 63-LC are used for address formation */
601 	lc = ext_sa_addr & MCESA_LC_MASK;
602 	if (test_kvm_facility(vcpu->kvm, 133)) {
603 		switch (lc) {
604 		case 0:
605 		case 10:
606 			ext_sa_addr &= ~0x3ffUL;
607 			break;
608 		case 11:
609 			ext_sa_addr &= ~0x7ffUL;
610 			break;
611 		case 12:
612 			ext_sa_addr &= ~0xfffUL;
613 			break;
614 		default:
615 			ext_sa_addr = 0;
616 			break;
617 		}
618 	} else {
619 		ext_sa_addr &= ~0x3ffUL;
620 	}
621 
622 	if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
623 		if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
624 				    512))
625 			mci.vr = 0;
626 	} else {
627 		mci.vr = 0;
628 	}
629 	if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
630 	    && (lc == 11 || lc == 12)) {
631 		if (write_guest_abs(vcpu, ext_sa_addr + 1024,
632 				    &vcpu->run->s.regs.gscb, 32))
633 			mci.gs = 0;
634 	} else {
635 		mci.gs = 0;
636 	}
637 
638 	/* General interruption information */
639 	rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
640 	rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
641 			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
642 	rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
643 			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
644 	rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
645 
646 	/* Register-save areas */
647 	if (MACHINE_HAS_VX) {
648 		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
649 		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
650 	} else {
651 		rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
652 				     vcpu->run->s.regs.fprs, 128);
653 	}
654 	rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
655 			     vcpu->run->s.regs.gprs, 128);
656 	rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
657 			   (u32 __user *) __LC_FP_CREG_SAVE_AREA);
658 	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
659 			   (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
660 	rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
661 			   (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
662 	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
663 			   (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
664 	rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
665 			     &vcpu->run->s.regs.acrs, 64);
666 	rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
667 			     &vcpu->arch.sie_block->gcr, 128);
668 
669 	/* Extended interruption information */
670 	rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
671 			   (u32 __user *) __LC_EXT_DAMAGE_CODE);
672 	rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
673 			   (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
674 	rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
675 			     sizeof(mchk->fixed_logout));
676 	return rc ? -EFAULT : 0;
677 }
678 
679 static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
680 {
681 	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
682 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
683 	struct kvm_s390_mchk_info mchk = {};
684 	int deliver = 0;
685 	int rc = 0;
686 
687 	spin_lock(&fi->lock);
688 	spin_lock(&li->lock);
689 	if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
690 	    test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
691 		/*
692 		 * If there was an exigent machine check pending, then any
693 		 * repressible machine checks that might have been pending
694 		 * are indicated along with it, so always clear bits for
695 		 * repressible and exigent interrupts
696 		 */
697 		mchk = li->irq.mchk;
698 		clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
699 		clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
700 		memset(&li->irq.mchk, 0, sizeof(mchk));
701 		deliver = 1;
702 	}
703 	/*
704 	 * We indicate floating repressible conditions along with
705 	 * other pending conditions. Channel Report Pending and Channel
706 	 * Subsystem damage are the only two and are indicated by
707 	 * bits in mcic and masked in cr14.
708 	 */
709 	if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
710 		mchk.mcic |= fi->mchk.mcic;
711 		mchk.cr14 |= fi->mchk.cr14;
712 		memset(&fi->mchk, 0, sizeof(mchk));
713 		deliver = 1;
714 	}
715 	spin_unlock(&li->lock);
716 	spin_unlock(&fi->lock);
717 
718 	if (deliver) {
719 		VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
720 			   mchk.mcic);
721 		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
722 						 KVM_S390_MCHK,
723 						 mchk.cr14, mchk.mcic);
724 		vcpu->stat.deliver_machine_check++;
725 		rc = __write_machine_check(vcpu, &mchk);
726 	}
727 	return rc;
728 }
729 
730 static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
731 {
732 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
733 	int rc = 0;
734 
735 	VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
736 	vcpu->stat.deliver_restart_signal++;
737 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
738 
739 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
740 		vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART;
741 	} else {
742 		rc  = write_guest_lc(vcpu,
743 				     offsetof(struct lowcore, restart_old_psw),
744 				     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
745 		rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
746 				    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
747 	}
748 	clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
749 	return rc ? -EFAULT : 0;
750 }
751 
752 static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
753 {
754 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
755 	struct kvm_s390_prefix_info prefix;
756 
757 	spin_lock(&li->lock);
758 	prefix = li->irq.prefix;
759 	li->irq.prefix.address = 0;
760 	clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
761 	spin_unlock(&li->lock);
762 
763 	vcpu->stat.deliver_prefix_signal++;
764 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
765 					 KVM_S390_SIGP_SET_PREFIX,
766 					 prefix.address, 0);
767 
768 	kvm_s390_set_prefix(vcpu, prefix.address);
769 	return 0;
770 }
771 
772 static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
773 {
774 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
775 	int rc;
776 	int cpu_addr;
777 
778 	spin_lock(&li->lock);
779 	cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
780 	clear_bit(cpu_addr, li->sigp_emerg_pending);
781 	if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
782 		clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
783 	spin_unlock(&li->lock);
784 
785 	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
786 	vcpu->stat.deliver_emergency_signal++;
787 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
788 					 cpu_addr, 0);
789 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
790 		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
791 		vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG;
792 		vcpu->arch.sie_block->extcpuaddr = cpu_addr;
793 		return 0;
794 	}
795 
796 	rc  = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
797 			   (u16 *)__LC_EXT_INT_CODE);
798 	rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
799 	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
800 			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
801 	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
802 			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
803 	return rc ? -EFAULT : 0;
804 }
805 
806 static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
807 {
808 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
809 	struct kvm_s390_extcall_info extcall;
810 	int rc;
811 
812 	spin_lock(&li->lock);
813 	extcall = li->irq.extcall;
814 	li->irq.extcall.code = 0;
815 	clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
816 	spin_unlock(&li->lock);
817 
818 	VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
819 	vcpu->stat.deliver_external_call++;
820 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
821 					 KVM_S390_INT_EXTERNAL_CALL,
822 					 extcall.code, 0);
823 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
824 		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
825 		vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL;
826 		vcpu->arch.sie_block->extcpuaddr = extcall.code;
827 		return 0;
828 	}
829 
830 	rc  = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
831 			   (u16 *)__LC_EXT_INT_CODE);
832 	rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
833 	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
834 			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
835 	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
836 			    sizeof(psw_t));
837 	return rc ? -EFAULT : 0;
838 }
839 
840 static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code)
841 {
842 	switch (code) {
843 	case PGM_SPECIFICATION:
844 		vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION;
845 		break;
846 	case PGM_OPERAND:
847 		vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND;
848 		break;
849 	default:
850 		return -EINVAL;
851 	}
852 	return 0;
853 }
854 
855 static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
856 {
857 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
858 	struct kvm_s390_pgm_info pgm_info;
859 	int rc = 0, nullifying = false;
860 	u16 ilen;
861 
862 	spin_lock(&li->lock);
863 	pgm_info = li->irq.pgm;
864 	clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
865 	memset(&li->irq.pgm, 0, sizeof(pgm_info));
866 	spin_unlock(&li->lock);
867 
868 	ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
869 	VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
870 		   pgm_info.code, ilen);
871 	vcpu->stat.deliver_program++;
872 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
873 					 pgm_info.code, 0);
874 
875 	/* PER is handled by the ultravisor */
876 	if (kvm_s390_pv_cpu_is_protected(vcpu))
877 		return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER);
878 
879 	switch (pgm_info.code & ~PGM_PER) {
880 	case PGM_AFX_TRANSLATION:
881 	case PGM_ASX_TRANSLATION:
882 	case PGM_EX_TRANSLATION:
883 	case PGM_LFX_TRANSLATION:
884 	case PGM_LSTE_SEQUENCE:
885 	case PGM_LSX_TRANSLATION:
886 	case PGM_LX_TRANSLATION:
887 	case PGM_PRIMARY_AUTHORITY:
888 	case PGM_SECONDARY_AUTHORITY:
889 		nullifying = true;
890 		fallthrough;
891 	case PGM_SPACE_SWITCH:
892 		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
893 				  (u64 *)__LC_TRANS_EXC_CODE);
894 		break;
895 	case PGM_ALEN_TRANSLATION:
896 	case PGM_ALE_SEQUENCE:
897 	case PGM_ASTE_INSTANCE:
898 	case PGM_ASTE_SEQUENCE:
899 	case PGM_ASTE_VALIDITY:
900 	case PGM_EXTENDED_AUTHORITY:
901 		rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
902 				  (u8 *)__LC_EXC_ACCESS_ID);
903 		nullifying = true;
904 		break;
905 	case PGM_ASCE_TYPE:
906 	case PGM_PAGE_TRANSLATION:
907 	case PGM_REGION_FIRST_TRANS:
908 	case PGM_REGION_SECOND_TRANS:
909 	case PGM_REGION_THIRD_TRANS:
910 	case PGM_SEGMENT_TRANSLATION:
911 		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
912 				  (u64 *)__LC_TRANS_EXC_CODE);
913 		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
914 				   (u8 *)__LC_EXC_ACCESS_ID);
915 		rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
916 				   (u8 *)__LC_OP_ACCESS_ID);
917 		nullifying = true;
918 		break;
919 	case PGM_MONITOR:
920 		rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
921 				  (u16 *)__LC_MON_CLASS_NR);
922 		rc |= put_guest_lc(vcpu, pgm_info.mon_code,
923 				   (u64 *)__LC_MON_CODE);
924 		break;
925 	case PGM_VECTOR_PROCESSING:
926 	case PGM_DATA:
927 		rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
928 				  (u32 *)__LC_DATA_EXC_CODE);
929 		break;
930 	case PGM_PROTECTION:
931 		rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
932 				  (u64 *)__LC_TRANS_EXC_CODE);
933 		rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
934 				   (u8 *)__LC_EXC_ACCESS_ID);
935 		break;
936 	case PGM_STACK_FULL:
937 	case PGM_STACK_EMPTY:
938 	case PGM_STACK_SPECIFICATION:
939 	case PGM_STACK_TYPE:
940 	case PGM_STACK_OPERATION:
941 	case PGM_TRACE_TABEL:
942 	case PGM_CRYPTO_OPERATION:
943 		nullifying = true;
944 		break;
945 	}
946 
947 	if (pgm_info.code & PGM_PER) {
948 		rc |= put_guest_lc(vcpu, pgm_info.per_code,
949 				   (u8 *) __LC_PER_CODE);
950 		rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
951 				   (u8 *)__LC_PER_ATMID);
952 		rc |= put_guest_lc(vcpu, pgm_info.per_address,
953 				   (u64 *) __LC_PER_ADDRESS);
954 		rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
955 				   (u8 *) __LC_PER_ACCESS_ID);
956 	}
957 
958 	if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
959 		kvm_s390_rewind_psw(vcpu, ilen);
960 
961 	/* bit 1+2 of the target are the ilc, so we can directly use ilen */
962 	rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
963 	rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
964 				 (u64 *) __LC_PGM_LAST_BREAK);
965 	rc |= put_guest_lc(vcpu, pgm_info.code,
966 			   (u16 *)__LC_PGM_INT_CODE);
967 	rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
968 			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
969 	rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
970 			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
971 	return rc ? -EFAULT : 0;
972 }
973 
974 #define SCCB_MASK 0xFFFFFFF8
975 #define SCCB_EVENT_PENDING 0x3
976 
977 static int write_sclp(struct kvm_vcpu *vcpu, u32 parm)
978 {
979 	int rc;
980 
981 	if (kvm_s390_pv_cpu_get_handle(vcpu)) {
982 		vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
983 		vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG;
984 		vcpu->arch.sie_block->eiparams = parm;
985 		return 0;
986 	}
987 
988 	rc  = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
989 	rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
990 	rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
991 			     &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
992 	rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
993 			    &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
994 	rc |= put_guest_lc(vcpu, parm,
995 			   (u32 *)__LC_EXT_PARAMS);
996 
997 	return rc ? -EFAULT : 0;
998 }
999 
1000 static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
1001 {
1002 	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1003 	struct kvm_s390_ext_info ext;
1004 
1005 	spin_lock(&fi->lock);
1006 	if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) ||
1007 	    !(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
1008 		spin_unlock(&fi->lock);
1009 		return 0;
1010 	}
1011 	ext = fi->srv_signal;
1012 	memset(&fi->srv_signal, 0, sizeof(ext));
1013 	clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1014 	clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1015 	if (kvm_s390_pv_cpu_is_protected(vcpu))
1016 		set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs);
1017 	spin_unlock(&fi->lock);
1018 
1019 	VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
1020 		   ext.ext_params);
1021 	vcpu->stat.deliver_service_signal++;
1022 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
1023 					 ext.ext_params, 0);
1024 
1025 	return write_sclp(vcpu, ext.ext_params);
1026 }
1027 
1028 static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu)
1029 {
1030 	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1031 	struct kvm_s390_ext_info ext;
1032 
1033 	spin_lock(&fi->lock);
1034 	if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) {
1035 		spin_unlock(&fi->lock);
1036 		return 0;
1037 	}
1038 	ext = fi->srv_signal;
1039 	/* only clear the event bit */
1040 	fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING;
1041 	clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1042 	spin_unlock(&fi->lock);
1043 
1044 	VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event");
1045 	vcpu->stat.deliver_service_signal++;
1046 	trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
1047 					 ext.ext_params, 0);
1048 
1049 	return write_sclp(vcpu, SCCB_EVENT_PENDING);
1050 }
1051 
1052 static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
1053 {
1054 	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1055 	struct kvm_s390_interrupt_info *inti;
1056 	int rc = 0;
1057 
1058 	spin_lock(&fi->lock);
1059 	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
1060 					struct kvm_s390_interrupt_info,
1061 					list);
1062 	if (inti) {
1063 		list_del(&inti->list);
1064 		fi->counters[FIRQ_CNTR_PFAULT] -= 1;
1065 	}
1066 	if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
1067 		clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1068 	spin_unlock(&fi->lock);
1069 
1070 	if (inti) {
1071 		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1072 						 KVM_S390_INT_PFAULT_DONE, 0,
1073 						 inti->ext.ext_params2);
1074 		VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
1075 			   inti->ext.ext_params2);
1076 
1077 		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1078 				(u16 *)__LC_EXT_INT_CODE);
1079 		rc |= put_guest_lc(vcpu, PFAULT_DONE,
1080 				(u16 *)__LC_EXT_CPU_ADDR);
1081 		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1082 				&vcpu->arch.sie_block->gpsw,
1083 				sizeof(psw_t));
1084 		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1085 				&vcpu->arch.sie_block->gpsw,
1086 				sizeof(psw_t));
1087 		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1088 				(u64 *)__LC_EXT_PARAMS2);
1089 		kfree(inti);
1090 	}
1091 	return rc ? -EFAULT : 0;
1092 }
1093 
1094 static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
1095 {
1096 	struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1097 	struct kvm_s390_interrupt_info *inti;
1098 	int rc = 0;
1099 
1100 	spin_lock(&fi->lock);
1101 	inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
1102 					struct kvm_s390_interrupt_info,
1103 					list);
1104 	if (inti) {
1105 		VCPU_EVENT(vcpu, 4,
1106 			   "deliver: virtio parm: 0x%x,parm64: 0x%llx",
1107 			   inti->ext.ext_params, inti->ext.ext_params2);
1108 		vcpu->stat.deliver_virtio++;
1109 		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1110 				inti->type,
1111 				inti->ext.ext_params,
1112 				inti->ext.ext_params2);
1113 		list_del(&inti->list);
1114 		fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
1115 	}
1116 	if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
1117 		clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1118 	spin_unlock(&fi->lock);
1119 
1120 	if (inti) {
1121 		rc  = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1122 				(u16 *)__LC_EXT_INT_CODE);
1123 		rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
1124 				(u16 *)__LC_EXT_CPU_ADDR);
1125 		rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1126 				&vcpu->arch.sie_block->gpsw,
1127 				sizeof(psw_t));
1128 		rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1129 				&vcpu->arch.sie_block->gpsw,
1130 				sizeof(psw_t));
1131 		rc |= put_guest_lc(vcpu, inti->ext.ext_params,
1132 				(u32 *)__LC_EXT_PARAMS);
1133 		rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1134 				(u64 *)__LC_EXT_PARAMS2);
1135 		kfree(inti);
1136 	}
1137 	return rc ? -EFAULT : 0;
1138 }
1139 
1140 static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io)
1141 {
1142 	int rc;
1143 
1144 	if (kvm_s390_pv_cpu_is_protected(vcpu)) {
1145 		vcpu->arch.sie_block->iictl = IICTL_CODE_IO;
1146 		vcpu->arch.sie_block->subchannel_id = io->subchannel_id;
1147 		vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr;
1148 		vcpu->arch.sie_block->io_int_parm = io->io_int_parm;
1149 		vcpu->arch.sie_block->io_int_word = io->io_int_word;
1150 		return 0;
1151 	}
1152 
1153 	rc  = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID);
1154 	rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR);
1155 	rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM);
1156 	rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD);
1157 	rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
1158 			     &vcpu->arch.sie_block->gpsw,
1159 			     sizeof(psw_t));
1160 	rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
1161 			    &vcpu->arch.sie_block->gpsw,
1162 			    sizeof(psw_t));
1163 	return rc ? -EFAULT : 0;
1164 }
1165 
1166 static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
1167 				     unsigned long irq_type)
1168 {
1169 	struct list_head *isc_list;
1170 	struct kvm_s390_float_interrupt *fi;
1171 	struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1172 	struct kvm_s390_interrupt_info *inti = NULL;
1173 	struct kvm_s390_io_info io;
1174 	u32 isc;
1175 	int rc = 0;
1176 
1177 	fi = &vcpu->kvm->arch.float_int;
1178 
1179 	spin_lock(&fi->lock);
1180 	isc = irq_type_to_isc(irq_type);
1181 	isc_list = &fi->lists[isc];
1182 	inti = list_first_entry_or_null(isc_list,
1183 					struct kvm_s390_interrupt_info,
1184 					list);
1185 	if (inti) {
1186 		if (inti->type & KVM_S390_INT_IO_AI_MASK)
1187 			VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
1188 		else
1189 			VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
1190 			inti->io.subchannel_id >> 8,
1191 			inti->io.subchannel_id >> 1 & 0x3,
1192 			inti->io.subchannel_nr);
1193 
1194 		vcpu->stat.deliver_io++;
1195 		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1196 				inti->type,
1197 				((__u32)inti->io.subchannel_id << 16) |
1198 				inti->io.subchannel_nr,
1199 				((__u64)inti->io.io_int_parm << 32) |
1200 				inti->io.io_int_word);
1201 		list_del(&inti->list);
1202 		fi->counters[FIRQ_CNTR_IO] -= 1;
1203 	}
1204 	if (list_empty(isc_list))
1205 		clear_bit(irq_type, &fi->pending_irqs);
1206 	spin_unlock(&fi->lock);
1207 
1208 	if (inti) {
1209 		rc = __do_deliver_io(vcpu, &(inti->io));
1210 		kfree(inti);
1211 		goto out;
1212 	}
1213 
1214 	if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) {
1215 		/*
1216 		 * in case an adapter interrupt was not delivered
1217 		 * in SIE context KVM will handle the delivery
1218 		 */
1219 		VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc);
1220 		memset(&io, 0, sizeof(io));
1221 		io.io_int_word = isc_to_int_word(isc);
1222 		vcpu->stat.deliver_io++;
1223 		trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1224 			KVM_S390_INT_IO(1, 0, 0, 0),
1225 			((__u32)io.subchannel_id << 16) |
1226 			io.subchannel_nr,
1227 			((__u64)io.io_int_parm << 32) |
1228 			io.io_int_word);
1229 		rc = __do_deliver_io(vcpu, &io);
1230 	}
1231 out:
1232 	return rc;
1233 }
1234 
1235 /* Check whether an external call is pending (deliverable or not) */
1236 int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
1237 {
1238 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1239 
1240 	if (!sclp.has_sigpif)
1241 		return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
1242 
1243 	return sca_ext_call_pending(vcpu, NULL);
1244 }
1245 
1246 int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
1247 {
1248 	if (deliverable_irqs(vcpu))
1249 		return 1;
1250 
1251 	if (kvm_cpu_has_pending_timer(vcpu))
1252 		return 1;
1253 
1254 	/* external call pending and deliverable */
1255 	if (kvm_s390_ext_call_pending(vcpu) &&
1256 	    !psw_extint_disabled(vcpu) &&
1257 	    (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
1258 		return 1;
1259 
1260 	if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
1261 		return 1;
1262 	return 0;
1263 }
1264 
1265 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1266 {
1267 	return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
1268 }
1269 
1270 static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
1271 {
1272 	const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
1273 	const u64 ckc = vcpu->arch.sie_block->ckc;
1274 	u64 cputm, sltime = 0;
1275 
1276 	if (ckc_interrupts_enabled(vcpu)) {
1277 		if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
1278 			if ((s64)now < (s64)ckc)
1279 				sltime = tod_to_ns((s64)ckc - (s64)now);
1280 		} else if (now < ckc) {
1281 			sltime = tod_to_ns(ckc - now);
1282 		}
1283 		/* already expired */
1284 		if (!sltime)
1285 			return 0;
1286 		if (cpu_timer_interrupts_enabled(vcpu)) {
1287 			cputm = kvm_s390_get_cpu_timer(vcpu);
1288 			/* already expired? */
1289 			if (cputm >> 63)
1290 				return 0;
1291 			return min_t(u64, sltime, tod_to_ns(cputm));
1292 		}
1293 	} else if (cpu_timer_interrupts_enabled(vcpu)) {
1294 		sltime = kvm_s390_get_cpu_timer(vcpu);
1295 		/* already expired? */
1296 		if (sltime >> 63)
1297 			return 0;
1298 	}
1299 	return sltime;
1300 }
1301 
1302 int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
1303 {
1304 	struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1305 	u64 sltime;
1306 
1307 	vcpu->stat.exit_wait_state++;
1308 
1309 	/* fast path */
1310 	if (kvm_arch_vcpu_runnable(vcpu))
1311 		return 0;
1312 
1313 	if (psw_interrupts_disabled(vcpu)) {
1314 		VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1315 		return -EOPNOTSUPP; /* disabled wait */
1316 	}
1317 
1318 	if (gi->origin &&
1319 	    (gisa_get_ipm_or_restore_iam(gi) &
1320 	     vcpu->arch.sie_block->gcr[6] >> 24))
1321 		return 0;
1322 
1323 	if (!ckc_interrupts_enabled(vcpu) &&
1324 	    !cpu_timer_interrupts_enabled(vcpu)) {
1325 		VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1326 		__set_cpu_idle(vcpu);
1327 		goto no_timer;
1328 	}
1329 
1330 	sltime = __calculate_sltime(vcpu);
1331 	if (!sltime)
1332 		return 0;
1333 
1334 	__set_cpu_idle(vcpu);
1335 	hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
1336 	VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1337 no_timer:
1338 	kvm_vcpu_srcu_read_unlock(vcpu);
1339 	kvm_vcpu_halt(vcpu);
1340 	vcpu->valid_wakeup = false;
1341 	__unset_cpu_idle(vcpu);
1342 	kvm_vcpu_srcu_read_lock(vcpu);
1343 
1344 	hrtimer_cancel(&vcpu->arch.ckc_timer);
1345 	return 0;
1346 }
1347 
1348 void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
1349 {
1350 	vcpu->valid_wakeup = true;
1351 	kvm_vcpu_wake_up(vcpu);
1352 
1353 	/*
1354 	 * The VCPU might not be sleeping but rather executing VSIE. Let's
1355 	 * kick it, so it leaves the SIE to process the request.
1356 	 */
1357 	kvm_s390_vsie_kick(vcpu);
1358 }
1359 
1360 enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
1361 {
1362 	struct kvm_vcpu *vcpu;
1363 	u64 sltime;
1364 
1365 	vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1366 	sltime = __calculate_sltime(vcpu);
1367 
1368 	/*
1369 	 * If the monotonic clock runs faster than the tod clock we might be
1370 	 * woken up too early and have to go back to sleep to avoid deadlocks.
1371 	 */
1372 	if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1373 		return HRTIMER_RESTART;
1374 	kvm_s390_vcpu_wakeup(vcpu);
1375 	return HRTIMER_NORESTART;
1376 }
1377 
1378 void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
1379 {
1380 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1381 
1382 	spin_lock(&li->lock);
1383 	li->pending_irqs = 0;
1384 	bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
1385 	memset(&li->irq, 0, sizeof(li->irq));
1386 	spin_unlock(&li->lock);
1387 
1388 	sca_clear_ext_call(vcpu);
1389 }
1390 
1391 int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1392 {
1393 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1394 	int rc = 0;
1395 	unsigned long irq_type;
1396 	unsigned long irqs;
1397 
1398 	__reset_intercept_indicators(vcpu);
1399 
1400 	/* pending ckc conditions might have been invalidated */
1401 	clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1402 	if (ckc_irq_pending(vcpu))
1403 		set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1404 
1405 	/* pending cpu timer conditions might have been invalidated */
1406 	clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1407 	if (cpu_timer_irq_pending(vcpu))
1408 		set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1409 
1410 	while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1411 		/* bits are in the reverse order of interrupt priority */
1412 		irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT);
1413 		switch (irq_type) {
1414 		case IRQ_PEND_IO_ISC_0:
1415 		case IRQ_PEND_IO_ISC_1:
1416 		case IRQ_PEND_IO_ISC_2:
1417 		case IRQ_PEND_IO_ISC_3:
1418 		case IRQ_PEND_IO_ISC_4:
1419 		case IRQ_PEND_IO_ISC_5:
1420 		case IRQ_PEND_IO_ISC_6:
1421 		case IRQ_PEND_IO_ISC_7:
1422 			rc = __deliver_io(vcpu, irq_type);
1423 			break;
1424 		case IRQ_PEND_MCHK_EX:
1425 		case IRQ_PEND_MCHK_REP:
1426 			rc = __deliver_machine_check(vcpu);
1427 			break;
1428 		case IRQ_PEND_PROG:
1429 			rc = __deliver_prog(vcpu);
1430 			break;
1431 		case IRQ_PEND_EXT_EMERGENCY:
1432 			rc = __deliver_emergency_signal(vcpu);
1433 			break;
1434 		case IRQ_PEND_EXT_EXTERNAL:
1435 			rc = __deliver_external_call(vcpu);
1436 			break;
1437 		case IRQ_PEND_EXT_CLOCK_COMP:
1438 			rc = __deliver_ckc(vcpu);
1439 			break;
1440 		case IRQ_PEND_EXT_CPU_TIMER:
1441 			rc = __deliver_cpu_timer(vcpu);
1442 			break;
1443 		case IRQ_PEND_RESTART:
1444 			rc = __deliver_restart(vcpu);
1445 			break;
1446 		case IRQ_PEND_SET_PREFIX:
1447 			rc = __deliver_set_prefix(vcpu);
1448 			break;
1449 		case IRQ_PEND_PFAULT_INIT:
1450 			rc = __deliver_pfault_init(vcpu);
1451 			break;
1452 		case IRQ_PEND_EXT_SERVICE:
1453 			rc = __deliver_service(vcpu);
1454 			break;
1455 		case IRQ_PEND_EXT_SERVICE_EV:
1456 			rc = __deliver_service_ev(vcpu);
1457 			break;
1458 		case IRQ_PEND_PFAULT_DONE:
1459 			rc = __deliver_pfault_done(vcpu);
1460 			break;
1461 		case IRQ_PEND_VIRTIO:
1462 			rc = __deliver_virtio(vcpu);
1463 			break;
1464 		default:
1465 			WARN_ONCE(1, "Unknown pending irq type %ld", irq_type);
1466 			clear_bit(irq_type, &li->pending_irqs);
1467 		}
1468 	}
1469 
1470 	set_intercept_indicators(vcpu);
1471 
1472 	return rc;
1473 }
1474 
1475 static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1476 {
1477 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1478 
1479 	vcpu->stat.inject_program++;
1480 	VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
1481 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
1482 				   irq->u.pgm.code, 0);
1483 
1484 	if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
1485 		/* auto detection if no valid ILC was given */
1486 		irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
1487 		irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
1488 		irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
1489 	}
1490 
1491 	if (irq->u.pgm.code == PGM_PER) {
1492 		li->irq.pgm.code |= PGM_PER;
1493 		li->irq.pgm.flags = irq->u.pgm.flags;
1494 		/* only modify PER related information */
1495 		li->irq.pgm.per_address = irq->u.pgm.per_address;
1496 		li->irq.pgm.per_code = irq->u.pgm.per_code;
1497 		li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
1498 		li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
1499 	} else if (!(irq->u.pgm.code & PGM_PER)) {
1500 		li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
1501 				   irq->u.pgm.code;
1502 		li->irq.pgm.flags = irq->u.pgm.flags;
1503 		/* only modify non-PER information */
1504 		li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
1505 		li->irq.pgm.mon_code = irq->u.pgm.mon_code;
1506 		li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
1507 		li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
1508 		li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
1509 		li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
1510 	} else {
1511 		li->irq.pgm = irq->u.pgm;
1512 	}
1513 	set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1514 	return 0;
1515 }
1516 
1517 static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1518 {
1519 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1520 
1521 	vcpu->stat.inject_pfault_init++;
1522 	VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
1523 		   irq->u.ext.ext_params2);
1524 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
1525 				   irq->u.ext.ext_params,
1526 				   irq->u.ext.ext_params2);
1527 
1528 	li->irq.ext = irq->u.ext;
1529 	set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1530 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1531 	return 0;
1532 }
1533 
1534 static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1535 {
1536 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1537 	struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1538 	uint16_t src_id = irq->u.extcall.code;
1539 
1540 	vcpu->stat.inject_external_call++;
1541 	VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1542 		   src_id);
1543 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1544 				   src_id, 0);
1545 
1546 	/* sending vcpu invalid */
1547 	if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1548 		return -EINVAL;
1549 
1550 	if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu))
1551 		return sca_inject_ext_call(vcpu, src_id);
1552 
1553 	if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1554 		return -EBUSY;
1555 	*extcall = irq->u.extcall;
1556 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1557 	return 0;
1558 }
1559 
1560 static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1561 {
1562 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1563 	struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1564 
1565 	vcpu->stat.inject_set_prefix++;
1566 	VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1567 		   irq->u.prefix.address);
1568 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1569 				   irq->u.prefix.address, 0);
1570 
1571 	if (!is_vcpu_stopped(vcpu))
1572 		return -EBUSY;
1573 
1574 	*prefix = irq->u.prefix;
1575 	set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1576 	return 0;
1577 }
1578 
1579 #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
1580 static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1581 {
1582 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1583 	struct kvm_s390_stop_info *stop = &li->irq.stop;
1584 	int rc = 0;
1585 
1586 	vcpu->stat.inject_stop_signal++;
1587 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1588 
1589 	if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
1590 		return -EINVAL;
1591 
1592 	if (is_vcpu_stopped(vcpu)) {
1593 		if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
1594 			rc = kvm_s390_store_status_unloaded(vcpu,
1595 						KVM_S390_STORE_STATUS_NOADDR);
1596 		return rc;
1597 	}
1598 
1599 	if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
1600 		return -EBUSY;
1601 	stop->flags = irq->u.stop.flags;
1602 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
1603 	return 0;
1604 }
1605 
1606 static int __inject_sigp_restart(struct kvm_vcpu *vcpu)
1607 {
1608 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1609 
1610 	vcpu->stat.inject_restart++;
1611 	VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1612 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1613 
1614 	set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1615 	return 0;
1616 }
1617 
1618 static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1619 				   struct kvm_s390_irq *irq)
1620 {
1621 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1622 
1623 	vcpu->stat.inject_emergency_signal++;
1624 	VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1625 		   irq->u.emerg.code);
1626 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1627 				   irq->u.emerg.code, 0);
1628 
1629 	/* sending vcpu invalid */
1630 	if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
1631 		return -EINVAL;
1632 
1633 	set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1634 	set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1635 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1636 	return 0;
1637 }
1638 
1639 static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1640 {
1641 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1642 	struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1643 
1644 	vcpu->stat.inject_mchk++;
1645 	VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1646 		   irq->u.mchk.mcic);
1647 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1648 				   irq->u.mchk.mcic);
1649 
1650 	/*
1651 	 * Because repressible machine checks can be indicated along with
1652 	 * exigent machine checks (PoP, Chapter 11, Interruption action)
1653 	 * we need to combine cr14, mcic and external damage code.
1654 	 * Failing storage address and the logout area should not be or'ed
1655 	 * together, we just indicate the last occurrence of the corresponding
1656 	 * machine check
1657 	 */
1658 	mchk->cr14 |= irq->u.mchk.cr14;
1659 	mchk->mcic |= irq->u.mchk.mcic;
1660 	mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
1661 	mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
1662 	memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
1663 	       sizeof(mchk->fixed_logout));
1664 	if (mchk->mcic & MCHK_EX_MASK)
1665 		set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
1666 	else if (mchk->mcic & MCHK_REP_MASK)
1667 		set_bit(IRQ_PEND_MCHK_REP,  &li->pending_irqs);
1668 	return 0;
1669 }
1670 
1671 static int __inject_ckc(struct kvm_vcpu *vcpu)
1672 {
1673 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1674 
1675 	vcpu->stat.inject_ckc++;
1676 	VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1677 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1678 				   0, 0);
1679 
1680 	set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1681 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1682 	return 0;
1683 }
1684 
1685 static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1686 {
1687 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1688 
1689 	vcpu->stat.inject_cputm++;
1690 	VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1691 	trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1692 				   0, 0);
1693 
1694 	set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1695 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1696 	return 0;
1697 }
1698 
1699 static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
1700 						  int isc, u32 schid)
1701 {
1702 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1703 	struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1704 	struct kvm_s390_interrupt_info *iter;
1705 	u16 id = (schid & 0xffff0000U) >> 16;
1706 	u16 nr = schid & 0x0000ffffU;
1707 
1708 	spin_lock(&fi->lock);
1709 	list_for_each_entry(iter, isc_list, list) {
1710 		if (schid && (id != iter->io.subchannel_id ||
1711 			      nr != iter->io.subchannel_nr))
1712 			continue;
1713 		/* found an appropriate entry */
1714 		list_del_init(&iter->list);
1715 		fi->counters[FIRQ_CNTR_IO] -= 1;
1716 		if (list_empty(isc_list))
1717 			clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1718 		spin_unlock(&fi->lock);
1719 		return iter;
1720 	}
1721 	spin_unlock(&fi->lock);
1722 	return NULL;
1723 }
1724 
1725 static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm,
1726 						      u64 isc_mask, u32 schid)
1727 {
1728 	struct kvm_s390_interrupt_info *inti = NULL;
1729 	int isc;
1730 
1731 	for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
1732 		if (isc_mask & isc_to_isc_bits(isc))
1733 			inti = get_io_int(kvm, isc, schid);
1734 	}
1735 	return inti;
1736 }
1737 
1738 static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid)
1739 {
1740 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1741 	unsigned long active_mask;
1742 	int isc;
1743 
1744 	if (schid)
1745 		goto out;
1746 	if (!gi->origin)
1747 		goto out;
1748 
1749 	active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32;
1750 	while (active_mask) {
1751 		isc = __fls(active_mask) ^ (BITS_PER_LONG - 1);
1752 		if (gisa_tac_ipm_gisc(gi->origin, isc))
1753 			return isc;
1754 		clear_bit_inv(isc, &active_mask);
1755 	}
1756 out:
1757 	return -EINVAL;
1758 }
1759 
1760 /*
1761  * Dequeue and return an I/O interrupt matching any of the interruption
1762  * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
1763  * Take into account the interrupts pending in the interrupt list and in GISA.
1764  *
1765  * Note that for a guest that does not enable I/O interrupts
1766  * but relies on TPI, a flood of classic interrupts may starve
1767  * out adapter interrupts on the same isc. Linux does not do
1768  * that, and it is possible to work around the issue by configuring
1769  * different iscs for classic and adapter interrupts in the guest,
1770  * but we may want to revisit this in the future.
1771  */
1772 struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1773 						    u64 isc_mask, u32 schid)
1774 {
1775 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1776 	struct kvm_s390_interrupt_info *inti, *tmp_inti;
1777 	int isc;
1778 
1779 	inti = get_top_io_int(kvm, isc_mask, schid);
1780 
1781 	isc = get_top_gisa_isc(kvm, isc_mask, schid);
1782 	if (isc < 0)
1783 		/* no AI in GISA */
1784 		goto out;
1785 
1786 	if (!inti)
1787 		/* AI in GISA but no classical IO int */
1788 		goto gisa_out;
1789 
1790 	/* both types of interrupts present */
1791 	if (int_word_to_isc(inti->io.io_int_word) <= isc) {
1792 		/* classical IO int with higher priority */
1793 		gisa_set_ipm_gisc(gi->origin, isc);
1794 		goto out;
1795 	}
1796 gisa_out:
1797 	tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
1798 	if (tmp_inti) {
1799 		tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0);
1800 		tmp_inti->io.io_int_word = isc_to_int_word(isc);
1801 		if (inti)
1802 			kvm_s390_reinject_io_int(kvm, inti);
1803 		inti = tmp_inti;
1804 	} else
1805 		gisa_set_ipm_gisc(gi->origin, isc);
1806 out:
1807 	return inti;
1808 }
1809 
1810 static int __inject_service(struct kvm *kvm,
1811 			     struct kvm_s390_interrupt_info *inti)
1812 {
1813 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1814 
1815 	kvm->stat.inject_service_signal++;
1816 	spin_lock(&fi->lock);
1817 	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
1818 
1819 	/* We always allow events, track them separately from the sccb ints */
1820 	if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING)
1821 		set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1822 
1823 	/*
1824 	 * Early versions of the QEMU s390 bios will inject several
1825 	 * service interrupts after another without handling a
1826 	 * condition code indicating busy.
1827 	 * We will silently ignore those superfluous sccb values.
1828 	 * A future version of QEMU will take care of serialization
1829 	 * of servc requests
1830 	 */
1831 	if (fi->srv_signal.ext_params & SCCB_MASK)
1832 		goto out;
1833 	fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
1834 	set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1835 out:
1836 	spin_unlock(&fi->lock);
1837 	kfree(inti);
1838 	return 0;
1839 }
1840 
1841 static int __inject_virtio(struct kvm *kvm,
1842 			    struct kvm_s390_interrupt_info *inti)
1843 {
1844 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1845 
1846 	kvm->stat.inject_virtio++;
1847 	spin_lock(&fi->lock);
1848 	if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
1849 		spin_unlock(&fi->lock);
1850 		return -EBUSY;
1851 	}
1852 	fi->counters[FIRQ_CNTR_VIRTIO] += 1;
1853 	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
1854 	set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1855 	spin_unlock(&fi->lock);
1856 	return 0;
1857 }
1858 
1859 static int __inject_pfault_done(struct kvm *kvm,
1860 				 struct kvm_s390_interrupt_info *inti)
1861 {
1862 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1863 
1864 	kvm->stat.inject_pfault_done++;
1865 	spin_lock(&fi->lock);
1866 	if (fi->counters[FIRQ_CNTR_PFAULT] >=
1867 		(ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
1868 		spin_unlock(&fi->lock);
1869 		return -EBUSY;
1870 	}
1871 	fi->counters[FIRQ_CNTR_PFAULT] += 1;
1872 	list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
1873 	set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1874 	spin_unlock(&fi->lock);
1875 	return 0;
1876 }
1877 
1878 #define CR_PENDING_SUBCLASS 28
1879 static int __inject_float_mchk(struct kvm *kvm,
1880 				struct kvm_s390_interrupt_info *inti)
1881 {
1882 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1883 
1884 	kvm->stat.inject_float_mchk++;
1885 	spin_lock(&fi->lock);
1886 	fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
1887 	fi->mchk.mcic |= inti->mchk.mcic;
1888 	set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
1889 	spin_unlock(&fi->lock);
1890 	kfree(inti);
1891 	return 0;
1892 }
1893 
1894 static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1895 {
1896 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1897 	struct kvm_s390_float_interrupt *fi;
1898 	struct list_head *list;
1899 	int isc;
1900 
1901 	kvm->stat.inject_io++;
1902 	isc = int_word_to_isc(inti->io.io_int_word);
1903 
1904 	/*
1905 	 * We do not use the lock checking variant as this is just a
1906 	 * performance optimization and we do not hold the lock here.
1907 	 * This is ok as the code will pick interrupts from both "lists"
1908 	 * for delivery.
1909 	 */
1910 	if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) {
1911 		VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc);
1912 		gisa_set_ipm_gisc(gi->origin, isc);
1913 		kfree(inti);
1914 		return 0;
1915 	}
1916 
1917 	fi = &kvm->arch.float_int;
1918 	spin_lock(&fi->lock);
1919 	if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
1920 		spin_unlock(&fi->lock);
1921 		return -EBUSY;
1922 	}
1923 	fi->counters[FIRQ_CNTR_IO] += 1;
1924 
1925 	if (inti->type & KVM_S390_INT_IO_AI_MASK)
1926 		VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
1927 	else
1928 		VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
1929 			inti->io.subchannel_id >> 8,
1930 			inti->io.subchannel_id >> 1 & 0x3,
1931 			inti->io.subchannel_nr);
1932 	list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1933 	list_add_tail(&inti->list, list);
1934 	set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1935 	spin_unlock(&fi->lock);
1936 	return 0;
1937 }
1938 
1939 /*
1940  * Find a destination VCPU for a floating irq and kick it.
1941  */
1942 static void __floating_irq_kick(struct kvm *kvm, u64 type)
1943 {
1944 	struct kvm_vcpu *dst_vcpu;
1945 	int sigcpu, online_vcpus, nr_tries = 0;
1946 
1947 	online_vcpus = atomic_read(&kvm->online_vcpus);
1948 	if (!online_vcpus)
1949 		return;
1950 
1951 	/* find idle VCPUs first, then round robin */
1952 	sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus);
1953 	if (sigcpu == online_vcpus) {
1954 		do {
1955 			sigcpu = kvm->arch.float_int.next_rr_cpu++;
1956 			kvm->arch.float_int.next_rr_cpu %= online_vcpus;
1957 			/* avoid endless loops if all vcpus are stopped */
1958 			if (nr_tries++ >= online_vcpus)
1959 				return;
1960 		} while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
1961 	}
1962 	dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
1963 
1964 	/* make the VCPU drop out of the SIE, or wake it up if sleeping */
1965 	switch (type) {
1966 	case KVM_S390_MCHK:
1967 		kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT);
1968 		break;
1969 	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1970 		if (!(type & KVM_S390_INT_IO_AI_MASK &&
1971 		      kvm->arch.gisa_int.origin) ||
1972 		      kvm_s390_pv_cpu_get_handle(dst_vcpu))
1973 			kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT);
1974 		break;
1975 	default:
1976 		kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT);
1977 		break;
1978 	}
1979 	kvm_s390_vcpu_wakeup(dst_vcpu);
1980 }
1981 
1982 static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1983 {
1984 	u64 type = READ_ONCE(inti->type);
1985 	int rc;
1986 
1987 	switch (type) {
1988 	case KVM_S390_MCHK:
1989 		rc = __inject_float_mchk(kvm, inti);
1990 		break;
1991 	case KVM_S390_INT_VIRTIO:
1992 		rc = __inject_virtio(kvm, inti);
1993 		break;
1994 	case KVM_S390_INT_SERVICE:
1995 		rc = __inject_service(kvm, inti);
1996 		break;
1997 	case KVM_S390_INT_PFAULT_DONE:
1998 		rc = __inject_pfault_done(kvm, inti);
1999 		break;
2000 	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2001 		rc = __inject_io(kvm, inti);
2002 		break;
2003 	default:
2004 		rc = -EINVAL;
2005 	}
2006 	if (rc)
2007 		return rc;
2008 
2009 	__floating_irq_kick(kvm, type);
2010 	return 0;
2011 }
2012 
2013 int kvm_s390_inject_vm(struct kvm *kvm,
2014 		       struct kvm_s390_interrupt *s390int)
2015 {
2016 	struct kvm_s390_interrupt_info *inti;
2017 	int rc;
2018 
2019 	inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
2020 	if (!inti)
2021 		return -ENOMEM;
2022 
2023 	inti->type = s390int->type;
2024 	switch (inti->type) {
2025 	case KVM_S390_INT_VIRTIO:
2026 		VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
2027 			 s390int->parm, s390int->parm64);
2028 		inti->ext.ext_params = s390int->parm;
2029 		inti->ext.ext_params2 = s390int->parm64;
2030 		break;
2031 	case KVM_S390_INT_SERVICE:
2032 		VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
2033 		inti->ext.ext_params = s390int->parm;
2034 		break;
2035 	case KVM_S390_INT_PFAULT_DONE:
2036 		inti->ext.ext_params2 = s390int->parm64;
2037 		break;
2038 	case KVM_S390_MCHK:
2039 		VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
2040 			 s390int->parm64);
2041 		inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
2042 		inti->mchk.mcic = s390int->parm64;
2043 		break;
2044 	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2045 		inti->io.subchannel_id = s390int->parm >> 16;
2046 		inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
2047 		inti->io.io_int_parm = s390int->parm64 >> 32;
2048 		inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
2049 		break;
2050 	default:
2051 		kfree(inti);
2052 		return -EINVAL;
2053 	}
2054 	trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
2055 				 2);
2056 
2057 	rc = __inject_vm(kvm, inti);
2058 	if (rc)
2059 		kfree(inti);
2060 	return rc;
2061 }
2062 
2063 int kvm_s390_reinject_io_int(struct kvm *kvm,
2064 			      struct kvm_s390_interrupt_info *inti)
2065 {
2066 	return __inject_vm(kvm, inti);
2067 }
2068 
2069 int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
2070 		       struct kvm_s390_irq *irq)
2071 {
2072 	irq->type = s390int->type;
2073 	switch (irq->type) {
2074 	case KVM_S390_PROGRAM_INT:
2075 		if (s390int->parm & 0xffff0000)
2076 			return -EINVAL;
2077 		irq->u.pgm.code = s390int->parm;
2078 		break;
2079 	case KVM_S390_SIGP_SET_PREFIX:
2080 		irq->u.prefix.address = s390int->parm;
2081 		break;
2082 	case KVM_S390_SIGP_STOP:
2083 		irq->u.stop.flags = s390int->parm;
2084 		break;
2085 	case KVM_S390_INT_EXTERNAL_CALL:
2086 		if (s390int->parm & 0xffff0000)
2087 			return -EINVAL;
2088 		irq->u.extcall.code = s390int->parm;
2089 		break;
2090 	case KVM_S390_INT_EMERGENCY:
2091 		if (s390int->parm & 0xffff0000)
2092 			return -EINVAL;
2093 		irq->u.emerg.code = s390int->parm;
2094 		break;
2095 	case KVM_S390_MCHK:
2096 		irq->u.mchk.mcic = s390int->parm64;
2097 		break;
2098 	case KVM_S390_INT_PFAULT_INIT:
2099 		irq->u.ext.ext_params = s390int->parm;
2100 		irq->u.ext.ext_params2 = s390int->parm64;
2101 		break;
2102 	case KVM_S390_RESTART:
2103 	case KVM_S390_INT_CLOCK_COMP:
2104 	case KVM_S390_INT_CPU_TIMER:
2105 		break;
2106 	default:
2107 		return -EINVAL;
2108 	}
2109 	return 0;
2110 }
2111 
2112 int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
2113 {
2114 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2115 
2116 	return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2117 }
2118 
2119 int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu)
2120 {
2121 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2122 
2123 	return test_bit(IRQ_PEND_RESTART, &li->pending_irqs);
2124 }
2125 
2126 void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
2127 {
2128 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2129 
2130 	spin_lock(&li->lock);
2131 	li->irq.stop.flags = 0;
2132 	clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2133 	spin_unlock(&li->lock);
2134 }
2135 
2136 static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2137 {
2138 	int rc;
2139 
2140 	switch (irq->type) {
2141 	case KVM_S390_PROGRAM_INT:
2142 		rc = __inject_prog(vcpu, irq);
2143 		break;
2144 	case KVM_S390_SIGP_SET_PREFIX:
2145 		rc = __inject_set_prefix(vcpu, irq);
2146 		break;
2147 	case KVM_S390_SIGP_STOP:
2148 		rc = __inject_sigp_stop(vcpu, irq);
2149 		break;
2150 	case KVM_S390_RESTART:
2151 		rc = __inject_sigp_restart(vcpu);
2152 		break;
2153 	case KVM_S390_INT_CLOCK_COMP:
2154 		rc = __inject_ckc(vcpu);
2155 		break;
2156 	case KVM_S390_INT_CPU_TIMER:
2157 		rc = __inject_cpu_timer(vcpu);
2158 		break;
2159 	case KVM_S390_INT_EXTERNAL_CALL:
2160 		rc = __inject_extcall(vcpu, irq);
2161 		break;
2162 	case KVM_S390_INT_EMERGENCY:
2163 		rc = __inject_sigp_emergency(vcpu, irq);
2164 		break;
2165 	case KVM_S390_MCHK:
2166 		rc = __inject_mchk(vcpu, irq);
2167 		break;
2168 	case KVM_S390_INT_PFAULT_INIT:
2169 		rc = __inject_pfault_init(vcpu, irq);
2170 		break;
2171 	case KVM_S390_INT_VIRTIO:
2172 	case KVM_S390_INT_SERVICE:
2173 	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2174 	default:
2175 		rc = -EINVAL;
2176 	}
2177 
2178 	return rc;
2179 }
2180 
2181 int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2182 {
2183 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2184 	int rc;
2185 
2186 	spin_lock(&li->lock);
2187 	rc = do_inject_vcpu(vcpu, irq);
2188 	spin_unlock(&li->lock);
2189 	if (!rc)
2190 		kvm_s390_vcpu_wakeup(vcpu);
2191 	return rc;
2192 }
2193 
2194 static inline void clear_irq_list(struct list_head *_list)
2195 {
2196 	struct kvm_s390_interrupt_info *inti, *n;
2197 
2198 	list_for_each_entry_safe(inti, n, _list, list) {
2199 		list_del(&inti->list);
2200 		kfree(inti);
2201 	}
2202 }
2203 
2204 static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
2205 		       struct kvm_s390_irq *irq)
2206 {
2207 	irq->type = inti->type;
2208 	switch (inti->type) {
2209 	case KVM_S390_INT_PFAULT_INIT:
2210 	case KVM_S390_INT_PFAULT_DONE:
2211 	case KVM_S390_INT_VIRTIO:
2212 		irq->u.ext = inti->ext;
2213 		break;
2214 	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2215 		irq->u.io = inti->io;
2216 		break;
2217 	}
2218 }
2219 
2220 void kvm_s390_clear_float_irqs(struct kvm *kvm)
2221 {
2222 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2223 	int i;
2224 
2225 	mutex_lock(&kvm->lock);
2226 	if (!kvm_s390_pv_is_protected(kvm))
2227 		fi->masked_irqs = 0;
2228 	mutex_unlock(&kvm->lock);
2229 	spin_lock(&fi->lock);
2230 	fi->pending_irqs = 0;
2231 	memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
2232 	memset(&fi->mchk, 0, sizeof(fi->mchk));
2233 	for (i = 0; i < FIRQ_LIST_COUNT; i++)
2234 		clear_irq_list(&fi->lists[i]);
2235 	for (i = 0; i < FIRQ_MAX_COUNT; i++)
2236 		fi->counters[i] = 0;
2237 	spin_unlock(&fi->lock);
2238 	kvm_s390_gisa_clear(kvm);
2239 };
2240 
2241 static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
2242 {
2243 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
2244 	struct kvm_s390_interrupt_info *inti;
2245 	struct kvm_s390_float_interrupt *fi;
2246 	struct kvm_s390_irq *buf;
2247 	struct kvm_s390_irq *irq;
2248 	int max_irqs;
2249 	int ret = 0;
2250 	int n = 0;
2251 	int i;
2252 
2253 	if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
2254 		return -EINVAL;
2255 
2256 	/*
2257 	 * We are already using -ENOMEM to signal
2258 	 * userspace it may retry with a bigger buffer,
2259 	 * so we need to use something else for this case
2260 	 */
2261 	buf = vzalloc(len);
2262 	if (!buf)
2263 		return -ENOBUFS;
2264 
2265 	max_irqs = len / sizeof(struct kvm_s390_irq);
2266 
2267 	if (gi->origin && gisa_get_ipm(gi->origin)) {
2268 		for (i = 0; i <= MAX_ISC; i++) {
2269 			if (n == max_irqs) {
2270 				/* signal userspace to try again */
2271 				ret = -ENOMEM;
2272 				goto out_nolock;
2273 			}
2274 			if (gisa_tac_ipm_gisc(gi->origin, i)) {
2275 				irq = (struct kvm_s390_irq *) &buf[n];
2276 				irq->type = KVM_S390_INT_IO(1, 0, 0, 0);
2277 				irq->u.io.io_int_word = isc_to_int_word(i);
2278 				n++;
2279 			}
2280 		}
2281 	}
2282 	fi = &kvm->arch.float_int;
2283 	spin_lock(&fi->lock);
2284 	for (i = 0; i < FIRQ_LIST_COUNT; i++) {
2285 		list_for_each_entry(inti, &fi->lists[i], list) {
2286 			if (n == max_irqs) {
2287 				/* signal userspace to try again */
2288 				ret = -ENOMEM;
2289 				goto out;
2290 			}
2291 			inti_to_irq(inti, &buf[n]);
2292 			n++;
2293 		}
2294 	}
2295 	if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) ||
2296 	    test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) {
2297 		if (n == max_irqs) {
2298 			/* signal userspace to try again */
2299 			ret = -ENOMEM;
2300 			goto out;
2301 		}
2302 		irq = (struct kvm_s390_irq *) &buf[n];
2303 		irq->type = KVM_S390_INT_SERVICE;
2304 		irq->u.ext = fi->srv_signal;
2305 		n++;
2306 	}
2307 	if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
2308 		if (n == max_irqs) {
2309 				/* signal userspace to try again */
2310 				ret = -ENOMEM;
2311 				goto out;
2312 		}
2313 		irq = (struct kvm_s390_irq *) &buf[n];
2314 		irq->type = KVM_S390_MCHK;
2315 		irq->u.mchk = fi->mchk;
2316 		n++;
2317 }
2318 
2319 out:
2320 	spin_unlock(&fi->lock);
2321 out_nolock:
2322 	if (!ret && n > 0) {
2323 		if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
2324 			ret = -EFAULT;
2325 	}
2326 	vfree(buf);
2327 
2328 	return ret < 0 ? ret : n;
2329 }
2330 
2331 static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
2332 {
2333 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2334 	struct kvm_s390_ais_all ais;
2335 
2336 	if (attr->attr < sizeof(ais))
2337 		return -EINVAL;
2338 
2339 	if (!test_kvm_facility(kvm, 72))
2340 		return -EOPNOTSUPP;
2341 
2342 	mutex_lock(&fi->ais_lock);
2343 	ais.simm = fi->simm;
2344 	ais.nimm = fi->nimm;
2345 	mutex_unlock(&fi->ais_lock);
2346 
2347 	if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
2348 		return -EFAULT;
2349 
2350 	return 0;
2351 }
2352 
2353 static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2354 {
2355 	int r;
2356 
2357 	switch (attr->group) {
2358 	case KVM_DEV_FLIC_GET_ALL_IRQS:
2359 		r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
2360 					  attr->attr);
2361 		break;
2362 	case KVM_DEV_FLIC_AISM_ALL:
2363 		r = flic_ais_mode_get_all(dev->kvm, attr);
2364 		break;
2365 	default:
2366 		r = -EINVAL;
2367 	}
2368 
2369 	return r;
2370 }
2371 
2372 static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
2373 				     u64 addr)
2374 {
2375 	struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
2376 	void *target = NULL;
2377 	void __user *source;
2378 	u64 size;
2379 
2380 	if (get_user(inti->type, (u64 __user *)addr))
2381 		return -EFAULT;
2382 
2383 	switch (inti->type) {
2384 	case KVM_S390_INT_PFAULT_INIT:
2385 	case KVM_S390_INT_PFAULT_DONE:
2386 	case KVM_S390_INT_VIRTIO:
2387 	case KVM_S390_INT_SERVICE:
2388 		target = (void *) &inti->ext;
2389 		source = &uptr->u.ext;
2390 		size = sizeof(inti->ext);
2391 		break;
2392 	case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2393 		target = (void *) &inti->io;
2394 		source = &uptr->u.io;
2395 		size = sizeof(inti->io);
2396 		break;
2397 	case KVM_S390_MCHK:
2398 		target = (void *) &inti->mchk;
2399 		source = &uptr->u.mchk;
2400 		size = sizeof(inti->mchk);
2401 		break;
2402 	default:
2403 		return -EINVAL;
2404 	}
2405 
2406 	if (copy_from_user(target, source, size))
2407 		return -EFAULT;
2408 
2409 	return 0;
2410 }
2411 
2412 static int enqueue_floating_irq(struct kvm_device *dev,
2413 				struct kvm_device_attr *attr)
2414 {
2415 	struct kvm_s390_interrupt_info *inti = NULL;
2416 	int r = 0;
2417 	int len = attr->attr;
2418 
2419 	if (len % sizeof(struct kvm_s390_irq) != 0)
2420 		return -EINVAL;
2421 	else if (len > KVM_S390_FLIC_MAX_BUFFER)
2422 		return -EINVAL;
2423 
2424 	while (len >= sizeof(struct kvm_s390_irq)) {
2425 		inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
2426 		if (!inti)
2427 			return -ENOMEM;
2428 
2429 		r = copy_irq_from_user(inti, attr->addr);
2430 		if (r) {
2431 			kfree(inti);
2432 			return r;
2433 		}
2434 		r = __inject_vm(dev->kvm, inti);
2435 		if (r) {
2436 			kfree(inti);
2437 			return r;
2438 		}
2439 		len -= sizeof(struct kvm_s390_irq);
2440 		attr->addr += sizeof(struct kvm_s390_irq);
2441 	}
2442 
2443 	return r;
2444 }
2445 
2446 static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
2447 {
2448 	if (id >= MAX_S390_IO_ADAPTERS)
2449 		return NULL;
2450 	id = array_index_nospec(id, MAX_S390_IO_ADAPTERS);
2451 	return kvm->arch.adapters[id];
2452 }
2453 
2454 static int register_io_adapter(struct kvm_device *dev,
2455 			       struct kvm_device_attr *attr)
2456 {
2457 	struct s390_io_adapter *adapter;
2458 	struct kvm_s390_io_adapter adapter_info;
2459 
2460 	if (copy_from_user(&adapter_info,
2461 			   (void __user *)attr->addr, sizeof(adapter_info)))
2462 		return -EFAULT;
2463 
2464 	if (adapter_info.id >= MAX_S390_IO_ADAPTERS)
2465 		return -EINVAL;
2466 
2467 	adapter_info.id = array_index_nospec(adapter_info.id,
2468 					     MAX_S390_IO_ADAPTERS);
2469 
2470 	if (dev->kvm->arch.adapters[adapter_info.id] != NULL)
2471 		return -EINVAL;
2472 
2473 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT);
2474 	if (!adapter)
2475 		return -ENOMEM;
2476 
2477 	adapter->id = adapter_info.id;
2478 	adapter->isc = adapter_info.isc;
2479 	adapter->maskable = adapter_info.maskable;
2480 	adapter->masked = false;
2481 	adapter->swap = adapter_info.swap;
2482 	adapter->suppressible = (adapter_info.flags) &
2483 				KVM_S390_ADAPTER_SUPPRESSIBLE;
2484 	dev->kvm->arch.adapters[adapter->id] = adapter;
2485 
2486 	return 0;
2487 }
2488 
2489 int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
2490 {
2491 	int ret;
2492 	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2493 
2494 	if (!adapter || !adapter->maskable)
2495 		return -EINVAL;
2496 	ret = adapter->masked;
2497 	adapter->masked = masked;
2498 	return ret;
2499 }
2500 
2501 void kvm_s390_destroy_adapters(struct kvm *kvm)
2502 {
2503 	int i;
2504 
2505 	for (i = 0; i < MAX_S390_IO_ADAPTERS; i++)
2506 		kfree(kvm->arch.adapters[i]);
2507 }
2508 
2509 static int modify_io_adapter(struct kvm_device *dev,
2510 			     struct kvm_device_attr *attr)
2511 {
2512 	struct kvm_s390_io_adapter_req req;
2513 	struct s390_io_adapter *adapter;
2514 	int ret;
2515 
2516 	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2517 		return -EFAULT;
2518 
2519 	adapter = get_io_adapter(dev->kvm, req.id);
2520 	if (!adapter)
2521 		return -EINVAL;
2522 	switch (req.type) {
2523 	case KVM_S390_IO_ADAPTER_MASK:
2524 		ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
2525 		if (ret > 0)
2526 			ret = 0;
2527 		break;
2528 	/*
2529 	 * The following operations are no longer needed and therefore no-ops.
2530 	 * The gpa to hva translation is done when an IRQ route is set up. The
2531 	 * set_irq code uses get_user_pages_remote() to do the actual write.
2532 	 */
2533 	case KVM_S390_IO_ADAPTER_MAP:
2534 	case KVM_S390_IO_ADAPTER_UNMAP:
2535 		ret = 0;
2536 		break;
2537 	default:
2538 		ret = -EINVAL;
2539 	}
2540 
2541 	return ret;
2542 }
2543 
2544 static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
2545 
2546 {
2547 	const u64 isc_mask = 0xffUL << 24; /* all iscs set */
2548 	u32 schid;
2549 
2550 	if (attr->flags)
2551 		return -EINVAL;
2552 	if (attr->attr != sizeof(schid))
2553 		return -EINVAL;
2554 	if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
2555 		return -EFAULT;
2556 	if (!schid)
2557 		return -EINVAL;
2558 	kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
2559 	/*
2560 	 * If userspace is conforming to the architecture, we can have at most
2561 	 * one pending I/O interrupt per subchannel, so this is effectively a
2562 	 * clear all.
2563 	 */
2564 	return 0;
2565 }
2566 
2567 static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
2568 {
2569 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2570 	struct kvm_s390_ais_req req;
2571 	int ret = 0;
2572 
2573 	if (!test_kvm_facility(kvm, 72))
2574 		return -EOPNOTSUPP;
2575 
2576 	if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2577 		return -EFAULT;
2578 
2579 	if (req.isc > MAX_ISC)
2580 		return -EINVAL;
2581 
2582 	trace_kvm_s390_modify_ais_mode(req.isc,
2583 				       (fi->simm & AIS_MODE_MASK(req.isc)) ?
2584 				       (fi->nimm & AIS_MODE_MASK(req.isc)) ?
2585 				       2 : KVM_S390_AIS_MODE_SINGLE :
2586 				       KVM_S390_AIS_MODE_ALL, req.mode);
2587 
2588 	mutex_lock(&fi->ais_lock);
2589 	switch (req.mode) {
2590 	case KVM_S390_AIS_MODE_ALL:
2591 		fi->simm &= ~AIS_MODE_MASK(req.isc);
2592 		fi->nimm &= ~AIS_MODE_MASK(req.isc);
2593 		break;
2594 	case KVM_S390_AIS_MODE_SINGLE:
2595 		fi->simm |= AIS_MODE_MASK(req.isc);
2596 		fi->nimm &= ~AIS_MODE_MASK(req.isc);
2597 		break;
2598 	default:
2599 		ret = -EINVAL;
2600 	}
2601 	mutex_unlock(&fi->ais_lock);
2602 
2603 	return ret;
2604 }
2605 
2606 static int kvm_s390_inject_airq(struct kvm *kvm,
2607 				struct s390_io_adapter *adapter)
2608 {
2609 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2610 	struct kvm_s390_interrupt s390int = {
2611 		.type = KVM_S390_INT_IO(1, 0, 0, 0),
2612 		.parm = 0,
2613 		.parm64 = isc_to_int_word(adapter->isc),
2614 	};
2615 	int ret = 0;
2616 
2617 	if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
2618 		return kvm_s390_inject_vm(kvm, &s390int);
2619 
2620 	mutex_lock(&fi->ais_lock);
2621 	if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
2622 		trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
2623 		goto out;
2624 	}
2625 
2626 	ret = kvm_s390_inject_vm(kvm, &s390int);
2627 	if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
2628 		fi->nimm |= AIS_MODE_MASK(adapter->isc);
2629 		trace_kvm_s390_modify_ais_mode(adapter->isc,
2630 					       KVM_S390_AIS_MODE_SINGLE, 2);
2631 	}
2632 out:
2633 	mutex_unlock(&fi->ais_lock);
2634 	return ret;
2635 }
2636 
2637 static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
2638 {
2639 	unsigned int id = attr->attr;
2640 	struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2641 
2642 	if (!adapter)
2643 		return -EINVAL;
2644 
2645 	return kvm_s390_inject_airq(kvm, adapter);
2646 }
2647 
2648 static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
2649 {
2650 	struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2651 	struct kvm_s390_ais_all ais;
2652 
2653 	if (!test_kvm_facility(kvm, 72))
2654 		return -EOPNOTSUPP;
2655 
2656 	if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
2657 		return -EFAULT;
2658 
2659 	mutex_lock(&fi->ais_lock);
2660 	fi->simm = ais.simm;
2661 	fi->nimm = ais.nimm;
2662 	mutex_unlock(&fi->ais_lock);
2663 
2664 	return 0;
2665 }
2666 
2667 static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2668 {
2669 	int r = 0;
2670 	unsigned long i;
2671 	struct kvm_vcpu *vcpu;
2672 
2673 	switch (attr->group) {
2674 	case KVM_DEV_FLIC_ENQUEUE:
2675 		r = enqueue_floating_irq(dev, attr);
2676 		break;
2677 	case KVM_DEV_FLIC_CLEAR_IRQS:
2678 		kvm_s390_clear_float_irqs(dev->kvm);
2679 		break;
2680 	case KVM_DEV_FLIC_APF_ENABLE:
2681 		dev->kvm->arch.gmap->pfault_enabled = 1;
2682 		break;
2683 	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2684 		dev->kvm->arch.gmap->pfault_enabled = 0;
2685 		/*
2686 		 * Make sure no async faults are in transition when
2687 		 * clearing the queues. So we don't need to worry
2688 		 * about late coming workers.
2689 		 */
2690 		synchronize_srcu(&dev->kvm->srcu);
2691 		kvm_for_each_vcpu(i, vcpu, dev->kvm)
2692 			kvm_clear_async_pf_completion_queue(vcpu);
2693 		break;
2694 	case KVM_DEV_FLIC_ADAPTER_REGISTER:
2695 		r = register_io_adapter(dev, attr);
2696 		break;
2697 	case KVM_DEV_FLIC_ADAPTER_MODIFY:
2698 		r = modify_io_adapter(dev, attr);
2699 		break;
2700 	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2701 		r = clear_io_irq(dev->kvm, attr);
2702 		break;
2703 	case KVM_DEV_FLIC_AISM:
2704 		r = modify_ais_mode(dev->kvm, attr);
2705 		break;
2706 	case KVM_DEV_FLIC_AIRQ_INJECT:
2707 		r = flic_inject_airq(dev->kvm, attr);
2708 		break;
2709 	case KVM_DEV_FLIC_AISM_ALL:
2710 		r = flic_ais_mode_set_all(dev->kvm, attr);
2711 		break;
2712 	default:
2713 		r = -EINVAL;
2714 	}
2715 
2716 	return r;
2717 }
2718 
2719 static int flic_has_attr(struct kvm_device *dev,
2720 			     struct kvm_device_attr *attr)
2721 {
2722 	switch (attr->group) {
2723 	case KVM_DEV_FLIC_GET_ALL_IRQS:
2724 	case KVM_DEV_FLIC_ENQUEUE:
2725 	case KVM_DEV_FLIC_CLEAR_IRQS:
2726 	case KVM_DEV_FLIC_APF_ENABLE:
2727 	case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2728 	case KVM_DEV_FLIC_ADAPTER_REGISTER:
2729 	case KVM_DEV_FLIC_ADAPTER_MODIFY:
2730 	case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2731 	case KVM_DEV_FLIC_AISM:
2732 	case KVM_DEV_FLIC_AIRQ_INJECT:
2733 	case KVM_DEV_FLIC_AISM_ALL:
2734 		return 0;
2735 	}
2736 	return -ENXIO;
2737 }
2738 
2739 static int flic_create(struct kvm_device *dev, u32 type)
2740 {
2741 	if (!dev)
2742 		return -EINVAL;
2743 	if (dev->kvm->arch.flic)
2744 		return -EINVAL;
2745 	dev->kvm->arch.flic = dev;
2746 	return 0;
2747 }
2748 
2749 static void flic_destroy(struct kvm_device *dev)
2750 {
2751 	dev->kvm->arch.flic = NULL;
2752 	kfree(dev);
2753 }
2754 
2755 /* s390 floating irq controller (flic) */
2756 struct kvm_device_ops kvm_flic_ops = {
2757 	.name = "kvm-flic",
2758 	.get_attr = flic_get_attr,
2759 	.set_attr = flic_set_attr,
2760 	.has_attr = flic_has_attr,
2761 	.create = flic_create,
2762 	.destroy = flic_destroy,
2763 };
2764 
2765 static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
2766 {
2767 	unsigned long bit;
2768 
2769 	bit = bit_nr + (addr % PAGE_SIZE) * 8;
2770 
2771 	return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
2772 }
2773 
2774 static struct page *get_map_page(struct kvm *kvm, u64 uaddr)
2775 {
2776 	struct page *page = NULL;
2777 
2778 	mmap_read_lock(kvm->mm);
2779 	get_user_pages_remote(kvm->mm, uaddr, 1, FOLL_WRITE,
2780 			      &page, NULL, NULL);
2781 	mmap_read_unlock(kvm->mm);
2782 	return page;
2783 }
2784 
2785 static int adapter_indicators_set(struct kvm *kvm,
2786 				  struct s390_io_adapter *adapter,
2787 				  struct kvm_s390_adapter_int *adapter_int)
2788 {
2789 	unsigned long bit;
2790 	int summary_set, idx;
2791 	struct page *ind_page, *summary_page;
2792 	void *map;
2793 
2794 	ind_page = get_map_page(kvm, adapter_int->ind_addr);
2795 	if (!ind_page)
2796 		return -1;
2797 	summary_page = get_map_page(kvm, adapter_int->summary_addr);
2798 	if (!summary_page) {
2799 		put_page(ind_page);
2800 		return -1;
2801 	}
2802 
2803 	idx = srcu_read_lock(&kvm->srcu);
2804 	map = page_address(ind_page);
2805 	bit = get_ind_bit(adapter_int->ind_addr,
2806 			  adapter_int->ind_offset, adapter->swap);
2807 	set_bit(bit, map);
2808 	mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT);
2809 	set_page_dirty_lock(ind_page);
2810 	map = page_address(summary_page);
2811 	bit = get_ind_bit(adapter_int->summary_addr,
2812 			  adapter_int->summary_offset, adapter->swap);
2813 	summary_set = test_and_set_bit(bit, map);
2814 	mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT);
2815 	set_page_dirty_lock(summary_page);
2816 	srcu_read_unlock(&kvm->srcu, idx);
2817 
2818 	put_page(ind_page);
2819 	put_page(summary_page);
2820 	return summary_set ? 0 : 1;
2821 }
2822 
2823 /*
2824  * < 0 - not injected due to error
2825  * = 0 - coalesced, summary indicator already active
2826  * > 0 - injected interrupt
2827  */
2828 static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
2829 			   struct kvm *kvm, int irq_source_id, int level,
2830 			   bool line_status)
2831 {
2832 	int ret;
2833 	struct s390_io_adapter *adapter;
2834 
2835 	/* We're only interested in the 0->1 transition. */
2836 	if (!level)
2837 		return 0;
2838 	adapter = get_io_adapter(kvm, e->adapter.adapter_id);
2839 	if (!adapter)
2840 		return -1;
2841 	ret = adapter_indicators_set(kvm, adapter, &e->adapter);
2842 	if ((ret > 0) && !adapter->masked) {
2843 		ret = kvm_s390_inject_airq(kvm, adapter);
2844 		if (ret == 0)
2845 			ret = 1;
2846 	}
2847 	return ret;
2848 }
2849 
2850 /*
2851  * Inject the machine check to the guest.
2852  */
2853 void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
2854 				     struct mcck_volatile_info *mcck_info)
2855 {
2856 	struct kvm_s390_interrupt_info inti;
2857 	struct kvm_s390_irq irq;
2858 	struct kvm_s390_mchk_info *mchk;
2859 	union mci mci;
2860 	__u64 cr14 = 0;         /* upper bits are not used */
2861 	int rc;
2862 
2863 	mci.val = mcck_info->mcic;
2864 	if (mci.sr)
2865 		cr14 |= CR14_RECOVERY_SUBMASK;
2866 	if (mci.dg)
2867 		cr14 |= CR14_DEGRADATION_SUBMASK;
2868 	if (mci.w)
2869 		cr14 |= CR14_WARNING_SUBMASK;
2870 
2871 	mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
2872 	mchk->cr14 = cr14;
2873 	mchk->mcic = mcck_info->mcic;
2874 	mchk->ext_damage_code = mcck_info->ext_damage_code;
2875 	mchk->failing_storage_address = mcck_info->failing_storage_address;
2876 	if (mci.ck) {
2877 		/* Inject the floating machine check */
2878 		inti.type = KVM_S390_MCHK;
2879 		rc = __inject_vm(vcpu->kvm, &inti);
2880 	} else {
2881 		/* Inject the machine check to specified vcpu */
2882 		irq.type = KVM_S390_MCHK;
2883 		rc = kvm_s390_inject_vcpu(vcpu, &irq);
2884 	}
2885 	WARN_ON_ONCE(rc);
2886 }
2887 
2888 int kvm_set_routing_entry(struct kvm *kvm,
2889 			  struct kvm_kernel_irq_routing_entry *e,
2890 			  const struct kvm_irq_routing_entry *ue)
2891 {
2892 	u64 uaddr;
2893 
2894 	switch (ue->type) {
2895 	/* we store the userspace addresses instead of the guest addresses */
2896 	case KVM_IRQ_ROUTING_S390_ADAPTER:
2897 		e->set = set_adapter_int;
2898 		uaddr =  gmap_translate(kvm->arch.gmap, ue->u.adapter.summary_addr);
2899 		if (uaddr == -EFAULT)
2900 			return -EFAULT;
2901 		e->adapter.summary_addr = uaddr;
2902 		uaddr =  gmap_translate(kvm->arch.gmap, ue->u.adapter.ind_addr);
2903 		if (uaddr == -EFAULT)
2904 			return -EFAULT;
2905 		e->adapter.ind_addr = uaddr;
2906 		e->adapter.summary_offset = ue->u.adapter.summary_offset;
2907 		e->adapter.ind_offset = ue->u.adapter.ind_offset;
2908 		e->adapter.adapter_id = ue->u.adapter.adapter_id;
2909 		return 0;
2910 	default:
2911 		return -EINVAL;
2912 	}
2913 }
2914 
2915 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
2916 		int irq_source_id, int level, bool line_status)
2917 {
2918 	return -EINVAL;
2919 }
2920 
2921 int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
2922 {
2923 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2924 	struct kvm_s390_irq *buf;
2925 	int r = 0;
2926 	int n;
2927 
2928 	buf = vmalloc(len);
2929 	if (!buf)
2930 		return -ENOMEM;
2931 
2932 	if (copy_from_user((void *) buf, irqstate, len)) {
2933 		r = -EFAULT;
2934 		goto out_free;
2935 	}
2936 
2937 	/*
2938 	 * Don't allow setting the interrupt state
2939 	 * when there are already interrupts pending
2940 	 */
2941 	spin_lock(&li->lock);
2942 	if (li->pending_irqs) {
2943 		r = -EBUSY;
2944 		goto out_unlock;
2945 	}
2946 
2947 	for (n = 0; n < len / sizeof(*buf); n++) {
2948 		r = do_inject_vcpu(vcpu, &buf[n]);
2949 		if (r)
2950 			break;
2951 	}
2952 
2953 out_unlock:
2954 	spin_unlock(&li->lock);
2955 out_free:
2956 	vfree(buf);
2957 
2958 	return r;
2959 }
2960 
2961 static void store_local_irq(struct kvm_s390_local_interrupt *li,
2962 			    struct kvm_s390_irq *irq,
2963 			    unsigned long irq_type)
2964 {
2965 	switch (irq_type) {
2966 	case IRQ_PEND_MCHK_EX:
2967 	case IRQ_PEND_MCHK_REP:
2968 		irq->type = KVM_S390_MCHK;
2969 		irq->u.mchk = li->irq.mchk;
2970 		break;
2971 	case IRQ_PEND_PROG:
2972 		irq->type = KVM_S390_PROGRAM_INT;
2973 		irq->u.pgm = li->irq.pgm;
2974 		break;
2975 	case IRQ_PEND_PFAULT_INIT:
2976 		irq->type = KVM_S390_INT_PFAULT_INIT;
2977 		irq->u.ext = li->irq.ext;
2978 		break;
2979 	case IRQ_PEND_EXT_EXTERNAL:
2980 		irq->type = KVM_S390_INT_EXTERNAL_CALL;
2981 		irq->u.extcall = li->irq.extcall;
2982 		break;
2983 	case IRQ_PEND_EXT_CLOCK_COMP:
2984 		irq->type = KVM_S390_INT_CLOCK_COMP;
2985 		break;
2986 	case IRQ_PEND_EXT_CPU_TIMER:
2987 		irq->type = KVM_S390_INT_CPU_TIMER;
2988 		break;
2989 	case IRQ_PEND_SIGP_STOP:
2990 		irq->type = KVM_S390_SIGP_STOP;
2991 		irq->u.stop = li->irq.stop;
2992 		break;
2993 	case IRQ_PEND_RESTART:
2994 		irq->type = KVM_S390_RESTART;
2995 		break;
2996 	case IRQ_PEND_SET_PREFIX:
2997 		irq->type = KVM_S390_SIGP_SET_PREFIX;
2998 		irq->u.prefix = li->irq.prefix;
2999 		break;
3000 	}
3001 }
3002 
3003 int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
3004 {
3005 	int scn;
3006 	DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS);
3007 	struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
3008 	unsigned long pending_irqs;
3009 	struct kvm_s390_irq irq;
3010 	unsigned long irq_type;
3011 	int cpuaddr;
3012 	int n = 0;
3013 
3014 	spin_lock(&li->lock);
3015 	pending_irqs = li->pending_irqs;
3016 	memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
3017 	       sizeof(sigp_emerg_pending));
3018 	spin_unlock(&li->lock);
3019 
3020 	for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
3021 		memset(&irq, 0, sizeof(irq));
3022 		if (irq_type == IRQ_PEND_EXT_EMERGENCY)
3023 			continue;
3024 		if (n + sizeof(irq) > len)
3025 			return -ENOBUFS;
3026 		store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
3027 		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3028 			return -EFAULT;
3029 		n += sizeof(irq);
3030 	}
3031 
3032 	if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
3033 		for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
3034 			memset(&irq, 0, sizeof(irq));
3035 			if (n + sizeof(irq) > len)
3036 				return -ENOBUFS;
3037 			irq.type = KVM_S390_INT_EMERGENCY;
3038 			irq.u.emerg.code = cpuaddr;
3039 			if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3040 				return -EFAULT;
3041 			n += sizeof(irq);
3042 		}
3043 	}
3044 
3045 	if (sca_ext_call_pending(vcpu, &scn)) {
3046 		if (n + sizeof(irq) > len)
3047 			return -ENOBUFS;
3048 		memset(&irq, 0, sizeof(irq));
3049 		irq.type = KVM_S390_INT_EXTERNAL_CALL;
3050 		irq.u.extcall.code = scn;
3051 		if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3052 			return -EFAULT;
3053 		n += sizeof(irq);
3054 	}
3055 
3056 	return n;
3057 }
3058 
3059 static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask)
3060 {
3061 	int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus);
3062 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3063 	struct kvm_vcpu *vcpu;
3064 	u8 vcpu_isc_mask;
3065 
3066 	for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) {
3067 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
3068 		if (psw_ioint_disabled(vcpu))
3069 			continue;
3070 		vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24);
3071 		if (deliverable_mask & vcpu_isc_mask) {
3072 			/* lately kicked but not yet running */
3073 			if (test_and_set_bit(vcpu_idx, gi->kicked_mask))
3074 				return;
3075 			kvm_s390_vcpu_wakeup(vcpu);
3076 			return;
3077 		}
3078 	}
3079 }
3080 
3081 static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer)
3082 {
3083 	struct kvm_s390_gisa_interrupt *gi =
3084 		container_of(timer, struct kvm_s390_gisa_interrupt, timer);
3085 	struct kvm *kvm =
3086 		container_of(gi->origin, struct sie_page2, gisa)->kvm;
3087 	u8 pending_mask;
3088 
3089 	pending_mask = gisa_get_ipm_or_restore_iam(gi);
3090 	if (pending_mask) {
3091 		__airqs_kick_single_vcpu(kvm, pending_mask);
3092 		hrtimer_forward_now(timer, ns_to_ktime(gi->expires));
3093 		return HRTIMER_RESTART;
3094 	}
3095 
3096 	return HRTIMER_NORESTART;
3097 }
3098 
3099 #define NULL_GISA_ADDR 0x00000000UL
3100 #define NONE_GISA_ADDR 0x00000001UL
3101 #define GISA_ADDR_MASK 0xfffff000UL
3102 
3103 static void process_gib_alert_list(void)
3104 {
3105 	struct kvm_s390_gisa_interrupt *gi;
3106 	u32 final, gisa_phys, origin = 0UL;
3107 	struct kvm_s390_gisa *gisa;
3108 	struct kvm *kvm;
3109 
3110 	do {
3111 		/*
3112 		 * If the NONE_GISA_ADDR is still stored in the alert list
3113 		 * origin, we will leave the outer loop. No further GISA has
3114 		 * been added to the alert list by millicode while processing
3115 		 * the current alert list.
3116 		 */
3117 		final = (origin & NONE_GISA_ADDR);
3118 		/*
3119 		 * Cut off the alert list and store the NONE_GISA_ADDR in the
3120 		 * alert list origin to avoid further GAL interruptions.
3121 		 * A new alert list can be build up by millicode in parallel
3122 		 * for guests not in the yet cut-off alert list. When in the
3123 		 * final loop, store the NULL_GISA_ADDR instead. This will re-
3124 		 * enable GAL interruptions on the host again.
3125 		 */
3126 		origin = xchg(&gib->alert_list_origin,
3127 			      (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR);
3128 		/*
3129 		 * Loop through the just cut-off alert list and start the
3130 		 * gisa timers to kick idle vcpus to consume the pending
3131 		 * interruptions asap.
3132 		 */
3133 		while (origin & GISA_ADDR_MASK) {
3134 			gisa_phys = origin;
3135 			gisa = phys_to_virt(gisa_phys);
3136 			origin = gisa->next_alert;
3137 			gisa->next_alert = gisa_phys;
3138 			kvm = container_of(gisa, struct sie_page2, gisa)->kvm;
3139 			gi = &kvm->arch.gisa_int;
3140 			if (hrtimer_active(&gi->timer))
3141 				hrtimer_cancel(&gi->timer);
3142 			hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3143 		}
3144 	} while (!final);
3145 
3146 }
3147 
3148 void kvm_s390_gisa_clear(struct kvm *kvm)
3149 {
3150 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3151 
3152 	if (!gi->origin)
3153 		return;
3154 	gisa_clear_ipm(gi->origin);
3155 	VM_EVENT(kvm, 3, "gisa 0x%pK cleared", gi->origin);
3156 }
3157 
3158 void kvm_s390_gisa_init(struct kvm *kvm)
3159 {
3160 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3161 
3162 	if (!css_general_characteristics.aiv)
3163 		return;
3164 	gi->origin = &kvm->arch.sie_page2->gisa;
3165 	gi->alert.mask = 0;
3166 	spin_lock_init(&gi->alert.ref_lock);
3167 	gi->expires = 50 * 1000; /* 50 usec */
3168 	hrtimer_init(&gi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3169 	gi->timer.function = gisa_vcpu_kicker;
3170 	memset(gi->origin, 0, sizeof(struct kvm_s390_gisa));
3171 	gi->origin->next_alert = (u32)virt_to_phys(gi->origin);
3172 	VM_EVENT(kvm, 3, "gisa 0x%pK initialized", gi->origin);
3173 }
3174 
3175 void kvm_s390_gisa_enable(struct kvm *kvm)
3176 {
3177 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3178 	struct kvm_vcpu *vcpu;
3179 	unsigned long i;
3180 	u32 gisa_desc;
3181 
3182 	if (gi->origin)
3183 		return;
3184 	kvm_s390_gisa_init(kvm);
3185 	gisa_desc = kvm_s390_get_gisa_desc(kvm);
3186 	if (!gisa_desc)
3187 		return;
3188 	kvm_for_each_vcpu(i, vcpu, kvm) {
3189 		mutex_lock(&vcpu->mutex);
3190 		vcpu->arch.sie_block->gd = gisa_desc;
3191 		vcpu->arch.sie_block->eca |= ECA_AIV;
3192 		VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
3193 			   vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
3194 		mutex_unlock(&vcpu->mutex);
3195 	}
3196 }
3197 
3198 void kvm_s390_gisa_destroy(struct kvm *kvm)
3199 {
3200 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3201 	struct kvm_s390_gisa *gisa = gi->origin;
3202 
3203 	if (!gi->origin)
3204 		return;
3205 	if (gi->alert.mask)
3206 		KVM_EVENT(3, "vm 0x%pK has unexpected iam 0x%02x",
3207 			  kvm, gi->alert.mask);
3208 	while (gisa_in_alert_list(gi->origin))
3209 		cpu_relax();
3210 	hrtimer_cancel(&gi->timer);
3211 	gi->origin = NULL;
3212 	VM_EVENT(kvm, 3, "gisa 0x%pK destroyed", gisa);
3213 }
3214 
3215 void kvm_s390_gisa_disable(struct kvm *kvm)
3216 {
3217 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3218 	struct kvm_vcpu *vcpu;
3219 	unsigned long i;
3220 
3221 	if (!gi->origin)
3222 		return;
3223 	kvm_for_each_vcpu(i, vcpu, kvm) {
3224 		mutex_lock(&vcpu->mutex);
3225 		vcpu->arch.sie_block->eca &= ~ECA_AIV;
3226 		vcpu->arch.sie_block->gd = 0U;
3227 		mutex_unlock(&vcpu->mutex);
3228 		VCPU_EVENT(vcpu, 3, "AIV disabled for cpu %03u", vcpu->vcpu_id);
3229 	}
3230 	kvm_s390_gisa_destroy(kvm);
3231 }
3232 
3233 /**
3234  * kvm_s390_gisc_register - register a guest ISC
3235  *
3236  * @kvm:  the kernel vm to work with
3237  * @gisc: the guest interruption sub class to register
3238  *
3239  * The function extends the vm specific alert mask to use.
3240  * The effective IAM mask in the GISA is updated as well
3241  * in case the GISA is not part of the GIB alert list.
3242  * It will be updated latest when the IAM gets restored
3243  * by gisa_get_ipm_or_restore_iam().
3244  *
3245  * Returns: the nonspecific ISC (NISC) the gib alert mechanism
3246  *          has registered with the channel subsystem.
3247  *          -ENODEV in case the vm uses no GISA
3248  *          -ERANGE in case the guest ISC is invalid
3249  */
3250 int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc)
3251 {
3252 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3253 
3254 	if (!gi->origin)
3255 		return -ENODEV;
3256 	if (gisc > MAX_ISC)
3257 		return -ERANGE;
3258 
3259 	spin_lock(&gi->alert.ref_lock);
3260 	gi->alert.ref_count[gisc]++;
3261 	if (gi->alert.ref_count[gisc] == 1) {
3262 		gi->alert.mask |= 0x80 >> gisc;
3263 		gisa_set_iam(gi->origin, gi->alert.mask);
3264 	}
3265 	spin_unlock(&gi->alert.ref_lock);
3266 
3267 	return gib->nisc;
3268 }
3269 EXPORT_SYMBOL_GPL(kvm_s390_gisc_register);
3270 
3271 /**
3272  * kvm_s390_gisc_unregister - unregister a guest ISC
3273  *
3274  * @kvm:  the kernel vm to work with
3275  * @gisc: the guest interruption sub class to register
3276  *
3277  * The function reduces the vm specific alert mask to use.
3278  * The effective IAM mask in the GISA is updated as well
3279  * in case the GISA is not part of the GIB alert list.
3280  * It will be updated latest when the IAM gets restored
3281  * by gisa_get_ipm_or_restore_iam().
3282  *
3283  * Returns: the nonspecific ISC (NISC) the gib alert mechanism
3284  *          has registered with the channel subsystem.
3285  *          -ENODEV in case the vm uses no GISA
3286  *          -ERANGE in case the guest ISC is invalid
3287  *          -EINVAL in case the guest ISC is not registered
3288  */
3289 int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc)
3290 {
3291 	struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3292 	int rc = 0;
3293 
3294 	if (!gi->origin)
3295 		return -ENODEV;
3296 	if (gisc > MAX_ISC)
3297 		return -ERANGE;
3298 
3299 	spin_lock(&gi->alert.ref_lock);
3300 	if (gi->alert.ref_count[gisc] == 0) {
3301 		rc = -EINVAL;
3302 		goto out;
3303 	}
3304 	gi->alert.ref_count[gisc]--;
3305 	if (gi->alert.ref_count[gisc] == 0) {
3306 		gi->alert.mask &= ~(0x80 >> gisc);
3307 		gisa_set_iam(gi->origin, gi->alert.mask);
3308 	}
3309 out:
3310 	spin_unlock(&gi->alert.ref_lock);
3311 
3312 	return rc;
3313 }
3314 EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister);
3315 
3316 static void aen_host_forward(unsigned long si)
3317 {
3318 	struct kvm_s390_gisa_interrupt *gi;
3319 	struct zpci_gaite *gaite;
3320 	struct kvm *kvm;
3321 
3322 	gaite = (struct zpci_gaite *)aift->gait +
3323 		(si * sizeof(struct zpci_gaite));
3324 	if (gaite->count == 0)
3325 		return;
3326 	if (gaite->aisb != 0)
3327 		set_bit_inv(gaite->aisbo, phys_to_virt(gaite->aisb));
3328 
3329 	kvm = kvm_s390_pci_si_to_kvm(aift, si);
3330 	if (!kvm)
3331 		return;
3332 	gi = &kvm->arch.gisa_int;
3333 
3334 	if (!(gi->origin->g1.simm & AIS_MODE_MASK(gaite->gisc)) ||
3335 	    !(gi->origin->g1.nimm & AIS_MODE_MASK(gaite->gisc))) {
3336 		gisa_set_ipm_gisc(gi->origin, gaite->gisc);
3337 		if (hrtimer_active(&gi->timer))
3338 			hrtimer_cancel(&gi->timer);
3339 		hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3340 		kvm->stat.aen_forward++;
3341 	}
3342 }
3343 
3344 static void aen_process_gait(u8 isc)
3345 {
3346 	bool found = false, first = true;
3347 	union zpci_sic_iib iib = {{0}};
3348 	unsigned long si, flags;
3349 
3350 	spin_lock_irqsave(&aift->gait_lock, flags);
3351 
3352 	if (!aift->gait) {
3353 		spin_unlock_irqrestore(&aift->gait_lock, flags);
3354 		return;
3355 	}
3356 
3357 	for (si = 0;;) {
3358 		/* Scan adapter summary indicator bit vector */
3359 		si = airq_iv_scan(aift->sbv, si, airq_iv_end(aift->sbv));
3360 		if (si == -1UL) {
3361 			if (first || found) {
3362 				/* Re-enable interrupts. */
3363 				zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, isc,
3364 						  &iib);
3365 				first = found = false;
3366 			} else {
3367 				/* Interrupts on and all bits processed */
3368 				break;
3369 			}
3370 			found = false;
3371 			si = 0;
3372 			/* Scan again after re-enabling interrupts */
3373 			continue;
3374 		}
3375 		found = true;
3376 		aen_host_forward(si);
3377 	}
3378 
3379 	spin_unlock_irqrestore(&aift->gait_lock, flags);
3380 }
3381 
3382 static void gib_alert_irq_handler(struct airq_struct *airq,
3383 				  struct tpi_info *tpi_info)
3384 {
3385 	struct tpi_adapter_info *info = (struct tpi_adapter_info *)tpi_info;
3386 
3387 	inc_irq_stat(IRQIO_GAL);
3388 
3389 	if ((info->forward || info->error) &&
3390 	    IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
3391 		aen_process_gait(info->isc);
3392 		if (info->aism != 0)
3393 			process_gib_alert_list();
3394 	} else {
3395 		process_gib_alert_list();
3396 	}
3397 }
3398 
3399 static struct airq_struct gib_alert_irq = {
3400 	.handler = gib_alert_irq_handler,
3401 	.lsi_ptr = &gib_alert_irq.lsi_mask,
3402 };
3403 
3404 void kvm_s390_gib_destroy(void)
3405 {
3406 	if (!gib)
3407 		return;
3408 	if (kvm_s390_pci_interp_allowed() && aift) {
3409 		mutex_lock(&aift->aift_lock);
3410 		kvm_s390_pci_aen_exit();
3411 		mutex_unlock(&aift->aift_lock);
3412 	}
3413 	chsc_sgib(0);
3414 	unregister_adapter_interrupt(&gib_alert_irq);
3415 	free_page((unsigned long)gib);
3416 	gib = NULL;
3417 }
3418 
3419 int __init kvm_s390_gib_init(u8 nisc)
3420 {
3421 	u32 gib_origin;
3422 	int rc = 0;
3423 
3424 	if (!css_general_characteristics.aiv) {
3425 		KVM_EVENT(3, "%s", "gib not initialized, no AIV facility");
3426 		goto out;
3427 	}
3428 
3429 	gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
3430 	if (!gib) {
3431 		rc = -ENOMEM;
3432 		goto out;
3433 	}
3434 
3435 	gib_alert_irq.isc = nisc;
3436 	if (register_adapter_interrupt(&gib_alert_irq)) {
3437 		pr_err("Registering the GIB alert interruption handler failed\n");
3438 		rc = -EIO;
3439 		goto out_free_gib;
3440 	}
3441 
3442 	gib->nisc = nisc;
3443 	gib_origin = virt_to_phys(gib);
3444 	if (chsc_sgib(gib_origin)) {
3445 		pr_err("Associating the GIB with the AIV facility failed\n");
3446 		free_page((unsigned long)gib);
3447 		gib = NULL;
3448 		rc = -EIO;
3449 		goto out_unreg_gal;
3450 	}
3451 
3452 	if (kvm_s390_pci_interp_allowed()) {
3453 		if (kvm_s390_pci_aen_init(nisc)) {
3454 			pr_err("Initializing AEN for PCI failed\n");
3455 			rc = -EIO;
3456 			goto out_unreg_gal;
3457 		}
3458 	}
3459 
3460 	KVM_EVENT(3, "gib 0x%pK (nisc=%d) initialized", gib, gib->nisc);
3461 	goto out;
3462 
3463 out_unreg_gal:
3464 	unregister_adapter_interrupt(&gib_alert_irq);
3465 out_free_gib:
3466 	free_page((unsigned long)gib);
3467 	gib = NULL;
3468 out:
3469 	return rc;
3470 }
3471