xref: /openbmc/linux/arch/s390/kvm/gaccess.c (revision f0702555)
1 /*
2  * guest access functions
3  *
4  * Copyright IBM Corp. 2014
5  *
6  */
7 
8 #include <linux/vmalloc.h>
9 #include <linux/err.h>
10 #include <asm/pgtable.h>
11 #include "kvm-s390.h"
12 #include "gaccess.h"
13 #include <asm/switch_to.h>
14 
15 union asce {
16 	unsigned long val;
17 	struct {
18 		unsigned long origin : 52; /* Region- or Segment-Table Origin */
19 		unsigned long	 : 2;
20 		unsigned long g  : 1; /* Subspace Group Control */
21 		unsigned long p  : 1; /* Private Space Control */
22 		unsigned long s  : 1; /* Storage-Alteration-Event Control */
23 		unsigned long x  : 1; /* Space-Switch-Event Control */
24 		unsigned long r  : 1; /* Real-Space Control */
25 		unsigned long	 : 1;
26 		unsigned long dt : 2; /* Designation-Type Control */
27 		unsigned long tl : 2; /* Region- or Segment-Table Length */
28 	};
29 };
30 
31 enum {
32 	ASCE_TYPE_SEGMENT = 0,
33 	ASCE_TYPE_REGION3 = 1,
34 	ASCE_TYPE_REGION2 = 2,
35 	ASCE_TYPE_REGION1 = 3
36 };
37 
38 union region1_table_entry {
39 	unsigned long val;
40 	struct {
41 		unsigned long rto: 52;/* Region-Table Origin */
42 		unsigned long	 : 2;
43 		unsigned long p  : 1; /* DAT-Protection Bit */
44 		unsigned long	 : 1;
45 		unsigned long tf : 2; /* Region-Second-Table Offset */
46 		unsigned long i  : 1; /* Region-Invalid Bit */
47 		unsigned long	 : 1;
48 		unsigned long tt : 2; /* Table-Type Bits */
49 		unsigned long tl : 2; /* Region-Second-Table Length */
50 	};
51 };
52 
53 union region2_table_entry {
54 	unsigned long val;
55 	struct {
56 		unsigned long rto: 52;/* Region-Table Origin */
57 		unsigned long	 : 2;
58 		unsigned long p  : 1; /* DAT-Protection Bit */
59 		unsigned long	 : 1;
60 		unsigned long tf : 2; /* Region-Third-Table Offset */
61 		unsigned long i  : 1; /* Region-Invalid Bit */
62 		unsigned long	 : 1;
63 		unsigned long tt : 2; /* Table-Type Bits */
64 		unsigned long tl : 2; /* Region-Third-Table Length */
65 	};
66 };
67 
68 struct region3_table_entry_fc0 {
69 	unsigned long sto: 52;/* Segment-Table Origin */
70 	unsigned long	 : 1;
71 	unsigned long fc : 1; /* Format-Control */
72 	unsigned long p  : 1; /* DAT-Protection Bit */
73 	unsigned long	 : 1;
74 	unsigned long tf : 2; /* Segment-Table Offset */
75 	unsigned long i  : 1; /* Region-Invalid Bit */
76 	unsigned long cr : 1; /* Common-Region Bit */
77 	unsigned long tt : 2; /* Table-Type Bits */
78 	unsigned long tl : 2; /* Segment-Table Length */
79 };
80 
81 struct region3_table_entry_fc1 {
82 	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
83 	unsigned long	 : 14;
84 	unsigned long av : 1; /* ACCF-Validity Control */
85 	unsigned long acc: 4; /* Access-Control Bits */
86 	unsigned long f  : 1; /* Fetch-Protection Bit */
87 	unsigned long fc : 1; /* Format-Control */
88 	unsigned long p  : 1; /* DAT-Protection Bit */
89 	unsigned long co : 1; /* Change-Recording Override */
90 	unsigned long	 : 2;
91 	unsigned long i  : 1; /* Region-Invalid Bit */
92 	unsigned long cr : 1; /* Common-Region Bit */
93 	unsigned long tt : 2; /* Table-Type Bits */
94 	unsigned long	 : 2;
95 };
96 
97 union region3_table_entry {
98 	unsigned long val;
99 	struct region3_table_entry_fc0 fc0;
100 	struct region3_table_entry_fc1 fc1;
101 	struct {
102 		unsigned long	 : 53;
103 		unsigned long fc : 1; /* Format-Control */
104 		unsigned long	 : 4;
105 		unsigned long i  : 1; /* Region-Invalid Bit */
106 		unsigned long cr : 1; /* Common-Region Bit */
107 		unsigned long tt : 2; /* Table-Type Bits */
108 		unsigned long	 : 2;
109 	};
110 };
111 
112 struct segment_entry_fc0 {
113 	unsigned long pto: 53;/* Page-Table Origin */
114 	unsigned long fc : 1; /* Format-Control */
115 	unsigned long p  : 1; /* DAT-Protection Bit */
116 	unsigned long	 : 3;
117 	unsigned long i  : 1; /* Segment-Invalid Bit */
118 	unsigned long cs : 1; /* Common-Segment Bit */
119 	unsigned long tt : 2; /* Table-Type Bits */
120 	unsigned long	 : 2;
121 };
122 
123 struct segment_entry_fc1 {
124 	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
125 	unsigned long	 : 3;
126 	unsigned long av : 1; /* ACCF-Validity Control */
127 	unsigned long acc: 4; /* Access-Control Bits */
128 	unsigned long f  : 1; /* Fetch-Protection Bit */
129 	unsigned long fc : 1; /* Format-Control */
130 	unsigned long p  : 1; /* DAT-Protection Bit */
131 	unsigned long co : 1; /* Change-Recording Override */
132 	unsigned long	 : 2;
133 	unsigned long i  : 1; /* Segment-Invalid Bit */
134 	unsigned long cs : 1; /* Common-Segment Bit */
135 	unsigned long tt : 2; /* Table-Type Bits */
136 	unsigned long	 : 2;
137 };
138 
139 union segment_table_entry {
140 	unsigned long val;
141 	struct segment_entry_fc0 fc0;
142 	struct segment_entry_fc1 fc1;
143 	struct {
144 		unsigned long	 : 53;
145 		unsigned long fc : 1; /* Format-Control */
146 		unsigned long	 : 4;
147 		unsigned long i  : 1; /* Segment-Invalid Bit */
148 		unsigned long cs : 1; /* Common-Segment Bit */
149 		unsigned long tt : 2; /* Table-Type Bits */
150 		unsigned long	 : 2;
151 	};
152 };
153 
154 enum {
155 	TABLE_TYPE_SEGMENT = 0,
156 	TABLE_TYPE_REGION3 = 1,
157 	TABLE_TYPE_REGION2 = 2,
158 	TABLE_TYPE_REGION1 = 3
159 };
160 
161 union page_table_entry {
162 	unsigned long val;
163 	struct {
164 		unsigned long pfra : 52; /* Page-Frame Real Address */
165 		unsigned long z  : 1; /* Zero Bit */
166 		unsigned long i  : 1; /* Page-Invalid Bit */
167 		unsigned long p  : 1; /* DAT-Protection Bit */
168 		unsigned long co : 1; /* Change-Recording Override */
169 		unsigned long	 : 8;
170 	};
171 };
172 
173 /*
174  * vaddress union in order to easily decode a virtual address into its
175  * region first index, region second index etc. parts.
176  */
177 union vaddress {
178 	unsigned long addr;
179 	struct {
180 		unsigned long rfx : 11;
181 		unsigned long rsx : 11;
182 		unsigned long rtx : 11;
183 		unsigned long sx  : 11;
184 		unsigned long px  : 8;
185 		unsigned long bx  : 12;
186 	};
187 	struct {
188 		unsigned long rfx01 : 2;
189 		unsigned long	    : 9;
190 		unsigned long rsx01 : 2;
191 		unsigned long	    : 9;
192 		unsigned long rtx01 : 2;
193 		unsigned long	    : 9;
194 		unsigned long sx01  : 2;
195 		unsigned long	    : 29;
196 	};
197 };
198 
199 /*
200  * raddress union which will contain the result (real or absolute address)
201  * after a page table walk. The rfaa, sfaa and pfra members are used to
202  * simply assign them the value of a region, segment or page table entry.
203  */
204 union raddress {
205 	unsigned long addr;
206 	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
207 	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
208 	unsigned long pfra : 52; /* Page-Frame Real Address */
209 };
210 
211 union alet {
212 	u32 val;
213 	struct {
214 		u32 reserved : 7;
215 		u32 p        : 1;
216 		u32 alesn    : 8;
217 		u32 alen     : 16;
218 	};
219 };
220 
221 union ald {
222 	u32 val;
223 	struct {
224 		u32     : 1;
225 		u32 alo : 24;
226 		u32 all : 7;
227 	};
228 };
229 
230 struct ale {
231 	unsigned long i      : 1; /* ALEN-Invalid Bit */
232 	unsigned long        : 5;
233 	unsigned long fo     : 1; /* Fetch-Only Bit */
234 	unsigned long p      : 1; /* Private Bit */
235 	unsigned long alesn  : 8; /* Access-List-Entry Sequence Number */
236 	unsigned long aleax  : 16; /* Access-List-Entry Authorization Index */
237 	unsigned long        : 32;
238 	unsigned long        : 1;
239 	unsigned long asteo  : 25; /* ASN-Second-Table-Entry Origin */
240 	unsigned long        : 6;
241 	unsigned long astesn : 32; /* ASTE Sequence Number */
242 } __packed;
243 
244 struct aste {
245 	unsigned long i      : 1; /* ASX-Invalid Bit */
246 	unsigned long ato    : 29; /* Authority-Table Origin */
247 	unsigned long        : 1;
248 	unsigned long b      : 1; /* Base-Space Bit */
249 	unsigned long ax     : 16; /* Authorization Index */
250 	unsigned long atl    : 12; /* Authority-Table Length */
251 	unsigned long        : 2;
252 	unsigned long ca     : 1; /* Controlled-ASN Bit */
253 	unsigned long ra     : 1; /* Reusable-ASN Bit */
254 	unsigned long asce   : 64; /* Address-Space-Control Element */
255 	unsigned long ald    : 32;
256 	unsigned long astesn : 32;
257 	/* .. more fields there */
258 } __packed;
259 
260 int ipte_lock_held(struct kvm_vcpu *vcpu)
261 {
262 	if (vcpu->arch.sie_block->eca & 1) {
263 		int rc;
264 
265 		read_lock(&vcpu->kvm->arch.sca_lock);
266 		rc = kvm_s390_get_ipte_control(vcpu->kvm)->kh != 0;
267 		read_unlock(&vcpu->kvm->arch.sca_lock);
268 		return rc;
269 	}
270 	return vcpu->kvm->arch.ipte_lock_count != 0;
271 }
272 
273 static void ipte_lock_simple(struct kvm_vcpu *vcpu)
274 {
275 	union ipte_control old, new, *ic;
276 
277 	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
278 	vcpu->kvm->arch.ipte_lock_count++;
279 	if (vcpu->kvm->arch.ipte_lock_count > 1)
280 		goto out;
281 retry:
282 	read_lock(&vcpu->kvm->arch.sca_lock);
283 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
284 	do {
285 		old = READ_ONCE(*ic);
286 		if (old.k) {
287 			read_unlock(&vcpu->kvm->arch.sca_lock);
288 			cond_resched();
289 			goto retry;
290 		}
291 		new = old;
292 		new.k = 1;
293 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
294 	read_unlock(&vcpu->kvm->arch.sca_lock);
295 out:
296 	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
297 }
298 
299 static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
300 {
301 	union ipte_control old, new, *ic;
302 
303 	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
304 	vcpu->kvm->arch.ipte_lock_count--;
305 	if (vcpu->kvm->arch.ipte_lock_count)
306 		goto out;
307 	read_lock(&vcpu->kvm->arch.sca_lock);
308 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
309 	do {
310 		old = READ_ONCE(*ic);
311 		new = old;
312 		new.k = 0;
313 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
314 	read_unlock(&vcpu->kvm->arch.sca_lock);
315 	wake_up(&vcpu->kvm->arch.ipte_wq);
316 out:
317 	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
318 }
319 
320 static void ipte_lock_siif(struct kvm_vcpu *vcpu)
321 {
322 	union ipte_control old, new, *ic;
323 
324 retry:
325 	read_lock(&vcpu->kvm->arch.sca_lock);
326 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
327 	do {
328 		old = READ_ONCE(*ic);
329 		if (old.kg) {
330 			read_unlock(&vcpu->kvm->arch.sca_lock);
331 			cond_resched();
332 			goto retry;
333 		}
334 		new = old;
335 		new.k = 1;
336 		new.kh++;
337 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
338 	read_unlock(&vcpu->kvm->arch.sca_lock);
339 }
340 
341 static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
342 {
343 	union ipte_control old, new, *ic;
344 
345 	read_lock(&vcpu->kvm->arch.sca_lock);
346 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
347 	do {
348 		old = READ_ONCE(*ic);
349 		new = old;
350 		new.kh--;
351 		if (!new.kh)
352 			new.k = 0;
353 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
354 	read_unlock(&vcpu->kvm->arch.sca_lock);
355 	if (!new.kh)
356 		wake_up(&vcpu->kvm->arch.ipte_wq);
357 }
358 
359 void ipte_lock(struct kvm_vcpu *vcpu)
360 {
361 	if (vcpu->arch.sie_block->eca & 1)
362 		ipte_lock_siif(vcpu);
363 	else
364 		ipte_lock_simple(vcpu);
365 }
366 
367 void ipte_unlock(struct kvm_vcpu *vcpu)
368 {
369 	if (vcpu->arch.sie_block->eca & 1)
370 		ipte_unlock_siif(vcpu);
371 	else
372 		ipte_unlock_simple(vcpu);
373 }
374 
375 static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, ar_t ar,
376 			  enum gacc_mode mode)
377 {
378 	union alet alet;
379 	struct ale ale;
380 	struct aste aste;
381 	unsigned long ald_addr, authority_table_addr;
382 	union ald ald;
383 	int eax, rc;
384 	u8 authority_table;
385 
386 	if (ar >= NUM_ACRS)
387 		return -EINVAL;
388 
389 	save_access_regs(vcpu->run->s.regs.acrs);
390 	alet.val = vcpu->run->s.regs.acrs[ar];
391 
392 	if (ar == 0 || alet.val == 0) {
393 		asce->val = vcpu->arch.sie_block->gcr[1];
394 		return 0;
395 	} else if (alet.val == 1) {
396 		asce->val = vcpu->arch.sie_block->gcr[7];
397 		return 0;
398 	}
399 
400 	if (alet.reserved)
401 		return PGM_ALET_SPECIFICATION;
402 
403 	if (alet.p)
404 		ald_addr = vcpu->arch.sie_block->gcr[5];
405 	else
406 		ald_addr = vcpu->arch.sie_block->gcr[2];
407 	ald_addr &= 0x7fffffc0;
408 
409 	rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
410 	if (rc)
411 		return rc;
412 
413 	if (alet.alen / 8 > ald.all)
414 		return PGM_ALEN_TRANSLATION;
415 
416 	if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
417 		return PGM_ADDRESSING;
418 
419 	rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
420 			     sizeof(struct ale));
421 	if (rc)
422 		return rc;
423 
424 	if (ale.i == 1)
425 		return PGM_ALEN_TRANSLATION;
426 	if (ale.alesn != alet.alesn)
427 		return PGM_ALE_SEQUENCE;
428 
429 	rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
430 	if (rc)
431 		return rc;
432 
433 	if (aste.i)
434 		return PGM_ASTE_VALIDITY;
435 	if (aste.astesn != ale.astesn)
436 		return PGM_ASTE_SEQUENCE;
437 
438 	if (ale.p == 1) {
439 		eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
440 		if (ale.aleax != eax) {
441 			if (eax / 16 > aste.atl)
442 				return PGM_EXTENDED_AUTHORITY;
443 
444 			authority_table_addr = aste.ato * 4 + eax / 4;
445 
446 			rc = read_guest_real(vcpu, authority_table_addr,
447 					     &authority_table,
448 					     sizeof(u8));
449 			if (rc)
450 				return rc;
451 
452 			if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
453 				return PGM_EXTENDED_AUTHORITY;
454 		}
455 	}
456 
457 	if (ale.fo == 1 && mode == GACC_STORE)
458 		return PGM_PROTECTION;
459 
460 	asce->val = aste.asce;
461 	return 0;
462 }
463 
464 struct trans_exc_code_bits {
465 	unsigned long addr : 52; /* Translation-exception Address */
466 	unsigned long fsi  : 2;  /* Access Exception Fetch/Store Indication */
467 	unsigned long	   : 6;
468 	unsigned long b60  : 1;
469 	unsigned long b61  : 1;
470 	unsigned long as   : 2;  /* ASCE Identifier */
471 };
472 
473 enum {
474 	FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
475 	FSI_STORE   = 1, /* Exception was due to store operation */
476 	FSI_FETCH   = 2  /* Exception was due to fetch operation */
477 };
478 
479 static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
480 			 ar_t ar, enum gacc_mode mode)
481 {
482 	int rc;
483 	struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
484 	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
485 	struct trans_exc_code_bits *tec_bits;
486 
487 	memset(pgm, 0, sizeof(*pgm));
488 	tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
489 	tec_bits->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
490 	tec_bits->as = psw.as;
491 
492 	if (!psw.t) {
493 		asce->val = 0;
494 		asce->r = 1;
495 		return 0;
496 	}
497 
498 	if (mode == GACC_IFETCH)
499 		psw.as = psw.as == PSW_AS_HOME ? PSW_AS_HOME : PSW_AS_PRIMARY;
500 
501 	switch (psw.as) {
502 	case PSW_AS_PRIMARY:
503 		asce->val = vcpu->arch.sie_block->gcr[1];
504 		return 0;
505 	case PSW_AS_SECONDARY:
506 		asce->val = vcpu->arch.sie_block->gcr[7];
507 		return 0;
508 	case PSW_AS_HOME:
509 		asce->val = vcpu->arch.sie_block->gcr[13];
510 		return 0;
511 	case PSW_AS_ACCREG:
512 		rc = ar_translation(vcpu, asce, ar, mode);
513 		switch (rc) {
514 		case PGM_ALEN_TRANSLATION:
515 		case PGM_ALE_SEQUENCE:
516 		case PGM_ASTE_VALIDITY:
517 		case PGM_ASTE_SEQUENCE:
518 		case PGM_EXTENDED_AUTHORITY:
519 			vcpu->arch.pgm.exc_access_id = ar;
520 			break;
521 		case PGM_PROTECTION:
522 			tec_bits->b60 = 1;
523 			tec_bits->b61 = 1;
524 			break;
525 		}
526 		if (rc > 0)
527 			pgm->code = rc;
528 		return rc;
529 	}
530 	return 0;
531 }
532 
533 static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
534 {
535 	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
536 }
537 
538 /**
539  * guest_translate - translate a guest virtual into a guest absolute address
540  * @vcpu: virtual cpu
541  * @gva: guest virtual address
542  * @gpa: points to where guest physical (absolute) address should be stored
543  * @asce: effective asce
544  * @mode: indicates the access mode to be used
545  *
546  * Translate a guest virtual address into a guest absolute address by means
547  * of dynamic address translation as specified by the architecture.
548  * If the resulting absolute address is not available in the configuration
549  * an addressing exception is indicated and @gpa will not be changed.
550  *
551  * Returns: - zero on success; @gpa contains the resulting absolute address
552  *	    - a negative value if guest access failed due to e.g. broken
553  *	      guest mapping
554  *	    - a positve value if an access exception happened. In this case
555  *	      the returned value is the program interruption code as defined
556  *	      by the architecture
557  */
558 static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
559 				     unsigned long *gpa, const union asce asce,
560 				     enum gacc_mode mode)
561 {
562 	union vaddress vaddr = {.addr = gva};
563 	union raddress raddr = {.addr = gva};
564 	union page_table_entry pte;
565 	int dat_protection = 0;
566 	union ctlreg0 ctlreg0;
567 	unsigned long ptr;
568 	int edat1, edat2;
569 
570 	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
571 	edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
572 	edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
573 	if (asce.r)
574 		goto real_address;
575 	ptr = asce.origin * 4096;
576 	switch (asce.dt) {
577 	case ASCE_TYPE_REGION1:
578 		if (vaddr.rfx01 > asce.tl)
579 			return PGM_REGION_FIRST_TRANS;
580 		ptr += vaddr.rfx * 8;
581 		break;
582 	case ASCE_TYPE_REGION2:
583 		if (vaddr.rfx)
584 			return PGM_ASCE_TYPE;
585 		if (vaddr.rsx01 > asce.tl)
586 			return PGM_REGION_SECOND_TRANS;
587 		ptr += vaddr.rsx * 8;
588 		break;
589 	case ASCE_TYPE_REGION3:
590 		if (vaddr.rfx || vaddr.rsx)
591 			return PGM_ASCE_TYPE;
592 		if (vaddr.rtx01 > asce.tl)
593 			return PGM_REGION_THIRD_TRANS;
594 		ptr += vaddr.rtx * 8;
595 		break;
596 	case ASCE_TYPE_SEGMENT:
597 		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
598 			return PGM_ASCE_TYPE;
599 		if (vaddr.sx01 > asce.tl)
600 			return PGM_SEGMENT_TRANSLATION;
601 		ptr += vaddr.sx * 8;
602 		break;
603 	}
604 	switch (asce.dt) {
605 	case ASCE_TYPE_REGION1:	{
606 		union region1_table_entry rfte;
607 
608 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
609 			return PGM_ADDRESSING;
610 		if (deref_table(vcpu->kvm, ptr, &rfte.val))
611 			return -EFAULT;
612 		if (rfte.i)
613 			return PGM_REGION_FIRST_TRANS;
614 		if (rfte.tt != TABLE_TYPE_REGION1)
615 			return PGM_TRANSLATION_SPEC;
616 		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
617 			return PGM_REGION_SECOND_TRANS;
618 		if (edat1)
619 			dat_protection |= rfte.p;
620 		ptr = rfte.rto * 4096 + vaddr.rsx * 8;
621 	}
622 		/* fallthrough */
623 	case ASCE_TYPE_REGION2: {
624 		union region2_table_entry rste;
625 
626 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
627 			return PGM_ADDRESSING;
628 		if (deref_table(vcpu->kvm, ptr, &rste.val))
629 			return -EFAULT;
630 		if (rste.i)
631 			return PGM_REGION_SECOND_TRANS;
632 		if (rste.tt != TABLE_TYPE_REGION2)
633 			return PGM_TRANSLATION_SPEC;
634 		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
635 			return PGM_REGION_THIRD_TRANS;
636 		if (edat1)
637 			dat_protection |= rste.p;
638 		ptr = rste.rto * 4096 + vaddr.rtx * 8;
639 	}
640 		/* fallthrough */
641 	case ASCE_TYPE_REGION3: {
642 		union region3_table_entry rtte;
643 
644 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
645 			return PGM_ADDRESSING;
646 		if (deref_table(vcpu->kvm, ptr, &rtte.val))
647 			return -EFAULT;
648 		if (rtte.i)
649 			return PGM_REGION_THIRD_TRANS;
650 		if (rtte.tt != TABLE_TYPE_REGION3)
651 			return PGM_TRANSLATION_SPEC;
652 		if (rtte.cr && asce.p && edat2)
653 			return PGM_TRANSLATION_SPEC;
654 		if (rtte.fc && edat2) {
655 			dat_protection |= rtte.fc1.p;
656 			raddr.rfaa = rtte.fc1.rfaa;
657 			goto absolute_address;
658 		}
659 		if (vaddr.sx01 < rtte.fc0.tf)
660 			return PGM_SEGMENT_TRANSLATION;
661 		if (vaddr.sx01 > rtte.fc0.tl)
662 			return PGM_SEGMENT_TRANSLATION;
663 		if (edat1)
664 			dat_protection |= rtte.fc0.p;
665 		ptr = rtte.fc0.sto * 4096 + vaddr.sx * 8;
666 	}
667 		/* fallthrough */
668 	case ASCE_TYPE_SEGMENT: {
669 		union segment_table_entry ste;
670 
671 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
672 			return PGM_ADDRESSING;
673 		if (deref_table(vcpu->kvm, ptr, &ste.val))
674 			return -EFAULT;
675 		if (ste.i)
676 			return PGM_SEGMENT_TRANSLATION;
677 		if (ste.tt != TABLE_TYPE_SEGMENT)
678 			return PGM_TRANSLATION_SPEC;
679 		if (ste.cs && asce.p)
680 			return PGM_TRANSLATION_SPEC;
681 		if (ste.fc && edat1) {
682 			dat_protection |= ste.fc1.p;
683 			raddr.sfaa = ste.fc1.sfaa;
684 			goto absolute_address;
685 		}
686 		dat_protection |= ste.fc0.p;
687 		ptr = ste.fc0.pto * 2048 + vaddr.px * 8;
688 	}
689 	}
690 	if (kvm_is_error_gpa(vcpu->kvm, ptr))
691 		return PGM_ADDRESSING;
692 	if (deref_table(vcpu->kvm, ptr, &pte.val))
693 		return -EFAULT;
694 	if (pte.i)
695 		return PGM_PAGE_TRANSLATION;
696 	if (pte.z)
697 		return PGM_TRANSLATION_SPEC;
698 	if (pte.co && !edat1)
699 		return PGM_TRANSLATION_SPEC;
700 	dat_protection |= pte.p;
701 	raddr.pfra = pte.pfra;
702 real_address:
703 	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
704 absolute_address:
705 	if (mode == GACC_STORE && dat_protection)
706 		return PGM_PROTECTION;
707 	if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
708 		return PGM_ADDRESSING;
709 	*gpa = raddr.addr;
710 	return 0;
711 }
712 
713 static inline int is_low_address(unsigned long ga)
714 {
715 	/* Check for address ranges 0..511 and 4096..4607 */
716 	return (ga & ~0x11fful) == 0;
717 }
718 
719 static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
720 					  const union asce asce)
721 {
722 	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
723 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
724 
725 	if (!ctlreg0.lap)
726 		return 0;
727 	if (psw_bits(*psw).t && asce.p)
728 		return 0;
729 	return 1;
730 }
731 
732 static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga,
733 			    unsigned long *pages, unsigned long nr_pages,
734 			    const union asce asce, enum gacc_mode mode)
735 {
736 	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
737 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
738 	struct trans_exc_code_bits *tec_bits;
739 	int lap_enabled, rc;
740 
741 	tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
742 	lap_enabled = low_address_protection_enabled(vcpu, asce);
743 	while (nr_pages) {
744 		ga = kvm_s390_logical_to_effective(vcpu, ga);
745 		tec_bits->addr = ga >> PAGE_SHIFT;
746 		if (mode == GACC_STORE && lap_enabled && is_low_address(ga)) {
747 			pgm->code = PGM_PROTECTION;
748 			return pgm->code;
749 		}
750 		ga &= PAGE_MASK;
751 		if (psw_bits(*psw).t) {
752 			rc = guest_translate(vcpu, ga, pages, asce, mode);
753 			if (rc < 0)
754 				return rc;
755 			if (rc == PGM_PROTECTION)
756 				tec_bits->b61 = 1;
757 			if (rc)
758 				pgm->code = rc;
759 		} else {
760 			*pages = kvm_s390_real_to_abs(vcpu, ga);
761 			if (kvm_is_error_gpa(vcpu->kvm, *pages))
762 				pgm->code = PGM_ADDRESSING;
763 		}
764 		if (pgm->code)
765 			return pgm->code;
766 		ga += PAGE_SIZE;
767 		pages++;
768 		nr_pages--;
769 	}
770 	return 0;
771 }
772 
773 int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, ar_t ar, void *data,
774 		 unsigned long len, enum gacc_mode mode)
775 {
776 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
777 	unsigned long _len, nr_pages, gpa, idx;
778 	unsigned long pages_array[2];
779 	unsigned long *pages;
780 	int need_ipte_lock;
781 	union asce asce;
782 	int rc;
783 
784 	if (!len)
785 		return 0;
786 	rc = get_vcpu_asce(vcpu, &asce, ar, mode);
787 	if (rc)
788 		return rc;
789 	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
790 	pages = pages_array;
791 	if (nr_pages > ARRAY_SIZE(pages_array))
792 		pages = vmalloc(nr_pages * sizeof(unsigned long));
793 	if (!pages)
794 		return -ENOMEM;
795 	need_ipte_lock = psw_bits(*psw).t && !asce.r;
796 	if (need_ipte_lock)
797 		ipte_lock(vcpu);
798 	rc = guest_page_range(vcpu, ga, pages, nr_pages, asce, mode);
799 	for (idx = 0; idx < nr_pages && !rc; idx++) {
800 		gpa = *(pages + idx) + (ga & ~PAGE_MASK);
801 		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
802 		if (mode == GACC_STORE)
803 			rc = kvm_write_guest(vcpu->kvm, gpa, data, _len);
804 		else
805 			rc = kvm_read_guest(vcpu->kvm, gpa, data, _len);
806 		len -= _len;
807 		ga += _len;
808 		data += _len;
809 	}
810 	if (need_ipte_lock)
811 		ipte_unlock(vcpu);
812 	if (nr_pages > ARRAY_SIZE(pages_array))
813 		vfree(pages);
814 	return rc;
815 }
816 
817 int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
818 		      void *data, unsigned long len, enum gacc_mode mode)
819 {
820 	unsigned long _len, gpa;
821 	int rc = 0;
822 
823 	while (len && !rc) {
824 		gpa = kvm_s390_real_to_abs(vcpu, gra);
825 		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
826 		if (mode)
827 			rc = write_guest_abs(vcpu, gpa, data, _len);
828 		else
829 			rc = read_guest_abs(vcpu, gpa, data, _len);
830 		len -= _len;
831 		gra += _len;
832 		data += _len;
833 	}
834 	return rc;
835 }
836 
837 /**
838  * guest_translate_address - translate guest logical into guest absolute address
839  *
840  * Parameter semantics are the same as the ones from guest_translate.
841  * The memory contents at the guest address are not changed.
842  *
843  * Note: The IPTE lock is not taken during this function, so the caller
844  * has to take care of this.
845  */
846 int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
847 			    unsigned long *gpa, enum gacc_mode mode)
848 {
849 	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
850 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
851 	struct trans_exc_code_bits *tec;
852 	union asce asce;
853 	int rc;
854 
855 	gva = kvm_s390_logical_to_effective(vcpu, gva);
856 	tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
857 	rc = get_vcpu_asce(vcpu, &asce, ar, mode);
858 	tec->addr = gva >> PAGE_SHIFT;
859 	if (rc)
860 		return rc;
861 	if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) {
862 		if (mode == GACC_STORE) {
863 			rc = pgm->code = PGM_PROTECTION;
864 			return rc;
865 		}
866 	}
867 
868 	if (psw_bits(*psw).t && !asce.r) {	/* Use DAT? */
869 		rc = guest_translate(vcpu, gva, gpa, asce, mode);
870 		if (rc > 0) {
871 			if (rc == PGM_PROTECTION)
872 				tec->b61 = 1;
873 			pgm->code = rc;
874 		}
875 	} else {
876 		rc = 0;
877 		*gpa = kvm_s390_real_to_abs(vcpu, gva);
878 		if (kvm_is_error_gpa(vcpu->kvm, *gpa))
879 			rc = pgm->code = PGM_ADDRESSING;
880 	}
881 
882 	return rc;
883 }
884 
885 /**
886  * check_gva_range - test a range of guest virtual addresses for accessibility
887  */
888 int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
889 		    unsigned long length, enum gacc_mode mode)
890 {
891 	unsigned long gpa;
892 	unsigned long currlen;
893 	int rc = 0;
894 
895 	ipte_lock(vcpu);
896 	while (length > 0 && !rc) {
897 		currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE));
898 		rc = guest_translate_address(vcpu, gva, ar, &gpa, mode);
899 		gva += currlen;
900 		length -= currlen;
901 	}
902 	ipte_unlock(vcpu);
903 
904 	return rc;
905 }
906 
907 /**
908  * kvm_s390_check_low_addr_prot_real - check for low-address protection
909  * @gra: Guest real address
910  *
911  * Checks whether an address is subject to low-address protection and set
912  * up vcpu->arch.pgm accordingly if necessary.
913  *
914  * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
915  */
916 int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
917 {
918 	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
919 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
920 	struct trans_exc_code_bits *tec_bits;
921 	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
922 
923 	if (!ctlreg0.lap || !is_low_address(gra))
924 		return 0;
925 
926 	memset(pgm, 0, sizeof(*pgm));
927 	tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
928 	tec_bits->fsi = FSI_STORE;
929 	tec_bits->as = psw_bits(*psw).as;
930 	tec_bits->addr = gra >> PAGE_SHIFT;
931 	pgm->code = PGM_PROTECTION;
932 
933 	return pgm->code;
934 }
935