xref: /openbmc/linux/arch/s390/kvm/guestdbg.c (revision 293d5b43)
1 /*
2  * kvm guest debug support
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License (version 2 only)
8  * as published by the Free Software Foundation.
9  *
10  *    Author(s): David Hildenbrand <dahi@linux.vnet.ibm.com>
11  */
12 #include <linux/kvm_host.h>
13 #include <linux/errno.h>
14 #include "kvm-s390.h"
15 #include "gaccess.h"
16 
17 /*
18  * Extends the address range given by *start and *stop to include the address
19  * range starting with estart and the length len. Takes care of overflowing
20  * intervals and tries to minimize the overall interval size.
21  */
22 static void extend_address_range(u64 *start, u64 *stop, u64 estart, int len)
23 {
24 	u64 estop;
25 
26 	if (len > 0)
27 		len--;
28 	else
29 		len = 0;
30 
31 	estop = estart + len;
32 
33 	/* 0-0 range represents "not set" */
34 	if ((*start == 0) && (*stop == 0)) {
35 		*start = estart;
36 		*stop = estop;
37 	} else if (*start <= *stop) {
38 		/* increase the existing range */
39 		if (estart < *start)
40 			*start = estart;
41 		if (estop > *stop)
42 			*stop = estop;
43 	} else {
44 		/* "overflowing" interval, whereby *stop > *start */
45 		if (estart <= *stop) {
46 			if (estop > *stop)
47 				*stop = estop;
48 		} else if (estop > *start) {
49 			if (estart < *start)
50 				*start = estart;
51 		}
52 		/* minimize the range */
53 		else if ((estop - *stop) < (*start - estart))
54 			*stop = estop;
55 		else
56 			*start = estart;
57 	}
58 }
59 
60 #define MAX_INST_SIZE 6
61 
62 static void enable_all_hw_bp(struct kvm_vcpu *vcpu)
63 {
64 	unsigned long start, len;
65 	u64 *cr9 = &vcpu->arch.sie_block->gcr[9];
66 	u64 *cr10 = &vcpu->arch.sie_block->gcr[10];
67 	u64 *cr11 = &vcpu->arch.sie_block->gcr[11];
68 	int i;
69 
70 	if (vcpu->arch.guestdbg.nr_hw_bp <= 0 ||
71 	    vcpu->arch.guestdbg.hw_bp_info == NULL)
72 		return;
73 
74 	/*
75 	 * If the guest is not interested in branching events, we can safely
76 	 * limit them to the PER address range.
77 	 */
78 	if (!(*cr9 & PER_EVENT_BRANCH))
79 		*cr9 |= PER_CONTROL_BRANCH_ADDRESS;
80 	*cr9 |= PER_EVENT_IFETCH | PER_EVENT_BRANCH;
81 
82 	for (i = 0; i < vcpu->arch.guestdbg.nr_hw_bp; i++) {
83 		start = vcpu->arch.guestdbg.hw_bp_info[i].addr;
84 		len = vcpu->arch.guestdbg.hw_bp_info[i].len;
85 
86 		/*
87 		 * The instruction in front of the desired bp has to
88 		 * report instruction-fetching events
89 		 */
90 		if (start < MAX_INST_SIZE) {
91 			len += start;
92 			start = 0;
93 		} else {
94 			start -= MAX_INST_SIZE;
95 			len += MAX_INST_SIZE;
96 		}
97 
98 		extend_address_range(cr10, cr11, start, len);
99 	}
100 }
101 
102 static void enable_all_hw_wp(struct kvm_vcpu *vcpu)
103 {
104 	unsigned long start, len;
105 	u64 *cr9 = &vcpu->arch.sie_block->gcr[9];
106 	u64 *cr10 = &vcpu->arch.sie_block->gcr[10];
107 	u64 *cr11 = &vcpu->arch.sie_block->gcr[11];
108 	int i;
109 
110 	if (vcpu->arch.guestdbg.nr_hw_wp <= 0 ||
111 	    vcpu->arch.guestdbg.hw_wp_info == NULL)
112 		return;
113 
114 	/* if host uses storage alternation for special address
115 	 * spaces, enable all events and give all to the guest */
116 	if (*cr9 & PER_EVENT_STORE && *cr9 & PER_CONTROL_ALTERATION) {
117 		*cr9 &= ~PER_CONTROL_ALTERATION;
118 		*cr10 = 0;
119 		*cr11 = -1UL;
120 	} else {
121 		*cr9 &= ~PER_CONTROL_ALTERATION;
122 		*cr9 |= PER_EVENT_STORE;
123 
124 		for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) {
125 			start = vcpu->arch.guestdbg.hw_wp_info[i].addr;
126 			len = vcpu->arch.guestdbg.hw_wp_info[i].len;
127 
128 			extend_address_range(cr10, cr11, start, len);
129 		}
130 	}
131 }
132 
133 void kvm_s390_backup_guest_per_regs(struct kvm_vcpu *vcpu)
134 {
135 	vcpu->arch.guestdbg.cr0 = vcpu->arch.sie_block->gcr[0];
136 	vcpu->arch.guestdbg.cr9 = vcpu->arch.sie_block->gcr[9];
137 	vcpu->arch.guestdbg.cr10 = vcpu->arch.sie_block->gcr[10];
138 	vcpu->arch.guestdbg.cr11 = vcpu->arch.sie_block->gcr[11];
139 }
140 
141 void kvm_s390_restore_guest_per_regs(struct kvm_vcpu *vcpu)
142 {
143 	vcpu->arch.sie_block->gcr[0] = vcpu->arch.guestdbg.cr0;
144 	vcpu->arch.sie_block->gcr[9] = vcpu->arch.guestdbg.cr9;
145 	vcpu->arch.sie_block->gcr[10] = vcpu->arch.guestdbg.cr10;
146 	vcpu->arch.sie_block->gcr[11] = vcpu->arch.guestdbg.cr11;
147 }
148 
149 void kvm_s390_patch_guest_per_regs(struct kvm_vcpu *vcpu)
150 {
151 	/*
152 	 * TODO: if guest psw has per enabled, otherwise 0s!
153 	 * This reduces the amount of reported events.
154 	 * Need to intercept all psw changes!
155 	 */
156 
157 	if (guestdbg_sstep_enabled(vcpu)) {
158 		/* disable timer (clock-comparator) interrupts */
159 		vcpu->arch.sie_block->gcr[0] &= ~0x800ul;
160 		vcpu->arch.sie_block->gcr[9] |= PER_EVENT_IFETCH;
161 		vcpu->arch.sie_block->gcr[10] = 0;
162 		vcpu->arch.sie_block->gcr[11] = -1UL;
163 	}
164 
165 	if (guestdbg_hw_bp_enabled(vcpu)) {
166 		enable_all_hw_bp(vcpu);
167 		enable_all_hw_wp(vcpu);
168 	}
169 
170 	/* TODO: Instruction-fetching-nullification not allowed for now */
171 	if (vcpu->arch.sie_block->gcr[9] & PER_EVENT_NULLIFICATION)
172 		vcpu->arch.sie_block->gcr[9] &= ~PER_EVENT_NULLIFICATION;
173 }
174 
175 #define MAX_WP_SIZE 100
176 
177 static int __import_wp_info(struct kvm_vcpu *vcpu,
178 			    struct kvm_hw_breakpoint *bp_data,
179 			    struct kvm_hw_wp_info_arch *wp_info)
180 {
181 	int ret = 0;
182 	wp_info->len = bp_data->len;
183 	wp_info->addr = bp_data->addr;
184 	wp_info->phys_addr = bp_data->phys_addr;
185 	wp_info->old_data = NULL;
186 
187 	if (wp_info->len < 0 || wp_info->len > MAX_WP_SIZE)
188 		return -EINVAL;
189 
190 	wp_info->old_data = kmalloc(bp_data->len, GFP_KERNEL);
191 	if (!wp_info->old_data)
192 		return -ENOMEM;
193 	/* try to backup the original value */
194 	ret = read_guest_abs(vcpu, wp_info->phys_addr, wp_info->old_data,
195 			     wp_info->len);
196 	if (ret) {
197 		kfree(wp_info->old_data);
198 		wp_info->old_data = NULL;
199 	}
200 
201 	return ret;
202 }
203 
204 #define MAX_BP_COUNT 50
205 
206 int kvm_s390_import_bp_data(struct kvm_vcpu *vcpu,
207 			    struct kvm_guest_debug *dbg)
208 {
209 	int ret = 0, nr_wp = 0, nr_bp = 0, i, size;
210 	struct kvm_hw_breakpoint *bp_data = NULL;
211 	struct kvm_hw_wp_info_arch *wp_info = NULL;
212 	struct kvm_hw_bp_info_arch *bp_info = NULL;
213 
214 	if (dbg->arch.nr_hw_bp <= 0 || !dbg->arch.hw_bp)
215 		return 0;
216 	else if (dbg->arch.nr_hw_bp > MAX_BP_COUNT)
217 		return -EINVAL;
218 
219 	size = dbg->arch.nr_hw_bp * sizeof(struct kvm_hw_breakpoint);
220 	bp_data = kmalloc(size, GFP_KERNEL);
221 	if (!bp_data) {
222 		ret = -ENOMEM;
223 		goto error;
224 	}
225 
226 	if (copy_from_user(bp_data, dbg->arch.hw_bp, size)) {
227 		ret = -EFAULT;
228 		goto error;
229 	}
230 
231 	for (i = 0; i < dbg->arch.nr_hw_bp; i++) {
232 		switch (bp_data[i].type) {
233 		case KVM_HW_WP_WRITE:
234 			nr_wp++;
235 			break;
236 		case KVM_HW_BP:
237 			nr_bp++;
238 			break;
239 		default:
240 			break;
241 		}
242 	}
243 
244 	size = nr_wp * sizeof(struct kvm_hw_wp_info_arch);
245 	if (size > 0) {
246 		wp_info = kmalloc(size, GFP_KERNEL);
247 		if (!wp_info) {
248 			ret = -ENOMEM;
249 			goto error;
250 		}
251 	}
252 	size = nr_bp * sizeof(struct kvm_hw_bp_info_arch);
253 	if (size > 0) {
254 		bp_info = kmalloc(size, GFP_KERNEL);
255 		if (!bp_info) {
256 			ret = -ENOMEM;
257 			goto error;
258 		}
259 	}
260 
261 	for (nr_wp = 0, nr_bp = 0, i = 0; i < dbg->arch.nr_hw_bp; i++) {
262 		switch (bp_data[i].type) {
263 		case KVM_HW_WP_WRITE:
264 			ret = __import_wp_info(vcpu, &bp_data[i],
265 					       &wp_info[nr_wp]);
266 			if (ret)
267 				goto error;
268 			nr_wp++;
269 			break;
270 		case KVM_HW_BP:
271 			bp_info[nr_bp].len = bp_data[i].len;
272 			bp_info[nr_bp].addr = bp_data[i].addr;
273 			nr_bp++;
274 			break;
275 		}
276 	}
277 
278 	vcpu->arch.guestdbg.nr_hw_bp = nr_bp;
279 	vcpu->arch.guestdbg.hw_bp_info = bp_info;
280 	vcpu->arch.guestdbg.nr_hw_wp = nr_wp;
281 	vcpu->arch.guestdbg.hw_wp_info = wp_info;
282 	return 0;
283 error:
284 	kfree(bp_data);
285 	kfree(wp_info);
286 	kfree(bp_info);
287 	return ret;
288 }
289 
290 void kvm_s390_clear_bp_data(struct kvm_vcpu *vcpu)
291 {
292 	int i;
293 	struct kvm_hw_wp_info_arch *hw_wp_info = NULL;
294 
295 	for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) {
296 		hw_wp_info = &vcpu->arch.guestdbg.hw_wp_info[i];
297 		kfree(hw_wp_info->old_data);
298 		hw_wp_info->old_data = NULL;
299 	}
300 	kfree(vcpu->arch.guestdbg.hw_wp_info);
301 	vcpu->arch.guestdbg.hw_wp_info = NULL;
302 
303 	kfree(vcpu->arch.guestdbg.hw_bp_info);
304 	vcpu->arch.guestdbg.hw_bp_info = NULL;
305 
306 	vcpu->arch.guestdbg.nr_hw_wp = 0;
307 	vcpu->arch.guestdbg.nr_hw_bp = 0;
308 }
309 
310 static inline int in_addr_range(u64 addr, u64 a, u64 b)
311 {
312 	if (a <= b)
313 		return (addr >= a) && (addr <= b);
314 	else
315 		/* "overflowing" interval */
316 		return (addr <= a) && (addr >= b);
317 }
318 
319 #define end_of_range(bp_info) (bp_info->addr + bp_info->len - 1)
320 
321 static struct kvm_hw_bp_info_arch *find_hw_bp(struct kvm_vcpu *vcpu,
322 					      unsigned long addr)
323 {
324 	struct kvm_hw_bp_info_arch *bp_info = vcpu->arch.guestdbg.hw_bp_info;
325 	int i;
326 
327 	if (vcpu->arch.guestdbg.nr_hw_bp == 0)
328 		return NULL;
329 
330 	for (i = 0; i < vcpu->arch.guestdbg.nr_hw_bp; i++) {
331 		/* addr is directly the start or in the range of a bp */
332 		if (addr == bp_info->addr)
333 			goto found;
334 		if (bp_info->len > 0 &&
335 		    in_addr_range(addr, bp_info->addr, end_of_range(bp_info)))
336 			goto found;
337 
338 		bp_info++;
339 	}
340 
341 	return NULL;
342 found:
343 	return bp_info;
344 }
345 
346 static struct kvm_hw_wp_info_arch *any_wp_changed(struct kvm_vcpu *vcpu)
347 {
348 	int i;
349 	struct kvm_hw_wp_info_arch *wp_info = NULL;
350 	void *temp = NULL;
351 
352 	if (vcpu->arch.guestdbg.nr_hw_wp == 0)
353 		return NULL;
354 
355 	for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) {
356 		wp_info = &vcpu->arch.guestdbg.hw_wp_info[i];
357 		if (!wp_info || !wp_info->old_data || wp_info->len <= 0)
358 			continue;
359 
360 		temp = kmalloc(wp_info->len, GFP_KERNEL);
361 		if (!temp)
362 			continue;
363 
364 		/* refetch the wp data and compare it to the old value */
365 		if (!read_guest_abs(vcpu, wp_info->phys_addr, temp,
366 				    wp_info->len)) {
367 			if (memcmp(temp, wp_info->old_data, wp_info->len)) {
368 				kfree(temp);
369 				return wp_info;
370 			}
371 		}
372 		kfree(temp);
373 		temp = NULL;
374 	}
375 
376 	return NULL;
377 }
378 
379 void kvm_s390_prepare_debug_exit(struct kvm_vcpu *vcpu)
380 {
381 	vcpu->run->exit_reason = KVM_EXIT_DEBUG;
382 	vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING;
383 }
384 
385 #define per_bp_event(code) \
386 			(code & (PER_EVENT_IFETCH | PER_EVENT_BRANCH))
387 #define per_write_wp_event(code) \
388 			(code & (PER_EVENT_STORE | PER_EVENT_STORE_REAL))
389 
390 static int debug_exit_required(struct kvm_vcpu *vcpu)
391 {
392 	u32 perc = (vcpu->arch.sie_block->perc << 24);
393 	struct kvm_debug_exit_arch *debug_exit = &vcpu->run->debug.arch;
394 	struct kvm_hw_wp_info_arch *wp_info = NULL;
395 	struct kvm_hw_bp_info_arch *bp_info = NULL;
396 	unsigned long addr = vcpu->arch.sie_block->gpsw.addr;
397 	unsigned long peraddr = vcpu->arch.sie_block->peraddr;
398 
399 	if (guestdbg_hw_bp_enabled(vcpu)) {
400 		if (per_write_wp_event(perc) &&
401 		    vcpu->arch.guestdbg.nr_hw_wp > 0) {
402 			wp_info = any_wp_changed(vcpu);
403 			if (wp_info) {
404 				debug_exit->addr = wp_info->addr;
405 				debug_exit->type = KVM_HW_WP_WRITE;
406 				goto exit_required;
407 			}
408 		}
409 		if (per_bp_event(perc) &&
410 			 vcpu->arch.guestdbg.nr_hw_bp > 0) {
411 			bp_info = find_hw_bp(vcpu, addr);
412 			/* remove duplicate events if PC==PER address */
413 			if (bp_info && (addr != peraddr)) {
414 				debug_exit->addr = addr;
415 				debug_exit->type = KVM_HW_BP;
416 				vcpu->arch.guestdbg.last_bp = addr;
417 				goto exit_required;
418 			}
419 			/* breakpoint missed */
420 			bp_info = find_hw_bp(vcpu, peraddr);
421 			if (bp_info && vcpu->arch.guestdbg.last_bp != peraddr) {
422 				debug_exit->addr = peraddr;
423 				debug_exit->type = KVM_HW_BP;
424 				goto exit_required;
425 			}
426 		}
427 	}
428 	if (guestdbg_sstep_enabled(vcpu) && per_bp_event(perc)) {
429 		debug_exit->addr = addr;
430 		debug_exit->type = KVM_SINGLESTEP;
431 		goto exit_required;
432 	}
433 
434 	return 0;
435 exit_required:
436 	return 1;
437 }
438 
439 #define guest_per_enabled(vcpu) \
440 			     (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PER)
441 
442 int kvm_s390_handle_per_ifetch_icpt(struct kvm_vcpu *vcpu)
443 {
444 	const u8 ilen = kvm_s390_get_ilen(vcpu);
445 	struct kvm_s390_pgm_info pgm_info = {
446 		.code = PGM_PER,
447 		.per_code = PER_EVENT_IFETCH >> 24,
448 		.per_address = __rewind_psw(vcpu->arch.sie_block->gpsw, ilen),
449 	};
450 
451 	/*
452 	 * The PSW points to the next instruction, therefore the intercepted
453 	 * instruction generated a PER i-fetch event. PER address therefore
454 	 * points at the previous PSW address (could be an EXECUTE function).
455 	 */
456 	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
457 }
458 
459 static void filter_guest_per_event(struct kvm_vcpu *vcpu)
460 {
461 	u32 perc = vcpu->arch.sie_block->perc << 24;
462 	u64 peraddr = vcpu->arch.sie_block->peraddr;
463 	u64 addr = vcpu->arch.sie_block->gpsw.addr;
464 	u64 cr9 = vcpu->arch.sie_block->gcr[9];
465 	u64 cr10 = vcpu->arch.sie_block->gcr[10];
466 	u64 cr11 = vcpu->arch.sie_block->gcr[11];
467 	/* filter all events, demanded by the guest */
468 	u32 guest_perc = perc & cr9 & PER_EVENT_MASK;
469 
470 	if (!guest_per_enabled(vcpu))
471 		guest_perc = 0;
472 
473 	/* filter "successful-branching" events */
474 	if (guest_perc & PER_EVENT_BRANCH &&
475 	    cr9 & PER_CONTROL_BRANCH_ADDRESS &&
476 	    !in_addr_range(addr, cr10, cr11))
477 		guest_perc &= ~PER_EVENT_BRANCH;
478 
479 	/* filter "instruction-fetching" events */
480 	if (guest_perc & PER_EVENT_IFETCH &&
481 	    !in_addr_range(peraddr, cr10, cr11))
482 		guest_perc &= ~PER_EVENT_IFETCH;
483 
484 	/* All other PER events will be given to the guest */
485 	/* TODO: Check altered address/address space */
486 
487 	vcpu->arch.sie_block->perc = guest_perc >> 24;
488 
489 	if (!guest_perc)
490 		vcpu->arch.sie_block->iprcc &= ~PGM_PER;
491 }
492 
493 #define pssec(vcpu) (vcpu->arch.sie_block->gcr[1] & _ASCE_SPACE_SWITCH)
494 #define hssec(vcpu) (vcpu->arch.sie_block->gcr[13] & _ASCE_SPACE_SWITCH)
495 #define old_ssec(vcpu) ((vcpu->arch.sie_block->tecmc >> 31) & 0x1)
496 #define old_as_is_home(vcpu) !(vcpu->arch.sie_block->tecmc & 0xffff)
497 
498 void kvm_s390_handle_per_event(struct kvm_vcpu *vcpu)
499 {
500 	int new_as;
501 
502 	if (debug_exit_required(vcpu))
503 		vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING;
504 
505 	filter_guest_per_event(vcpu);
506 
507 	/*
508 	 * Only RP, SAC, SACF, PT, PTI, PR, PC instructions can trigger
509 	 * a space-switch event. PER events enforce space-switch events
510 	 * for these instructions. So if no PER event for the guest is left,
511 	 * we might have to filter the space-switch element out, too.
512 	 */
513 	if (vcpu->arch.sie_block->iprcc == PGM_SPACE_SWITCH) {
514 		vcpu->arch.sie_block->iprcc = 0;
515 		new_as = psw_bits(vcpu->arch.sie_block->gpsw).as;
516 
517 		/*
518 		 * If the AS changed from / to home, we had RP, SAC or SACF
519 		 * instruction. Check primary and home space-switch-event
520 		 * controls. (theoretically home -> home produced no event)
521 		 */
522 		if (((new_as == PSW_AS_HOME) ^ old_as_is_home(vcpu)) &&
523 		     (pssec(vcpu) || hssec(vcpu)))
524 			vcpu->arch.sie_block->iprcc = PGM_SPACE_SWITCH;
525 
526 		/*
527 		 * PT, PTI, PR, PC instruction operate on primary AS only. Check
528 		 * if the primary-space-switch-event control was or got set.
529 		 */
530 		if (new_as == PSW_AS_PRIMARY && !old_as_is_home(vcpu) &&
531 		    (pssec(vcpu) || old_ssec(vcpu)))
532 			vcpu->arch.sie_block->iprcc = PGM_SPACE_SWITCH;
533 	}
534 }
535