1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * handling kvm guest interrupts 4 * 5 * Copyright IBM Corp. 2008, 2015 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 */ 9 10 #define KMSG_COMPONENT "kvm-s390" 11 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 12 13 #include <linux/interrupt.h> 14 #include <linux/kvm_host.h> 15 #include <linux/hrtimer.h> 16 #include <linux/mmu_context.h> 17 #include <linux/nospec.h> 18 #include <linux/signal.h> 19 #include <linux/slab.h> 20 #include <linux/bitmap.h> 21 #include <linux/vmalloc.h> 22 #include <asm/asm-offsets.h> 23 #include <asm/dis.h> 24 #include <linux/uaccess.h> 25 #include <asm/sclp.h> 26 #include <asm/isc.h> 27 #include <asm/gmap.h> 28 #include <asm/switch_to.h> 29 #include <asm/nmi.h> 30 #include <asm/airq.h> 31 #include "kvm-s390.h" 32 #include "gaccess.h" 33 #include "trace-s390.h" 34 35 #define PFAULT_INIT 0x0600 36 #define PFAULT_DONE 0x0680 37 #define VIRTIO_PARAM 0x0d00 38 39 static struct kvm_s390_gib *gib; 40 41 /* handle external calls via sigp interpretation facility */ 42 static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id) 43 { 44 int c, scn; 45 46 if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND)) 47 return 0; 48 49 BUG_ON(!kvm_s390_use_sca_entries()); 50 read_lock(&vcpu->kvm->arch.sca_lock); 51 if (vcpu->kvm->arch.use_esca) { 52 struct esca_block *sca = vcpu->kvm->arch.sca; 53 union esca_sigp_ctrl sigp_ctrl = 54 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 55 56 c = sigp_ctrl.c; 57 scn = sigp_ctrl.scn; 58 } else { 59 struct bsca_block *sca = vcpu->kvm->arch.sca; 60 union bsca_sigp_ctrl sigp_ctrl = 61 sca->cpu[vcpu->vcpu_id].sigp_ctrl; 62 63 c = sigp_ctrl.c; 64 scn = sigp_ctrl.scn; 65 } 66 read_unlock(&vcpu->kvm->arch.sca_lock); 67 68 if (src_id) 69 *src_id = scn; 70 71 return c; 72 } 73 74 static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id) 75 { 76 int expect, rc; 77 78 BUG_ON(!kvm_s390_use_sca_entries()); 79 read_lock(&vcpu->kvm->arch.sca_lock); 80 if (vcpu->kvm->arch.use_esca) { 81 struct esca_block *sca = vcpu->kvm->arch.sca; 82 union esca_sigp_ctrl *sigp_ctrl = 83 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 84 union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl; 85 86 new_val.scn = src_id; 87 new_val.c = 1; 88 old_val.c = 0; 89 90 expect = old_val.value; 91 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 92 } else { 93 struct bsca_block *sca = vcpu->kvm->arch.sca; 94 union bsca_sigp_ctrl *sigp_ctrl = 95 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 96 union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl; 97 98 new_val.scn = src_id; 99 new_val.c = 1; 100 old_val.c = 0; 101 102 expect = old_val.value; 103 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value); 104 } 105 read_unlock(&vcpu->kvm->arch.sca_lock); 106 107 if (rc != expect) { 108 /* another external call is pending */ 109 return -EBUSY; 110 } 111 kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 112 return 0; 113 } 114 115 static void sca_clear_ext_call(struct kvm_vcpu *vcpu) 116 { 117 int rc, expect; 118 119 if (!kvm_s390_use_sca_entries()) 120 return; 121 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND); 122 read_lock(&vcpu->kvm->arch.sca_lock); 123 if (vcpu->kvm->arch.use_esca) { 124 struct esca_block *sca = vcpu->kvm->arch.sca; 125 union esca_sigp_ctrl *sigp_ctrl = 126 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 127 union esca_sigp_ctrl old = *sigp_ctrl; 128 129 expect = old.value; 130 rc = cmpxchg(&sigp_ctrl->value, old.value, 0); 131 } else { 132 struct bsca_block *sca = vcpu->kvm->arch.sca; 133 union bsca_sigp_ctrl *sigp_ctrl = 134 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl); 135 union bsca_sigp_ctrl old = *sigp_ctrl; 136 137 expect = old.value; 138 rc = cmpxchg(&sigp_ctrl->value, old.value, 0); 139 } 140 read_unlock(&vcpu->kvm->arch.sca_lock); 141 WARN_ON(rc != expect); /* cannot clear? */ 142 } 143 144 int psw_extint_disabled(struct kvm_vcpu *vcpu) 145 { 146 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT); 147 } 148 149 static int psw_ioint_disabled(struct kvm_vcpu *vcpu) 150 { 151 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO); 152 } 153 154 static int psw_mchk_disabled(struct kvm_vcpu *vcpu) 155 { 156 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK); 157 } 158 159 static int psw_interrupts_disabled(struct kvm_vcpu *vcpu) 160 { 161 return psw_extint_disabled(vcpu) && 162 psw_ioint_disabled(vcpu) && 163 psw_mchk_disabled(vcpu); 164 } 165 166 static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu) 167 { 168 if (psw_extint_disabled(vcpu) || 169 !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 170 return 0; 171 if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu)) 172 /* No timer interrupts when single stepping */ 173 return 0; 174 return 1; 175 } 176 177 static int ckc_irq_pending(struct kvm_vcpu *vcpu) 178 { 179 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 180 const u64 ckc = vcpu->arch.sie_block->ckc; 181 182 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 183 if ((s64)ckc >= (s64)now) 184 return 0; 185 } else if (ckc >= now) { 186 return 0; 187 } 188 return ckc_interrupts_enabled(vcpu); 189 } 190 191 static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu) 192 { 193 return !psw_extint_disabled(vcpu) && 194 (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK); 195 } 196 197 static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu) 198 { 199 if (!cpu_timer_interrupts_enabled(vcpu)) 200 return 0; 201 return kvm_s390_get_cpu_timer(vcpu) >> 63; 202 } 203 204 static uint64_t isc_to_isc_bits(int isc) 205 { 206 return (0x80 >> isc) << 24; 207 } 208 209 static inline u32 isc_to_int_word(u8 isc) 210 { 211 return ((u32)isc << 27) | 0x80000000; 212 } 213 214 static inline u8 int_word_to_isc(u32 int_word) 215 { 216 return (int_word & 0x38000000) >> 27; 217 } 218 219 /* 220 * To use atomic bitmap functions, we have to provide a bitmap address 221 * that is u64 aligned. However, the ipm might be u32 aligned. 222 * Therefore, we logically start the bitmap at the very beginning of the 223 * struct and fixup the bit number. 224 */ 225 #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE) 226 227 /** 228 * gisa_set_iam - change the GISA interruption alert mask 229 * 230 * @gisa: gisa to operate on 231 * @iam: new IAM value to use 232 * 233 * Change the IAM atomically with the next alert address and the IPM 234 * of the GISA if the GISA is not part of the GIB alert list. All three 235 * fields are located in the first long word of the GISA. 236 * 237 * Returns: 0 on success 238 * -EBUSY in case the gisa is part of the alert list 239 */ 240 static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam) 241 { 242 u64 word, _word; 243 244 do { 245 word = READ_ONCE(gisa->u64.word[0]); 246 if ((u64)gisa != word >> 32) 247 return -EBUSY; 248 _word = (word & ~0xffUL) | iam; 249 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word); 250 251 return 0; 252 } 253 254 /** 255 * gisa_clear_ipm - clear the GISA interruption pending mask 256 * 257 * @gisa: gisa to operate on 258 * 259 * Clear the IPM atomically with the next alert address and the IAM 260 * of the GISA unconditionally. All three fields are located in the 261 * first long word of the GISA. 262 */ 263 static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa) 264 { 265 u64 word, _word; 266 267 do { 268 word = READ_ONCE(gisa->u64.word[0]); 269 _word = word & ~(0xffUL << 24); 270 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word); 271 } 272 273 /** 274 * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM 275 * 276 * @gi: gisa interrupt struct to work on 277 * 278 * Atomically restores the interruption alert mask if none of the 279 * relevant ISCs are pending and return the IPM. 280 * 281 * Returns: the relevant pending ISCs 282 */ 283 static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi) 284 { 285 u8 pending_mask, alert_mask; 286 u64 word, _word; 287 288 do { 289 word = READ_ONCE(gi->origin->u64.word[0]); 290 alert_mask = READ_ONCE(gi->alert.mask); 291 pending_mask = (u8)(word >> 24) & alert_mask; 292 if (pending_mask) 293 return pending_mask; 294 _word = (word & ~0xffUL) | alert_mask; 295 } while (cmpxchg(&gi->origin->u64.word[0], word, _word) != word); 296 297 return 0; 298 } 299 300 static inline int gisa_in_alert_list(struct kvm_s390_gisa *gisa) 301 { 302 return READ_ONCE(gisa->next_alert) != (u32)(u64)gisa; 303 } 304 305 static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 306 { 307 set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 308 } 309 310 static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa) 311 { 312 return READ_ONCE(gisa->ipm); 313 } 314 315 static inline void gisa_clear_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 316 { 317 clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 318 } 319 320 static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc) 321 { 322 return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa); 323 } 324 325 static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu) 326 { 327 return vcpu->kvm->arch.float_int.pending_irqs | 328 vcpu->arch.local_int.pending_irqs; 329 } 330 331 static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu) 332 { 333 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 334 unsigned long pending_mask; 335 336 pending_mask = pending_irqs_no_gisa(vcpu); 337 if (gi->origin) 338 pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7; 339 return pending_mask; 340 } 341 342 static inline int isc_to_irq_type(unsigned long isc) 343 { 344 return IRQ_PEND_IO_ISC_0 - isc; 345 } 346 347 static inline int irq_type_to_isc(unsigned long irq_type) 348 { 349 return IRQ_PEND_IO_ISC_0 - irq_type; 350 } 351 352 static unsigned long disable_iscs(struct kvm_vcpu *vcpu, 353 unsigned long active_mask) 354 { 355 int i; 356 357 for (i = 0; i <= MAX_ISC; i++) 358 if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i))) 359 active_mask &= ~(1UL << (isc_to_irq_type(i))); 360 361 return active_mask; 362 } 363 364 static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu) 365 { 366 unsigned long active_mask; 367 368 active_mask = pending_irqs(vcpu); 369 if (!active_mask) 370 return 0; 371 372 if (psw_extint_disabled(vcpu)) 373 active_mask &= ~IRQ_PEND_EXT_MASK; 374 if (psw_ioint_disabled(vcpu)) 375 active_mask &= ~IRQ_PEND_IO_MASK; 376 else 377 active_mask = disable_iscs(vcpu, active_mask); 378 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 379 __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask); 380 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK)) 381 __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask); 382 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK)) 383 __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask); 384 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK)) 385 __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask); 386 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) 387 __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask); 388 if (psw_mchk_disabled(vcpu)) 389 active_mask &= ~IRQ_PEND_MCHK_MASK; 390 /* 391 * Check both floating and local interrupt's cr14 because 392 * bit IRQ_PEND_MCHK_REP could be set in both cases. 393 */ 394 if (!(vcpu->arch.sie_block->gcr[14] & 395 (vcpu->kvm->arch.float_int.mchk.cr14 | 396 vcpu->arch.local_int.irq.mchk.cr14))) 397 __clear_bit(IRQ_PEND_MCHK_REP, &active_mask); 398 399 /* 400 * STOP irqs will never be actively delivered. They are triggered via 401 * intercept requests and cleared when the stop intercept is performed. 402 */ 403 __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask); 404 405 return active_mask; 406 } 407 408 static void __set_cpu_idle(struct kvm_vcpu *vcpu) 409 { 410 kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT); 411 set_bit(vcpu->vcpu_id, vcpu->kvm->arch.idle_mask); 412 } 413 414 static void __unset_cpu_idle(struct kvm_vcpu *vcpu) 415 { 416 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT); 417 clear_bit(vcpu->vcpu_id, vcpu->kvm->arch.idle_mask); 418 } 419 420 static void __reset_intercept_indicators(struct kvm_vcpu *vcpu) 421 { 422 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT | 423 CPUSTAT_STOP_INT); 424 vcpu->arch.sie_block->lctl = 0x0000; 425 vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT); 426 427 if (guestdbg_enabled(vcpu)) { 428 vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 | 429 LCTL_CR10 | LCTL_CR11); 430 vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT); 431 } 432 } 433 434 static void set_intercept_indicators_io(struct kvm_vcpu *vcpu) 435 { 436 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK)) 437 return; 438 if (psw_ioint_disabled(vcpu)) 439 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT); 440 else 441 vcpu->arch.sie_block->lctl |= LCTL_CR6; 442 } 443 444 static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu) 445 { 446 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK)) 447 return; 448 if (psw_extint_disabled(vcpu)) 449 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 450 else 451 vcpu->arch.sie_block->lctl |= LCTL_CR0; 452 } 453 454 static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu) 455 { 456 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK)) 457 return; 458 if (psw_mchk_disabled(vcpu)) 459 vcpu->arch.sie_block->ictl |= ICTL_LPSW; 460 else 461 vcpu->arch.sie_block->lctl |= LCTL_CR14; 462 } 463 464 static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu) 465 { 466 if (kvm_s390_is_stop_irq_pending(vcpu)) 467 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 468 } 469 470 /* Set interception request for non-deliverable interrupts */ 471 static void set_intercept_indicators(struct kvm_vcpu *vcpu) 472 { 473 set_intercept_indicators_io(vcpu); 474 set_intercept_indicators_ext(vcpu); 475 set_intercept_indicators_mchk(vcpu); 476 set_intercept_indicators_stop(vcpu); 477 } 478 479 static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu) 480 { 481 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 482 int rc; 483 484 vcpu->stat.deliver_cputm++; 485 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 486 0, 0); 487 488 rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER, 489 (u16 *)__LC_EXT_INT_CODE); 490 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 491 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 492 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 493 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 494 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 495 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 496 return rc ? -EFAULT : 0; 497 } 498 499 static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu) 500 { 501 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 502 int rc; 503 504 vcpu->stat.deliver_ckc++; 505 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 506 0, 0); 507 508 rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP, 509 (u16 __user *)__LC_EXT_INT_CODE); 510 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 511 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 512 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 513 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 514 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 515 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 516 return rc ? -EFAULT : 0; 517 } 518 519 static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu) 520 { 521 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 522 struct kvm_s390_ext_info ext; 523 int rc; 524 525 spin_lock(&li->lock); 526 ext = li->irq.ext; 527 clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 528 li->irq.ext.ext_params2 = 0; 529 spin_unlock(&li->lock); 530 531 VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx", 532 ext.ext_params2); 533 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 534 KVM_S390_INT_PFAULT_INIT, 535 0, ext.ext_params2); 536 537 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE); 538 rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR); 539 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 540 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 541 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 542 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 543 rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2); 544 return rc ? -EFAULT : 0; 545 } 546 547 static int __write_machine_check(struct kvm_vcpu *vcpu, 548 struct kvm_s390_mchk_info *mchk) 549 { 550 unsigned long ext_sa_addr; 551 unsigned long lc; 552 freg_t fprs[NUM_FPRS]; 553 union mci mci; 554 int rc; 555 556 mci.val = mchk->mcic; 557 /* take care of lazy register loading */ 558 save_fpu_regs(); 559 save_access_regs(vcpu->run->s.regs.acrs); 560 if (MACHINE_HAS_GS && vcpu->arch.gs_enabled) 561 save_gs_cb(current->thread.gs_cb); 562 563 /* Extended save area */ 564 rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr, 565 sizeof(unsigned long)); 566 /* Only bits 0 through 63-LC are used for address formation */ 567 lc = ext_sa_addr & MCESA_LC_MASK; 568 if (test_kvm_facility(vcpu->kvm, 133)) { 569 switch (lc) { 570 case 0: 571 case 10: 572 ext_sa_addr &= ~0x3ffUL; 573 break; 574 case 11: 575 ext_sa_addr &= ~0x7ffUL; 576 break; 577 case 12: 578 ext_sa_addr &= ~0xfffUL; 579 break; 580 default: 581 ext_sa_addr = 0; 582 break; 583 } 584 } else { 585 ext_sa_addr &= ~0x3ffUL; 586 } 587 588 if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) { 589 if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs, 590 512)) 591 mci.vr = 0; 592 } else { 593 mci.vr = 0; 594 } 595 if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133) 596 && (lc == 11 || lc == 12)) { 597 if (write_guest_abs(vcpu, ext_sa_addr + 1024, 598 &vcpu->run->s.regs.gscb, 32)) 599 mci.gs = 0; 600 } else { 601 mci.gs = 0; 602 } 603 604 /* General interruption information */ 605 rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID); 606 rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW, 607 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 608 rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW, 609 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 610 rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE); 611 612 /* Register-save areas */ 613 if (MACHINE_HAS_VX) { 614 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 615 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128); 616 } else { 617 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, 618 vcpu->run->s.regs.fprs, 128); 619 } 620 rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA, 621 vcpu->run->s.regs.gprs, 128); 622 rc |= put_guest_lc(vcpu, current->thread.fpu.fpc, 623 (u32 __user *) __LC_FP_CREG_SAVE_AREA); 624 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr, 625 (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA); 626 rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu), 627 (u64 __user *) __LC_CPU_TIMER_SAVE_AREA); 628 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8, 629 (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA); 630 rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA, 631 &vcpu->run->s.regs.acrs, 64); 632 rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA, 633 &vcpu->arch.sie_block->gcr, 128); 634 635 /* Extended interruption information */ 636 rc |= put_guest_lc(vcpu, mchk->ext_damage_code, 637 (u32 __user *) __LC_EXT_DAMAGE_CODE); 638 rc |= put_guest_lc(vcpu, mchk->failing_storage_address, 639 (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR); 640 rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout, 641 sizeof(mchk->fixed_logout)); 642 return rc ? -EFAULT : 0; 643 } 644 645 static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu) 646 { 647 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 648 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 649 struct kvm_s390_mchk_info mchk = {}; 650 int deliver = 0; 651 int rc = 0; 652 653 spin_lock(&fi->lock); 654 spin_lock(&li->lock); 655 if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) || 656 test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) { 657 /* 658 * If there was an exigent machine check pending, then any 659 * repressible machine checks that might have been pending 660 * are indicated along with it, so always clear bits for 661 * repressible and exigent interrupts 662 */ 663 mchk = li->irq.mchk; 664 clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 665 clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 666 memset(&li->irq.mchk, 0, sizeof(mchk)); 667 deliver = 1; 668 } 669 /* 670 * We indicate floating repressible conditions along with 671 * other pending conditions. Channel Report Pending and Channel 672 * Subsystem damage are the only two and and are indicated by 673 * bits in mcic and masked in cr14. 674 */ 675 if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 676 mchk.mcic |= fi->mchk.mcic; 677 mchk.cr14 |= fi->mchk.cr14; 678 memset(&fi->mchk, 0, sizeof(mchk)); 679 deliver = 1; 680 } 681 spin_unlock(&li->lock); 682 spin_unlock(&fi->lock); 683 684 if (deliver) { 685 VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx", 686 mchk.mcic); 687 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 688 KVM_S390_MCHK, 689 mchk.cr14, mchk.mcic); 690 vcpu->stat.deliver_machine_check++; 691 rc = __write_machine_check(vcpu, &mchk); 692 } 693 return rc; 694 } 695 696 static int __must_check __deliver_restart(struct kvm_vcpu *vcpu) 697 { 698 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 699 int rc; 700 701 VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart"); 702 vcpu->stat.deliver_restart_signal++; 703 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 704 705 rc = write_guest_lc(vcpu, 706 offsetof(struct lowcore, restart_old_psw), 707 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 708 rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw), 709 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 710 clear_bit(IRQ_PEND_RESTART, &li->pending_irqs); 711 return rc ? -EFAULT : 0; 712 } 713 714 static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu) 715 { 716 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 717 struct kvm_s390_prefix_info prefix; 718 719 spin_lock(&li->lock); 720 prefix = li->irq.prefix; 721 li->irq.prefix.address = 0; 722 clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 723 spin_unlock(&li->lock); 724 725 vcpu->stat.deliver_prefix_signal++; 726 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 727 KVM_S390_SIGP_SET_PREFIX, 728 prefix.address, 0); 729 730 kvm_s390_set_prefix(vcpu, prefix.address); 731 return 0; 732 } 733 734 static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu) 735 { 736 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 737 int rc; 738 int cpu_addr; 739 740 spin_lock(&li->lock); 741 cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS); 742 clear_bit(cpu_addr, li->sigp_emerg_pending); 743 if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS)) 744 clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 745 spin_unlock(&li->lock); 746 747 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg"); 748 vcpu->stat.deliver_emergency_signal++; 749 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 750 cpu_addr, 0); 751 752 rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG, 753 (u16 *)__LC_EXT_INT_CODE); 754 rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR); 755 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 756 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 757 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 758 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 759 return rc ? -EFAULT : 0; 760 } 761 762 static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu) 763 { 764 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 765 struct kvm_s390_extcall_info extcall; 766 int rc; 767 768 spin_lock(&li->lock); 769 extcall = li->irq.extcall; 770 li->irq.extcall.code = 0; 771 clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 772 spin_unlock(&li->lock); 773 774 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call"); 775 vcpu->stat.deliver_external_call++; 776 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 777 KVM_S390_INT_EXTERNAL_CALL, 778 extcall.code, 0); 779 780 rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL, 781 (u16 *)__LC_EXT_INT_CODE); 782 rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR); 783 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 784 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 785 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, 786 sizeof(psw_t)); 787 return rc ? -EFAULT : 0; 788 } 789 790 static int __must_check __deliver_prog(struct kvm_vcpu *vcpu) 791 { 792 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 793 struct kvm_s390_pgm_info pgm_info; 794 int rc = 0, nullifying = false; 795 u16 ilen; 796 797 spin_lock(&li->lock); 798 pgm_info = li->irq.pgm; 799 clear_bit(IRQ_PEND_PROG, &li->pending_irqs); 800 memset(&li->irq.pgm, 0, sizeof(pgm_info)); 801 spin_unlock(&li->lock); 802 803 ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK; 804 VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d", 805 pgm_info.code, ilen); 806 vcpu->stat.deliver_program++; 807 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 808 pgm_info.code, 0); 809 810 switch (pgm_info.code & ~PGM_PER) { 811 case PGM_AFX_TRANSLATION: 812 case PGM_ASX_TRANSLATION: 813 case PGM_EX_TRANSLATION: 814 case PGM_LFX_TRANSLATION: 815 case PGM_LSTE_SEQUENCE: 816 case PGM_LSX_TRANSLATION: 817 case PGM_LX_TRANSLATION: 818 case PGM_PRIMARY_AUTHORITY: 819 case PGM_SECONDARY_AUTHORITY: 820 nullifying = true; 821 /* fall through */ 822 case PGM_SPACE_SWITCH: 823 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 824 (u64 *)__LC_TRANS_EXC_CODE); 825 break; 826 case PGM_ALEN_TRANSLATION: 827 case PGM_ALE_SEQUENCE: 828 case PGM_ASTE_INSTANCE: 829 case PGM_ASTE_SEQUENCE: 830 case PGM_ASTE_VALIDITY: 831 case PGM_EXTENDED_AUTHORITY: 832 rc = put_guest_lc(vcpu, pgm_info.exc_access_id, 833 (u8 *)__LC_EXC_ACCESS_ID); 834 nullifying = true; 835 break; 836 case PGM_ASCE_TYPE: 837 case PGM_PAGE_TRANSLATION: 838 case PGM_REGION_FIRST_TRANS: 839 case PGM_REGION_SECOND_TRANS: 840 case PGM_REGION_THIRD_TRANS: 841 case PGM_SEGMENT_TRANSLATION: 842 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 843 (u64 *)__LC_TRANS_EXC_CODE); 844 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 845 (u8 *)__LC_EXC_ACCESS_ID); 846 rc |= put_guest_lc(vcpu, pgm_info.op_access_id, 847 (u8 *)__LC_OP_ACCESS_ID); 848 nullifying = true; 849 break; 850 case PGM_MONITOR: 851 rc = put_guest_lc(vcpu, pgm_info.mon_class_nr, 852 (u16 *)__LC_MON_CLASS_NR); 853 rc |= put_guest_lc(vcpu, pgm_info.mon_code, 854 (u64 *)__LC_MON_CODE); 855 break; 856 case PGM_VECTOR_PROCESSING: 857 case PGM_DATA: 858 rc = put_guest_lc(vcpu, pgm_info.data_exc_code, 859 (u32 *)__LC_DATA_EXC_CODE); 860 break; 861 case PGM_PROTECTION: 862 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, 863 (u64 *)__LC_TRANS_EXC_CODE); 864 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, 865 (u8 *)__LC_EXC_ACCESS_ID); 866 break; 867 case PGM_STACK_FULL: 868 case PGM_STACK_EMPTY: 869 case PGM_STACK_SPECIFICATION: 870 case PGM_STACK_TYPE: 871 case PGM_STACK_OPERATION: 872 case PGM_TRACE_TABEL: 873 case PGM_CRYPTO_OPERATION: 874 nullifying = true; 875 break; 876 } 877 878 if (pgm_info.code & PGM_PER) { 879 rc |= put_guest_lc(vcpu, pgm_info.per_code, 880 (u8 *) __LC_PER_CODE); 881 rc |= put_guest_lc(vcpu, pgm_info.per_atmid, 882 (u8 *)__LC_PER_ATMID); 883 rc |= put_guest_lc(vcpu, pgm_info.per_address, 884 (u64 *) __LC_PER_ADDRESS); 885 rc |= put_guest_lc(vcpu, pgm_info.per_access_id, 886 (u8 *) __LC_PER_ACCESS_ID); 887 } 888 889 if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND)) 890 kvm_s390_rewind_psw(vcpu, ilen); 891 892 /* bit 1+2 of the target are the ilc, so we can directly use ilen */ 893 rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC); 894 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea, 895 (u64 *) __LC_LAST_BREAK); 896 rc |= put_guest_lc(vcpu, pgm_info.code, 897 (u16 *)__LC_PGM_INT_CODE); 898 rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW, 899 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 900 rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW, 901 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 902 return rc ? -EFAULT : 0; 903 } 904 905 static int __must_check __deliver_service(struct kvm_vcpu *vcpu) 906 { 907 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 908 struct kvm_s390_ext_info ext; 909 int rc = 0; 910 911 spin_lock(&fi->lock); 912 if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) { 913 spin_unlock(&fi->lock); 914 return 0; 915 } 916 ext = fi->srv_signal; 917 memset(&fi->srv_signal, 0, sizeof(ext)); 918 clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 919 spin_unlock(&fi->lock); 920 921 VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x", 922 ext.ext_params); 923 vcpu->stat.deliver_service_signal++; 924 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE, 925 ext.ext_params, 0); 926 927 rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE); 928 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); 929 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 930 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 931 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 932 &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); 933 rc |= put_guest_lc(vcpu, ext.ext_params, 934 (u32 *)__LC_EXT_PARAMS); 935 936 return rc ? -EFAULT : 0; 937 } 938 939 static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu) 940 { 941 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 942 struct kvm_s390_interrupt_info *inti; 943 int rc = 0; 944 945 spin_lock(&fi->lock); 946 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT], 947 struct kvm_s390_interrupt_info, 948 list); 949 if (inti) { 950 list_del(&inti->list); 951 fi->counters[FIRQ_CNTR_PFAULT] -= 1; 952 } 953 if (list_empty(&fi->lists[FIRQ_LIST_PFAULT])) 954 clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 955 spin_unlock(&fi->lock); 956 957 if (inti) { 958 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 959 KVM_S390_INT_PFAULT_DONE, 0, 960 inti->ext.ext_params2); 961 VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx", 962 inti->ext.ext_params2); 963 964 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 965 (u16 *)__LC_EXT_INT_CODE); 966 rc |= put_guest_lc(vcpu, PFAULT_DONE, 967 (u16 *)__LC_EXT_CPU_ADDR); 968 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 969 &vcpu->arch.sie_block->gpsw, 970 sizeof(psw_t)); 971 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 972 &vcpu->arch.sie_block->gpsw, 973 sizeof(psw_t)); 974 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 975 (u64 *)__LC_EXT_PARAMS2); 976 kfree(inti); 977 } 978 return rc ? -EFAULT : 0; 979 } 980 981 static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu) 982 { 983 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int; 984 struct kvm_s390_interrupt_info *inti; 985 int rc = 0; 986 987 spin_lock(&fi->lock); 988 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO], 989 struct kvm_s390_interrupt_info, 990 list); 991 if (inti) { 992 VCPU_EVENT(vcpu, 4, 993 "deliver: virtio parm: 0x%x,parm64: 0x%llx", 994 inti->ext.ext_params, inti->ext.ext_params2); 995 vcpu->stat.deliver_virtio++; 996 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 997 inti->type, 998 inti->ext.ext_params, 999 inti->ext.ext_params2); 1000 list_del(&inti->list); 1001 fi->counters[FIRQ_CNTR_VIRTIO] -= 1; 1002 } 1003 if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO])) 1004 clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1005 spin_unlock(&fi->lock); 1006 1007 if (inti) { 1008 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, 1009 (u16 *)__LC_EXT_INT_CODE); 1010 rc |= put_guest_lc(vcpu, VIRTIO_PARAM, 1011 (u16 *)__LC_EXT_CPU_ADDR); 1012 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, 1013 &vcpu->arch.sie_block->gpsw, 1014 sizeof(psw_t)); 1015 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, 1016 &vcpu->arch.sie_block->gpsw, 1017 sizeof(psw_t)); 1018 rc |= put_guest_lc(vcpu, inti->ext.ext_params, 1019 (u32 *)__LC_EXT_PARAMS); 1020 rc |= put_guest_lc(vcpu, inti->ext.ext_params2, 1021 (u64 *)__LC_EXT_PARAMS2); 1022 kfree(inti); 1023 } 1024 return rc ? -EFAULT : 0; 1025 } 1026 1027 static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io) 1028 { 1029 int rc; 1030 1031 rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID); 1032 rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR); 1033 rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM); 1034 rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD); 1035 rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW, 1036 &vcpu->arch.sie_block->gpsw, 1037 sizeof(psw_t)); 1038 rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW, 1039 &vcpu->arch.sie_block->gpsw, 1040 sizeof(psw_t)); 1041 return rc ? -EFAULT : 0; 1042 } 1043 1044 static int __must_check __deliver_io(struct kvm_vcpu *vcpu, 1045 unsigned long irq_type) 1046 { 1047 struct list_head *isc_list; 1048 struct kvm_s390_float_interrupt *fi; 1049 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1050 struct kvm_s390_interrupt_info *inti = NULL; 1051 struct kvm_s390_io_info io; 1052 u32 isc; 1053 int rc = 0; 1054 1055 fi = &vcpu->kvm->arch.float_int; 1056 1057 spin_lock(&fi->lock); 1058 isc = irq_type_to_isc(irq_type); 1059 isc_list = &fi->lists[isc]; 1060 inti = list_first_entry_or_null(isc_list, 1061 struct kvm_s390_interrupt_info, 1062 list); 1063 if (inti) { 1064 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1065 VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)"); 1066 else 1067 VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x", 1068 inti->io.subchannel_id >> 8, 1069 inti->io.subchannel_id >> 1 & 0x3, 1070 inti->io.subchannel_nr); 1071 1072 vcpu->stat.deliver_io++; 1073 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1074 inti->type, 1075 ((__u32)inti->io.subchannel_id << 16) | 1076 inti->io.subchannel_nr, 1077 ((__u64)inti->io.io_int_parm << 32) | 1078 inti->io.io_int_word); 1079 list_del(&inti->list); 1080 fi->counters[FIRQ_CNTR_IO] -= 1; 1081 } 1082 if (list_empty(isc_list)) 1083 clear_bit(irq_type, &fi->pending_irqs); 1084 spin_unlock(&fi->lock); 1085 1086 if (inti) { 1087 rc = __do_deliver_io(vcpu, &(inti->io)); 1088 kfree(inti); 1089 goto out; 1090 } 1091 1092 if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) { 1093 /* 1094 * in case an adapter interrupt was not delivered 1095 * in SIE context KVM will handle the delivery 1096 */ 1097 VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc); 1098 memset(&io, 0, sizeof(io)); 1099 io.io_int_word = isc_to_int_word(isc); 1100 vcpu->stat.deliver_io++; 1101 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, 1102 KVM_S390_INT_IO(1, 0, 0, 0), 1103 ((__u32)io.subchannel_id << 16) | 1104 io.subchannel_nr, 1105 ((__u64)io.io_int_parm << 32) | 1106 io.io_int_word); 1107 rc = __do_deliver_io(vcpu, &io); 1108 } 1109 out: 1110 return rc; 1111 } 1112 1113 /* Check whether an external call is pending (deliverable or not) */ 1114 int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu) 1115 { 1116 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1117 1118 if (!sclp.has_sigpif) 1119 return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); 1120 1121 return sca_ext_call_pending(vcpu, NULL); 1122 } 1123 1124 int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop) 1125 { 1126 if (deliverable_irqs(vcpu)) 1127 return 1; 1128 1129 if (kvm_cpu_has_pending_timer(vcpu)) 1130 return 1; 1131 1132 /* external call pending and deliverable */ 1133 if (kvm_s390_ext_call_pending(vcpu) && 1134 !psw_extint_disabled(vcpu) && 1135 (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK)) 1136 return 1; 1137 1138 if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu)) 1139 return 1; 1140 return 0; 1141 } 1142 1143 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 1144 { 1145 return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu); 1146 } 1147 1148 static u64 __calculate_sltime(struct kvm_vcpu *vcpu) 1149 { 1150 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm); 1151 const u64 ckc = vcpu->arch.sie_block->ckc; 1152 u64 cputm, sltime = 0; 1153 1154 if (ckc_interrupts_enabled(vcpu)) { 1155 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) { 1156 if ((s64)now < (s64)ckc) 1157 sltime = tod_to_ns((s64)ckc - (s64)now); 1158 } else if (now < ckc) { 1159 sltime = tod_to_ns(ckc - now); 1160 } 1161 /* already expired */ 1162 if (!sltime) 1163 return 0; 1164 if (cpu_timer_interrupts_enabled(vcpu)) { 1165 cputm = kvm_s390_get_cpu_timer(vcpu); 1166 /* already expired? */ 1167 if (cputm >> 63) 1168 return 0; 1169 return min(sltime, tod_to_ns(cputm)); 1170 } 1171 } else if (cpu_timer_interrupts_enabled(vcpu)) { 1172 sltime = kvm_s390_get_cpu_timer(vcpu); 1173 /* already expired? */ 1174 if (sltime >> 63) 1175 return 0; 1176 } 1177 return sltime; 1178 } 1179 1180 int kvm_s390_handle_wait(struct kvm_vcpu *vcpu) 1181 { 1182 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int; 1183 u64 sltime; 1184 1185 vcpu->stat.exit_wait_state++; 1186 1187 /* fast path */ 1188 if (kvm_arch_vcpu_runnable(vcpu)) 1189 return 0; 1190 1191 if (psw_interrupts_disabled(vcpu)) { 1192 VCPU_EVENT(vcpu, 3, "%s", "disabled wait"); 1193 return -EOPNOTSUPP; /* disabled wait */ 1194 } 1195 1196 if (gi->origin && 1197 (gisa_get_ipm_or_restore_iam(gi) & 1198 vcpu->arch.sie_block->gcr[6] >> 24)) 1199 return 0; 1200 1201 if (!ckc_interrupts_enabled(vcpu) && 1202 !cpu_timer_interrupts_enabled(vcpu)) { 1203 VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer"); 1204 __set_cpu_idle(vcpu); 1205 goto no_timer; 1206 } 1207 1208 sltime = __calculate_sltime(vcpu); 1209 if (!sltime) 1210 return 0; 1211 1212 __set_cpu_idle(vcpu); 1213 hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL); 1214 VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime); 1215 no_timer: 1216 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 1217 kvm_vcpu_block(vcpu); 1218 __unset_cpu_idle(vcpu); 1219 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1220 1221 hrtimer_cancel(&vcpu->arch.ckc_timer); 1222 return 0; 1223 } 1224 1225 void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu) 1226 { 1227 /* 1228 * We cannot move this into the if, as the CPU might be already 1229 * in kvm_vcpu_block without having the waitqueue set (polling) 1230 */ 1231 vcpu->valid_wakeup = true; 1232 /* 1233 * This is mostly to document, that the read in swait_active could 1234 * be moved before other stores, leading to subtle races. 1235 * All current users do not store or use an atomic like update 1236 */ 1237 smp_mb__after_atomic(); 1238 if (swait_active(&vcpu->wq)) { 1239 /* 1240 * The vcpu gave up the cpu voluntarily, mark it as a good 1241 * yield-candidate. 1242 */ 1243 vcpu->preempted = true; 1244 swake_up_one(&vcpu->wq); 1245 vcpu->stat.halt_wakeup++; 1246 } 1247 /* 1248 * The VCPU might not be sleeping but is executing the VSIE. Let's 1249 * kick it, so it leaves the SIE to process the request. 1250 */ 1251 kvm_s390_vsie_kick(vcpu); 1252 } 1253 1254 enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer) 1255 { 1256 struct kvm_vcpu *vcpu; 1257 u64 sltime; 1258 1259 vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer); 1260 sltime = __calculate_sltime(vcpu); 1261 1262 /* 1263 * If the monotonic clock runs faster than the tod clock we might be 1264 * woken up too early and have to go back to sleep to avoid deadlocks. 1265 */ 1266 if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime))) 1267 return HRTIMER_RESTART; 1268 kvm_s390_vcpu_wakeup(vcpu); 1269 return HRTIMER_NORESTART; 1270 } 1271 1272 void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu) 1273 { 1274 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1275 1276 spin_lock(&li->lock); 1277 li->pending_irqs = 0; 1278 bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS); 1279 memset(&li->irq, 0, sizeof(li->irq)); 1280 spin_unlock(&li->lock); 1281 1282 sca_clear_ext_call(vcpu); 1283 } 1284 1285 int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu) 1286 { 1287 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1288 int rc = 0; 1289 unsigned long irq_type; 1290 unsigned long irqs; 1291 1292 __reset_intercept_indicators(vcpu); 1293 1294 /* pending ckc conditions might have been invalidated */ 1295 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1296 if (ckc_irq_pending(vcpu)) 1297 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1298 1299 /* pending cpu timer conditions might have been invalidated */ 1300 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1301 if (cpu_timer_irq_pending(vcpu)) 1302 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1303 1304 while ((irqs = deliverable_irqs(vcpu)) && !rc) { 1305 /* bits are in the reverse order of interrupt priority */ 1306 irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT); 1307 switch (irq_type) { 1308 case IRQ_PEND_IO_ISC_0: 1309 case IRQ_PEND_IO_ISC_1: 1310 case IRQ_PEND_IO_ISC_2: 1311 case IRQ_PEND_IO_ISC_3: 1312 case IRQ_PEND_IO_ISC_4: 1313 case IRQ_PEND_IO_ISC_5: 1314 case IRQ_PEND_IO_ISC_6: 1315 case IRQ_PEND_IO_ISC_7: 1316 rc = __deliver_io(vcpu, irq_type); 1317 break; 1318 case IRQ_PEND_MCHK_EX: 1319 case IRQ_PEND_MCHK_REP: 1320 rc = __deliver_machine_check(vcpu); 1321 break; 1322 case IRQ_PEND_PROG: 1323 rc = __deliver_prog(vcpu); 1324 break; 1325 case IRQ_PEND_EXT_EMERGENCY: 1326 rc = __deliver_emergency_signal(vcpu); 1327 break; 1328 case IRQ_PEND_EXT_EXTERNAL: 1329 rc = __deliver_external_call(vcpu); 1330 break; 1331 case IRQ_PEND_EXT_CLOCK_COMP: 1332 rc = __deliver_ckc(vcpu); 1333 break; 1334 case IRQ_PEND_EXT_CPU_TIMER: 1335 rc = __deliver_cpu_timer(vcpu); 1336 break; 1337 case IRQ_PEND_RESTART: 1338 rc = __deliver_restart(vcpu); 1339 break; 1340 case IRQ_PEND_SET_PREFIX: 1341 rc = __deliver_set_prefix(vcpu); 1342 break; 1343 case IRQ_PEND_PFAULT_INIT: 1344 rc = __deliver_pfault_init(vcpu); 1345 break; 1346 case IRQ_PEND_EXT_SERVICE: 1347 rc = __deliver_service(vcpu); 1348 break; 1349 case IRQ_PEND_PFAULT_DONE: 1350 rc = __deliver_pfault_done(vcpu); 1351 break; 1352 case IRQ_PEND_VIRTIO: 1353 rc = __deliver_virtio(vcpu); 1354 break; 1355 default: 1356 WARN_ONCE(1, "Unknown pending irq type %ld", irq_type); 1357 clear_bit(irq_type, &li->pending_irqs); 1358 } 1359 } 1360 1361 set_intercept_indicators(vcpu); 1362 1363 return rc; 1364 } 1365 1366 static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1367 { 1368 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1369 1370 vcpu->stat.inject_program++; 1371 VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code); 1372 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, 1373 irq->u.pgm.code, 0); 1374 1375 if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) { 1376 /* auto detection if no valid ILC was given */ 1377 irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK; 1378 irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu); 1379 irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID; 1380 } 1381 1382 if (irq->u.pgm.code == PGM_PER) { 1383 li->irq.pgm.code |= PGM_PER; 1384 li->irq.pgm.flags = irq->u.pgm.flags; 1385 /* only modify PER related information */ 1386 li->irq.pgm.per_address = irq->u.pgm.per_address; 1387 li->irq.pgm.per_code = irq->u.pgm.per_code; 1388 li->irq.pgm.per_atmid = irq->u.pgm.per_atmid; 1389 li->irq.pgm.per_access_id = irq->u.pgm.per_access_id; 1390 } else if (!(irq->u.pgm.code & PGM_PER)) { 1391 li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) | 1392 irq->u.pgm.code; 1393 li->irq.pgm.flags = irq->u.pgm.flags; 1394 /* only modify non-PER information */ 1395 li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code; 1396 li->irq.pgm.mon_code = irq->u.pgm.mon_code; 1397 li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code; 1398 li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr; 1399 li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id; 1400 li->irq.pgm.op_access_id = irq->u.pgm.op_access_id; 1401 } else { 1402 li->irq.pgm = irq->u.pgm; 1403 } 1404 set_bit(IRQ_PEND_PROG, &li->pending_irqs); 1405 return 0; 1406 } 1407 1408 static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1409 { 1410 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1411 1412 vcpu->stat.inject_pfault_init++; 1413 VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx", 1414 irq->u.ext.ext_params2); 1415 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT, 1416 irq->u.ext.ext_params, 1417 irq->u.ext.ext_params2); 1418 1419 li->irq.ext = irq->u.ext; 1420 set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); 1421 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1422 return 0; 1423 } 1424 1425 static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1426 { 1427 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1428 struct kvm_s390_extcall_info *extcall = &li->irq.extcall; 1429 uint16_t src_id = irq->u.extcall.code; 1430 1431 vcpu->stat.inject_external_call++; 1432 VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u", 1433 src_id); 1434 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL, 1435 src_id, 0); 1436 1437 /* sending vcpu invalid */ 1438 if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL) 1439 return -EINVAL; 1440 1441 if (sclp.has_sigpif) 1442 return sca_inject_ext_call(vcpu, src_id); 1443 1444 if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs)) 1445 return -EBUSY; 1446 *extcall = irq->u.extcall; 1447 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1448 return 0; 1449 } 1450 1451 static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1452 { 1453 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1454 struct kvm_s390_prefix_info *prefix = &li->irq.prefix; 1455 1456 vcpu->stat.inject_set_prefix++; 1457 VCPU_EVENT(vcpu, 3, "inject: set prefix to %x", 1458 irq->u.prefix.address); 1459 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX, 1460 irq->u.prefix.address, 0); 1461 1462 if (!is_vcpu_stopped(vcpu)) 1463 return -EBUSY; 1464 1465 *prefix = irq->u.prefix; 1466 set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); 1467 return 0; 1468 } 1469 1470 #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS) 1471 static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1472 { 1473 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1474 struct kvm_s390_stop_info *stop = &li->irq.stop; 1475 int rc = 0; 1476 1477 vcpu->stat.inject_stop_signal++; 1478 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0); 1479 1480 if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS) 1481 return -EINVAL; 1482 1483 if (is_vcpu_stopped(vcpu)) { 1484 if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS) 1485 rc = kvm_s390_store_status_unloaded(vcpu, 1486 KVM_S390_STORE_STATUS_NOADDR); 1487 return rc; 1488 } 1489 1490 if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs)) 1491 return -EBUSY; 1492 stop->flags = irq->u.stop.flags; 1493 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 1494 return 0; 1495 } 1496 1497 static int __inject_sigp_restart(struct kvm_vcpu *vcpu, 1498 struct kvm_s390_irq *irq) 1499 { 1500 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1501 1502 vcpu->stat.inject_restart++; 1503 VCPU_EVENT(vcpu, 3, "%s", "inject: restart int"); 1504 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); 1505 1506 set_bit(IRQ_PEND_RESTART, &li->pending_irqs); 1507 return 0; 1508 } 1509 1510 static int __inject_sigp_emergency(struct kvm_vcpu *vcpu, 1511 struct kvm_s390_irq *irq) 1512 { 1513 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1514 1515 vcpu->stat.inject_emergency_signal++; 1516 VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u", 1517 irq->u.emerg.code); 1518 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, 1519 irq->u.emerg.code, 0); 1520 1521 /* sending vcpu invalid */ 1522 if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL) 1523 return -EINVAL; 1524 1525 set_bit(irq->u.emerg.code, li->sigp_emerg_pending); 1526 set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); 1527 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1528 return 0; 1529 } 1530 1531 static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 1532 { 1533 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1534 struct kvm_s390_mchk_info *mchk = &li->irq.mchk; 1535 1536 vcpu->stat.inject_mchk++; 1537 VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx", 1538 irq->u.mchk.mcic); 1539 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0, 1540 irq->u.mchk.mcic); 1541 1542 /* 1543 * Because repressible machine checks can be indicated along with 1544 * exigent machine checks (PoP, Chapter 11, Interruption action) 1545 * we need to combine cr14, mcic and external damage code. 1546 * Failing storage address and the logout area should not be or'ed 1547 * together, we just indicate the last occurrence of the corresponding 1548 * machine check 1549 */ 1550 mchk->cr14 |= irq->u.mchk.cr14; 1551 mchk->mcic |= irq->u.mchk.mcic; 1552 mchk->ext_damage_code |= irq->u.mchk.ext_damage_code; 1553 mchk->failing_storage_address = irq->u.mchk.failing_storage_address; 1554 memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout, 1555 sizeof(mchk->fixed_logout)); 1556 if (mchk->mcic & MCHK_EX_MASK) 1557 set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); 1558 else if (mchk->mcic & MCHK_REP_MASK) 1559 set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); 1560 return 0; 1561 } 1562 1563 static int __inject_ckc(struct kvm_vcpu *vcpu) 1564 { 1565 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1566 1567 vcpu->stat.inject_ckc++; 1568 VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external"); 1569 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 1570 0, 0); 1571 1572 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); 1573 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1574 return 0; 1575 } 1576 1577 static int __inject_cpu_timer(struct kvm_vcpu *vcpu) 1578 { 1579 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1580 1581 vcpu->stat.inject_cputm++; 1582 VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external"); 1583 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 1584 0, 0); 1585 1586 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); 1587 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT); 1588 return 0; 1589 } 1590 1591 static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm, 1592 int isc, u32 schid) 1593 { 1594 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1595 struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1596 struct kvm_s390_interrupt_info *iter; 1597 u16 id = (schid & 0xffff0000U) >> 16; 1598 u16 nr = schid & 0x0000ffffU; 1599 1600 spin_lock(&fi->lock); 1601 list_for_each_entry(iter, isc_list, list) { 1602 if (schid && (id != iter->io.subchannel_id || 1603 nr != iter->io.subchannel_nr)) 1604 continue; 1605 /* found an appropriate entry */ 1606 list_del_init(&iter->list); 1607 fi->counters[FIRQ_CNTR_IO] -= 1; 1608 if (list_empty(isc_list)) 1609 clear_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1610 spin_unlock(&fi->lock); 1611 return iter; 1612 } 1613 spin_unlock(&fi->lock); 1614 return NULL; 1615 } 1616 1617 static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm, 1618 u64 isc_mask, u32 schid) 1619 { 1620 struct kvm_s390_interrupt_info *inti = NULL; 1621 int isc; 1622 1623 for (isc = 0; isc <= MAX_ISC && !inti; isc++) { 1624 if (isc_mask & isc_to_isc_bits(isc)) 1625 inti = get_io_int(kvm, isc, schid); 1626 } 1627 return inti; 1628 } 1629 1630 static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid) 1631 { 1632 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1633 unsigned long active_mask; 1634 int isc; 1635 1636 if (schid) 1637 goto out; 1638 if (!gi->origin) 1639 goto out; 1640 1641 active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32; 1642 while (active_mask) { 1643 isc = __fls(active_mask) ^ (BITS_PER_LONG - 1); 1644 if (gisa_tac_ipm_gisc(gi->origin, isc)) 1645 return isc; 1646 clear_bit_inv(isc, &active_mask); 1647 } 1648 out: 1649 return -EINVAL; 1650 } 1651 1652 /* 1653 * Dequeue and return an I/O interrupt matching any of the interruption 1654 * subclasses as designated by the isc mask in cr6 and the schid (if != 0). 1655 * Take into account the interrupts pending in the interrupt list and in GISA. 1656 * 1657 * Note that for a guest that does not enable I/O interrupts 1658 * but relies on TPI, a flood of classic interrupts may starve 1659 * out adapter interrupts on the same isc. Linux does not do 1660 * that, and it is possible to work around the issue by configuring 1661 * different iscs for classic and adapter interrupts in the guest, 1662 * but we may want to revisit this in the future. 1663 */ 1664 struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm, 1665 u64 isc_mask, u32 schid) 1666 { 1667 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1668 struct kvm_s390_interrupt_info *inti, *tmp_inti; 1669 int isc; 1670 1671 inti = get_top_io_int(kvm, isc_mask, schid); 1672 1673 isc = get_top_gisa_isc(kvm, isc_mask, schid); 1674 if (isc < 0) 1675 /* no AI in GISA */ 1676 goto out; 1677 1678 if (!inti) 1679 /* AI in GISA but no classical IO int */ 1680 goto gisa_out; 1681 1682 /* both types of interrupts present */ 1683 if (int_word_to_isc(inti->io.io_int_word) <= isc) { 1684 /* classical IO int with higher priority */ 1685 gisa_set_ipm_gisc(gi->origin, isc); 1686 goto out; 1687 } 1688 gisa_out: 1689 tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL); 1690 if (tmp_inti) { 1691 tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0); 1692 tmp_inti->io.io_int_word = isc_to_int_word(isc); 1693 if (inti) 1694 kvm_s390_reinject_io_int(kvm, inti); 1695 inti = tmp_inti; 1696 } else 1697 gisa_set_ipm_gisc(gi->origin, isc); 1698 out: 1699 return inti; 1700 } 1701 1702 #define SCCB_MASK 0xFFFFFFF8 1703 #define SCCB_EVENT_PENDING 0x3 1704 1705 static int __inject_service(struct kvm *kvm, 1706 struct kvm_s390_interrupt_info *inti) 1707 { 1708 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1709 1710 kvm->stat.inject_service_signal++; 1711 spin_lock(&fi->lock); 1712 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING; 1713 /* 1714 * Early versions of the QEMU s390 bios will inject several 1715 * service interrupts after another without handling a 1716 * condition code indicating busy. 1717 * We will silently ignore those superfluous sccb values. 1718 * A future version of QEMU will take care of serialization 1719 * of servc requests 1720 */ 1721 if (fi->srv_signal.ext_params & SCCB_MASK) 1722 goto out; 1723 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK; 1724 set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs); 1725 out: 1726 spin_unlock(&fi->lock); 1727 kfree(inti); 1728 return 0; 1729 } 1730 1731 static int __inject_virtio(struct kvm *kvm, 1732 struct kvm_s390_interrupt_info *inti) 1733 { 1734 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1735 1736 kvm->stat.inject_virtio++; 1737 spin_lock(&fi->lock); 1738 if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) { 1739 spin_unlock(&fi->lock); 1740 return -EBUSY; 1741 } 1742 fi->counters[FIRQ_CNTR_VIRTIO] += 1; 1743 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]); 1744 set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs); 1745 spin_unlock(&fi->lock); 1746 return 0; 1747 } 1748 1749 static int __inject_pfault_done(struct kvm *kvm, 1750 struct kvm_s390_interrupt_info *inti) 1751 { 1752 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1753 1754 kvm->stat.inject_pfault_done++; 1755 spin_lock(&fi->lock); 1756 if (fi->counters[FIRQ_CNTR_PFAULT] >= 1757 (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) { 1758 spin_unlock(&fi->lock); 1759 return -EBUSY; 1760 } 1761 fi->counters[FIRQ_CNTR_PFAULT] += 1; 1762 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]); 1763 set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs); 1764 spin_unlock(&fi->lock); 1765 return 0; 1766 } 1767 1768 #define CR_PENDING_SUBCLASS 28 1769 static int __inject_float_mchk(struct kvm *kvm, 1770 struct kvm_s390_interrupt_info *inti) 1771 { 1772 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 1773 1774 kvm->stat.inject_float_mchk++; 1775 spin_lock(&fi->lock); 1776 fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS); 1777 fi->mchk.mcic |= inti->mchk.mcic; 1778 set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs); 1779 spin_unlock(&fi->lock); 1780 kfree(inti); 1781 return 0; 1782 } 1783 1784 static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1785 { 1786 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 1787 struct kvm_s390_float_interrupt *fi; 1788 struct list_head *list; 1789 int isc; 1790 1791 kvm->stat.inject_io++; 1792 isc = int_word_to_isc(inti->io.io_int_word); 1793 1794 if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) { 1795 VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc); 1796 gisa_set_ipm_gisc(gi->origin, isc); 1797 kfree(inti); 1798 return 0; 1799 } 1800 1801 fi = &kvm->arch.float_int; 1802 spin_lock(&fi->lock); 1803 if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) { 1804 spin_unlock(&fi->lock); 1805 return -EBUSY; 1806 } 1807 fi->counters[FIRQ_CNTR_IO] += 1; 1808 1809 if (inti->type & KVM_S390_INT_IO_AI_MASK) 1810 VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)"); 1811 else 1812 VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x", 1813 inti->io.subchannel_id >> 8, 1814 inti->io.subchannel_id >> 1 & 0x3, 1815 inti->io.subchannel_nr); 1816 list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc]; 1817 list_add_tail(&inti->list, list); 1818 set_bit(isc_to_irq_type(isc), &fi->pending_irqs); 1819 spin_unlock(&fi->lock); 1820 return 0; 1821 } 1822 1823 /* 1824 * Find a destination VCPU for a floating irq and kick it. 1825 */ 1826 static void __floating_irq_kick(struct kvm *kvm, u64 type) 1827 { 1828 struct kvm_vcpu *dst_vcpu; 1829 int sigcpu, online_vcpus, nr_tries = 0; 1830 1831 online_vcpus = atomic_read(&kvm->online_vcpus); 1832 if (!online_vcpus) 1833 return; 1834 1835 /* find idle VCPUs first, then round robin */ 1836 sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus); 1837 if (sigcpu == online_vcpus) { 1838 do { 1839 sigcpu = kvm->arch.float_int.next_rr_cpu++; 1840 kvm->arch.float_int.next_rr_cpu %= online_vcpus; 1841 /* avoid endless loops if all vcpus are stopped */ 1842 if (nr_tries++ >= online_vcpus) 1843 return; 1844 } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu))); 1845 } 1846 dst_vcpu = kvm_get_vcpu(kvm, sigcpu); 1847 1848 /* make the VCPU drop out of the SIE, or wake it up if sleeping */ 1849 switch (type) { 1850 case KVM_S390_MCHK: 1851 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT); 1852 break; 1853 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1854 if (!(type & KVM_S390_INT_IO_AI_MASK && 1855 kvm->arch.gisa_int.origin)) 1856 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT); 1857 break; 1858 default: 1859 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT); 1860 break; 1861 } 1862 kvm_s390_vcpu_wakeup(dst_vcpu); 1863 } 1864 1865 static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) 1866 { 1867 u64 type = READ_ONCE(inti->type); 1868 int rc; 1869 1870 switch (type) { 1871 case KVM_S390_MCHK: 1872 rc = __inject_float_mchk(kvm, inti); 1873 break; 1874 case KVM_S390_INT_VIRTIO: 1875 rc = __inject_virtio(kvm, inti); 1876 break; 1877 case KVM_S390_INT_SERVICE: 1878 rc = __inject_service(kvm, inti); 1879 break; 1880 case KVM_S390_INT_PFAULT_DONE: 1881 rc = __inject_pfault_done(kvm, inti); 1882 break; 1883 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1884 rc = __inject_io(kvm, inti); 1885 break; 1886 default: 1887 rc = -EINVAL; 1888 } 1889 if (rc) 1890 return rc; 1891 1892 __floating_irq_kick(kvm, type); 1893 return 0; 1894 } 1895 1896 int kvm_s390_inject_vm(struct kvm *kvm, 1897 struct kvm_s390_interrupt *s390int) 1898 { 1899 struct kvm_s390_interrupt_info *inti; 1900 int rc; 1901 1902 inti = kzalloc(sizeof(*inti), GFP_KERNEL); 1903 if (!inti) 1904 return -ENOMEM; 1905 1906 inti->type = s390int->type; 1907 switch (inti->type) { 1908 case KVM_S390_INT_VIRTIO: 1909 VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx", 1910 s390int->parm, s390int->parm64); 1911 inti->ext.ext_params = s390int->parm; 1912 inti->ext.ext_params2 = s390int->parm64; 1913 break; 1914 case KVM_S390_INT_SERVICE: 1915 VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm); 1916 inti->ext.ext_params = s390int->parm; 1917 break; 1918 case KVM_S390_INT_PFAULT_DONE: 1919 inti->ext.ext_params2 = s390int->parm64; 1920 break; 1921 case KVM_S390_MCHK: 1922 VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx", 1923 s390int->parm64); 1924 inti->mchk.cr14 = s390int->parm; /* upper bits are not used */ 1925 inti->mchk.mcic = s390int->parm64; 1926 break; 1927 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1928 inti->io.subchannel_id = s390int->parm >> 16; 1929 inti->io.subchannel_nr = s390int->parm & 0x0000ffffu; 1930 inti->io.io_int_parm = s390int->parm64 >> 32; 1931 inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull; 1932 break; 1933 default: 1934 kfree(inti); 1935 return -EINVAL; 1936 } 1937 trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64, 1938 2); 1939 1940 rc = __inject_vm(kvm, inti); 1941 if (rc) 1942 kfree(inti); 1943 return rc; 1944 } 1945 1946 int kvm_s390_reinject_io_int(struct kvm *kvm, 1947 struct kvm_s390_interrupt_info *inti) 1948 { 1949 return __inject_vm(kvm, inti); 1950 } 1951 1952 int s390int_to_s390irq(struct kvm_s390_interrupt *s390int, 1953 struct kvm_s390_irq *irq) 1954 { 1955 irq->type = s390int->type; 1956 switch (irq->type) { 1957 case KVM_S390_PROGRAM_INT: 1958 if (s390int->parm & 0xffff0000) 1959 return -EINVAL; 1960 irq->u.pgm.code = s390int->parm; 1961 break; 1962 case KVM_S390_SIGP_SET_PREFIX: 1963 irq->u.prefix.address = s390int->parm; 1964 break; 1965 case KVM_S390_SIGP_STOP: 1966 irq->u.stop.flags = s390int->parm; 1967 break; 1968 case KVM_S390_INT_EXTERNAL_CALL: 1969 if (s390int->parm & 0xffff0000) 1970 return -EINVAL; 1971 irq->u.extcall.code = s390int->parm; 1972 break; 1973 case KVM_S390_INT_EMERGENCY: 1974 if (s390int->parm & 0xffff0000) 1975 return -EINVAL; 1976 irq->u.emerg.code = s390int->parm; 1977 break; 1978 case KVM_S390_MCHK: 1979 irq->u.mchk.mcic = s390int->parm64; 1980 break; 1981 } 1982 return 0; 1983 } 1984 1985 int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu) 1986 { 1987 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1988 1989 return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 1990 } 1991 1992 void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu) 1993 { 1994 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 1995 1996 spin_lock(&li->lock); 1997 li->irq.stop.flags = 0; 1998 clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); 1999 spin_unlock(&li->lock); 2000 } 2001 2002 static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 2003 { 2004 int rc; 2005 2006 switch (irq->type) { 2007 case KVM_S390_PROGRAM_INT: 2008 rc = __inject_prog(vcpu, irq); 2009 break; 2010 case KVM_S390_SIGP_SET_PREFIX: 2011 rc = __inject_set_prefix(vcpu, irq); 2012 break; 2013 case KVM_S390_SIGP_STOP: 2014 rc = __inject_sigp_stop(vcpu, irq); 2015 break; 2016 case KVM_S390_RESTART: 2017 rc = __inject_sigp_restart(vcpu, irq); 2018 break; 2019 case KVM_S390_INT_CLOCK_COMP: 2020 rc = __inject_ckc(vcpu); 2021 break; 2022 case KVM_S390_INT_CPU_TIMER: 2023 rc = __inject_cpu_timer(vcpu); 2024 break; 2025 case KVM_S390_INT_EXTERNAL_CALL: 2026 rc = __inject_extcall(vcpu, irq); 2027 break; 2028 case KVM_S390_INT_EMERGENCY: 2029 rc = __inject_sigp_emergency(vcpu, irq); 2030 break; 2031 case KVM_S390_MCHK: 2032 rc = __inject_mchk(vcpu, irq); 2033 break; 2034 case KVM_S390_INT_PFAULT_INIT: 2035 rc = __inject_pfault_init(vcpu, irq); 2036 break; 2037 case KVM_S390_INT_VIRTIO: 2038 case KVM_S390_INT_SERVICE: 2039 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2040 default: 2041 rc = -EINVAL; 2042 } 2043 2044 return rc; 2045 } 2046 2047 int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) 2048 { 2049 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2050 int rc; 2051 2052 spin_lock(&li->lock); 2053 rc = do_inject_vcpu(vcpu, irq); 2054 spin_unlock(&li->lock); 2055 if (!rc) 2056 kvm_s390_vcpu_wakeup(vcpu); 2057 return rc; 2058 } 2059 2060 static inline void clear_irq_list(struct list_head *_list) 2061 { 2062 struct kvm_s390_interrupt_info *inti, *n; 2063 2064 list_for_each_entry_safe(inti, n, _list, list) { 2065 list_del(&inti->list); 2066 kfree(inti); 2067 } 2068 } 2069 2070 static void inti_to_irq(struct kvm_s390_interrupt_info *inti, 2071 struct kvm_s390_irq *irq) 2072 { 2073 irq->type = inti->type; 2074 switch (inti->type) { 2075 case KVM_S390_INT_PFAULT_INIT: 2076 case KVM_S390_INT_PFAULT_DONE: 2077 case KVM_S390_INT_VIRTIO: 2078 irq->u.ext = inti->ext; 2079 break; 2080 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2081 irq->u.io = inti->io; 2082 break; 2083 } 2084 } 2085 2086 void kvm_s390_clear_float_irqs(struct kvm *kvm) 2087 { 2088 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2089 int i; 2090 2091 spin_lock(&fi->lock); 2092 fi->pending_irqs = 0; 2093 memset(&fi->srv_signal, 0, sizeof(fi->srv_signal)); 2094 memset(&fi->mchk, 0, sizeof(fi->mchk)); 2095 for (i = 0; i < FIRQ_LIST_COUNT; i++) 2096 clear_irq_list(&fi->lists[i]); 2097 for (i = 0; i < FIRQ_MAX_COUNT; i++) 2098 fi->counters[i] = 0; 2099 spin_unlock(&fi->lock); 2100 kvm_s390_gisa_clear(kvm); 2101 }; 2102 2103 static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len) 2104 { 2105 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 2106 struct kvm_s390_interrupt_info *inti; 2107 struct kvm_s390_float_interrupt *fi; 2108 struct kvm_s390_irq *buf; 2109 struct kvm_s390_irq *irq; 2110 int max_irqs; 2111 int ret = 0; 2112 int n = 0; 2113 int i; 2114 2115 if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0) 2116 return -EINVAL; 2117 2118 /* 2119 * We are already using -ENOMEM to signal 2120 * userspace it may retry with a bigger buffer, 2121 * so we need to use something else for this case 2122 */ 2123 buf = vzalloc(len); 2124 if (!buf) 2125 return -ENOBUFS; 2126 2127 max_irqs = len / sizeof(struct kvm_s390_irq); 2128 2129 if (gi->origin && gisa_get_ipm(gi->origin)) { 2130 for (i = 0; i <= MAX_ISC; i++) { 2131 if (n == max_irqs) { 2132 /* signal userspace to try again */ 2133 ret = -ENOMEM; 2134 goto out_nolock; 2135 } 2136 if (gisa_tac_ipm_gisc(gi->origin, i)) { 2137 irq = (struct kvm_s390_irq *) &buf[n]; 2138 irq->type = KVM_S390_INT_IO(1, 0, 0, 0); 2139 irq->u.io.io_int_word = isc_to_int_word(i); 2140 n++; 2141 } 2142 } 2143 } 2144 fi = &kvm->arch.float_int; 2145 spin_lock(&fi->lock); 2146 for (i = 0; i < FIRQ_LIST_COUNT; i++) { 2147 list_for_each_entry(inti, &fi->lists[i], list) { 2148 if (n == max_irqs) { 2149 /* signal userspace to try again */ 2150 ret = -ENOMEM; 2151 goto out; 2152 } 2153 inti_to_irq(inti, &buf[n]); 2154 n++; 2155 } 2156 } 2157 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) { 2158 if (n == max_irqs) { 2159 /* signal userspace to try again */ 2160 ret = -ENOMEM; 2161 goto out; 2162 } 2163 irq = (struct kvm_s390_irq *) &buf[n]; 2164 irq->type = KVM_S390_INT_SERVICE; 2165 irq->u.ext = fi->srv_signal; 2166 n++; 2167 } 2168 if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) { 2169 if (n == max_irqs) { 2170 /* signal userspace to try again */ 2171 ret = -ENOMEM; 2172 goto out; 2173 } 2174 irq = (struct kvm_s390_irq *) &buf[n]; 2175 irq->type = KVM_S390_MCHK; 2176 irq->u.mchk = fi->mchk; 2177 n++; 2178 } 2179 2180 out: 2181 spin_unlock(&fi->lock); 2182 out_nolock: 2183 if (!ret && n > 0) { 2184 if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n)) 2185 ret = -EFAULT; 2186 } 2187 vfree(buf); 2188 2189 return ret < 0 ? ret : n; 2190 } 2191 2192 static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr) 2193 { 2194 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2195 struct kvm_s390_ais_all ais; 2196 2197 if (attr->attr < sizeof(ais)) 2198 return -EINVAL; 2199 2200 if (!test_kvm_facility(kvm, 72)) 2201 return -ENOTSUPP; 2202 2203 mutex_lock(&fi->ais_lock); 2204 ais.simm = fi->simm; 2205 ais.nimm = fi->nimm; 2206 mutex_unlock(&fi->ais_lock); 2207 2208 if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais))) 2209 return -EFAULT; 2210 2211 return 0; 2212 } 2213 2214 static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2215 { 2216 int r; 2217 2218 switch (attr->group) { 2219 case KVM_DEV_FLIC_GET_ALL_IRQS: 2220 r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr, 2221 attr->attr); 2222 break; 2223 case KVM_DEV_FLIC_AISM_ALL: 2224 r = flic_ais_mode_get_all(dev->kvm, attr); 2225 break; 2226 default: 2227 r = -EINVAL; 2228 } 2229 2230 return r; 2231 } 2232 2233 static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti, 2234 u64 addr) 2235 { 2236 struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr; 2237 void *target = NULL; 2238 void __user *source; 2239 u64 size; 2240 2241 if (get_user(inti->type, (u64 __user *)addr)) 2242 return -EFAULT; 2243 2244 switch (inti->type) { 2245 case KVM_S390_INT_PFAULT_INIT: 2246 case KVM_S390_INT_PFAULT_DONE: 2247 case KVM_S390_INT_VIRTIO: 2248 case KVM_S390_INT_SERVICE: 2249 target = (void *) &inti->ext; 2250 source = &uptr->u.ext; 2251 size = sizeof(inti->ext); 2252 break; 2253 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 2254 target = (void *) &inti->io; 2255 source = &uptr->u.io; 2256 size = sizeof(inti->io); 2257 break; 2258 case KVM_S390_MCHK: 2259 target = (void *) &inti->mchk; 2260 source = &uptr->u.mchk; 2261 size = sizeof(inti->mchk); 2262 break; 2263 default: 2264 return -EINVAL; 2265 } 2266 2267 if (copy_from_user(target, source, size)) 2268 return -EFAULT; 2269 2270 return 0; 2271 } 2272 2273 static int enqueue_floating_irq(struct kvm_device *dev, 2274 struct kvm_device_attr *attr) 2275 { 2276 struct kvm_s390_interrupt_info *inti = NULL; 2277 int r = 0; 2278 int len = attr->attr; 2279 2280 if (len % sizeof(struct kvm_s390_irq) != 0) 2281 return -EINVAL; 2282 else if (len > KVM_S390_FLIC_MAX_BUFFER) 2283 return -EINVAL; 2284 2285 while (len >= sizeof(struct kvm_s390_irq)) { 2286 inti = kzalloc(sizeof(*inti), GFP_KERNEL); 2287 if (!inti) 2288 return -ENOMEM; 2289 2290 r = copy_irq_from_user(inti, attr->addr); 2291 if (r) { 2292 kfree(inti); 2293 return r; 2294 } 2295 r = __inject_vm(dev->kvm, inti); 2296 if (r) { 2297 kfree(inti); 2298 return r; 2299 } 2300 len -= sizeof(struct kvm_s390_irq); 2301 attr->addr += sizeof(struct kvm_s390_irq); 2302 } 2303 2304 return r; 2305 } 2306 2307 static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id) 2308 { 2309 if (id >= MAX_S390_IO_ADAPTERS) 2310 return NULL; 2311 id = array_index_nospec(id, MAX_S390_IO_ADAPTERS); 2312 return kvm->arch.adapters[id]; 2313 } 2314 2315 static int register_io_adapter(struct kvm_device *dev, 2316 struct kvm_device_attr *attr) 2317 { 2318 struct s390_io_adapter *adapter; 2319 struct kvm_s390_io_adapter adapter_info; 2320 2321 if (copy_from_user(&adapter_info, 2322 (void __user *)attr->addr, sizeof(adapter_info))) 2323 return -EFAULT; 2324 2325 if (adapter_info.id >= MAX_S390_IO_ADAPTERS) 2326 return -EINVAL; 2327 2328 adapter_info.id = array_index_nospec(adapter_info.id, 2329 MAX_S390_IO_ADAPTERS); 2330 2331 if (dev->kvm->arch.adapters[adapter_info.id] != NULL) 2332 return -EINVAL; 2333 2334 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 2335 if (!adapter) 2336 return -ENOMEM; 2337 2338 INIT_LIST_HEAD(&adapter->maps); 2339 init_rwsem(&adapter->maps_lock); 2340 atomic_set(&adapter->nr_maps, 0); 2341 adapter->id = adapter_info.id; 2342 adapter->isc = adapter_info.isc; 2343 adapter->maskable = adapter_info.maskable; 2344 adapter->masked = false; 2345 adapter->swap = adapter_info.swap; 2346 adapter->suppressible = (adapter_info.flags) & 2347 KVM_S390_ADAPTER_SUPPRESSIBLE; 2348 dev->kvm->arch.adapters[adapter->id] = adapter; 2349 2350 return 0; 2351 } 2352 2353 int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked) 2354 { 2355 int ret; 2356 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2357 2358 if (!adapter || !adapter->maskable) 2359 return -EINVAL; 2360 ret = adapter->masked; 2361 adapter->masked = masked; 2362 return ret; 2363 } 2364 2365 static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr) 2366 { 2367 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2368 struct s390_map_info *map; 2369 int ret; 2370 2371 if (!adapter || !addr) 2372 return -EINVAL; 2373 2374 map = kzalloc(sizeof(*map), GFP_KERNEL); 2375 if (!map) { 2376 ret = -ENOMEM; 2377 goto out; 2378 } 2379 INIT_LIST_HEAD(&map->list); 2380 map->guest_addr = addr; 2381 map->addr = gmap_translate(kvm->arch.gmap, addr); 2382 if (map->addr == -EFAULT) { 2383 ret = -EFAULT; 2384 goto out; 2385 } 2386 ret = get_user_pages_fast(map->addr, 1, FOLL_WRITE, &map->page); 2387 if (ret < 0) 2388 goto out; 2389 BUG_ON(ret != 1); 2390 down_write(&adapter->maps_lock); 2391 if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) { 2392 list_add_tail(&map->list, &adapter->maps); 2393 ret = 0; 2394 } else { 2395 put_page(map->page); 2396 ret = -EINVAL; 2397 } 2398 up_write(&adapter->maps_lock); 2399 out: 2400 if (ret) 2401 kfree(map); 2402 return ret; 2403 } 2404 2405 static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr) 2406 { 2407 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2408 struct s390_map_info *map, *tmp; 2409 int found = 0; 2410 2411 if (!adapter || !addr) 2412 return -EINVAL; 2413 2414 down_write(&adapter->maps_lock); 2415 list_for_each_entry_safe(map, tmp, &adapter->maps, list) { 2416 if (map->guest_addr == addr) { 2417 found = 1; 2418 atomic_dec(&adapter->nr_maps); 2419 list_del(&map->list); 2420 put_page(map->page); 2421 kfree(map); 2422 break; 2423 } 2424 } 2425 up_write(&adapter->maps_lock); 2426 2427 return found ? 0 : -EINVAL; 2428 } 2429 2430 void kvm_s390_destroy_adapters(struct kvm *kvm) 2431 { 2432 int i; 2433 struct s390_map_info *map, *tmp; 2434 2435 for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) { 2436 if (!kvm->arch.adapters[i]) 2437 continue; 2438 list_for_each_entry_safe(map, tmp, 2439 &kvm->arch.adapters[i]->maps, list) { 2440 list_del(&map->list); 2441 put_page(map->page); 2442 kfree(map); 2443 } 2444 kfree(kvm->arch.adapters[i]); 2445 } 2446 } 2447 2448 static int modify_io_adapter(struct kvm_device *dev, 2449 struct kvm_device_attr *attr) 2450 { 2451 struct kvm_s390_io_adapter_req req; 2452 struct s390_io_adapter *adapter; 2453 int ret; 2454 2455 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2456 return -EFAULT; 2457 2458 adapter = get_io_adapter(dev->kvm, req.id); 2459 if (!adapter) 2460 return -EINVAL; 2461 switch (req.type) { 2462 case KVM_S390_IO_ADAPTER_MASK: 2463 ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask); 2464 if (ret > 0) 2465 ret = 0; 2466 break; 2467 case KVM_S390_IO_ADAPTER_MAP: 2468 ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr); 2469 break; 2470 case KVM_S390_IO_ADAPTER_UNMAP: 2471 ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr); 2472 break; 2473 default: 2474 ret = -EINVAL; 2475 } 2476 2477 return ret; 2478 } 2479 2480 static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr) 2481 2482 { 2483 const u64 isc_mask = 0xffUL << 24; /* all iscs set */ 2484 u32 schid; 2485 2486 if (attr->flags) 2487 return -EINVAL; 2488 if (attr->attr != sizeof(schid)) 2489 return -EINVAL; 2490 if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid))) 2491 return -EFAULT; 2492 if (!schid) 2493 return -EINVAL; 2494 kfree(kvm_s390_get_io_int(kvm, isc_mask, schid)); 2495 /* 2496 * If userspace is conforming to the architecture, we can have at most 2497 * one pending I/O interrupt per subchannel, so this is effectively a 2498 * clear all. 2499 */ 2500 return 0; 2501 } 2502 2503 static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr) 2504 { 2505 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2506 struct kvm_s390_ais_req req; 2507 int ret = 0; 2508 2509 if (!test_kvm_facility(kvm, 72)) 2510 return -ENOTSUPP; 2511 2512 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) 2513 return -EFAULT; 2514 2515 if (req.isc > MAX_ISC) 2516 return -EINVAL; 2517 2518 trace_kvm_s390_modify_ais_mode(req.isc, 2519 (fi->simm & AIS_MODE_MASK(req.isc)) ? 2520 (fi->nimm & AIS_MODE_MASK(req.isc)) ? 2521 2 : KVM_S390_AIS_MODE_SINGLE : 2522 KVM_S390_AIS_MODE_ALL, req.mode); 2523 2524 mutex_lock(&fi->ais_lock); 2525 switch (req.mode) { 2526 case KVM_S390_AIS_MODE_ALL: 2527 fi->simm &= ~AIS_MODE_MASK(req.isc); 2528 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2529 break; 2530 case KVM_S390_AIS_MODE_SINGLE: 2531 fi->simm |= AIS_MODE_MASK(req.isc); 2532 fi->nimm &= ~AIS_MODE_MASK(req.isc); 2533 break; 2534 default: 2535 ret = -EINVAL; 2536 } 2537 mutex_unlock(&fi->ais_lock); 2538 2539 return ret; 2540 } 2541 2542 static int kvm_s390_inject_airq(struct kvm *kvm, 2543 struct s390_io_adapter *adapter) 2544 { 2545 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2546 struct kvm_s390_interrupt s390int = { 2547 .type = KVM_S390_INT_IO(1, 0, 0, 0), 2548 .parm = 0, 2549 .parm64 = isc_to_int_word(adapter->isc), 2550 }; 2551 int ret = 0; 2552 2553 if (!test_kvm_facility(kvm, 72) || !adapter->suppressible) 2554 return kvm_s390_inject_vm(kvm, &s390int); 2555 2556 mutex_lock(&fi->ais_lock); 2557 if (fi->nimm & AIS_MODE_MASK(adapter->isc)) { 2558 trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc); 2559 goto out; 2560 } 2561 2562 ret = kvm_s390_inject_vm(kvm, &s390int); 2563 if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) { 2564 fi->nimm |= AIS_MODE_MASK(adapter->isc); 2565 trace_kvm_s390_modify_ais_mode(adapter->isc, 2566 KVM_S390_AIS_MODE_SINGLE, 2); 2567 } 2568 out: 2569 mutex_unlock(&fi->ais_lock); 2570 return ret; 2571 } 2572 2573 static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr) 2574 { 2575 unsigned int id = attr->attr; 2576 struct s390_io_adapter *adapter = get_io_adapter(kvm, id); 2577 2578 if (!adapter) 2579 return -EINVAL; 2580 2581 return kvm_s390_inject_airq(kvm, adapter); 2582 } 2583 2584 static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr) 2585 { 2586 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int; 2587 struct kvm_s390_ais_all ais; 2588 2589 if (!test_kvm_facility(kvm, 72)) 2590 return -ENOTSUPP; 2591 2592 if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais))) 2593 return -EFAULT; 2594 2595 mutex_lock(&fi->ais_lock); 2596 fi->simm = ais.simm; 2597 fi->nimm = ais.nimm; 2598 mutex_unlock(&fi->ais_lock); 2599 2600 return 0; 2601 } 2602 2603 static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) 2604 { 2605 int r = 0; 2606 unsigned int i; 2607 struct kvm_vcpu *vcpu; 2608 2609 switch (attr->group) { 2610 case KVM_DEV_FLIC_ENQUEUE: 2611 r = enqueue_floating_irq(dev, attr); 2612 break; 2613 case KVM_DEV_FLIC_CLEAR_IRQS: 2614 kvm_s390_clear_float_irqs(dev->kvm); 2615 break; 2616 case KVM_DEV_FLIC_APF_ENABLE: 2617 dev->kvm->arch.gmap->pfault_enabled = 1; 2618 break; 2619 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2620 dev->kvm->arch.gmap->pfault_enabled = 0; 2621 /* 2622 * Make sure no async faults are in transition when 2623 * clearing the queues. So we don't need to worry 2624 * about late coming workers. 2625 */ 2626 synchronize_srcu(&dev->kvm->srcu); 2627 kvm_for_each_vcpu(i, vcpu, dev->kvm) 2628 kvm_clear_async_pf_completion_queue(vcpu); 2629 break; 2630 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2631 r = register_io_adapter(dev, attr); 2632 break; 2633 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2634 r = modify_io_adapter(dev, attr); 2635 break; 2636 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2637 r = clear_io_irq(dev->kvm, attr); 2638 break; 2639 case KVM_DEV_FLIC_AISM: 2640 r = modify_ais_mode(dev->kvm, attr); 2641 break; 2642 case KVM_DEV_FLIC_AIRQ_INJECT: 2643 r = flic_inject_airq(dev->kvm, attr); 2644 break; 2645 case KVM_DEV_FLIC_AISM_ALL: 2646 r = flic_ais_mode_set_all(dev->kvm, attr); 2647 break; 2648 default: 2649 r = -EINVAL; 2650 } 2651 2652 return r; 2653 } 2654 2655 static int flic_has_attr(struct kvm_device *dev, 2656 struct kvm_device_attr *attr) 2657 { 2658 switch (attr->group) { 2659 case KVM_DEV_FLIC_GET_ALL_IRQS: 2660 case KVM_DEV_FLIC_ENQUEUE: 2661 case KVM_DEV_FLIC_CLEAR_IRQS: 2662 case KVM_DEV_FLIC_APF_ENABLE: 2663 case KVM_DEV_FLIC_APF_DISABLE_WAIT: 2664 case KVM_DEV_FLIC_ADAPTER_REGISTER: 2665 case KVM_DEV_FLIC_ADAPTER_MODIFY: 2666 case KVM_DEV_FLIC_CLEAR_IO_IRQ: 2667 case KVM_DEV_FLIC_AISM: 2668 case KVM_DEV_FLIC_AIRQ_INJECT: 2669 case KVM_DEV_FLIC_AISM_ALL: 2670 return 0; 2671 } 2672 return -ENXIO; 2673 } 2674 2675 static int flic_create(struct kvm_device *dev, u32 type) 2676 { 2677 if (!dev) 2678 return -EINVAL; 2679 if (dev->kvm->arch.flic) 2680 return -EINVAL; 2681 dev->kvm->arch.flic = dev; 2682 return 0; 2683 } 2684 2685 static void flic_destroy(struct kvm_device *dev) 2686 { 2687 dev->kvm->arch.flic = NULL; 2688 kfree(dev); 2689 } 2690 2691 /* s390 floating irq controller (flic) */ 2692 struct kvm_device_ops kvm_flic_ops = { 2693 .name = "kvm-flic", 2694 .get_attr = flic_get_attr, 2695 .set_attr = flic_set_attr, 2696 .has_attr = flic_has_attr, 2697 .create = flic_create, 2698 .destroy = flic_destroy, 2699 }; 2700 2701 static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap) 2702 { 2703 unsigned long bit; 2704 2705 bit = bit_nr + (addr % PAGE_SIZE) * 8; 2706 2707 return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit; 2708 } 2709 2710 static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter, 2711 u64 addr) 2712 { 2713 struct s390_map_info *map; 2714 2715 if (!adapter) 2716 return NULL; 2717 2718 list_for_each_entry(map, &adapter->maps, list) { 2719 if (map->guest_addr == addr) 2720 return map; 2721 } 2722 return NULL; 2723 } 2724 2725 static int adapter_indicators_set(struct kvm *kvm, 2726 struct s390_io_adapter *adapter, 2727 struct kvm_s390_adapter_int *adapter_int) 2728 { 2729 unsigned long bit; 2730 int summary_set, idx; 2731 struct s390_map_info *info; 2732 void *map; 2733 2734 info = get_map_info(adapter, adapter_int->ind_addr); 2735 if (!info) 2736 return -1; 2737 map = page_address(info->page); 2738 bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap); 2739 set_bit(bit, map); 2740 idx = srcu_read_lock(&kvm->srcu); 2741 mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT); 2742 set_page_dirty_lock(info->page); 2743 info = get_map_info(adapter, adapter_int->summary_addr); 2744 if (!info) { 2745 srcu_read_unlock(&kvm->srcu, idx); 2746 return -1; 2747 } 2748 map = page_address(info->page); 2749 bit = get_ind_bit(info->addr, adapter_int->summary_offset, 2750 adapter->swap); 2751 summary_set = test_and_set_bit(bit, map); 2752 mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT); 2753 set_page_dirty_lock(info->page); 2754 srcu_read_unlock(&kvm->srcu, idx); 2755 return summary_set ? 0 : 1; 2756 } 2757 2758 /* 2759 * < 0 - not injected due to error 2760 * = 0 - coalesced, summary indicator already active 2761 * > 0 - injected interrupt 2762 */ 2763 static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e, 2764 struct kvm *kvm, int irq_source_id, int level, 2765 bool line_status) 2766 { 2767 int ret; 2768 struct s390_io_adapter *adapter; 2769 2770 /* We're only interested in the 0->1 transition. */ 2771 if (!level) 2772 return 0; 2773 adapter = get_io_adapter(kvm, e->adapter.adapter_id); 2774 if (!adapter) 2775 return -1; 2776 down_read(&adapter->maps_lock); 2777 ret = adapter_indicators_set(kvm, adapter, &e->adapter); 2778 up_read(&adapter->maps_lock); 2779 if ((ret > 0) && !adapter->masked) { 2780 ret = kvm_s390_inject_airq(kvm, adapter); 2781 if (ret == 0) 2782 ret = 1; 2783 } 2784 return ret; 2785 } 2786 2787 /* 2788 * Inject the machine check to the guest. 2789 */ 2790 void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu, 2791 struct mcck_volatile_info *mcck_info) 2792 { 2793 struct kvm_s390_interrupt_info inti; 2794 struct kvm_s390_irq irq; 2795 struct kvm_s390_mchk_info *mchk; 2796 union mci mci; 2797 __u64 cr14 = 0; /* upper bits are not used */ 2798 int rc; 2799 2800 mci.val = mcck_info->mcic; 2801 if (mci.sr) 2802 cr14 |= CR14_RECOVERY_SUBMASK; 2803 if (mci.dg) 2804 cr14 |= CR14_DEGRADATION_SUBMASK; 2805 if (mci.w) 2806 cr14 |= CR14_WARNING_SUBMASK; 2807 2808 mchk = mci.ck ? &inti.mchk : &irq.u.mchk; 2809 mchk->cr14 = cr14; 2810 mchk->mcic = mcck_info->mcic; 2811 mchk->ext_damage_code = mcck_info->ext_damage_code; 2812 mchk->failing_storage_address = mcck_info->failing_storage_address; 2813 if (mci.ck) { 2814 /* Inject the floating machine check */ 2815 inti.type = KVM_S390_MCHK; 2816 rc = __inject_vm(vcpu->kvm, &inti); 2817 } else { 2818 /* Inject the machine check to specified vcpu */ 2819 irq.type = KVM_S390_MCHK; 2820 rc = kvm_s390_inject_vcpu(vcpu, &irq); 2821 } 2822 WARN_ON_ONCE(rc); 2823 } 2824 2825 int kvm_set_routing_entry(struct kvm *kvm, 2826 struct kvm_kernel_irq_routing_entry *e, 2827 const struct kvm_irq_routing_entry *ue) 2828 { 2829 int ret; 2830 2831 switch (ue->type) { 2832 case KVM_IRQ_ROUTING_S390_ADAPTER: 2833 e->set = set_adapter_int; 2834 e->adapter.summary_addr = ue->u.adapter.summary_addr; 2835 e->adapter.ind_addr = ue->u.adapter.ind_addr; 2836 e->adapter.summary_offset = ue->u.adapter.summary_offset; 2837 e->adapter.ind_offset = ue->u.adapter.ind_offset; 2838 e->adapter.adapter_id = ue->u.adapter.adapter_id; 2839 ret = 0; 2840 break; 2841 default: 2842 ret = -EINVAL; 2843 } 2844 2845 return ret; 2846 } 2847 2848 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, 2849 int irq_source_id, int level, bool line_status) 2850 { 2851 return -EINVAL; 2852 } 2853 2854 int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len) 2855 { 2856 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2857 struct kvm_s390_irq *buf; 2858 int r = 0; 2859 int n; 2860 2861 buf = vmalloc(len); 2862 if (!buf) 2863 return -ENOMEM; 2864 2865 if (copy_from_user((void *) buf, irqstate, len)) { 2866 r = -EFAULT; 2867 goto out_free; 2868 } 2869 2870 /* 2871 * Don't allow setting the interrupt state 2872 * when there are already interrupts pending 2873 */ 2874 spin_lock(&li->lock); 2875 if (li->pending_irqs) { 2876 r = -EBUSY; 2877 goto out_unlock; 2878 } 2879 2880 for (n = 0; n < len / sizeof(*buf); n++) { 2881 r = do_inject_vcpu(vcpu, &buf[n]); 2882 if (r) 2883 break; 2884 } 2885 2886 out_unlock: 2887 spin_unlock(&li->lock); 2888 out_free: 2889 vfree(buf); 2890 2891 return r; 2892 } 2893 2894 static void store_local_irq(struct kvm_s390_local_interrupt *li, 2895 struct kvm_s390_irq *irq, 2896 unsigned long irq_type) 2897 { 2898 switch (irq_type) { 2899 case IRQ_PEND_MCHK_EX: 2900 case IRQ_PEND_MCHK_REP: 2901 irq->type = KVM_S390_MCHK; 2902 irq->u.mchk = li->irq.mchk; 2903 break; 2904 case IRQ_PEND_PROG: 2905 irq->type = KVM_S390_PROGRAM_INT; 2906 irq->u.pgm = li->irq.pgm; 2907 break; 2908 case IRQ_PEND_PFAULT_INIT: 2909 irq->type = KVM_S390_INT_PFAULT_INIT; 2910 irq->u.ext = li->irq.ext; 2911 break; 2912 case IRQ_PEND_EXT_EXTERNAL: 2913 irq->type = KVM_S390_INT_EXTERNAL_CALL; 2914 irq->u.extcall = li->irq.extcall; 2915 break; 2916 case IRQ_PEND_EXT_CLOCK_COMP: 2917 irq->type = KVM_S390_INT_CLOCK_COMP; 2918 break; 2919 case IRQ_PEND_EXT_CPU_TIMER: 2920 irq->type = KVM_S390_INT_CPU_TIMER; 2921 break; 2922 case IRQ_PEND_SIGP_STOP: 2923 irq->type = KVM_S390_SIGP_STOP; 2924 irq->u.stop = li->irq.stop; 2925 break; 2926 case IRQ_PEND_RESTART: 2927 irq->type = KVM_S390_RESTART; 2928 break; 2929 case IRQ_PEND_SET_PREFIX: 2930 irq->type = KVM_S390_SIGP_SET_PREFIX; 2931 irq->u.prefix = li->irq.prefix; 2932 break; 2933 } 2934 } 2935 2936 int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len) 2937 { 2938 int scn; 2939 DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS); 2940 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; 2941 unsigned long pending_irqs; 2942 struct kvm_s390_irq irq; 2943 unsigned long irq_type; 2944 int cpuaddr; 2945 int n = 0; 2946 2947 spin_lock(&li->lock); 2948 pending_irqs = li->pending_irqs; 2949 memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending, 2950 sizeof(sigp_emerg_pending)); 2951 spin_unlock(&li->lock); 2952 2953 for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) { 2954 memset(&irq, 0, sizeof(irq)); 2955 if (irq_type == IRQ_PEND_EXT_EMERGENCY) 2956 continue; 2957 if (n + sizeof(irq) > len) 2958 return -ENOBUFS; 2959 store_local_irq(&vcpu->arch.local_int, &irq, irq_type); 2960 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 2961 return -EFAULT; 2962 n += sizeof(irq); 2963 } 2964 2965 if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) { 2966 for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) { 2967 memset(&irq, 0, sizeof(irq)); 2968 if (n + sizeof(irq) > len) 2969 return -ENOBUFS; 2970 irq.type = KVM_S390_INT_EMERGENCY; 2971 irq.u.emerg.code = cpuaddr; 2972 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 2973 return -EFAULT; 2974 n += sizeof(irq); 2975 } 2976 } 2977 2978 if (sca_ext_call_pending(vcpu, &scn)) { 2979 if (n + sizeof(irq) > len) 2980 return -ENOBUFS; 2981 memset(&irq, 0, sizeof(irq)); 2982 irq.type = KVM_S390_INT_EXTERNAL_CALL; 2983 irq.u.extcall.code = scn; 2984 if (copy_to_user(&buf[n], &irq, sizeof(irq))) 2985 return -EFAULT; 2986 n += sizeof(irq); 2987 } 2988 2989 return n; 2990 } 2991 2992 static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask) 2993 { 2994 int vcpu_id, online_vcpus = atomic_read(&kvm->online_vcpus); 2995 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 2996 struct kvm_vcpu *vcpu; 2997 2998 for_each_set_bit(vcpu_id, kvm->arch.idle_mask, online_vcpus) { 2999 vcpu = kvm_get_vcpu(kvm, vcpu_id); 3000 if (psw_ioint_disabled(vcpu)) 3001 continue; 3002 deliverable_mask &= (u8)(vcpu->arch.sie_block->gcr[6] >> 24); 3003 if (deliverable_mask) { 3004 /* lately kicked but not yet running */ 3005 if (test_and_set_bit(vcpu_id, gi->kicked_mask)) 3006 return; 3007 kvm_s390_vcpu_wakeup(vcpu); 3008 return; 3009 } 3010 } 3011 } 3012 3013 static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer) 3014 { 3015 struct kvm_s390_gisa_interrupt *gi = 3016 container_of(timer, struct kvm_s390_gisa_interrupt, timer); 3017 struct kvm *kvm = 3018 container_of(gi->origin, struct sie_page2, gisa)->kvm; 3019 u8 pending_mask; 3020 3021 pending_mask = gisa_get_ipm_or_restore_iam(gi); 3022 if (pending_mask) { 3023 __airqs_kick_single_vcpu(kvm, pending_mask); 3024 hrtimer_forward_now(timer, ns_to_ktime(gi->expires)); 3025 return HRTIMER_RESTART; 3026 }; 3027 3028 return HRTIMER_NORESTART; 3029 } 3030 3031 #define NULL_GISA_ADDR 0x00000000UL 3032 #define NONE_GISA_ADDR 0x00000001UL 3033 #define GISA_ADDR_MASK 0xfffff000UL 3034 3035 static void process_gib_alert_list(void) 3036 { 3037 struct kvm_s390_gisa_interrupt *gi; 3038 struct kvm_s390_gisa *gisa; 3039 struct kvm *kvm; 3040 u32 final, origin = 0UL; 3041 3042 do { 3043 /* 3044 * If the NONE_GISA_ADDR is still stored in the alert list 3045 * origin, we will leave the outer loop. No further GISA has 3046 * been added to the alert list by millicode while processing 3047 * the current alert list. 3048 */ 3049 final = (origin & NONE_GISA_ADDR); 3050 /* 3051 * Cut off the alert list and store the NONE_GISA_ADDR in the 3052 * alert list origin to avoid further GAL interruptions. 3053 * A new alert list can be build up by millicode in parallel 3054 * for guests not in the yet cut-off alert list. When in the 3055 * final loop, store the NULL_GISA_ADDR instead. This will re- 3056 * enable GAL interruptions on the host again. 3057 */ 3058 origin = xchg(&gib->alert_list_origin, 3059 (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR); 3060 /* 3061 * Loop through the just cut-off alert list and start the 3062 * gisa timers to kick idle vcpus to consume the pending 3063 * interruptions asap. 3064 */ 3065 while (origin & GISA_ADDR_MASK) { 3066 gisa = (struct kvm_s390_gisa *)(u64)origin; 3067 origin = gisa->next_alert; 3068 gisa->next_alert = (u32)(u64)gisa; 3069 kvm = container_of(gisa, struct sie_page2, gisa)->kvm; 3070 gi = &kvm->arch.gisa_int; 3071 if (hrtimer_active(&gi->timer)) 3072 hrtimer_cancel(&gi->timer); 3073 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL); 3074 } 3075 } while (!final); 3076 3077 } 3078 3079 void kvm_s390_gisa_clear(struct kvm *kvm) 3080 { 3081 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3082 3083 if (!gi->origin) 3084 return; 3085 gisa_clear_ipm(gi->origin); 3086 VM_EVENT(kvm, 3, "gisa 0x%pK cleared", gi->origin); 3087 } 3088 3089 void kvm_s390_gisa_init(struct kvm *kvm) 3090 { 3091 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3092 3093 if (!css_general_characteristics.aiv) 3094 return; 3095 gi->origin = &kvm->arch.sie_page2->gisa; 3096 gi->alert.mask = 0; 3097 spin_lock_init(&gi->alert.ref_lock); 3098 gi->expires = 50 * 1000; /* 50 usec */ 3099 hrtimer_init(&gi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3100 gi->timer.function = gisa_vcpu_kicker; 3101 memset(gi->origin, 0, sizeof(struct kvm_s390_gisa)); 3102 gi->origin->next_alert = (u32)(u64)gi->origin; 3103 VM_EVENT(kvm, 3, "gisa 0x%pK initialized", gi->origin); 3104 } 3105 3106 void kvm_s390_gisa_destroy(struct kvm *kvm) 3107 { 3108 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3109 3110 if (!gi->origin) 3111 return; 3112 if (gi->alert.mask) 3113 KVM_EVENT(3, "vm 0x%pK has unexpected iam 0x%02x", 3114 kvm, gi->alert.mask); 3115 while (gisa_in_alert_list(gi->origin)) 3116 cpu_relax(); 3117 hrtimer_cancel(&gi->timer); 3118 gi->origin = NULL; 3119 } 3120 3121 /** 3122 * kvm_s390_gisc_register - register a guest ISC 3123 * 3124 * @kvm: the kernel vm to work with 3125 * @gisc: the guest interruption sub class to register 3126 * 3127 * The function extends the vm specific alert mask to use. 3128 * The effective IAM mask in the GISA is updated as well 3129 * in case the GISA is not part of the GIB alert list. 3130 * It will be updated latest when the IAM gets restored 3131 * by gisa_get_ipm_or_restore_iam(). 3132 * 3133 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3134 * has registered with the channel subsystem. 3135 * -ENODEV in case the vm uses no GISA 3136 * -ERANGE in case the guest ISC is invalid 3137 */ 3138 int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc) 3139 { 3140 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3141 3142 if (!gi->origin) 3143 return -ENODEV; 3144 if (gisc > MAX_ISC) 3145 return -ERANGE; 3146 3147 spin_lock(&gi->alert.ref_lock); 3148 gi->alert.ref_count[gisc]++; 3149 if (gi->alert.ref_count[gisc] == 1) { 3150 gi->alert.mask |= 0x80 >> gisc; 3151 gisa_set_iam(gi->origin, gi->alert.mask); 3152 } 3153 spin_unlock(&gi->alert.ref_lock); 3154 3155 return gib->nisc; 3156 } 3157 EXPORT_SYMBOL_GPL(kvm_s390_gisc_register); 3158 3159 /** 3160 * kvm_s390_gisc_unregister - unregister a guest ISC 3161 * 3162 * @kvm: the kernel vm to work with 3163 * @gisc: the guest interruption sub class to register 3164 * 3165 * The function reduces the vm specific alert mask to use. 3166 * The effective IAM mask in the GISA is updated as well 3167 * in case the GISA is not part of the GIB alert list. 3168 * It will be updated latest when the IAM gets restored 3169 * by gisa_get_ipm_or_restore_iam(). 3170 * 3171 * Returns: the nonspecific ISC (NISC) the gib alert mechanism 3172 * has registered with the channel subsystem. 3173 * -ENODEV in case the vm uses no GISA 3174 * -ERANGE in case the guest ISC is invalid 3175 * -EINVAL in case the guest ISC is not registered 3176 */ 3177 int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc) 3178 { 3179 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int; 3180 int rc = 0; 3181 3182 if (!gi->origin) 3183 return -ENODEV; 3184 if (gisc > MAX_ISC) 3185 return -ERANGE; 3186 3187 spin_lock(&gi->alert.ref_lock); 3188 if (gi->alert.ref_count[gisc] == 0) { 3189 rc = -EINVAL; 3190 goto out; 3191 } 3192 gi->alert.ref_count[gisc]--; 3193 if (gi->alert.ref_count[gisc] == 0) { 3194 gi->alert.mask &= ~(0x80 >> gisc); 3195 gisa_set_iam(gi->origin, gi->alert.mask); 3196 } 3197 out: 3198 spin_unlock(&gi->alert.ref_lock); 3199 3200 return rc; 3201 } 3202 EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister); 3203 3204 static void gib_alert_irq_handler(struct airq_struct *airq, bool floating) 3205 { 3206 inc_irq_stat(IRQIO_GAL); 3207 process_gib_alert_list(); 3208 } 3209 3210 static struct airq_struct gib_alert_irq = { 3211 .handler = gib_alert_irq_handler, 3212 .lsi_ptr = &gib_alert_irq.lsi_mask, 3213 }; 3214 3215 void kvm_s390_gib_destroy(void) 3216 { 3217 if (!gib) 3218 return; 3219 chsc_sgib(0); 3220 unregister_adapter_interrupt(&gib_alert_irq); 3221 free_page((unsigned long)gib); 3222 gib = NULL; 3223 } 3224 3225 int kvm_s390_gib_init(u8 nisc) 3226 { 3227 int rc = 0; 3228 3229 if (!css_general_characteristics.aiv) { 3230 KVM_EVENT(3, "%s", "gib not initialized, no AIV facility"); 3231 goto out; 3232 } 3233 3234 gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL | GFP_DMA); 3235 if (!gib) { 3236 rc = -ENOMEM; 3237 goto out; 3238 } 3239 3240 gib_alert_irq.isc = nisc; 3241 if (register_adapter_interrupt(&gib_alert_irq)) { 3242 pr_err("Registering the GIB alert interruption handler failed\n"); 3243 rc = -EIO; 3244 goto out_free_gib; 3245 } 3246 3247 gib->nisc = nisc; 3248 if (chsc_sgib((u32)(u64)gib)) { 3249 pr_err("Associating the GIB with the AIV facility failed\n"); 3250 free_page((unsigned long)gib); 3251 gib = NULL; 3252 rc = -EIO; 3253 goto out_unreg_gal; 3254 } 3255 3256 KVM_EVENT(3, "gib 0x%pK (nisc=%d) initialized", gib, gib->nisc); 3257 goto out; 3258 3259 out_unreg_gal: 3260 unregister_adapter_interrupt(&gib_alert_irq); 3261 out_free_gib: 3262 free_page((unsigned long)gib); 3263 gib = NULL; 3264 out: 3265 return rc; 3266 } 3267