1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * handling kvm guest interrupts
4 *
5 * Copyright IBM Corp. 2008, 2020
6 *
7 * Author(s): Carsten Otte <cotte@de.ibm.com>
8 */
9
10 #define KMSG_COMPONENT "kvm-s390"
11 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
12
13 #include <linux/interrupt.h>
14 #include <linux/kvm_host.h>
15 #include <linux/hrtimer.h>
16 #include <linux/mmu_context.h>
17 #include <linux/nospec.h>
18 #include <linux/signal.h>
19 #include <linux/slab.h>
20 #include <linux/bitmap.h>
21 #include <linux/vmalloc.h>
22 #include <asm/asm-offsets.h>
23 #include <asm/dis.h>
24 #include <linux/uaccess.h>
25 #include <asm/sclp.h>
26 #include <asm/isc.h>
27 #include <asm/gmap.h>
28 #include <asm/switch_to.h>
29 #include <asm/nmi.h>
30 #include <asm/airq.h>
31 #include <asm/tpi.h>
32 #include "kvm-s390.h"
33 #include "gaccess.h"
34 #include "trace-s390.h"
35 #include "pci.h"
36
37 #define PFAULT_INIT 0x0600
38 #define PFAULT_DONE 0x0680
39 #define VIRTIO_PARAM 0x0d00
40
41 static struct kvm_s390_gib *gib;
42
43 /* handle external calls via sigp interpretation facility */
sca_ext_call_pending(struct kvm_vcpu * vcpu,int * src_id)44 static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
45 {
46 int c, scn;
47
48 if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND))
49 return 0;
50
51 BUG_ON(!kvm_s390_use_sca_entries());
52 read_lock(&vcpu->kvm->arch.sca_lock);
53 if (vcpu->kvm->arch.use_esca) {
54 struct esca_block *sca = vcpu->kvm->arch.sca;
55 union esca_sigp_ctrl sigp_ctrl =
56 sca->cpu[vcpu->vcpu_id].sigp_ctrl;
57
58 c = sigp_ctrl.c;
59 scn = sigp_ctrl.scn;
60 } else {
61 struct bsca_block *sca = vcpu->kvm->arch.sca;
62 union bsca_sigp_ctrl sigp_ctrl =
63 sca->cpu[vcpu->vcpu_id].sigp_ctrl;
64
65 c = sigp_ctrl.c;
66 scn = sigp_ctrl.scn;
67 }
68 read_unlock(&vcpu->kvm->arch.sca_lock);
69
70 if (src_id)
71 *src_id = scn;
72
73 return c;
74 }
75
sca_inject_ext_call(struct kvm_vcpu * vcpu,int src_id)76 static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
77 {
78 int expect, rc;
79
80 BUG_ON(!kvm_s390_use_sca_entries());
81 read_lock(&vcpu->kvm->arch.sca_lock);
82 if (vcpu->kvm->arch.use_esca) {
83 struct esca_block *sca = vcpu->kvm->arch.sca;
84 union esca_sigp_ctrl *sigp_ctrl =
85 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
86 union esca_sigp_ctrl new_val = {0}, old_val;
87
88 old_val = READ_ONCE(*sigp_ctrl);
89 new_val.scn = src_id;
90 new_val.c = 1;
91 old_val.c = 0;
92
93 expect = old_val.value;
94 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
95 } else {
96 struct bsca_block *sca = vcpu->kvm->arch.sca;
97 union bsca_sigp_ctrl *sigp_ctrl =
98 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
99 union bsca_sigp_ctrl new_val = {0}, old_val;
100
101 old_val = READ_ONCE(*sigp_ctrl);
102 new_val.scn = src_id;
103 new_val.c = 1;
104 old_val.c = 0;
105
106 expect = old_val.value;
107 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
108 }
109 read_unlock(&vcpu->kvm->arch.sca_lock);
110
111 if (rc != expect) {
112 /* another external call is pending */
113 return -EBUSY;
114 }
115 kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
116 return 0;
117 }
118
sca_clear_ext_call(struct kvm_vcpu * vcpu)119 static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
120 {
121 int rc, expect;
122
123 if (!kvm_s390_use_sca_entries())
124 return;
125 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
126 read_lock(&vcpu->kvm->arch.sca_lock);
127 if (vcpu->kvm->arch.use_esca) {
128 struct esca_block *sca = vcpu->kvm->arch.sca;
129 union esca_sigp_ctrl *sigp_ctrl =
130 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
131 union esca_sigp_ctrl old;
132
133 old = READ_ONCE(*sigp_ctrl);
134 expect = old.value;
135 rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
136 } else {
137 struct bsca_block *sca = vcpu->kvm->arch.sca;
138 union bsca_sigp_ctrl *sigp_ctrl =
139 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
140 union bsca_sigp_ctrl old;
141
142 old = READ_ONCE(*sigp_ctrl);
143 expect = old.value;
144 rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
145 }
146 read_unlock(&vcpu->kvm->arch.sca_lock);
147 WARN_ON(rc != expect); /* cannot clear? */
148 }
149
psw_extint_disabled(struct kvm_vcpu * vcpu)150 int psw_extint_disabled(struct kvm_vcpu *vcpu)
151 {
152 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
153 }
154
psw_ioint_disabled(struct kvm_vcpu * vcpu)155 static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
156 {
157 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
158 }
159
psw_mchk_disabled(struct kvm_vcpu * vcpu)160 static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
161 {
162 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
163 }
164
psw_interrupts_disabled(struct kvm_vcpu * vcpu)165 static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
166 {
167 return psw_extint_disabled(vcpu) &&
168 psw_ioint_disabled(vcpu) &&
169 psw_mchk_disabled(vcpu);
170 }
171
ckc_interrupts_enabled(struct kvm_vcpu * vcpu)172 static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
173 {
174 if (psw_extint_disabled(vcpu) ||
175 !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
176 return 0;
177 if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
178 /* No timer interrupts when single stepping */
179 return 0;
180 return 1;
181 }
182
ckc_irq_pending(struct kvm_vcpu * vcpu)183 static int ckc_irq_pending(struct kvm_vcpu *vcpu)
184 {
185 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
186 const u64 ckc = vcpu->arch.sie_block->ckc;
187
188 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
189 if ((s64)ckc >= (s64)now)
190 return 0;
191 } else if (ckc >= now) {
192 return 0;
193 }
194 return ckc_interrupts_enabled(vcpu);
195 }
196
cpu_timer_interrupts_enabled(struct kvm_vcpu * vcpu)197 static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
198 {
199 return !psw_extint_disabled(vcpu) &&
200 (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK);
201 }
202
cpu_timer_irq_pending(struct kvm_vcpu * vcpu)203 static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
204 {
205 if (!cpu_timer_interrupts_enabled(vcpu))
206 return 0;
207 return kvm_s390_get_cpu_timer(vcpu) >> 63;
208 }
209
isc_to_isc_bits(int isc)210 static uint64_t isc_to_isc_bits(int isc)
211 {
212 return (0x80 >> isc) << 24;
213 }
214
isc_to_int_word(u8 isc)215 static inline u32 isc_to_int_word(u8 isc)
216 {
217 return ((u32)isc << 27) | 0x80000000;
218 }
219
int_word_to_isc(u32 int_word)220 static inline u8 int_word_to_isc(u32 int_word)
221 {
222 return (int_word & 0x38000000) >> 27;
223 }
224
225 /*
226 * To use atomic bitmap functions, we have to provide a bitmap address
227 * that is u64 aligned. However, the ipm might be u32 aligned.
228 * Therefore, we logically start the bitmap at the very beginning of the
229 * struct and fixup the bit number.
230 */
231 #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE)
232
233 /**
234 * gisa_set_iam - change the GISA interruption alert mask
235 *
236 * @gisa: gisa to operate on
237 * @iam: new IAM value to use
238 *
239 * Change the IAM atomically with the next alert address and the IPM
240 * of the GISA if the GISA is not part of the GIB alert list. All three
241 * fields are located in the first long word of the GISA.
242 *
243 * Returns: 0 on success
244 * -EBUSY in case the gisa is part of the alert list
245 */
gisa_set_iam(struct kvm_s390_gisa * gisa,u8 iam)246 static inline int gisa_set_iam(struct kvm_s390_gisa *gisa, u8 iam)
247 {
248 u64 word, _word;
249
250 do {
251 word = READ_ONCE(gisa->u64.word[0]);
252 if ((u64)gisa != word >> 32)
253 return -EBUSY;
254 _word = (word & ~0xffUL) | iam;
255 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
256
257 return 0;
258 }
259
260 /**
261 * gisa_clear_ipm - clear the GISA interruption pending mask
262 *
263 * @gisa: gisa to operate on
264 *
265 * Clear the IPM atomically with the next alert address and the IAM
266 * of the GISA unconditionally. All three fields are located in the
267 * first long word of the GISA.
268 */
gisa_clear_ipm(struct kvm_s390_gisa * gisa)269 static inline void gisa_clear_ipm(struct kvm_s390_gisa *gisa)
270 {
271 u64 word, _word;
272
273 do {
274 word = READ_ONCE(gisa->u64.word[0]);
275 _word = word & ~(0xffUL << 24);
276 } while (cmpxchg(&gisa->u64.word[0], word, _word) != word);
277 }
278
279 /**
280 * gisa_get_ipm_or_restore_iam - return IPM or restore GISA IAM
281 *
282 * @gi: gisa interrupt struct to work on
283 *
284 * Atomically restores the interruption alert mask if none of the
285 * relevant ISCs are pending and return the IPM.
286 *
287 * Returns: the relevant pending ISCs
288 */
gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt * gi)289 static inline u8 gisa_get_ipm_or_restore_iam(struct kvm_s390_gisa_interrupt *gi)
290 {
291 u8 pending_mask, alert_mask;
292 u64 word, _word;
293
294 do {
295 word = READ_ONCE(gi->origin->u64.word[0]);
296 alert_mask = READ_ONCE(gi->alert.mask);
297 pending_mask = (u8)(word >> 24) & alert_mask;
298 if (pending_mask)
299 return pending_mask;
300 _word = (word & ~0xffUL) | alert_mask;
301 } while (cmpxchg(&gi->origin->u64.word[0], word, _word) != word);
302
303 return 0;
304 }
305
gisa_set_ipm_gisc(struct kvm_s390_gisa * gisa,u32 gisc)306 static inline void gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
307 {
308 set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
309 }
310
gisa_get_ipm(struct kvm_s390_gisa * gisa)311 static inline u8 gisa_get_ipm(struct kvm_s390_gisa *gisa)
312 {
313 return READ_ONCE(gisa->ipm);
314 }
315
gisa_tac_ipm_gisc(struct kvm_s390_gisa * gisa,u32 gisc)316 static inline int gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
317 {
318 return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
319 }
320
pending_irqs_no_gisa(struct kvm_vcpu * vcpu)321 static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu)
322 {
323 unsigned long pending = vcpu->kvm->arch.float_int.pending_irqs |
324 vcpu->arch.local_int.pending_irqs;
325
326 pending &= ~vcpu->kvm->arch.float_int.masked_irqs;
327 return pending;
328 }
329
pending_irqs(struct kvm_vcpu * vcpu)330 static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
331 {
332 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
333 unsigned long pending_mask;
334
335 pending_mask = pending_irqs_no_gisa(vcpu);
336 if (gi->origin)
337 pending_mask |= gisa_get_ipm(gi->origin) << IRQ_PEND_IO_ISC_7;
338 return pending_mask;
339 }
340
isc_to_irq_type(unsigned long isc)341 static inline int isc_to_irq_type(unsigned long isc)
342 {
343 return IRQ_PEND_IO_ISC_0 - isc;
344 }
345
irq_type_to_isc(unsigned long irq_type)346 static inline int irq_type_to_isc(unsigned long irq_type)
347 {
348 return IRQ_PEND_IO_ISC_0 - irq_type;
349 }
350
disable_iscs(struct kvm_vcpu * vcpu,unsigned long active_mask)351 static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
352 unsigned long active_mask)
353 {
354 int i;
355
356 for (i = 0; i <= MAX_ISC; i++)
357 if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
358 active_mask &= ~(1UL << (isc_to_irq_type(i)));
359
360 return active_mask;
361 }
362
deliverable_irqs(struct kvm_vcpu * vcpu)363 static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
364 {
365 unsigned long active_mask;
366
367 active_mask = pending_irqs(vcpu);
368 if (!active_mask)
369 return 0;
370
371 if (psw_extint_disabled(vcpu))
372 active_mask &= ~IRQ_PEND_EXT_MASK;
373 if (psw_ioint_disabled(vcpu))
374 active_mask &= ~IRQ_PEND_IO_MASK;
375 else
376 active_mask = disable_iscs(vcpu, active_mask);
377 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
378 __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
379 if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK))
380 __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
381 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
382 __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
383 if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK))
384 __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
385 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) {
386 __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
387 __clear_bit(IRQ_PEND_EXT_SERVICE_EV, &active_mask);
388 }
389 if (psw_mchk_disabled(vcpu))
390 active_mask &= ~IRQ_PEND_MCHK_MASK;
391 /* PV guest cpus can have a single interruption injected at a time. */
392 if (kvm_s390_pv_cpu_get_handle(vcpu) &&
393 vcpu->arch.sie_block->iictl != IICTL_CODE_NONE)
394 active_mask &= ~(IRQ_PEND_EXT_II_MASK |
395 IRQ_PEND_IO_MASK |
396 IRQ_PEND_MCHK_MASK);
397 /*
398 * Check both floating and local interrupt's cr14 because
399 * bit IRQ_PEND_MCHK_REP could be set in both cases.
400 */
401 if (!(vcpu->arch.sie_block->gcr[14] &
402 (vcpu->kvm->arch.float_int.mchk.cr14 |
403 vcpu->arch.local_int.irq.mchk.cr14)))
404 __clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
405
406 /*
407 * STOP irqs will never be actively delivered. They are triggered via
408 * intercept requests and cleared when the stop intercept is performed.
409 */
410 __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
411
412 return active_mask;
413 }
414
__set_cpu_idle(struct kvm_vcpu * vcpu)415 static void __set_cpu_idle(struct kvm_vcpu *vcpu)
416 {
417 kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
418 set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
419 }
420
__unset_cpu_idle(struct kvm_vcpu * vcpu)421 static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
422 {
423 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
424 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.idle_mask);
425 }
426
__reset_intercept_indicators(struct kvm_vcpu * vcpu)427 static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
428 {
429 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT |
430 CPUSTAT_STOP_INT);
431 vcpu->arch.sie_block->lctl = 0x0000;
432 vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
433
434 if (guestdbg_enabled(vcpu)) {
435 vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
436 LCTL_CR10 | LCTL_CR11);
437 vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
438 }
439 }
440
set_intercept_indicators_io(struct kvm_vcpu * vcpu)441 static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
442 {
443 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK))
444 return;
445 if (psw_ioint_disabled(vcpu))
446 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT);
447 else
448 vcpu->arch.sie_block->lctl |= LCTL_CR6;
449 }
450
set_intercept_indicators_ext(struct kvm_vcpu * vcpu)451 static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
452 {
453 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_EXT_MASK))
454 return;
455 if (psw_extint_disabled(vcpu))
456 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
457 else
458 vcpu->arch.sie_block->lctl |= LCTL_CR0;
459 }
460
set_intercept_indicators_mchk(struct kvm_vcpu * vcpu)461 static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
462 {
463 if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_MCHK_MASK))
464 return;
465 if (psw_mchk_disabled(vcpu))
466 vcpu->arch.sie_block->ictl |= ICTL_LPSW;
467 else
468 vcpu->arch.sie_block->lctl |= LCTL_CR14;
469 }
470
set_intercept_indicators_stop(struct kvm_vcpu * vcpu)471 static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
472 {
473 if (kvm_s390_is_stop_irq_pending(vcpu))
474 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
475 }
476
477 /* Set interception request for non-deliverable interrupts */
set_intercept_indicators(struct kvm_vcpu * vcpu)478 static void set_intercept_indicators(struct kvm_vcpu *vcpu)
479 {
480 set_intercept_indicators_io(vcpu);
481 set_intercept_indicators_ext(vcpu);
482 set_intercept_indicators_mchk(vcpu);
483 set_intercept_indicators_stop(vcpu);
484 }
485
__deliver_cpu_timer(struct kvm_vcpu * vcpu)486 static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
487 {
488 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
489 int rc = 0;
490
491 vcpu->stat.deliver_cputm++;
492 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
493 0, 0);
494 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
495 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
496 vcpu->arch.sie_block->eic = EXT_IRQ_CPU_TIMER;
497 } else {
498 rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
499 (u16 *)__LC_EXT_INT_CODE);
500 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
501 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
502 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
503 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
504 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
505 }
506 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
507 return rc ? -EFAULT : 0;
508 }
509
__deliver_ckc(struct kvm_vcpu * vcpu)510 static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
511 {
512 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
513 int rc = 0;
514
515 vcpu->stat.deliver_ckc++;
516 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
517 0, 0);
518 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
519 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
520 vcpu->arch.sie_block->eic = EXT_IRQ_CLK_COMP;
521 } else {
522 rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
523 (u16 __user *)__LC_EXT_INT_CODE);
524 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
525 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
526 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
527 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
528 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
529 }
530 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
531 return rc ? -EFAULT : 0;
532 }
533
__deliver_pfault_init(struct kvm_vcpu * vcpu)534 static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
535 {
536 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
537 struct kvm_s390_ext_info ext;
538 int rc;
539
540 spin_lock(&li->lock);
541 ext = li->irq.ext;
542 clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
543 li->irq.ext.ext_params2 = 0;
544 spin_unlock(&li->lock);
545
546 VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
547 ext.ext_params2);
548 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
549 KVM_S390_INT_PFAULT_INIT,
550 0, ext.ext_params2);
551
552 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
553 rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
554 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
555 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
556 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
557 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
558 rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
559 return rc ? -EFAULT : 0;
560 }
561
__write_machine_check(struct kvm_vcpu * vcpu,struct kvm_s390_mchk_info * mchk)562 static int __write_machine_check(struct kvm_vcpu *vcpu,
563 struct kvm_s390_mchk_info *mchk)
564 {
565 unsigned long ext_sa_addr;
566 unsigned long lc;
567 freg_t fprs[NUM_FPRS];
568 union mci mci;
569 int rc;
570
571 /*
572 * All other possible payload for a machine check (e.g. the register
573 * contents in the save area) will be handled by the ultravisor, as
574 * the hypervisor does not not have the needed information for
575 * protected guests.
576 */
577 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
578 vcpu->arch.sie_block->iictl = IICTL_CODE_MCHK;
579 vcpu->arch.sie_block->mcic = mchk->mcic;
580 vcpu->arch.sie_block->faddr = mchk->failing_storage_address;
581 vcpu->arch.sie_block->edc = mchk->ext_damage_code;
582 return 0;
583 }
584
585 mci.val = mchk->mcic;
586 /* take care of lazy register loading */
587 save_fpu_regs();
588 save_access_regs(vcpu->run->s.regs.acrs);
589 if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
590 save_gs_cb(current->thread.gs_cb);
591
592 /* Extended save area */
593 rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
594 sizeof(unsigned long));
595 /* Only bits 0 through 63-LC are used for address formation */
596 lc = ext_sa_addr & MCESA_LC_MASK;
597 if (test_kvm_facility(vcpu->kvm, 133)) {
598 switch (lc) {
599 case 0:
600 case 10:
601 ext_sa_addr &= ~0x3ffUL;
602 break;
603 case 11:
604 ext_sa_addr &= ~0x7ffUL;
605 break;
606 case 12:
607 ext_sa_addr &= ~0xfffUL;
608 break;
609 default:
610 ext_sa_addr = 0;
611 break;
612 }
613 } else {
614 ext_sa_addr &= ~0x3ffUL;
615 }
616
617 if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
618 if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
619 512))
620 mci.vr = 0;
621 } else {
622 mci.vr = 0;
623 }
624 if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
625 && (lc == 11 || lc == 12)) {
626 if (write_guest_abs(vcpu, ext_sa_addr + 1024,
627 &vcpu->run->s.regs.gscb, 32))
628 mci.gs = 0;
629 } else {
630 mci.gs = 0;
631 }
632
633 /* General interruption information */
634 rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
635 rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
636 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
637 rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
638 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
639 rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
640
641 /* Register-save areas */
642 if (MACHINE_HAS_VX) {
643 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
644 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
645 } else {
646 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
647 vcpu->run->s.regs.fprs, 128);
648 }
649 rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
650 vcpu->run->s.regs.gprs, 128);
651 rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
652 (u32 __user *) __LC_FP_CREG_SAVE_AREA);
653 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
654 (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
655 rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
656 (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
657 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
658 (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
659 rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
660 &vcpu->run->s.regs.acrs, 64);
661 rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
662 &vcpu->arch.sie_block->gcr, 128);
663
664 /* Extended interruption information */
665 rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
666 (u32 __user *) __LC_EXT_DAMAGE_CODE);
667 rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
668 (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
669 rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
670 sizeof(mchk->fixed_logout));
671 return rc ? -EFAULT : 0;
672 }
673
__deliver_machine_check(struct kvm_vcpu * vcpu)674 static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
675 {
676 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
677 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
678 struct kvm_s390_mchk_info mchk = {};
679 int deliver = 0;
680 int rc = 0;
681
682 spin_lock(&fi->lock);
683 spin_lock(&li->lock);
684 if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
685 test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
686 /*
687 * If there was an exigent machine check pending, then any
688 * repressible machine checks that might have been pending
689 * are indicated along with it, so always clear bits for
690 * repressible and exigent interrupts
691 */
692 mchk = li->irq.mchk;
693 clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
694 clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
695 memset(&li->irq.mchk, 0, sizeof(mchk));
696 deliver = 1;
697 }
698 /*
699 * We indicate floating repressible conditions along with
700 * other pending conditions. Channel Report Pending and Channel
701 * Subsystem damage are the only two and are indicated by
702 * bits in mcic and masked in cr14.
703 */
704 if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
705 mchk.mcic |= fi->mchk.mcic;
706 mchk.cr14 |= fi->mchk.cr14;
707 memset(&fi->mchk, 0, sizeof(mchk));
708 deliver = 1;
709 }
710 spin_unlock(&li->lock);
711 spin_unlock(&fi->lock);
712
713 if (deliver) {
714 VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
715 mchk.mcic);
716 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
717 KVM_S390_MCHK,
718 mchk.cr14, mchk.mcic);
719 vcpu->stat.deliver_machine_check++;
720 rc = __write_machine_check(vcpu, &mchk);
721 }
722 return rc;
723 }
724
__deliver_restart(struct kvm_vcpu * vcpu)725 static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
726 {
727 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
728 int rc = 0;
729
730 VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
731 vcpu->stat.deliver_restart_signal++;
732 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
733
734 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
735 vcpu->arch.sie_block->iictl = IICTL_CODE_RESTART;
736 } else {
737 rc = write_guest_lc(vcpu,
738 offsetof(struct lowcore, restart_old_psw),
739 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
740 rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
741 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
742 }
743 clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
744 return rc ? -EFAULT : 0;
745 }
746
__deliver_set_prefix(struct kvm_vcpu * vcpu)747 static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
748 {
749 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
750 struct kvm_s390_prefix_info prefix;
751
752 spin_lock(&li->lock);
753 prefix = li->irq.prefix;
754 li->irq.prefix.address = 0;
755 clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
756 spin_unlock(&li->lock);
757
758 vcpu->stat.deliver_prefix_signal++;
759 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
760 KVM_S390_SIGP_SET_PREFIX,
761 prefix.address, 0);
762
763 kvm_s390_set_prefix(vcpu, prefix.address);
764 return 0;
765 }
766
__deliver_emergency_signal(struct kvm_vcpu * vcpu)767 static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
768 {
769 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
770 int rc;
771 int cpu_addr;
772
773 spin_lock(&li->lock);
774 cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
775 clear_bit(cpu_addr, li->sigp_emerg_pending);
776 if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
777 clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
778 spin_unlock(&li->lock);
779
780 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
781 vcpu->stat.deliver_emergency_signal++;
782 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
783 cpu_addr, 0);
784 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
785 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
786 vcpu->arch.sie_block->eic = EXT_IRQ_EMERGENCY_SIG;
787 vcpu->arch.sie_block->extcpuaddr = cpu_addr;
788 return 0;
789 }
790
791 rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
792 (u16 *)__LC_EXT_INT_CODE);
793 rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
794 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
795 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
796 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
797 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
798 return rc ? -EFAULT : 0;
799 }
800
__deliver_external_call(struct kvm_vcpu * vcpu)801 static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
802 {
803 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
804 struct kvm_s390_extcall_info extcall;
805 int rc;
806
807 spin_lock(&li->lock);
808 extcall = li->irq.extcall;
809 li->irq.extcall.code = 0;
810 clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
811 spin_unlock(&li->lock);
812
813 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
814 vcpu->stat.deliver_external_call++;
815 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
816 KVM_S390_INT_EXTERNAL_CALL,
817 extcall.code, 0);
818 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
819 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
820 vcpu->arch.sie_block->eic = EXT_IRQ_EXTERNAL_CALL;
821 vcpu->arch.sie_block->extcpuaddr = extcall.code;
822 return 0;
823 }
824
825 rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
826 (u16 *)__LC_EXT_INT_CODE);
827 rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
828 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
829 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
830 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
831 sizeof(psw_t));
832 return rc ? -EFAULT : 0;
833 }
834
__deliver_prog_pv(struct kvm_vcpu * vcpu,u16 code)835 static int __deliver_prog_pv(struct kvm_vcpu *vcpu, u16 code)
836 {
837 switch (code) {
838 case PGM_SPECIFICATION:
839 vcpu->arch.sie_block->iictl = IICTL_CODE_SPECIFICATION;
840 break;
841 case PGM_OPERAND:
842 vcpu->arch.sie_block->iictl = IICTL_CODE_OPERAND;
843 break;
844 default:
845 return -EINVAL;
846 }
847 return 0;
848 }
849
__deliver_prog(struct kvm_vcpu * vcpu)850 static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
851 {
852 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
853 struct kvm_s390_pgm_info pgm_info;
854 int rc = 0, nullifying = false;
855 u16 ilen;
856
857 spin_lock(&li->lock);
858 pgm_info = li->irq.pgm;
859 clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
860 memset(&li->irq.pgm, 0, sizeof(pgm_info));
861 spin_unlock(&li->lock);
862
863 ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
864 VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
865 pgm_info.code, ilen);
866 vcpu->stat.deliver_program++;
867 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
868 pgm_info.code, 0);
869
870 /* PER is handled by the ultravisor */
871 if (kvm_s390_pv_cpu_is_protected(vcpu))
872 return __deliver_prog_pv(vcpu, pgm_info.code & ~PGM_PER);
873
874 switch (pgm_info.code & ~PGM_PER) {
875 case PGM_AFX_TRANSLATION:
876 case PGM_ASX_TRANSLATION:
877 case PGM_EX_TRANSLATION:
878 case PGM_LFX_TRANSLATION:
879 case PGM_LSTE_SEQUENCE:
880 case PGM_LSX_TRANSLATION:
881 case PGM_LX_TRANSLATION:
882 case PGM_PRIMARY_AUTHORITY:
883 case PGM_SECONDARY_AUTHORITY:
884 nullifying = true;
885 fallthrough;
886 case PGM_SPACE_SWITCH:
887 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
888 (u64 *)__LC_TRANS_EXC_CODE);
889 break;
890 case PGM_ALEN_TRANSLATION:
891 case PGM_ALE_SEQUENCE:
892 case PGM_ASTE_INSTANCE:
893 case PGM_ASTE_SEQUENCE:
894 case PGM_ASTE_VALIDITY:
895 case PGM_EXTENDED_AUTHORITY:
896 rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
897 (u8 *)__LC_EXC_ACCESS_ID);
898 nullifying = true;
899 break;
900 case PGM_ASCE_TYPE:
901 case PGM_PAGE_TRANSLATION:
902 case PGM_REGION_FIRST_TRANS:
903 case PGM_REGION_SECOND_TRANS:
904 case PGM_REGION_THIRD_TRANS:
905 case PGM_SEGMENT_TRANSLATION:
906 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
907 (u64 *)__LC_TRANS_EXC_CODE);
908 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
909 (u8 *)__LC_EXC_ACCESS_ID);
910 rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
911 (u8 *)__LC_OP_ACCESS_ID);
912 nullifying = true;
913 break;
914 case PGM_MONITOR:
915 rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
916 (u16 *)__LC_MON_CLASS_NR);
917 rc |= put_guest_lc(vcpu, pgm_info.mon_code,
918 (u64 *)__LC_MON_CODE);
919 break;
920 case PGM_VECTOR_PROCESSING:
921 case PGM_DATA:
922 rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
923 (u32 *)__LC_DATA_EXC_CODE);
924 break;
925 case PGM_PROTECTION:
926 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
927 (u64 *)__LC_TRANS_EXC_CODE);
928 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
929 (u8 *)__LC_EXC_ACCESS_ID);
930 break;
931 case PGM_STACK_FULL:
932 case PGM_STACK_EMPTY:
933 case PGM_STACK_SPECIFICATION:
934 case PGM_STACK_TYPE:
935 case PGM_STACK_OPERATION:
936 case PGM_TRACE_TABEL:
937 case PGM_CRYPTO_OPERATION:
938 nullifying = true;
939 break;
940 }
941
942 if (pgm_info.code & PGM_PER) {
943 rc |= put_guest_lc(vcpu, pgm_info.per_code,
944 (u8 *) __LC_PER_CODE);
945 rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
946 (u8 *)__LC_PER_ATMID);
947 rc |= put_guest_lc(vcpu, pgm_info.per_address,
948 (u64 *) __LC_PER_ADDRESS);
949 rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
950 (u8 *) __LC_PER_ACCESS_ID);
951 }
952
953 if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
954 kvm_s390_rewind_psw(vcpu, ilen);
955
956 /* bit 1+2 of the target are the ilc, so we can directly use ilen */
957 rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
958 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
959 (u64 *) __LC_PGM_LAST_BREAK);
960 rc |= put_guest_lc(vcpu, pgm_info.code,
961 (u16 *)__LC_PGM_INT_CODE);
962 rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
963 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
964 rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
965 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
966 return rc ? -EFAULT : 0;
967 }
968
969 #define SCCB_MASK 0xFFFFFFF8
970 #define SCCB_EVENT_PENDING 0x3
971
write_sclp(struct kvm_vcpu * vcpu,u32 parm)972 static int write_sclp(struct kvm_vcpu *vcpu, u32 parm)
973 {
974 int rc;
975
976 if (kvm_s390_pv_cpu_get_handle(vcpu)) {
977 vcpu->arch.sie_block->iictl = IICTL_CODE_EXT;
978 vcpu->arch.sie_block->eic = EXT_IRQ_SERVICE_SIG;
979 vcpu->arch.sie_block->eiparams = parm;
980 return 0;
981 }
982
983 rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
984 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
985 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
986 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
987 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
988 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
989 rc |= put_guest_lc(vcpu, parm,
990 (u32 *)__LC_EXT_PARAMS);
991
992 return rc ? -EFAULT : 0;
993 }
994
__deliver_service(struct kvm_vcpu * vcpu)995 static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
996 {
997 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
998 struct kvm_s390_ext_info ext;
999
1000 spin_lock(&fi->lock);
1001 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs) ||
1002 !(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
1003 spin_unlock(&fi->lock);
1004 return 0;
1005 }
1006 ext = fi->srv_signal;
1007 memset(&fi->srv_signal, 0, sizeof(ext));
1008 clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1009 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1010 if (kvm_s390_pv_cpu_is_protected(vcpu))
1011 set_bit(IRQ_PEND_EXT_SERVICE, &fi->masked_irqs);
1012 spin_unlock(&fi->lock);
1013
1014 VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
1015 ext.ext_params);
1016 vcpu->stat.deliver_service_signal++;
1017 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
1018 ext.ext_params, 0);
1019
1020 return write_sclp(vcpu, ext.ext_params);
1021 }
1022
__deliver_service_ev(struct kvm_vcpu * vcpu)1023 static int __must_check __deliver_service_ev(struct kvm_vcpu *vcpu)
1024 {
1025 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1026 struct kvm_s390_ext_info ext;
1027
1028 spin_lock(&fi->lock);
1029 if (!(test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs))) {
1030 spin_unlock(&fi->lock);
1031 return 0;
1032 }
1033 ext = fi->srv_signal;
1034 /* only clear the event bit */
1035 fi->srv_signal.ext_params &= ~SCCB_EVENT_PENDING;
1036 clear_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1037 spin_unlock(&fi->lock);
1038
1039 VCPU_EVENT(vcpu, 4, "%s", "deliver: sclp parameter event");
1040 vcpu->stat.deliver_service_signal++;
1041 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
1042 ext.ext_params, 0);
1043
1044 return write_sclp(vcpu, SCCB_EVENT_PENDING);
1045 }
1046
__deliver_pfault_done(struct kvm_vcpu * vcpu)1047 static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
1048 {
1049 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1050 struct kvm_s390_interrupt_info *inti;
1051 int rc = 0;
1052
1053 spin_lock(&fi->lock);
1054 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
1055 struct kvm_s390_interrupt_info,
1056 list);
1057 if (inti) {
1058 list_del(&inti->list);
1059 fi->counters[FIRQ_CNTR_PFAULT] -= 1;
1060 }
1061 if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
1062 clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1063 spin_unlock(&fi->lock);
1064
1065 if (inti) {
1066 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1067 KVM_S390_INT_PFAULT_DONE, 0,
1068 inti->ext.ext_params2);
1069 VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
1070 inti->ext.ext_params2);
1071
1072 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1073 (u16 *)__LC_EXT_INT_CODE);
1074 rc |= put_guest_lc(vcpu, PFAULT_DONE,
1075 (u16 *)__LC_EXT_CPU_ADDR);
1076 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1077 &vcpu->arch.sie_block->gpsw,
1078 sizeof(psw_t));
1079 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1080 &vcpu->arch.sie_block->gpsw,
1081 sizeof(psw_t));
1082 rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1083 (u64 *)__LC_EXT_PARAMS2);
1084 kfree(inti);
1085 }
1086 return rc ? -EFAULT : 0;
1087 }
1088
__deliver_virtio(struct kvm_vcpu * vcpu)1089 static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
1090 {
1091 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
1092 struct kvm_s390_interrupt_info *inti;
1093 int rc = 0;
1094
1095 spin_lock(&fi->lock);
1096 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
1097 struct kvm_s390_interrupt_info,
1098 list);
1099 if (inti) {
1100 VCPU_EVENT(vcpu, 4,
1101 "deliver: virtio parm: 0x%x,parm64: 0x%llx",
1102 inti->ext.ext_params, inti->ext.ext_params2);
1103 vcpu->stat.deliver_virtio++;
1104 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1105 inti->type,
1106 inti->ext.ext_params,
1107 inti->ext.ext_params2);
1108 list_del(&inti->list);
1109 fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
1110 }
1111 if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
1112 clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1113 spin_unlock(&fi->lock);
1114
1115 if (inti) {
1116 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
1117 (u16 *)__LC_EXT_INT_CODE);
1118 rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
1119 (u16 *)__LC_EXT_CPU_ADDR);
1120 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
1121 &vcpu->arch.sie_block->gpsw,
1122 sizeof(psw_t));
1123 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
1124 &vcpu->arch.sie_block->gpsw,
1125 sizeof(psw_t));
1126 rc |= put_guest_lc(vcpu, inti->ext.ext_params,
1127 (u32 *)__LC_EXT_PARAMS);
1128 rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
1129 (u64 *)__LC_EXT_PARAMS2);
1130 kfree(inti);
1131 }
1132 return rc ? -EFAULT : 0;
1133 }
1134
__do_deliver_io(struct kvm_vcpu * vcpu,struct kvm_s390_io_info * io)1135 static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io)
1136 {
1137 int rc;
1138
1139 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
1140 vcpu->arch.sie_block->iictl = IICTL_CODE_IO;
1141 vcpu->arch.sie_block->subchannel_id = io->subchannel_id;
1142 vcpu->arch.sie_block->subchannel_nr = io->subchannel_nr;
1143 vcpu->arch.sie_block->io_int_parm = io->io_int_parm;
1144 vcpu->arch.sie_block->io_int_word = io->io_int_word;
1145 return 0;
1146 }
1147
1148 rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID);
1149 rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR);
1150 rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM);
1151 rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD);
1152 rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
1153 &vcpu->arch.sie_block->gpsw,
1154 sizeof(psw_t));
1155 rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
1156 &vcpu->arch.sie_block->gpsw,
1157 sizeof(psw_t));
1158 return rc ? -EFAULT : 0;
1159 }
1160
__deliver_io(struct kvm_vcpu * vcpu,unsigned long irq_type)1161 static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
1162 unsigned long irq_type)
1163 {
1164 struct list_head *isc_list;
1165 struct kvm_s390_float_interrupt *fi;
1166 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1167 struct kvm_s390_interrupt_info *inti = NULL;
1168 struct kvm_s390_io_info io;
1169 u32 isc;
1170 int rc = 0;
1171
1172 fi = &vcpu->kvm->arch.float_int;
1173
1174 spin_lock(&fi->lock);
1175 isc = irq_type_to_isc(irq_type);
1176 isc_list = &fi->lists[isc];
1177 inti = list_first_entry_or_null(isc_list,
1178 struct kvm_s390_interrupt_info,
1179 list);
1180 if (inti) {
1181 if (inti->type & KVM_S390_INT_IO_AI_MASK)
1182 VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
1183 else
1184 VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
1185 inti->io.subchannel_id >> 8,
1186 inti->io.subchannel_id >> 1 & 0x3,
1187 inti->io.subchannel_nr);
1188
1189 vcpu->stat.deliver_io++;
1190 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1191 inti->type,
1192 ((__u32)inti->io.subchannel_id << 16) |
1193 inti->io.subchannel_nr,
1194 ((__u64)inti->io.io_int_parm << 32) |
1195 inti->io.io_int_word);
1196 list_del(&inti->list);
1197 fi->counters[FIRQ_CNTR_IO] -= 1;
1198 }
1199 if (list_empty(isc_list))
1200 clear_bit(irq_type, &fi->pending_irqs);
1201 spin_unlock(&fi->lock);
1202
1203 if (inti) {
1204 rc = __do_deliver_io(vcpu, &(inti->io));
1205 kfree(inti);
1206 goto out;
1207 }
1208
1209 if (gi->origin && gisa_tac_ipm_gisc(gi->origin, isc)) {
1210 /*
1211 * in case an adapter interrupt was not delivered
1212 * in SIE context KVM will handle the delivery
1213 */
1214 VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc);
1215 memset(&io, 0, sizeof(io));
1216 io.io_int_word = isc_to_int_word(isc);
1217 vcpu->stat.deliver_io++;
1218 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
1219 KVM_S390_INT_IO(1, 0, 0, 0),
1220 ((__u32)io.subchannel_id << 16) |
1221 io.subchannel_nr,
1222 ((__u64)io.io_int_parm << 32) |
1223 io.io_int_word);
1224 rc = __do_deliver_io(vcpu, &io);
1225 }
1226 out:
1227 return rc;
1228 }
1229
1230 /* Check whether an external call is pending (deliverable or not) */
kvm_s390_ext_call_pending(struct kvm_vcpu * vcpu)1231 int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
1232 {
1233 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1234
1235 if (!sclp.has_sigpif)
1236 return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
1237
1238 return sca_ext_call_pending(vcpu, NULL);
1239 }
1240
kvm_s390_vcpu_has_irq(struct kvm_vcpu * vcpu,int exclude_stop)1241 int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
1242 {
1243 if (deliverable_irqs(vcpu))
1244 return 1;
1245
1246 if (kvm_cpu_has_pending_timer(vcpu))
1247 return 1;
1248
1249 /* external call pending and deliverable */
1250 if (kvm_s390_ext_call_pending(vcpu) &&
1251 !psw_extint_disabled(vcpu) &&
1252 (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
1253 return 1;
1254
1255 if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
1256 return 1;
1257 return 0;
1258 }
1259
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)1260 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1261 {
1262 return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
1263 }
1264
__calculate_sltime(struct kvm_vcpu * vcpu)1265 static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
1266 {
1267 const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
1268 const u64 ckc = vcpu->arch.sie_block->ckc;
1269 u64 cputm, sltime = 0;
1270
1271 if (ckc_interrupts_enabled(vcpu)) {
1272 if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
1273 if ((s64)now < (s64)ckc)
1274 sltime = tod_to_ns((s64)ckc - (s64)now);
1275 } else if (now < ckc) {
1276 sltime = tod_to_ns(ckc - now);
1277 }
1278 /* already expired */
1279 if (!sltime)
1280 return 0;
1281 if (cpu_timer_interrupts_enabled(vcpu)) {
1282 cputm = kvm_s390_get_cpu_timer(vcpu);
1283 /* already expired? */
1284 if (cputm >> 63)
1285 return 0;
1286 return min_t(u64, sltime, tod_to_ns(cputm));
1287 }
1288 } else if (cpu_timer_interrupts_enabled(vcpu)) {
1289 sltime = kvm_s390_get_cpu_timer(vcpu);
1290 /* already expired? */
1291 if (sltime >> 63)
1292 return 0;
1293 }
1294 return sltime;
1295 }
1296
kvm_s390_handle_wait(struct kvm_vcpu * vcpu)1297 int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
1298 {
1299 struct kvm_s390_gisa_interrupt *gi = &vcpu->kvm->arch.gisa_int;
1300 u64 sltime;
1301
1302 vcpu->stat.exit_wait_state++;
1303
1304 /* fast path */
1305 if (kvm_arch_vcpu_runnable(vcpu))
1306 return 0;
1307
1308 if (psw_interrupts_disabled(vcpu)) {
1309 VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1310 return -EOPNOTSUPP; /* disabled wait */
1311 }
1312
1313 if (gi->origin &&
1314 (gisa_get_ipm_or_restore_iam(gi) &
1315 vcpu->arch.sie_block->gcr[6] >> 24))
1316 return 0;
1317
1318 if (!ckc_interrupts_enabled(vcpu) &&
1319 !cpu_timer_interrupts_enabled(vcpu)) {
1320 VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1321 __set_cpu_idle(vcpu);
1322 goto no_timer;
1323 }
1324
1325 sltime = __calculate_sltime(vcpu);
1326 if (!sltime)
1327 return 0;
1328
1329 __set_cpu_idle(vcpu);
1330 hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
1331 VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1332 no_timer:
1333 kvm_vcpu_srcu_read_unlock(vcpu);
1334 kvm_vcpu_halt(vcpu);
1335 vcpu->valid_wakeup = false;
1336 __unset_cpu_idle(vcpu);
1337 kvm_vcpu_srcu_read_lock(vcpu);
1338
1339 hrtimer_cancel(&vcpu->arch.ckc_timer);
1340 return 0;
1341 }
1342
kvm_s390_vcpu_wakeup(struct kvm_vcpu * vcpu)1343 void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
1344 {
1345 vcpu->valid_wakeup = true;
1346 kvm_vcpu_wake_up(vcpu);
1347
1348 /*
1349 * The VCPU might not be sleeping but rather executing VSIE. Let's
1350 * kick it, so it leaves the SIE to process the request.
1351 */
1352 kvm_s390_vsie_kick(vcpu);
1353 }
1354
kvm_s390_idle_wakeup(struct hrtimer * timer)1355 enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
1356 {
1357 struct kvm_vcpu *vcpu;
1358 u64 sltime;
1359
1360 vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1361 sltime = __calculate_sltime(vcpu);
1362
1363 /*
1364 * If the monotonic clock runs faster than the tod clock we might be
1365 * woken up too early and have to go back to sleep to avoid deadlocks.
1366 */
1367 if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1368 return HRTIMER_RESTART;
1369 kvm_s390_vcpu_wakeup(vcpu);
1370 return HRTIMER_NORESTART;
1371 }
1372
kvm_s390_clear_local_irqs(struct kvm_vcpu * vcpu)1373 void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
1374 {
1375 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1376
1377 spin_lock(&li->lock);
1378 li->pending_irqs = 0;
1379 bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
1380 memset(&li->irq, 0, sizeof(li->irq));
1381 spin_unlock(&li->lock);
1382
1383 sca_clear_ext_call(vcpu);
1384 }
1385
kvm_s390_deliver_pending_interrupts(struct kvm_vcpu * vcpu)1386 int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1387 {
1388 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1389 int rc = 0;
1390 bool delivered = false;
1391 unsigned long irq_type;
1392 unsigned long irqs;
1393
1394 __reset_intercept_indicators(vcpu);
1395
1396 /* pending ckc conditions might have been invalidated */
1397 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1398 if (ckc_irq_pending(vcpu))
1399 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1400
1401 /* pending cpu timer conditions might have been invalidated */
1402 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1403 if (cpu_timer_irq_pending(vcpu))
1404 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1405
1406 while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1407 /* bits are in the reverse order of interrupt priority */
1408 irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT);
1409 switch (irq_type) {
1410 case IRQ_PEND_IO_ISC_0:
1411 case IRQ_PEND_IO_ISC_1:
1412 case IRQ_PEND_IO_ISC_2:
1413 case IRQ_PEND_IO_ISC_3:
1414 case IRQ_PEND_IO_ISC_4:
1415 case IRQ_PEND_IO_ISC_5:
1416 case IRQ_PEND_IO_ISC_6:
1417 case IRQ_PEND_IO_ISC_7:
1418 rc = __deliver_io(vcpu, irq_type);
1419 break;
1420 case IRQ_PEND_MCHK_EX:
1421 case IRQ_PEND_MCHK_REP:
1422 rc = __deliver_machine_check(vcpu);
1423 break;
1424 case IRQ_PEND_PROG:
1425 rc = __deliver_prog(vcpu);
1426 break;
1427 case IRQ_PEND_EXT_EMERGENCY:
1428 rc = __deliver_emergency_signal(vcpu);
1429 break;
1430 case IRQ_PEND_EXT_EXTERNAL:
1431 rc = __deliver_external_call(vcpu);
1432 break;
1433 case IRQ_PEND_EXT_CLOCK_COMP:
1434 rc = __deliver_ckc(vcpu);
1435 break;
1436 case IRQ_PEND_EXT_CPU_TIMER:
1437 rc = __deliver_cpu_timer(vcpu);
1438 break;
1439 case IRQ_PEND_RESTART:
1440 rc = __deliver_restart(vcpu);
1441 break;
1442 case IRQ_PEND_SET_PREFIX:
1443 rc = __deliver_set_prefix(vcpu);
1444 break;
1445 case IRQ_PEND_PFAULT_INIT:
1446 rc = __deliver_pfault_init(vcpu);
1447 break;
1448 case IRQ_PEND_EXT_SERVICE:
1449 rc = __deliver_service(vcpu);
1450 break;
1451 case IRQ_PEND_EXT_SERVICE_EV:
1452 rc = __deliver_service_ev(vcpu);
1453 break;
1454 case IRQ_PEND_PFAULT_DONE:
1455 rc = __deliver_pfault_done(vcpu);
1456 break;
1457 case IRQ_PEND_VIRTIO:
1458 rc = __deliver_virtio(vcpu);
1459 break;
1460 default:
1461 WARN_ONCE(1, "Unknown pending irq type %ld", irq_type);
1462 clear_bit(irq_type, &li->pending_irqs);
1463 }
1464 delivered |= !rc;
1465 }
1466
1467 /*
1468 * We delivered at least one interrupt and modified the PC. Force a
1469 * singlestep event now.
1470 */
1471 if (delivered && guestdbg_sstep_enabled(vcpu)) {
1472 struct kvm_debug_exit_arch *debug_exit = &vcpu->run->debug.arch;
1473
1474 debug_exit->addr = vcpu->arch.sie_block->gpsw.addr;
1475 debug_exit->type = KVM_SINGLESTEP;
1476 vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING;
1477 }
1478
1479 set_intercept_indicators(vcpu);
1480
1481 return rc;
1482 }
1483
__inject_prog(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1484 static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1485 {
1486 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1487
1488 vcpu->stat.inject_program++;
1489 VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
1490 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
1491 irq->u.pgm.code, 0);
1492
1493 if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
1494 /* auto detection if no valid ILC was given */
1495 irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
1496 irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
1497 irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
1498 }
1499
1500 if (irq->u.pgm.code == PGM_PER) {
1501 li->irq.pgm.code |= PGM_PER;
1502 li->irq.pgm.flags = irq->u.pgm.flags;
1503 /* only modify PER related information */
1504 li->irq.pgm.per_address = irq->u.pgm.per_address;
1505 li->irq.pgm.per_code = irq->u.pgm.per_code;
1506 li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
1507 li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
1508 } else if (!(irq->u.pgm.code & PGM_PER)) {
1509 li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
1510 irq->u.pgm.code;
1511 li->irq.pgm.flags = irq->u.pgm.flags;
1512 /* only modify non-PER information */
1513 li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
1514 li->irq.pgm.mon_code = irq->u.pgm.mon_code;
1515 li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
1516 li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
1517 li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
1518 li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
1519 } else {
1520 li->irq.pgm = irq->u.pgm;
1521 }
1522 set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1523 return 0;
1524 }
1525
__inject_pfault_init(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1526 static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1527 {
1528 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1529
1530 vcpu->stat.inject_pfault_init++;
1531 VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
1532 irq->u.ext.ext_params2);
1533 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
1534 irq->u.ext.ext_params,
1535 irq->u.ext.ext_params2);
1536
1537 li->irq.ext = irq->u.ext;
1538 set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1539 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1540 return 0;
1541 }
1542
__inject_extcall(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1543 static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1544 {
1545 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1546 struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1547 uint16_t src_id = irq->u.extcall.code;
1548
1549 vcpu->stat.inject_external_call++;
1550 VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1551 src_id);
1552 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1553 src_id, 0);
1554
1555 /* sending vcpu invalid */
1556 if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1557 return -EINVAL;
1558
1559 if (sclp.has_sigpif && !kvm_s390_pv_cpu_get_handle(vcpu))
1560 return sca_inject_ext_call(vcpu, src_id);
1561
1562 if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1563 return -EBUSY;
1564 *extcall = irq->u.extcall;
1565 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1566 return 0;
1567 }
1568
__inject_set_prefix(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1569 static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1570 {
1571 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1572 struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1573
1574 vcpu->stat.inject_set_prefix++;
1575 VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1576 irq->u.prefix.address);
1577 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1578 irq->u.prefix.address, 0);
1579
1580 if (!is_vcpu_stopped(vcpu))
1581 return -EBUSY;
1582
1583 *prefix = irq->u.prefix;
1584 set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1585 return 0;
1586 }
1587
1588 #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
__inject_sigp_stop(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1589 static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1590 {
1591 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1592 struct kvm_s390_stop_info *stop = &li->irq.stop;
1593 int rc = 0;
1594
1595 vcpu->stat.inject_stop_signal++;
1596 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1597
1598 if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
1599 return -EINVAL;
1600
1601 if (is_vcpu_stopped(vcpu)) {
1602 if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
1603 rc = kvm_s390_store_status_unloaded(vcpu,
1604 KVM_S390_STORE_STATUS_NOADDR);
1605 return rc;
1606 }
1607
1608 if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
1609 return -EBUSY;
1610 stop->flags = irq->u.stop.flags;
1611 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
1612 return 0;
1613 }
1614
__inject_sigp_restart(struct kvm_vcpu * vcpu)1615 static int __inject_sigp_restart(struct kvm_vcpu *vcpu)
1616 {
1617 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1618
1619 vcpu->stat.inject_restart++;
1620 VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1621 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1622
1623 set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1624 return 0;
1625 }
1626
__inject_sigp_emergency(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1627 static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1628 struct kvm_s390_irq *irq)
1629 {
1630 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1631
1632 vcpu->stat.inject_emergency_signal++;
1633 VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1634 irq->u.emerg.code);
1635 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1636 irq->u.emerg.code, 0);
1637
1638 /* sending vcpu invalid */
1639 if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
1640 return -EINVAL;
1641
1642 set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1643 set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1644 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1645 return 0;
1646 }
1647
__inject_mchk(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)1648 static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1649 {
1650 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1651 struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1652
1653 vcpu->stat.inject_mchk++;
1654 VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1655 irq->u.mchk.mcic);
1656 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1657 irq->u.mchk.mcic);
1658
1659 /*
1660 * Because repressible machine checks can be indicated along with
1661 * exigent machine checks (PoP, Chapter 11, Interruption action)
1662 * we need to combine cr14, mcic and external damage code.
1663 * Failing storage address and the logout area should not be or'ed
1664 * together, we just indicate the last occurrence of the corresponding
1665 * machine check
1666 */
1667 mchk->cr14 |= irq->u.mchk.cr14;
1668 mchk->mcic |= irq->u.mchk.mcic;
1669 mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
1670 mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
1671 memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
1672 sizeof(mchk->fixed_logout));
1673 if (mchk->mcic & MCHK_EX_MASK)
1674 set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
1675 else if (mchk->mcic & MCHK_REP_MASK)
1676 set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
1677 return 0;
1678 }
1679
__inject_ckc(struct kvm_vcpu * vcpu)1680 static int __inject_ckc(struct kvm_vcpu *vcpu)
1681 {
1682 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1683
1684 vcpu->stat.inject_ckc++;
1685 VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1686 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1687 0, 0);
1688
1689 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1690 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1691 return 0;
1692 }
1693
__inject_cpu_timer(struct kvm_vcpu * vcpu)1694 static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1695 {
1696 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1697
1698 vcpu->stat.inject_cputm++;
1699 VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1700 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1701 0, 0);
1702
1703 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1704 kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
1705 return 0;
1706 }
1707
get_io_int(struct kvm * kvm,int isc,u32 schid)1708 static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
1709 int isc, u32 schid)
1710 {
1711 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1712 struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1713 struct kvm_s390_interrupt_info *iter;
1714 u16 id = (schid & 0xffff0000U) >> 16;
1715 u16 nr = schid & 0x0000ffffU;
1716
1717 spin_lock(&fi->lock);
1718 list_for_each_entry(iter, isc_list, list) {
1719 if (schid && (id != iter->io.subchannel_id ||
1720 nr != iter->io.subchannel_nr))
1721 continue;
1722 /* found an appropriate entry */
1723 list_del_init(&iter->list);
1724 fi->counters[FIRQ_CNTR_IO] -= 1;
1725 if (list_empty(isc_list))
1726 clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1727 spin_unlock(&fi->lock);
1728 return iter;
1729 }
1730 spin_unlock(&fi->lock);
1731 return NULL;
1732 }
1733
get_top_io_int(struct kvm * kvm,u64 isc_mask,u32 schid)1734 static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm,
1735 u64 isc_mask, u32 schid)
1736 {
1737 struct kvm_s390_interrupt_info *inti = NULL;
1738 int isc;
1739
1740 for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
1741 if (isc_mask & isc_to_isc_bits(isc))
1742 inti = get_io_int(kvm, isc, schid);
1743 }
1744 return inti;
1745 }
1746
get_top_gisa_isc(struct kvm * kvm,u64 isc_mask,u32 schid)1747 static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid)
1748 {
1749 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1750 unsigned long active_mask;
1751 int isc;
1752
1753 if (schid)
1754 goto out;
1755 if (!gi->origin)
1756 goto out;
1757
1758 active_mask = (isc_mask & gisa_get_ipm(gi->origin) << 24) << 32;
1759 while (active_mask) {
1760 isc = __fls(active_mask) ^ (BITS_PER_LONG - 1);
1761 if (gisa_tac_ipm_gisc(gi->origin, isc))
1762 return isc;
1763 clear_bit_inv(isc, &active_mask);
1764 }
1765 out:
1766 return -EINVAL;
1767 }
1768
1769 /*
1770 * Dequeue and return an I/O interrupt matching any of the interruption
1771 * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
1772 * Take into account the interrupts pending in the interrupt list and in GISA.
1773 *
1774 * Note that for a guest that does not enable I/O interrupts
1775 * but relies on TPI, a flood of classic interrupts may starve
1776 * out adapter interrupts on the same isc. Linux does not do
1777 * that, and it is possible to work around the issue by configuring
1778 * different iscs for classic and adapter interrupts in the guest,
1779 * but we may want to revisit this in the future.
1780 */
kvm_s390_get_io_int(struct kvm * kvm,u64 isc_mask,u32 schid)1781 struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1782 u64 isc_mask, u32 schid)
1783 {
1784 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1785 struct kvm_s390_interrupt_info *inti, *tmp_inti;
1786 int isc;
1787
1788 inti = get_top_io_int(kvm, isc_mask, schid);
1789
1790 isc = get_top_gisa_isc(kvm, isc_mask, schid);
1791 if (isc < 0)
1792 /* no AI in GISA */
1793 goto out;
1794
1795 if (!inti)
1796 /* AI in GISA but no classical IO int */
1797 goto gisa_out;
1798
1799 /* both types of interrupts present */
1800 if (int_word_to_isc(inti->io.io_int_word) <= isc) {
1801 /* classical IO int with higher priority */
1802 gisa_set_ipm_gisc(gi->origin, isc);
1803 goto out;
1804 }
1805 gisa_out:
1806 tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
1807 if (tmp_inti) {
1808 tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0);
1809 tmp_inti->io.io_int_word = isc_to_int_word(isc);
1810 if (inti)
1811 kvm_s390_reinject_io_int(kvm, inti);
1812 inti = tmp_inti;
1813 } else
1814 gisa_set_ipm_gisc(gi->origin, isc);
1815 out:
1816 return inti;
1817 }
1818
__inject_service(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1819 static int __inject_service(struct kvm *kvm,
1820 struct kvm_s390_interrupt_info *inti)
1821 {
1822 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1823
1824 kvm->stat.inject_service_signal++;
1825 spin_lock(&fi->lock);
1826 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
1827
1828 /* We always allow events, track them separately from the sccb ints */
1829 if (fi->srv_signal.ext_params & SCCB_EVENT_PENDING)
1830 set_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs);
1831
1832 /*
1833 * Early versions of the QEMU s390 bios will inject several
1834 * service interrupts after another without handling a
1835 * condition code indicating busy.
1836 * We will silently ignore those superfluous sccb values.
1837 * A future version of QEMU will take care of serialization
1838 * of servc requests
1839 */
1840 if (fi->srv_signal.ext_params & SCCB_MASK)
1841 goto out;
1842 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
1843 set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1844 out:
1845 spin_unlock(&fi->lock);
1846 kfree(inti);
1847 return 0;
1848 }
1849
__inject_virtio(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1850 static int __inject_virtio(struct kvm *kvm,
1851 struct kvm_s390_interrupt_info *inti)
1852 {
1853 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1854
1855 kvm->stat.inject_virtio++;
1856 spin_lock(&fi->lock);
1857 if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
1858 spin_unlock(&fi->lock);
1859 return -EBUSY;
1860 }
1861 fi->counters[FIRQ_CNTR_VIRTIO] += 1;
1862 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
1863 set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1864 spin_unlock(&fi->lock);
1865 return 0;
1866 }
1867
__inject_pfault_done(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1868 static int __inject_pfault_done(struct kvm *kvm,
1869 struct kvm_s390_interrupt_info *inti)
1870 {
1871 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1872
1873 kvm->stat.inject_pfault_done++;
1874 spin_lock(&fi->lock);
1875 if (fi->counters[FIRQ_CNTR_PFAULT] >=
1876 (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
1877 spin_unlock(&fi->lock);
1878 return -EBUSY;
1879 }
1880 fi->counters[FIRQ_CNTR_PFAULT] += 1;
1881 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
1882 set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1883 spin_unlock(&fi->lock);
1884 return 0;
1885 }
1886
1887 #define CR_PENDING_SUBCLASS 28
__inject_float_mchk(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1888 static int __inject_float_mchk(struct kvm *kvm,
1889 struct kvm_s390_interrupt_info *inti)
1890 {
1891 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1892
1893 kvm->stat.inject_float_mchk++;
1894 spin_lock(&fi->lock);
1895 fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
1896 fi->mchk.mcic |= inti->mchk.mcic;
1897 set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
1898 spin_unlock(&fi->lock);
1899 kfree(inti);
1900 return 0;
1901 }
1902
__inject_io(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1903 static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1904 {
1905 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
1906 struct kvm_s390_float_interrupt *fi;
1907 struct list_head *list;
1908 int isc;
1909
1910 kvm->stat.inject_io++;
1911 isc = int_word_to_isc(inti->io.io_int_word);
1912
1913 /*
1914 * We do not use the lock checking variant as this is just a
1915 * performance optimization and we do not hold the lock here.
1916 * This is ok as the code will pick interrupts from both "lists"
1917 * for delivery.
1918 */
1919 if (gi->origin && inti->type & KVM_S390_INT_IO_AI_MASK) {
1920 VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc);
1921 gisa_set_ipm_gisc(gi->origin, isc);
1922 kfree(inti);
1923 return 0;
1924 }
1925
1926 fi = &kvm->arch.float_int;
1927 spin_lock(&fi->lock);
1928 if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
1929 spin_unlock(&fi->lock);
1930 return -EBUSY;
1931 }
1932 fi->counters[FIRQ_CNTR_IO] += 1;
1933
1934 if (inti->type & KVM_S390_INT_IO_AI_MASK)
1935 VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
1936 else
1937 VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
1938 inti->io.subchannel_id >> 8,
1939 inti->io.subchannel_id >> 1 & 0x3,
1940 inti->io.subchannel_nr);
1941 list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1942 list_add_tail(&inti->list, list);
1943 set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1944 spin_unlock(&fi->lock);
1945 return 0;
1946 }
1947
1948 /*
1949 * Find a destination VCPU for a floating irq and kick it.
1950 */
__floating_irq_kick(struct kvm * kvm,u64 type)1951 static void __floating_irq_kick(struct kvm *kvm, u64 type)
1952 {
1953 struct kvm_vcpu *dst_vcpu;
1954 int sigcpu, online_vcpus, nr_tries = 0;
1955
1956 online_vcpus = atomic_read(&kvm->online_vcpus);
1957 if (!online_vcpus)
1958 return;
1959
1960 /* find idle VCPUs first, then round robin */
1961 sigcpu = find_first_bit(kvm->arch.idle_mask, online_vcpus);
1962 if (sigcpu == online_vcpus) {
1963 do {
1964 sigcpu = kvm->arch.float_int.next_rr_cpu++;
1965 kvm->arch.float_int.next_rr_cpu %= online_vcpus;
1966 /* avoid endless loops if all vcpus are stopped */
1967 if (nr_tries++ >= online_vcpus)
1968 return;
1969 } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
1970 }
1971 dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
1972
1973 /* make the VCPU drop out of the SIE, or wake it up if sleeping */
1974 switch (type) {
1975 case KVM_S390_MCHK:
1976 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT);
1977 break;
1978 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1979 if (!(type & KVM_S390_INT_IO_AI_MASK &&
1980 kvm->arch.gisa_int.origin) ||
1981 kvm_s390_pv_cpu_get_handle(dst_vcpu))
1982 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT);
1983 break;
1984 default:
1985 kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT);
1986 break;
1987 }
1988 kvm_s390_vcpu_wakeup(dst_vcpu);
1989 }
1990
__inject_vm(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)1991 static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1992 {
1993 u64 type = READ_ONCE(inti->type);
1994 int rc;
1995
1996 switch (type) {
1997 case KVM_S390_MCHK:
1998 rc = __inject_float_mchk(kvm, inti);
1999 break;
2000 case KVM_S390_INT_VIRTIO:
2001 rc = __inject_virtio(kvm, inti);
2002 break;
2003 case KVM_S390_INT_SERVICE:
2004 rc = __inject_service(kvm, inti);
2005 break;
2006 case KVM_S390_INT_PFAULT_DONE:
2007 rc = __inject_pfault_done(kvm, inti);
2008 break;
2009 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2010 rc = __inject_io(kvm, inti);
2011 break;
2012 default:
2013 rc = -EINVAL;
2014 }
2015 if (rc)
2016 return rc;
2017
2018 __floating_irq_kick(kvm, type);
2019 return 0;
2020 }
2021
kvm_s390_inject_vm(struct kvm * kvm,struct kvm_s390_interrupt * s390int)2022 int kvm_s390_inject_vm(struct kvm *kvm,
2023 struct kvm_s390_interrupt *s390int)
2024 {
2025 struct kvm_s390_interrupt_info *inti;
2026 int rc;
2027
2028 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
2029 if (!inti)
2030 return -ENOMEM;
2031
2032 inti->type = s390int->type;
2033 switch (inti->type) {
2034 case KVM_S390_INT_VIRTIO:
2035 VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
2036 s390int->parm, s390int->parm64);
2037 inti->ext.ext_params = s390int->parm;
2038 inti->ext.ext_params2 = s390int->parm64;
2039 break;
2040 case KVM_S390_INT_SERVICE:
2041 VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
2042 inti->ext.ext_params = s390int->parm;
2043 break;
2044 case KVM_S390_INT_PFAULT_DONE:
2045 inti->ext.ext_params2 = s390int->parm64;
2046 break;
2047 case KVM_S390_MCHK:
2048 VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
2049 s390int->parm64);
2050 inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
2051 inti->mchk.mcic = s390int->parm64;
2052 break;
2053 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2054 inti->io.subchannel_id = s390int->parm >> 16;
2055 inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
2056 inti->io.io_int_parm = s390int->parm64 >> 32;
2057 inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
2058 break;
2059 default:
2060 kfree(inti);
2061 return -EINVAL;
2062 }
2063 trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
2064 2);
2065
2066 rc = __inject_vm(kvm, inti);
2067 if (rc)
2068 kfree(inti);
2069 return rc;
2070 }
2071
kvm_s390_reinject_io_int(struct kvm * kvm,struct kvm_s390_interrupt_info * inti)2072 int kvm_s390_reinject_io_int(struct kvm *kvm,
2073 struct kvm_s390_interrupt_info *inti)
2074 {
2075 return __inject_vm(kvm, inti);
2076 }
2077
s390int_to_s390irq(struct kvm_s390_interrupt * s390int,struct kvm_s390_irq * irq)2078 int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
2079 struct kvm_s390_irq *irq)
2080 {
2081 irq->type = s390int->type;
2082 switch (irq->type) {
2083 case KVM_S390_PROGRAM_INT:
2084 if (s390int->parm & 0xffff0000)
2085 return -EINVAL;
2086 irq->u.pgm.code = s390int->parm;
2087 break;
2088 case KVM_S390_SIGP_SET_PREFIX:
2089 irq->u.prefix.address = s390int->parm;
2090 break;
2091 case KVM_S390_SIGP_STOP:
2092 irq->u.stop.flags = s390int->parm;
2093 break;
2094 case KVM_S390_INT_EXTERNAL_CALL:
2095 if (s390int->parm & 0xffff0000)
2096 return -EINVAL;
2097 irq->u.extcall.code = s390int->parm;
2098 break;
2099 case KVM_S390_INT_EMERGENCY:
2100 if (s390int->parm & 0xffff0000)
2101 return -EINVAL;
2102 irq->u.emerg.code = s390int->parm;
2103 break;
2104 case KVM_S390_MCHK:
2105 irq->u.mchk.mcic = s390int->parm64;
2106 break;
2107 case KVM_S390_INT_PFAULT_INIT:
2108 irq->u.ext.ext_params = s390int->parm;
2109 irq->u.ext.ext_params2 = s390int->parm64;
2110 break;
2111 case KVM_S390_RESTART:
2112 case KVM_S390_INT_CLOCK_COMP:
2113 case KVM_S390_INT_CPU_TIMER:
2114 break;
2115 default:
2116 return -EINVAL;
2117 }
2118 return 0;
2119 }
2120
kvm_s390_is_stop_irq_pending(struct kvm_vcpu * vcpu)2121 int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
2122 {
2123 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2124
2125 return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2126 }
2127
kvm_s390_is_restart_irq_pending(struct kvm_vcpu * vcpu)2128 int kvm_s390_is_restart_irq_pending(struct kvm_vcpu *vcpu)
2129 {
2130 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2131
2132 return test_bit(IRQ_PEND_RESTART, &li->pending_irqs);
2133 }
2134
kvm_s390_clear_stop_irq(struct kvm_vcpu * vcpu)2135 void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
2136 {
2137 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2138
2139 spin_lock(&li->lock);
2140 li->irq.stop.flags = 0;
2141 clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
2142 spin_unlock(&li->lock);
2143 }
2144
do_inject_vcpu(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)2145 static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2146 {
2147 int rc;
2148
2149 switch (irq->type) {
2150 case KVM_S390_PROGRAM_INT:
2151 rc = __inject_prog(vcpu, irq);
2152 break;
2153 case KVM_S390_SIGP_SET_PREFIX:
2154 rc = __inject_set_prefix(vcpu, irq);
2155 break;
2156 case KVM_S390_SIGP_STOP:
2157 rc = __inject_sigp_stop(vcpu, irq);
2158 break;
2159 case KVM_S390_RESTART:
2160 rc = __inject_sigp_restart(vcpu);
2161 break;
2162 case KVM_S390_INT_CLOCK_COMP:
2163 rc = __inject_ckc(vcpu);
2164 break;
2165 case KVM_S390_INT_CPU_TIMER:
2166 rc = __inject_cpu_timer(vcpu);
2167 break;
2168 case KVM_S390_INT_EXTERNAL_CALL:
2169 rc = __inject_extcall(vcpu, irq);
2170 break;
2171 case KVM_S390_INT_EMERGENCY:
2172 rc = __inject_sigp_emergency(vcpu, irq);
2173 break;
2174 case KVM_S390_MCHK:
2175 rc = __inject_mchk(vcpu, irq);
2176 break;
2177 case KVM_S390_INT_PFAULT_INIT:
2178 rc = __inject_pfault_init(vcpu, irq);
2179 break;
2180 case KVM_S390_INT_VIRTIO:
2181 case KVM_S390_INT_SERVICE:
2182 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2183 default:
2184 rc = -EINVAL;
2185 }
2186
2187 return rc;
2188 }
2189
kvm_s390_inject_vcpu(struct kvm_vcpu * vcpu,struct kvm_s390_irq * irq)2190 int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
2191 {
2192 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2193 int rc;
2194
2195 spin_lock(&li->lock);
2196 rc = do_inject_vcpu(vcpu, irq);
2197 spin_unlock(&li->lock);
2198 if (!rc)
2199 kvm_s390_vcpu_wakeup(vcpu);
2200 return rc;
2201 }
2202
clear_irq_list(struct list_head * _list)2203 static inline void clear_irq_list(struct list_head *_list)
2204 {
2205 struct kvm_s390_interrupt_info *inti, *n;
2206
2207 list_for_each_entry_safe(inti, n, _list, list) {
2208 list_del(&inti->list);
2209 kfree(inti);
2210 }
2211 }
2212
inti_to_irq(struct kvm_s390_interrupt_info * inti,struct kvm_s390_irq * irq)2213 static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
2214 struct kvm_s390_irq *irq)
2215 {
2216 irq->type = inti->type;
2217 switch (inti->type) {
2218 case KVM_S390_INT_PFAULT_INIT:
2219 case KVM_S390_INT_PFAULT_DONE:
2220 case KVM_S390_INT_VIRTIO:
2221 irq->u.ext = inti->ext;
2222 break;
2223 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2224 irq->u.io = inti->io;
2225 break;
2226 }
2227 }
2228
kvm_s390_clear_float_irqs(struct kvm * kvm)2229 void kvm_s390_clear_float_irqs(struct kvm *kvm)
2230 {
2231 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2232 int i;
2233
2234 mutex_lock(&kvm->lock);
2235 if (!kvm_s390_pv_is_protected(kvm))
2236 fi->masked_irqs = 0;
2237 mutex_unlock(&kvm->lock);
2238 spin_lock(&fi->lock);
2239 fi->pending_irqs = 0;
2240 memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
2241 memset(&fi->mchk, 0, sizeof(fi->mchk));
2242 for (i = 0; i < FIRQ_LIST_COUNT; i++)
2243 clear_irq_list(&fi->lists[i]);
2244 for (i = 0; i < FIRQ_MAX_COUNT; i++)
2245 fi->counters[i] = 0;
2246 spin_unlock(&fi->lock);
2247 kvm_s390_gisa_clear(kvm);
2248 };
2249
get_all_floating_irqs(struct kvm * kvm,u8 __user * usrbuf,u64 len)2250 static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
2251 {
2252 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
2253 struct kvm_s390_interrupt_info *inti;
2254 struct kvm_s390_float_interrupt *fi;
2255 struct kvm_s390_irq *buf;
2256 struct kvm_s390_irq *irq;
2257 int max_irqs;
2258 int ret = 0;
2259 int n = 0;
2260 int i;
2261
2262 if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
2263 return -EINVAL;
2264
2265 /*
2266 * We are already using -ENOMEM to signal
2267 * userspace it may retry with a bigger buffer,
2268 * so we need to use something else for this case
2269 */
2270 buf = vzalloc(len);
2271 if (!buf)
2272 return -ENOBUFS;
2273
2274 max_irqs = len / sizeof(struct kvm_s390_irq);
2275
2276 if (gi->origin && gisa_get_ipm(gi->origin)) {
2277 for (i = 0; i <= MAX_ISC; i++) {
2278 if (n == max_irqs) {
2279 /* signal userspace to try again */
2280 ret = -ENOMEM;
2281 goto out_nolock;
2282 }
2283 if (gisa_tac_ipm_gisc(gi->origin, i)) {
2284 irq = (struct kvm_s390_irq *) &buf[n];
2285 irq->type = KVM_S390_INT_IO(1, 0, 0, 0);
2286 irq->u.io.io_int_word = isc_to_int_word(i);
2287 n++;
2288 }
2289 }
2290 }
2291 fi = &kvm->arch.float_int;
2292 spin_lock(&fi->lock);
2293 for (i = 0; i < FIRQ_LIST_COUNT; i++) {
2294 list_for_each_entry(inti, &fi->lists[i], list) {
2295 if (n == max_irqs) {
2296 /* signal userspace to try again */
2297 ret = -ENOMEM;
2298 goto out;
2299 }
2300 inti_to_irq(inti, &buf[n]);
2301 n++;
2302 }
2303 }
2304 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs) ||
2305 test_bit(IRQ_PEND_EXT_SERVICE_EV, &fi->pending_irqs)) {
2306 if (n == max_irqs) {
2307 /* signal userspace to try again */
2308 ret = -ENOMEM;
2309 goto out;
2310 }
2311 irq = (struct kvm_s390_irq *) &buf[n];
2312 irq->type = KVM_S390_INT_SERVICE;
2313 irq->u.ext = fi->srv_signal;
2314 n++;
2315 }
2316 if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
2317 if (n == max_irqs) {
2318 /* signal userspace to try again */
2319 ret = -ENOMEM;
2320 goto out;
2321 }
2322 irq = (struct kvm_s390_irq *) &buf[n];
2323 irq->type = KVM_S390_MCHK;
2324 irq->u.mchk = fi->mchk;
2325 n++;
2326 }
2327
2328 out:
2329 spin_unlock(&fi->lock);
2330 out_nolock:
2331 if (!ret && n > 0) {
2332 if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
2333 ret = -EFAULT;
2334 }
2335 vfree(buf);
2336
2337 return ret < 0 ? ret : n;
2338 }
2339
flic_ais_mode_get_all(struct kvm * kvm,struct kvm_device_attr * attr)2340 static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
2341 {
2342 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2343 struct kvm_s390_ais_all ais;
2344
2345 if (attr->attr < sizeof(ais))
2346 return -EINVAL;
2347
2348 if (!test_kvm_facility(kvm, 72))
2349 return -EOPNOTSUPP;
2350
2351 mutex_lock(&fi->ais_lock);
2352 ais.simm = fi->simm;
2353 ais.nimm = fi->nimm;
2354 mutex_unlock(&fi->ais_lock);
2355
2356 if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
2357 return -EFAULT;
2358
2359 return 0;
2360 }
2361
flic_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2362 static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2363 {
2364 int r;
2365
2366 switch (attr->group) {
2367 case KVM_DEV_FLIC_GET_ALL_IRQS:
2368 r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
2369 attr->attr);
2370 break;
2371 case KVM_DEV_FLIC_AISM_ALL:
2372 r = flic_ais_mode_get_all(dev->kvm, attr);
2373 break;
2374 default:
2375 r = -EINVAL;
2376 }
2377
2378 return r;
2379 }
2380
copy_irq_from_user(struct kvm_s390_interrupt_info * inti,u64 addr)2381 static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
2382 u64 addr)
2383 {
2384 struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
2385 void *target = NULL;
2386 void __user *source;
2387 u64 size;
2388
2389 if (get_user(inti->type, (u64 __user *)addr))
2390 return -EFAULT;
2391
2392 switch (inti->type) {
2393 case KVM_S390_INT_PFAULT_INIT:
2394 case KVM_S390_INT_PFAULT_DONE:
2395 case KVM_S390_INT_VIRTIO:
2396 case KVM_S390_INT_SERVICE:
2397 target = (void *) &inti->ext;
2398 source = &uptr->u.ext;
2399 size = sizeof(inti->ext);
2400 break;
2401 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
2402 target = (void *) &inti->io;
2403 source = &uptr->u.io;
2404 size = sizeof(inti->io);
2405 break;
2406 case KVM_S390_MCHK:
2407 target = (void *) &inti->mchk;
2408 source = &uptr->u.mchk;
2409 size = sizeof(inti->mchk);
2410 break;
2411 default:
2412 return -EINVAL;
2413 }
2414
2415 if (copy_from_user(target, source, size))
2416 return -EFAULT;
2417
2418 return 0;
2419 }
2420
enqueue_floating_irq(struct kvm_device * dev,struct kvm_device_attr * attr)2421 static int enqueue_floating_irq(struct kvm_device *dev,
2422 struct kvm_device_attr *attr)
2423 {
2424 struct kvm_s390_interrupt_info *inti = NULL;
2425 int r = 0;
2426 int len = attr->attr;
2427
2428 if (len % sizeof(struct kvm_s390_irq) != 0)
2429 return -EINVAL;
2430 else if (len > KVM_S390_FLIC_MAX_BUFFER)
2431 return -EINVAL;
2432
2433 while (len >= sizeof(struct kvm_s390_irq)) {
2434 inti = kzalloc(sizeof(*inti), GFP_KERNEL_ACCOUNT);
2435 if (!inti)
2436 return -ENOMEM;
2437
2438 r = copy_irq_from_user(inti, attr->addr);
2439 if (r) {
2440 kfree(inti);
2441 return r;
2442 }
2443 r = __inject_vm(dev->kvm, inti);
2444 if (r) {
2445 kfree(inti);
2446 return r;
2447 }
2448 len -= sizeof(struct kvm_s390_irq);
2449 attr->addr += sizeof(struct kvm_s390_irq);
2450 }
2451
2452 return r;
2453 }
2454
get_io_adapter(struct kvm * kvm,unsigned int id)2455 static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
2456 {
2457 if (id >= MAX_S390_IO_ADAPTERS)
2458 return NULL;
2459 id = array_index_nospec(id, MAX_S390_IO_ADAPTERS);
2460 return kvm->arch.adapters[id];
2461 }
2462
register_io_adapter(struct kvm_device * dev,struct kvm_device_attr * attr)2463 static int register_io_adapter(struct kvm_device *dev,
2464 struct kvm_device_attr *attr)
2465 {
2466 struct s390_io_adapter *adapter;
2467 struct kvm_s390_io_adapter adapter_info;
2468
2469 if (copy_from_user(&adapter_info,
2470 (void __user *)attr->addr, sizeof(adapter_info)))
2471 return -EFAULT;
2472
2473 if (adapter_info.id >= MAX_S390_IO_ADAPTERS)
2474 return -EINVAL;
2475
2476 adapter_info.id = array_index_nospec(adapter_info.id,
2477 MAX_S390_IO_ADAPTERS);
2478
2479 if (dev->kvm->arch.adapters[adapter_info.id] != NULL)
2480 return -EINVAL;
2481
2482 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL_ACCOUNT);
2483 if (!adapter)
2484 return -ENOMEM;
2485
2486 adapter->id = adapter_info.id;
2487 adapter->isc = adapter_info.isc;
2488 adapter->maskable = adapter_info.maskable;
2489 adapter->masked = false;
2490 adapter->swap = adapter_info.swap;
2491 adapter->suppressible = (adapter_info.flags) &
2492 KVM_S390_ADAPTER_SUPPRESSIBLE;
2493 dev->kvm->arch.adapters[adapter->id] = adapter;
2494
2495 return 0;
2496 }
2497
kvm_s390_mask_adapter(struct kvm * kvm,unsigned int id,bool masked)2498 int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
2499 {
2500 int ret;
2501 struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2502
2503 if (!adapter || !adapter->maskable)
2504 return -EINVAL;
2505 ret = adapter->masked;
2506 adapter->masked = masked;
2507 return ret;
2508 }
2509
kvm_s390_destroy_adapters(struct kvm * kvm)2510 void kvm_s390_destroy_adapters(struct kvm *kvm)
2511 {
2512 int i;
2513
2514 for (i = 0; i < MAX_S390_IO_ADAPTERS; i++)
2515 kfree(kvm->arch.adapters[i]);
2516 }
2517
modify_io_adapter(struct kvm_device * dev,struct kvm_device_attr * attr)2518 static int modify_io_adapter(struct kvm_device *dev,
2519 struct kvm_device_attr *attr)
2520 {
2521 struct kvm_s390_io_adapter_req req;
2522 struct s390_io_adapter *adapter;
2523 int ret;
2524
2525 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2526 return -EFAULT;
2527
2528 adapter = get_io_adapter(dev->kvm, req.id);
2529 if (!adapter)
2530 return -EINVAL;
2531 switch (req.type) {
2532 case KVM_S390_IO_ADAPTER_MASK:
2533 ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
2534 if (ret > 0)
2535 ret = 0;
2536 break;
2537 /*
2538 * The following operations are no longer needed and therefore no-ops.
2539 * The gpa to hva translation is done when an IRQ route is set up. The
2540 * set_irq code uses get_user_pages_remote() to do the actual write.
2541 */
2542 case KVM_S390_IO_ADAPTER_MAP:
2543 case KVM_S390_IO_ADAPTER_UNMAP:
2544 ret = 0;
2545 break;
2546 default:
2547 ret = -EINVAL;
2548 }
2549
2550 return ret;
2551 }
2552
clear_io_irq(struct kvm * kvm,struct kvm_device_attr * attr)2553 static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
2554
2555 {
2556 const u64 isc_mask = 0xffUL << 24; /* all iscs set */
2557 u32 schid;
2558
2559 if (attr->flags)
2560 return -EINVAL;
2561 if (attr->attr != sizeof(schid))
2562 return -EINVAL;
2563 if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
2564 return -EFAULT;
2565 if (!schid)
2566 return -EINVAL;
2567 kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
2568 /*
2569 * If userspace is conforming to the architecture, we can have at most
2570 * one pending I/O interrupt per subchannel, so this is effectively a
2571 * clear all.
2572 */
2573 return 0;
2574 }
2575
modify_ais_mode(struct kvm * kvm,struct kvm_device_attr * attr)2576 static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
2577 {
2578 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2579 struct kvm_s390_ais_req req;
2580 int ret = 0;
2581
2582 if (!test_kvm_facility(kvm, 72))
2583 return -EOPNOTSUPP;
2584
2585 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2586 return -EFAULT;
2587
2588 if (req.isc > MAX_ISC)
2589 return -EINVAL;
2590
2591 trace_kvm_s390_modify_ais_mode(req.isc,
2592 (fi->simm & AIS_MODE_MASK(req.isc)) ?
2593 (fi->nimm & AIS_MODE_MASK(req.isc)) ?
2594 2 : KVM_S390_AIS_MODE_SINGLE :
2595 KVM_S390_AIS_MODE_ALL, req.mode);
2596
2597 mutex_lock(&fi->ais_lock);
2598 switch (req.mode) {
2599 case KVM_S390_AIS_MODE_ALL:
2600 fi->simm &= ~AIS_MODE_MASK(req.isc);
2601 fi->nimm &= ~AIS_MODE_MASK(req.isc);
2602 break;
2603 case KVM_S390_AIS_MODE_SINGLE:
2604 fi->simm |= AIS_MODE_MASK(req.isc);
2605 fi->nimm &= ~AIS_MODE_MASK(req.isc);
2606 break;
2607 default:
2608 ret = -EINVAL;
2609 }
2610 mutex_unlock(&fi->ais_lock);
2611
2612 return ret;
2613 }
2614
kvm_s390_inject_airq(struct kvm * kvm,struct s390_io_adapter * adapter)2615 static int kvm_s390_inject_airq(struct kvm *kvm,
2616 struct s390_io_adapter *adapter)
2617 {
2618 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2619 struct kvm_s390_interrupt s390int = {
2620 .type = KVM_S390_INT_IO(1, 0, 0, 0),
2621 .parm = 0,
2622 .parm64 = isc_to_int_word(adapter->isc),
2623 };
2624 int ret = 0;
2625
2626 if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
2627 return kvm_s390_inject_vm(kvm, &s390int);
2628
2629 mutex_lock(&fi->ais_lock);
2630 if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
2631 trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
2632 goto out;
2633 }
2634
2635 ret = kvm_s390_inject_vm(kvm, &s390int);
2636 if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
2637 fi->nimm |= AIS_MODE_MASK(adapter->isc);
2638 trace_kvm_s390_modify_ais_mode(adapter->isc,
2639 KVM_S390_AIS_MODE_SINGLE, 2);
2640 }
2641 out:
2642 mutex_unlock(&fi->ais_lock);
2643 return ret;
2644 }
2645
flic_inject_airq(struct kvm * kvm,struct kvm_device_attr * attr)2646 static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
2647 {
2648 unsigned int id = attr->attr;
2649 struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2650
2651 if (!adapter)
2652 return -EINVAL;
2653
2654 return kvm_s390_inject_airq(kvm, adapter);
2655 }
2656
flic_ais_mode_set_all(struct kvm * kvm,struct kvm_device_attr * attr)2657 static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
2658 {
2659 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2660 struct kvm_s390_ais_all ais;
2661
2662 if (!test_kvm_facility(kvm, 72))
2663 return -EOPNOTSUPP;
2664
2665 if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
2666 return -EFAULT;
2667
2668 mutex_lock(&fi->ais_lock);
2669 fi->simm = ais.simm;
2670 fi->nimm = ais.nimm;
2671 mutex_unlock(&fi->ais_lock);
2672
2673 return 0;
2674 }
2675
flic_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2676 static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2677 {
2678 int r = 0;
2679 unsigned long i;
2680 struct kvm_vcpu *vcpu;
2681
2682 switch (attr->group) {
2683 case KVM_DEV_FLIC_ENQUEUE:
2684 r = enqueue_floating_irq(dev, attr);
2685 break;
2686 case KVM_DEV_FLIC_CLEAR_IRQS:
2687 kvm_s390_clear_float_irqs(dev->kvm);
2688 break;
2689 case KVM_DEV_FLIC_APF_ENABLE:
2690 dev->kvm->arch.gmap->pfault_enabled = 1;
2691 break;
2692 case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2693 dev->kvm->arch.gmap->pfault_enabled = 0;
2694 /*
2695 * Make sure no async faults are in transition when
2696 * clearing the queues. So we don't need to worry
2697 * about late coming workers.
2698 */
2699 synchronize_srcu(&dev->kvm->srcu);
2700 kvm_for_each_vcpu(i, vcpu, dev->kvm)
2701 kvm_clear_async_pf_completion_queue(vcpu);
2702 break;
2703 case KVM_DEV_FLIC_ADAPTER_REGISTER:
2704 r = register_io_adapter(dev, attr);
2705 break;
2706 case KVM_DEV_FLIC_ADAPTER_MODIFY:
2707 r = modify_io_adapter(dev, attr);
2708 break;
2709 case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2710 r = clear_io_irq(dev->kvm, attr);
2711 break;
2712 case KVM_DEV_FLIC_AISM:
2713 r = modify_ais_mode(dev->kvm, attr);
2714 break;
2715 case KVM_DEV_FLIC_AIRQ_INJECT:
2716 r = flic_inject_airq(dev->kvm, attr);
2717 break;
2718 case KVM_DEV_FLIC_AISM_ALL:
2719 r = flic_ais_mode_set_all(dev->kvm, attr);
2720 break;
2721 default:
2722 r = -EINVAL;
2723 }
2724
2725 return r;
2726 }
2727
flic_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2728 static int flic_has_attr(struct kvm_device *dev,
2729 struct kvm_device_attr *attr)
2730 {
2731 switch (attr->group) {
2732 case KVM_DEV_FLIC_GET_ALL_IRQS:
2733 case KVM_DEV_FLIC_ENQUEUE:
2734 case KVM_DEV_FLIC_CLEAR_IRQS:
2735 case KVM_DEV_FLIC_APF_ENABLE:
2736 case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2737 case KVM_DEV_FLIC_ADAPTER_REGISTER:
2738 case KVM_DEV_FLIC_ADAPTER_MODIFY:
2739 case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2740 case KVM_DEV_FLIC_AISM:
2741 case KVM_DEV_FLIC_AIRQ_INJECT:
2742 case KVM_DEV_FLIC_AISM_ALL:
2743 return 0;
2744 }
2745 return -ENXIO;
2746 }
2747
flic_create(struct kvm_device * dev,u32 type)2748 static int flic_create(struct kvm_device *dev, u32 type)
2749 {
2750 if (!dev)
2751 return -EINVAL;
2752 if (dev->kvm->arch.flic)
2753 return -EINVAL;
2754 dev->kvm->arch.flic = dev;
2755 return 0;
2756 }
2757
flic_destroy(struct kvm_device * dev)2758 static void flic_destroy(struct kvm_device *dev)
2759 {
2760 dev->kvm->arch.flic = NULL;
2761 kfree(dev);
2762 }
2763
2764 /* s390 floating irq controller (flic) */
2765 struct kvm_device_ops kvm_flic_ops = {
2766 .name = "kvm-flic",
2767 .get_attr = flic_get_attr,
2768 .set_attr = flic_set_attr,
2769 .has_attr = flic_has_attr,
2770 .create = flic_create,
2771 .destroy = flic_destroy,
2772 };
2773
get_ind_bit(__u64 addr,unsigned long bit_nr,bool swap)2774 static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
2775 {
2776 unsigned long bit;
2777
2778 bit = bit_nr + (addr % PAGE_SIZE) * 8;
2779
2780 return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
2781 }
2782
get_map_page(struct kvm * kvm,u64 uaddr)2783 static struct page *get_map_page(struct kvm *kvm, u64 uaddr)
2784 {
2785 struct page *page = NULL;
2786
2787 mmap_read_lock(kvm->mm);
2788 get_user_pages_remote(kvm->mm, uaddr, 1, FOLL_WRITE,
2789 &page, NULL);
2790 mmap_read_unlock(kvm->mm);
2791 return page;
2792 }
2793
adapter_indicators_set(struct kvm * kvm,struct s390_io_adapter * adapter,struct kvm_s390_adapter_int * adapter_int)2794 static int adapter_indicators_set(struct kvm *kvm,
2795 struct s390_io_adapter *adapter,
2796 struct kvm_s390_adapter_int *adapter_int)
2797 {
2798 unsigned long bit;
2799 int summary_set, idx;
2800 struct page *ind_page, *summary_page;
2801 void *map;
2802
2803 ind_page = get_map_page(kvm, adapter_int->ind_addr);
2804 if (!ind_page)
2805 return -1;
2806 summary_page = get_map_page(kvm, adapter_int->summary_addr);
2807 if (!summary_page) {
2808 put_page(ind_page);
2809 return -1;
2810 }
2811
2812 idx = srcu_read_lock(&kvm->srcu);
2813 map = page_address(ind_page);
2814 bit = get_ind_bit(adapter_int->ind_addr,
2815 adapter_int->ind_offset, adapter->swap);
2816 set_bit(bit, map);
2817 mark_page_dirty(kvm, adapter_int->ind_addr >> PAGE_SHIFT);
2818 set_page_dirty_lock(ind_page);
2819 map = page_address(summary_page);
2820 bit = get_ind_bit(adapter_int->summary_addr,
2821 adapter_int->summary_offset, adapter->swap);
2822 summary_set = test_and_set_bit(bit, map);
2823 mark_page_dirty(kvm, adapter_int->summary_addr >> PAGE_SHIFT);
2824 set_page_dirty_lock(summary_page);
2825 srcu_read_unlock(&kvm->srcu, idx);
2826
2827 put_page(ind_page);
2828 put_page(summary_page);
2829 return summary_set ? 0 : 1;
2830 }
2831
2832 /*
2833 * < 0 - not injected due to error
2834 * = 0 - coalesced, summary indicator already active
2835 * > 0 - injected interrupt
2836 */
set_adapter_int(struct kvm_kernel_irq_routing_entry * e,struct kvm * kvm,int irq_source_id,int level,bool line_status)2837 static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
2838 struct kvm *kvm, int irq_source_id, int level,
2839 bool line_status)
2840 {
2841 int ret;
2842 struct s390_io_adapter *adapter;
2843
2844 /* We're only interested in the 0->1 transition. */
2845 if (!level)
2846 return 0;
2847 adapter = get_io_adapter(kvm, e->adapter.adapter_id);
2848 if (!adapter)
2849 return -1;
2850 ret = adapter_indicators_set(kvm, adapter, &e->adapter);
2851 if ((ret > 0) && !adapter->masked) {
2852 ret = kvm_s390_inject_airq(kvm, adapter);
2853 if (ret == 0)
2854 ret = 1;
2855 }
2856 return ret;
2857 }
2858
2859 /*
2860 * Inject the machine check to the guest.
2861 */
kvm_s390_reinject_machine_check(struct kvm_vcpu * vcpu,struct mcck_volatile_info * mcck_info)2862 void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
2863 struct mcck_volatile_info *mcck_info)
2864 {
2865 struct kvm_s390_interrupt_info inti;
2866 struct kvm_s390_irq irq;
2867 struct kvm_s390_mchk_info *mchk;
2868 union mci mci;
2869 __u64 cr14 = 0; /* upper bits are not used */
2870 int rc;
2871
2872 mci.val = mcck_info->mcic;
2873 if (mci.sr)
2874 cr14 |= CR14_RECOVERY_SUBMASK;
2875 if (mci.dg)
2876 cr14 |= CR14_DEGRADATION_SUBMASK;
2877 if (mci.w)
2878 cr14 |= CR14_WARNING_SUBMASK;
2879
2880 mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
2881 mchk->cr14 = cr14;
2882 mchk->mcic = mcck_info->mcic;
2883 mchk->ext_damage_code = mcck_info->ext_damage_code;
2884 mchk->failing_storage_address = mcck_info->failing_storage_address;
2885 if (mci.ck) {
2886 /* Inject the floating machine check */
2887 inti.type = KVM_S390_MCHK;
2888 rc = __inject_vm(vcpu->kvm, &inti);
2889 } else {
2890 /* Inject the machine check to specified vcpu */
2891 irq.type = KVM_S390_MCHK;
2892 rc = kvm_s390_inject_vcpu(vcpu, &irq);
2893 }
2894 WARN_ON_ONCE(rc);
2895 }
2896
kvm_set_routing_entry(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,const struct kvm_irq_routing_entry * ue)2897 int kvm_set_routing_entry(struct kvm *kvm,
2898 struct kvm_kernel_irq_routing_entry *e,
2899 const struct kvm_irq_routing_entry *ue)
2900 {
2901 u64 uaddr;
2902
2903 switch (ue->type) {
2904 /* we store the userspace addresses instead of the guest addresses */
2905 case KVM_IRQ_ROUTING_S390_ADAPTER:
2906 e->set = set_adapter_int;
2907 uaddr = gmap_translate(kvm->arch.gmap, ue->u.adapter.summary_addr);
2908 if (uaddr == -EFAULT)
2909 return -EFAULT;
2910 e->adapter.summary_addr = uaddr;
2911 uaddr = gmap_translate(kvm->arch.gmap, ue->u.adapter.ind_addr);
2912 if (uaddr == -EFAULT)
2913 return -EFAULT;
2914 e->adapter.ind_addr = uaddr;
2915 e->adapter.summary_offset = ue->u.adapter.summary_offset;
2916 e->adapter.ind_offset = ue->u.adapter.ind_offset;
2917 e->adapter.adapter_id = ue->u.adapter.adapter_id;
2918 return 0;
2919 default:
2920 return -EINVAL;
2921 }
2922 }
2923
kvm_set_msi(struct kvm_kernel_irq_routing_entry * e,struct kvm * kvm,int irq_source_id,int level,bool line_status)2924 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
2925 int irq_source_id, int level, bool line_status)
2926 {
2927 return -EINVAL;
2928 }
2929
kvm_s390_set_irq_state(struct kvm_vcpu * vcpu,void __user * irqstate,int len)2930 int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
2931 {
2932 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2933 struct kvm_s390_irq *buf;
2934 int r = 0;
2935 int n;
2936
2937 buf = vmalloc(len);
2938 if (!buf)
2939 return -ENOMEM;
2940
2941 if (copy_from_user((void *) buf, irqstate, len)) {
2942 r = -EFAULT;
2943 goto out_free;
2944 }
2945
2946 /*
2947 * Don't allow setting the interrupt state
2948 * when there are already interrupts pending
2949 */
2950 spin_lock(&li->lock);
2951 if (li->pending_irqs) {
2952 r = -EBUSY;
2953 goto out_unlock;
2954 }
2955
2956 for (n = 0; n < len / sizeof(*buf); n++) {
2957 r = do_inject_vcpu(vcpu, &buf[n]);
2958 if (r)
2959 break;
2960 }
2961
2962 out_unlock:
2963 spin_unlock(&li->lock);
2964 out_free:
2965 vfree(buf);
2966
2967 return r;
2968 }
2969
store_local_irq(struct kvm_s390_local_interrupt * li,struct kvm_s390_irq * irq,unsigned long irq_type)2970 static void store_local_irq(struct kvm_s390_local_interrupt *li,
2971 struct kvm_s390_irq *irq,
2972 unsigned long irq_type)
2973 {
2974 switch (irq_type) {
2975 case IRQ_PEND_MCHK_EX:
2976 case IRQ_PEND_MCHK_REP:
2977 irq->type = KVM_S390_MCHK;
2978 irq->u.mchk = li->irq.mchk;
2979 break;
2980 case IRQ_PEND_PROG:
2981 irq->type = KVM_S390_PROGRAM_INT;
2982 irq->u.pgm = li->irq.pgm;
2983 break;
2984 case IRQ_PEND_PFAULT_INIT:
2985 irq->type = KVM_S390_INT_PFAULT_INIT;
2986 irq->u.ext = li->irq.ext;
2987 break;
2988 case IRQ_PEND_EXT_EXTERNAL:
2989 irq->type = KVM_S390_INT_EXTERNAL_CALL;
2990 irq->u.extcall = li->irq.extcall;
2991 break;
2992 case IRQ_PEND_EXT_CLOCK_COMP:
2993 irq->type = KVM_S390_INT_CLOCK_COMP;
2994 break;
2995 case IRQ_PEND_EXT_CPU_TIMER:
2996 irq->type = KVM_S390_INT_CPU_TIMER;
2997 break;
2998 case IRQ_PEND_SIGP_STOP:
2999 irq->type = KVM_S390_SIGP_STOP;
3000 irq->u.stop = li->irq.stop;
3001 break;
3002 case IRQ_PEND_RESTART:
3003 irq->type = KVM_S390_RESTART;
3004 break;
3005 case IRQ_PEND_SET_PREFIX:
3006 irq->type = KVM_S390_SIGP_SET_PREFIX;
3007 irq->u.prefix = li->irq.prefix;
3008 break;
3009 }
3010 }
3011
kvm_s390_get_irq_state(struct kvm_vcpu * vcpu,__u8 __user * buf,int len)3012 int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
3013 {
3014 int scn;
3015 DECLARE_BITMAP(sigp_emerg_pending, KVM_MAX_VCPUS);
3016 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
3017 unsigned long pending_irqs;
3018 struct kvm_s390_irq irq;
3019 unsigned long irq_type;
3020 int cpuaddr;
3021 int n = 0;
3022
3023 spin_lock(&li->lock);
3024 pending_irqs = li->pending_irqs;
3025 memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
3026 sizeof(sigp_emerg_pending));
3027 spin_unlock(&li->lock);
3028
3029 for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
3030 memset(&irq, 0, sizeof(irq));
3031 if (irq_type == IRQ_PEND_EXT_EMERGENCY)
3032 continue;
3033 if (n + sizeof(irq) > len)
3034 return -ENOBUFS;
3035 store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
3036 if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3037 return -EFAULT;
3038 n += sizeof(irq);
3039 }
3040
3041 if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
3042 for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
3043 memset(&irq, 0, sizeof(irq));
3044 if (n + sizeof(irq) > len)
3045 return -ENOBUFS;
3046 irq.type = KVM_S390_INT_EMERGENCY;
3047 irq.u.emerg.code = cpuaddr;
3048 if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3049 return -EFAULT;
3050 n += sizeof(irq);
3051 }
3052 }
3053
3054 if (sca_ext_call_pending(vcpu, &scn)) {
3055 if (n + sizeof(irq) > len)
3056 return -ENOBUFS;
3057 memset(&irq, 0, sizeof(irq));
3058 irq.type = KVM_S390_INT_EXTERNAL_CALL;
3059 irq.u.extcall.code = scn;
3060 if (copy_to_user(&buf[n], &irq, sizeof(irq)))
3061 return -EFAULT;
3062 n += sizeof(irq);
3063 }
3064
3065 return n;
3066 }
3067
__airqs_kick_single_vcpu(struct kvm * kvm,u8 deliverable_mask)3068 static void __airqs_kick_single_vcpu(struct kvm *kvm, u8 deliverable_mask)
3069 {
3070 int vcpu_idx, online_vcpus = atomic_read(&kvm->online_vcpus);
3071 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3072 struct kvm_vcpu *vcpu;
3073 u8 vcpu_isc_mask;
3074
3075 for_each_set_bit(vcpu_idx, kvm->arch.idle_mask, online_vcpus) {
3076 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
3077 if (psw_ioint_disabled(vcpu))
3078 continue;
3079 vcpu_isc_mask = (u8)(vcpu->arch.sie_block->gcr[6] >> 24);
3080 if (deliverable_mask & vcpu_isc_mask) {
3081 /* lately kicked but not yet running */
3082 if (test_and_set_bit(vcpu_idx, gi->kicked_mask))
3083 return;
3084 kvm_s390_vcpu_wakeup(vcpu);
3085 return;
3086 }
3087 }
3088 }
3089
gisa_vcpu_kicker(struct hrtimer * timer)3090 static enum hrtimer_restart gisa_vcpu_kicker(struct hrtimer *timer)
3091 {
3092 struct kvm_s390_gisa_interrupt *gi =
3093 container_of(timer, struct kvm_s390_gisa_interrupt, timer);
3094 struct kvm *kvm =
3095 container_of(gi->origin, struct sie_page2, gisa)->kvm;
3096 u8 pending_mask;
3097
3098 pending_mask = gisa_get_ipm_or_restore_iam(gi);
3099 if (pending_mask) {
3100 __airqs_kick_single_vcpu(kvm, pending_mask);
3101 hrtimer_forward_now(timer, ns_to_ktime(gi->expires));
3102 return HRTIMER_RESTART;
3103 }
3104
3105 return HRTIMER_NORESTART;
3106 }
3107
3108 #define NULL_GISA_ADDR 0x00000000UL
3109 #define NONE_GISA_ADDR 0x00000001UL
3110 #define GISA_ADDR_MASK 0xfffff000UL
3111
process_gib_alert_list(void)3112 static void process_gib_alert_list(void)
3113 {
3114 struct kvm_s390_gisa_interrupt *gi;
3115 u32 final, gisa_phys, origin = 0UL;
3116 struct kvm_s390_gisa *gisa;
3117 struct kvm *kvm;
3118
3119 do {
3120 /*
3121 * If the NONE_GISA_ADDR is still stored in the alert list
3122 * origin, we will leave the outer loop. No further GISA has
3123 * been added to the alert list by millicode while processing
3124 * the current alert list.
3125 */
3126 final = (origin & NONE_GISA_ADDR);
3127 /*
3128 * Cut off the alert list and store the NONE_GISA_ADDR in the
3129 * alert list origin to avoid further GAL interruptions.
3130 * A new alert list can be build up by millicode in parallel
3131 * for guests not in the yet cut-off alert list. When in the
3132 * final loop, store the NULL_GISA_ADDR instead. This will re-
3133 * enable GAL interruptions on the host again.
3134 */
3135 origin = xchg(&gib->alert_list_origin,
3136 (!final) ? NONE_GISA_ADDR : NULL_GISA_ADDR);
3137 /*
3138 * Loop through the just cut-off alert list and start the
3139 * gisa timers to kick idle vcpus to consume the pending
3140 * interruptions asap.
3141 */
3142 while (origin & GISA_ADDR_MASK) {
3143 gisa_phys = origin;
3144 gisa = phys_to_virt(gisa_phys);
3145 origin = gisa->next_alert;
3146 gisa->next_alert = gisa_phys;
3147 kvm = container_of(gisa, struct sie_page2, gisa)->kvm;
3148 gi = &kvm->arch.gisa_int;
3149 if (hrtimer_active(&gi->timer))
3150 hrtimer_cancel(&gi->timer);
3151 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3152 }
3153 } while (!final);
3154
3155 }
3156
kvm_s390_gisa_clear(struct kvm * kvm)3157 void kvm_s390_gisa_clear(struct kvm *kvm)
3158 {
3159 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3160
3161 if (!gi->origin)
3162 return;
3163 gisa_clear_ipm(gi->origin);
3164 VM_EVENT(kvm, 3, "gisa 0x%pK cleared", gi->origin);
3165 }
3166
kvm_s390_gisa_init(struct kvm * kvm)3167 void kvm_s390_gisa_init(struct kvm *kvm)
3168 {
3169 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3170
3171 if (!css_general_characteristics.aiv)
3172 return;
3173 gi->origin = &kvm->arch.sie_page2->gisa;
3174 gi->alert.mask = 0;
3175 spin_lock_init(&gi->alert.ref_lock);
3176 gi->expires = 50 * 1000; /* 50 usec */
3177 hrtimer_init(&gi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3178 gi->timer.function = gisa_vcpu_kicker;
3179 memset(gi->origin, 0, sizeof(struct kvm_s390_gisa));
3180 gi->origin->next_alert = (u32)virt_to_phys(gi->origin);
3181 VM_EVENT(kvm, 3, "gisa 0x%pK initialized", gi->origin);
3182 }
3183
kvm_s390_gisa_enable(struct kvm * kvm)3184 void kvm_s390_gisa_enable(struct kvm *kvm)
3185 {
3186 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3187 struct kvm_vcpu *vcpu;
3188 unsigned long i;
3189 u32 gisa_desc;
3190
3191 if (gi->origin)
3192 return;
3193 kvm_s390_gisa_init(kvm);
3194 gisa_desc = kvm_s390_get_gisa_desc(kvm);
3195 if (!gisa_desc)
3196 return;
3197 kvm_for_each_vcpu(i, vcpu, kvm) {
3198 mutex_lock(&vcpu->mutex);
3199 vcpu->arch.sie_block->gd = gisa_desc;
3200 vcpu->arch.sie_block->eca |= ECA_AIV;
3201 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
3202 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
3203 mutex_unlock(&vcpu->mutex);
3204 }
3205 }
3206
kvm_s390_gisa_destroy(struct kvm * kvm)3207 void kvm_s390_gisa_destroy(struct kvm *kvm)
3208 {
3209 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3210 struct kvm_s390_gisa *gisa = gi->origin;
3211
3212 if (!gi->origin)
3213 return;
3214 WARN(gi->alert.mask != 0x00,
3215 "unexpected non zero alert.mask 0x%02x",
3216 gi->alert.mask);
3217 gi->alert.mask = 0x00;
3218 if (gisa_set_iam(gi->origin, gi->alert.mask))
3219 process_gib_alert_list();
3220 hrtimer_cancel(&gi->timer);
3221 gi->origin = NULL;
3222 VM_EVENT(kvm, 3, "gisa 0x%pK destroyed", gisa);
3223 }
3224
kvm_s390_gisa_disable(struct kvm * kvm)3225 void kvm_s390_gisa_disable(struct kvm *kvm)
3226 {
3227 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3228 struct kvm_vcpu *vcpu;
3229 unsigned long i;
3230
3231 if (!gi->origin)
3232 return;
3233 kvm_for_each_vcpu(i, vcpu, kvm) {
3234 mutex_lock(&vcpu->mutex);
3235 vcpu->arch.sie_block->eca &= ~ECA_AIV;
3236 vcpu->arch.sie_block->gd = 0U;
3237 mutex_unlock(&vcpu->mutex);
3238 VCPU_EVENT(vcpu, 3, "AIV disabled for cpu %03u", vcpu->vcpu_id);
3239 }
3240 kvm_s390_gisa_destroy(kvm);
3241 }
3242
3243 /**
3244 * kvm_s390_gisc_register - register a guest ISC
3245 *
3246 * @kvm: the kernel vm to work with
3247 * @gisc: the guest interruption sub class to register
3248 *
3249 * The function extends the vm specific alert mask to use.
3250 * The effective IAM mask in the GISA is updated as well
3251 * in case the GISA is not part of the GIB alert list.
3252 * It will be updated latest when the IAM gets restored
3253 * by gisa_get_ipm_or_restore_iam().
3254 *
3255 * Returns: the nonspecific ISC (NISC) the gib alert mechanism
3256 * has registered with the channel subsystem.
3257 * -ENODEV in case the vm uses no GISA
3258 * -ERANGE in case the guest ISC is invalid
3259 */
kvm_s390_gisc_register(struct kvm * kvm,u32 gisc)3260 int kvm_s390_gisc_register(struct kvm *kvm, u32 gisc)
3261 {
3262 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3263
3264 if (!gi->origin)
3265 return -ENODEV;
3266 if (gisc > MAX_ISC)
3267 return -ERANGE;
3268
3269 spin_lock(&gi->alert.ref_lock);
3270 gi->alert.ref_count[gisc]++;
3271 if (gi->alert.ref_count[gisc] == 1) {
3272 gi->alert.mask |= 0x80 >> gisc;
3273 gisa_set_iam(gi->origin, gi->alert.mask);
3274 }
3275 spin_unlock(&gi->alert.ref_lock);
3276
3277 return gib->nisc;
3278 }
3279 EXPORT_SYMBOL_GPL(kvm_s390_gisc_register);
3280
3281 /**
3282 * kvm_s390_gisc_unregister - unregister a guest ISC
3283 *
3284 * @kvm: the kernel vm to work with
3285 * @gisc: the guest interruption sub class to register
3286 *
3287 * The function reduces the vm specific alert mask to use.
3288 * The effective IAM mask in the GISA is updated as well
3289 * in case the GISA is not part of the GIB alert list.
3290 * It will be updated latest when the IAM gets restored
3291 * by gisa_get_ipm_or_restore_iam().
3292 *
3293 * Returns: the nonspecific ISC (NISC) the gib alert mechanism
3294 * has registered with the channel subsystem.
3295 * -ENODEV in case the vm uses no GISA
3296 * -ERANGE in case the guest ISC is invalid
3297 * -EINVAL in case the guest ISC is not registered
3298 */
kvm_s390_gisc_unregister(struct kvm * kvm,u32 gisc)3299 int kvm_s390_gisc_unregister(struct kvm *kvm, u32 gisc)
3300 {
3301 struct kvm_s390_gisa_interrupt *gi = &kvm->arch.gisa_int;
3302 int rc = 0;
3303
3304 if (!gi->origin)
3305 return -ENODEV;
3306 if (gisc > MAX_ISC)
3307 return -ERANGE;
3308
3309 spin_lock(&gi->alert.ref_lock);
3310 if (gi->alert.ref_count[gisc] == 0) {
3311 rc = -EINVAL;
3312 goto out;
3313 }
3314 gi->alert.ref_count[gisc]--;
3315 if (gi->alert.ref_count[gisc] == 0) {
3316 gi->alert.mask &= ~(0x80 >> gisc);
3317 gisa_set_iam(gi->origin, gi->alert.mask);
3318 }
3319 out:
3320 spin_unlock(&gi->alert.ref_lock);
3321
3322 return rc;
3323 }
3324 EXPORT_SYMBOL_GPL(kvm_s390_gisc_unregister);
3325
aen_host_forward(unsigned long si)3326 static void aen_host_forward(unsigned long si)
3327 {
3328 struct kvm_s390_gisa_interrupt *gi;
3329 struct zpci_gaite *gaite;
3330 struct kvm *kvm;
3331
3332 gaite = (struct zpci_gaite *)aift->gait +
3333 (si * sizeof(struct zpci_gaite));
3334 if (gaite->count == 0)
3335 return;
3336 if (gaite->aisb != 0)
3337 set_bit_inv(gaite->aisbo, phys_to_virt(gaite->aisb));
3338
3339 kvm = kvm_s390_pci_si_to_kvm(aift, si);
3340 if (!kvm)
3341 return;
3342 gi = &kvm->arch.gisa_int;
3343
3344 if (!(gi->origin->g1.simm & AIS_MODE_MASK(gaite->gisc)) ||
3345 !(gi->origin->g1.nimm & AIS_MODE_MASK(gaite->gisc))) {
3346 gisa_set_ipm_gisc(gi->origin, gaite->gisc);
3347 if (hrtimer_active(&gi->timer))
3348 hrtimer_cancel(&gi->timer);
3349 hrtimer_start(&gi->timer, 0, HRTIMER_MODE_REL);
3350 kvm->stat.aen_forward++;
3351 }
3352 }
3353
aen_process_gait(u8 isc)3354 static void aen_process_gait(u8 isc)
3355 {
3356 bool found = false, first = true;
3357 union zpci_sic_iib iib = {{0}};
3358 unsigned long si, flags;
3359
3360 spin_lock_irqsave(&aift->gait_lock, flags);
3361
3362 if (!aift->gait) {
3363 spin_unlock_irqrestore(&aift->gait_lock, flags);
3364 return;
3365 }
3366
3367 for (si = 0;;) {
3368 /* Scan adapter summary indicator bit vector */
3369 si = airq_iv_scan(aift->sbv, si, airq_iv_end(aift->sbv));
3370 if (si == -1UL) {
3371 if (first || found) {
3372 /* Re-enable interrupts. */
3373 zpci_set_irq_ctrl(SIC_IRQ_MODE_SINGLE, isc,
3374 &iib);
3375 first = found = false;
3376 } else {
3377 /* Interrupts on and all bits processed */
3378 break;
3379 }
3380 found = false;
3381 si = 0;
3382 /* Scan again after re-enabling interrupts */
3383 continue;
3384 }
3385 found = true;
3386 aen_host_forward(si);
3387 }
3388
3389 spin_unlock_irqrestore(&aift->gait_lock, flags);
3390 }
3391
gib_alert_irq_handler(struct airq_struct * airq,struct tpi_info * tpi_info)3392 static void gib_alert_irq_handler(struct airq_struct *airq,
3393 struct tpi_info *tpi_info)
3394 {
3395 struct tpi_adapter_info *info = (struct tpi_adapter_info *)tpi_info;
3396
3397 inc_irq_stat(IRQIO_GAL);
3398
3399 if ((info->forward || info->error) &&
3400 IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
3401 aen_process_gait(info->isc);
3402 if (info->aism != 0)
3403 process_gib_alert_list();
3404 } else {
3405 process_gib_alert_list();
3406 }
3407 }
3408
3409 static struct airq_struct gib_alert_irq = {
3410 .handler = gib_alert_irq_handler,
3411 };
3412
kvm_s390_gib_destroy(void)3413 void kvm_s390_gib_destroy(void)
3414 {
3415 if (!gib)
3416 return;
3417 if (kvm_s390_pci_interp_allowed() && aift) {
3418 mutex_lock(&aift->aift_lock);
3419 kvm_s390_pci_aen_exit();
3420 mutex_unlock(&aift->aift_lock);
3421 }
3422 chsc_sgib(0);
3423 unregister_adapter_interrupt(&gib_alert_irq);
3424 free_page((unsigned long)gib);
3425 gib = NULL;
3426 }
3427
kvm_s390_gib_init(u8 nisc)3428 int __init kvm_s390_gib_init(u8 nisc)
3429 {
3430 u32 gib_origin;
3431 int rc = 0;
3432
3433 if (!css_general_characteristics.aiv) {
3434 KVM_EVENT(3, "%s", "gib not initialized, no AIV facility");
3435 goto out;
3436 }
3437
3438 gib = (struct kvm_s390_gib *)get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
3439 if (!gib) {
3440 rc = -ENOMEM;
3441 goto out;
3442 }
3443
3444 gib_alert_irq.isc = nisc;
3445 if (register_adapter_interrupt(&gib_alert_irq)) {
3446 pr_err("Registering the GIB alert interruption handler failed\n");
3447 rc = -EIO;
3448 goto out_free_gib;
3449 }
3450 /* adapter interrupts used for AP (applicable here) don't use the LSI */
3451 *gib_alert_irq.lsi_ptr = 0xff;
3452
3453 gib->nisc = nisc;
3454 gib_origin = virt_to_phys(gib);
3455 if (chsc_sgib(gib_origin)) {
3456 pr_err("Associating the GIB with the AIV facility failed\n");
3457 free_page((unsigned long)gib);
3458 gib = NULL;
3459 rc = -EIO;
3460 goto out_unreg_gal;
3461 }
3462
3463 if (kvm_s390_pci_interp_allowed()) {
3464 if (kvm_s390_pci_aen_init(nisc)) {
3465 pr_err("Initializing AEN for PCI failed\n");
3466 rc = -EIO;
3467 goto out_unreg_gal;
3468 }
3469 }
3470
3471 KVM_EVENT(3, "gib 0x%pK (nisc=%d) initialized", gib, gib->nisc);
3472 goto out;
3473
3474 out_unreg_gal:
3475 unregister_adapter_interrupt(&gib_alert_irq);
3476 out_free_gib:
3477 free_page((unsigned long)gib);
3478 gib = NULL;
3479 out:
3480 return rc;
3481 }
3482