xref: /openbmc/linux/arch/s390/kvm/gaccess.c (revision a8fe58ce)
1 /*
2  * guest access functions
3  *
4  * Copyright IBM Corp. 2014
5  *
6  */
7 
8 #include <linux/vmalloc.h>
9 #include <linux/err.h>
10 #include <asm/pgtable.h>
11 #include "kvm-s390.h"
12 #include "gaccess.h"
13 #include <asm/switch_to.h>
14 
15 union asce {
16 	unsigned long val;
17 	struct {
18 		unsigned long origin : 52; /* Region- or Segment-Table Origin */
19 		unsigned long	 : 2;
20 		unsigned long g  : 1; /* Subspace Group Control */
21 		unsigned long p  : 1; /* Private Space Control */
22 		unsigned long s  : 1; /* Storage-Alteration-Event Control */
23 		unsigned long x  : 1; /* Space-Switch-Event Control */
24 		unsigned long r  : 1; /* Real-Space Control */
25 		unsigned long	 : 1;
26 		unsigned long dt : 2; /* Designation-Type Control */
27 		unsigned long tl : 2; /* Region- or Segment-Table Length */
28 	};
29 };
30 
31 enum {
32 	ASCE_TYPE_SEGMENT = 0,
33 	ASCE_TYPE_REGION3 = 1,
34 	ASCE_TYPE_REGION2 = 2,
35 	ASCE_TYPE_REGION1 = 3
36 };
37 
38 union region1_table_entry {
39 	unsigned long val;
40 	struct {
41 		unsigned long rto: 52;/* Region-Table Origin */
42 		unsigned long	 : 2;
43 		unsigned long p  : 1; /* DAT-Protection Bit */
44 		unsigned long	 : 1;
45 		unsigned long tf : 2; /* Region-Second-Table Offset */
46 		unsigned long i  : 1; /* Region-Invalid Bit */
47 		unsigned long	 : 1;
48 		unsigned long tt : 2; /* Table-Type Bits */
49 		unsigned long tl : 2; /* Region-Second-Table Length */
50 	};
51 };
52 
53 union region2_table_entry {
54 	unsigned long val;
55 	struct {
56 		unsigned long rto: 52;/* Region-Table Origin */
57 		unsigned long	 : 2;
58 		unsigned long p  : 1; /* DAT-Protection Bit */
59 		unsigned long	 : 1;
60 		unsigned long tf : 2; /* Region-Third-Table Offset */
61 		unsigned long i  : 1; /* Region-Invalid Bit */
62 		unsigned long	 : 1;
63 		unsigned long tt : 2; /* Table-Type Bits */
64 		unsigned long tl : 2; /* Region-Third-Table Length */
65 	};
66 };
67 
68 struct region3_table_entry_fc0 {
69 	unsigned long sto: 52;/* Segment-Table Origin */
70 	unsigned long	 : 1;
71 	unsigned long fc : 1; /* Format-Control */
72 	unsigned long p  : 1; /* DAT-Protection Bit */
73 	unsigned long	 : 1;
74 	unsigned long tf : 2; /* Segment-Table Offset */
75 	unsigned long i  : 1; /* Region-Invalid Bit */
76 	unsigned long cr : 1; /* Common-Region Bit */
77 	unsigned long tt : 2; /* Table-Type Bits */
78 	unsigned long tl : 2; /* Segment-Table Length */
79 };
80 
81 struct region3_table_entry_fc1 {
82 	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
83 	unsigned long	 : 14;
84 	unsigned long av : 1; /* ACCF-Validity Control */
85 	unsigned long acc: 4; /* Access-Control Bits */
86 	unsigned long f  : 1; /* Fetch-Protection Bit */
87 	unsigned long fc : 1; /* Format-Control */
88 	unsigned long p  : 1; /* DAT-Protection Bit */
89 	unsigned long co : 1; /* Change-Recording Override */
90 	unsigned long	 : 2;
91 	unsigned long i  : 1; /* Region-Invalid Bit */
92 	unsigned long cr : 1; /* Common-Region Bit */
93 	unsigned long tt : 2; /* Table-Type Bits */
94 	unsigned long	 : 2;
95 };
96 
97 union region3_table_entry {
98 	unsigned long val;
99 	struct region3_table_entry_fc0 fc0;
100 	struct region3_table_entry_fc1 fc1;
101 	struct {
102 		unsigned long	 : 53;
103 		unsigned long fc : 1; /* Format-Control */
104 		unsigned long	 : 4;
105 		unsigned long i  : 1; /* Region-Invalid Bit */
106 		unsigned long cr : 1; /* Common-Region Bit */
107 		unsigned long tt : 2; /* Table-Type Bits */
108 		unsigned long	 : 2;
109 	};
110 };
111 
112 struct segment_entry_fc0 {
113 	unsigned long pto: 53;/* Page-Table Origin */
114 	unsigned long fc : 1; /* Format-Control */
115 	unsigned long p  : 1; /* DAT-Protection Bit */
116 	unsigned long	 : 3;
117 	unsigned long i  : 1; /* Segment-Invalid Bit */
118 	unsigned long cs : 1; /* Common-Segment Bit */
119 	unsigned long tt : 2; /* Table-Type Bits */
120 	unsigned long	 : 2;
121 };
122 
123 struct segment_entry_fc1 {
124 	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
125 	unsigned long	 : 3;
126 	unsigned long av : 1; /* ACCF-Validity Control */
127 	unsigned long acc: 4; /* Access-Control Bits */
128 	unsigned long f  : 1; /* Fetch-Protection Bit */
129 	unsigned long fc : 1; /* Format-Control */
130 	unsigned long p  : 1; /* DAT-Protection Bit */
131 	unsigned long co : 1; /* Change-Recording Override */
132 	unsigned long	 : 2;
133 	unsigned long i  : 1; /* Segment-Invalid Bit */
134 	unsigned long cs : 1; /* Common-Segment Bit */
135 	unsigned long tt : 2; /* Table-Type Bits */
136 	unsigned long	 : 2;
137 };
138 
139 union segment_table_entry {
140 	unsigned long val;
141 	struct segment_entry_fc0 fc0;
142 	struct segment_entry_fc1 fc1;
143 	struct {
144 		unsigned long	 : 53;
145 		unsigned long fc : 1; /* Format-Control */
146 		unsigned long	 : 4;
147 		unsigned long i  : 1; /* Segment-Invalid Bit */
148 		unsigned long cs : 1; /* Common-Segment Bit */
149 		unsigned long tt : 2; /* Table-Type Bits */
150 		unsigned long	 : 2;
151 	};
152 };
153 
154 enum {
155 	TABLE_TYPE_SEGMENT = 0,
156 	TABLE_TYPE_REGION3 = 1,
157 	TABLE_TYPE_REGION2 = 2,
158 	TABLE_TYPE_REGION1 = 3
159 };
160 
161 union page_table_entry {
162 	unsigned long val;
163 	struct {
164 		unsigned long pfra : 52; /* Page-Frame Real Address */
165 		unsigned long z  : 1; /* Zero Bit */
166 		unsigned long i  : 1; /* Page-Invalid Bit */
167 		unsigned long p  : 1; /* DAT-Protection Bit */
168 		unsigned long co : 1; /* Change-Recording Override */
169 		unsigned long	 : 8;
170 	};
171 };
172 
173 /*
174  * vaddress union in order to easily decode a virtual address into its
175  * region first index, region second index etc. parts.
176  */
177 union vaddress {
178 	unsigned long addr;
179 	struct {
180 		unsigned long rfx : 11;
181 		unsigned long rsx : 11;
182 		unsigned long rtx : 11;
183 		unsigned long sx  : 11;
184 		unsigned long px  : 8;
185 		unsigned long bx  : 12;
186 	};
187 	struct {
188 		unsigned long rfx01 : 2;
189 		unsigned long	    : 9;
190 		unsigned long rsx01 : 2;
191 		unsigned long	    : 9;
192 		unsigned long rtx01 : 2;
193 		unsigned long	    : 9;
194 		unsigned long sx01  : 2;
195 		unsigned long	    : 29;
196 	};
197 };
198 
199 /*
200  * raddress union which will contain the result (real or absolute address)
201  * after a page table walk. The rfaa, sfaa and pfra members are used to
202  * simply assign them the value of a region, segment or page table entry.
203  */
204 union raddress {
205 	unsigned long addr;
206 	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
207 	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
208 	unsigned long pfra : 52; /* Page-Frame Real Address */
209 };
210 
211 union alet {
212 	u32 val;
213 	struct {
214 		u32 reserved : 7;
215 		u32 p        : 1;
216 		u32 alesn    : 8;
217 		u32 alen     : 16;
218 	};
219 };
220 
221 union ald {
222 	u32 val;
223 	struct {
224 		u32     : 1;
225 		u32 alo : 24;
226 		u32 all : 7;
227 	};
228 };
229 
230 struct ale {
231 	unsigned long i      : 1; /* ALEN-Invalid Bit */
232 	unsigned long        : 5;
233 	unsigned long fo     : 1; /* Fetch-Only Bit */
234 	unsigned long p      : 1; /* Private Bit */
235 	unsigned long alesn  : 8; /* Access-List-Entry Sequence Number */
236 	unsigned long aleax  : 16; /* Access-List-Entry Authorization Index */
237 	unsigned long        : 32;
238 	unsigned long        : 1;
239 	unsigned long asteo  : 25; /* ASN-Second-Table-Entry Origin */
240 	unsigned long        : 6;
241 	unsigned long astesn : 32; /* ASTE Sequence Number */
242 } __packed;
243 
244 struct aste {
245 	unsigned long i      : 1; /* ASX-Invalid Bit */
246 	unsigned long ato    : 29; /* Authority-Table Origin */
247 	unsigned long        : 1;
248 	unsigned long b      : 1; /* Base-Space Bit */
249 	unsigned long ax     : 16; /* Authorization Index */
250 	unsigned long atl    : 12; /* Authority-Table Length */
251 	unsigned long        : 2;
252 	unsigned long ca     : 1; /* Controlled-ASN Bit */
253 	unsigned long ra     : 1; /* Reusable-ASN Bit */
254 	unsigned long asce   : 64; /* Address-Space-Control Element */
255 	unsigned long ald    : 32;
256 	unsigned long astesn : 32;
257 	/* .. more fields there */
258 } __packed;
259 
260 int ipte_lock_held(struct kvm_vcpu *vcpu)
261 {
262 	if (vcpu->arch.sie_block->eca & 1) {
263 		int rc;
264 
265 		read_lock(&vcpu->kvm->arch.sca_lock);
266 		rc = kvm_s390_get_ipte_control(vcpu->kvm)->kh != 0;
267 		read_unlock(&vcpu->kvm->arch.sca_lock);
268 		return rc;
269 	}
270 	return vcpu->kvm->arch.ipte_lock_count != 0;
271 }
272 
273 static void ipte_lock_simple(struct kvm_vcpu *vcpu)
274 {
275 	union ipte_control old, new, *ic;
276 
277 	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
278 	vcpu->kvm->arch.ipte_lock_count++;
279 	if (vcpu->kvm->arch.ipte_lock_count > 1)
280 		goto out;
281 retry:
282 	read_lock(&vcpu->kvm->arch.sca_lock);
283 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
284 	do {
285 		old = READ_ONCE(*ic);
286 		if (old.k) {
287 			read_unlock(&vcpu->kvm->arch.sca_lock);
288 			cond_resched();
289 			goto retry;
290 		}
291 		new = old;
292 		new.k = 1;
293 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
294 	read_unlock(&vcpu->kvm->arch.sca_lock);
295 out:
296 	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
297 }
298 
299 static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
300 {
301 	union ipte_control old, new, *ic;
302 
303 	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
304 	vcpu->kvm->arch.ipte_lock_count--;
305 	if (vcpu->kvm->arch.ipte_lock_count)
306 		goto out;
307 	read_lock(&vcpu->kvm->arch.sca_lock);
308 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
309 	do {
310 		old = READ_ONCE(*ic);
311 		new = old;
312 		new.k = 0;
313 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
314 	read_unlock(&vcpu->kvm->arch.sca_lock);
315 	wake_up(&vcpu->kvm->arch.ipte_wq);
316 out:
317 	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
318 }
319 
320 static void ipte_lock_siif(struct kvm_vcpu *vcpu)
321 {
322 	union ipte_control old, new, *ic;
323 
324 retry:
325 	read_lock(&vcpu->kvm->arch.sca_lock);
326 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
327 	do {
328 		old = READ_ONCE(*ic);
329 		if (old.kg) {
330 			read_unlock(&vcpu->kvm->arch.sca_lock);
331 			cond_resched();
332 			goto retry;
333 		}
334 		new = old;
335 		new.k = 1;
336 		new.kh++;
337 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
338 	read_unlock(&vcpu->kvm->arch.sca_lock);
339 }
340 
341 static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
342 {
343 	union ipte_control old, new, *ic;
344 
345 	read_lock(&vcpu->kvm->arch.sca_lock);
346 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
347 	do {
348 		old = READ_ONCE(*ic);
349 		new = old;
350 		new.kh--;
351 		if (!new.kh)
352 			new.k = 0;
353 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
354 	read_unlock(&vcpu->kvm->arch.sca_lock);
355 	if (!new.kh)
356 		wake_up(&vcpu->kvm->arch.ipte_wq);
357 }
358 
359 void ipte_lock(struct kvm_vcpu *vcpu)
360 {
361 	if (vcpu->arch.sie_block->eca & 1)
362 		ipte_lock_siif(vcpu);
363 	else
364 		ipte_lock_simple(vcpu);
365 }
366 
367 void ipte_unlock(struct kvm_vcpu *vcpu)
368 {
369 	if (vcpu->arch.sie_block->eca & 1)
370 		ipte_unlock_siif(vcpu);
371 	else
372 		ipte_unlock_simple(vcpu);
373 }
374 
375 static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, ar_t ar,
376 			  int write)
377 {
378 	union alet alet;
379 	struct ale ale;
380 	struct aste aste;
381 	unsigned long ald_addr, authority_table_addr;
382 	union ald ald;
383 	int eax, rc;
384 	u8 authority_table;
385 
386 	if (ar >= NUM_ACRS)
387 		return -EINVAL;
388 
389 	save_access_regs(vcpu->run->s.regs.acrs);
390 	alet.val = vcpu->run->s.regs.acrs[ar];
391 
392 	if (ar == 0 || alet.val == 0) {
393 		asce->val = vcpu->arch.sie_block->gcr[1];
394 		return 0;
395 	} else if (alet.val == 1) {
396 		asce->val = vcpu->arch.sie_block->gcr[7];
397 		return 0;
398 	}
399 
400 	if (alet.reserved)
401 		return PGM_ALET_SPECIFICATION;
402 
403 	if (alet.p)
404 		ald_addr = vcpu->arch.sie_block->gcr[5];
405 	else
406 		ald_addr = vcpu->arch.sie_block->gcr[2];
407 	ald_addr &= 0x7fffffc0;
408 
409 	rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
410 	if (rc)
411 		return rc;
412 
413 	if (alet.alen / 8 > ald.all)
414 		return PGM_ALEN_TRANSLATION;
415 
416 	if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
417 		return PGM_ADDRESSING;
418 
419 	rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
420 			     sizeof(struct ale));
421 	if (rc)
422 		return rc;
423 
424 	if (ale.i == 1)
425 		return PGM_ALEN_TRANSLATION;
426 	if (ale.alesn != alet.alesn)
427 		return PGM_ALE_SEQUENCE;
428 
429 	rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
430 	if (rc)
431 		return rc;
432 
433 	if (aste.i)
434 		return PGM_ASTE_VALIDITY;
435 	if (aste.astesn != ale.astesn)
436 		return PGM_ASTE_SEQUENCE;
437 
438 	if (ale.p == 1) {
439 		eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
440 		if (ale.aleax != eax) {
441 			if (eax / 16 > aste.atl)
442 				return PGM_EXTENDED_AUTHORITY;
443 
444 			authority_table_addr = aste.ato * 4 + eax / 4;
445 
446 			rc = read_guest_real(vcpu, authority_table_addr,
447 					     &authority_table,
448 					     sizeof(u8));
449 			if (rc)
450 				return rc;
451 
452 			if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
453 				return PGM_EXTENDED_AUTHORITY;
454 		}
455 	}
456 
457 	if (ale.fo == 1 && write)
458 		return PGM_PROTECTION;
459 
460 	asce->val = aste.asce;
461 	return 0;
462 }
463 
464 struct trans_exc_code_bits {
465 	unsigned long addr : 52; /* Translation-exception Address */
466 	unsigned long fsi  : 2;  /* Access Exception Fetch/Store Indication */
467 	unsigned long	   : 6;
468 	unsigned long b60  : 1;
469 	unsigned long b61  : 1;
470 	unsigned long as   : 2;  /* ASCE Identifier */
471 };
472 
473 enum {
474 	FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
475 	FSI_STORE   = 1, /* Exception was due to store operation */
476 	FSI_FETCH   = 2  /* Exception was due to fetch operation */
477 };
478 
479 static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
480 			 ar_t ar, int write)
481 {
482 	int rc;
483 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
484 	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
485 	struct trans_exc_code_bits *tec_bits;
486 
487 	memset(pgm, 0, sizeof(*pgm));
488 	tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
489 	tec_bits->fsi = write ? FSI_STORE : FSI_FETCH;
490 	tec_bits->as = psw_bits(*psw).as;
491 
492 	if (!psw_bits(*psw).t) {
493 		asce->val = 0;
494 		asce->r = 1;
495 		return 0;
496 	}
497 
498 	switch (psw_bits(vcpu->arch.sie_block->gpsw).as) {
499 	case PSW_AS_PRIMARY:
500 		asce->val = vcpu->arch.sie_block->gcr[1];
501 		return 0;
502 	case PSW_AS_SECONDARY:
503 		asce->val = vcpu->arch.sie_block->gcr[7];
504 		return 0;
505 	case PSW_AS_HOME:
506 		asce->val = vcpu->arch.sie_block->gcr[13];
507 		return 0;
508 	case PSW_AS_ACCREG:
509 		rc = ar_translation(vcpu, asce, ar, write);
510 		switch (rc) {
511 		case PGM_ALEN_TRANSLATION:
512 		case PGM_ALE_SEQUENCE:
513 		case PGM_ASTE_VALIDITY:
514 		case PGM_ASTE_SEQUENCE:
515 		case PGM_EXTENDED_AUTHORITY:
516 			vcpu->arch.pgm.exc_access_id = ar;
517 			break;
518 		case PGM_PROTECTION:
519 			tec_bits->b60 = 1;
520 			tec_bits->b61 = 1;
521 			break;
522 		}
523 		if (rc > 0)
524 			pgm->code = rc;
525 		return rc;
526 	}
527 	return 0;
528 }
529 
530 static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
531 {
532 	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
533 }
534 
535 /**
536  * guest_translate - translate a guest virtual into a guest absolute address
537  * @vcpu: virtual cpu
538  * @gva: guest virtual address
539  * @gpa: points to where guest physical (absolute) address should be stored
540  * @asce: effective asce
541  * @write: indicates if access is a write access
542  *
543  * Translate a guest virtual address into a guest absolute address by means
544  * of dynamic address translation as specified by the architecture.
545  * If the resulting absolute address is not available in the configuration
546  * an addressing exception is indicated and @gpa will not be changed.
547  *
548  * Returns: - zero on success; @gpa contains the resulting absolute address
549  *	    - a negative value if guest access failed due to e.g. broken
550  *	      guest mapping
551  *	    - a positve value if an access exception happened. In this case
552  *	      the returned value is the program interruption code as defined
553  *	      by the architecture
554  */
555 static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
556 				     unsigned long *gpa, const union asce asce,
557 				     int write)
558 {
559 	union vaddress vaddr = {.addr = gva};
560 	union raddress raddr = {.addr = gva};
561 	union page_table_entry pte;
562 	int dat_protection = 0;
563 	union ctlreg0 ctlreg0;
564 	unsigned long ptr;
565 	int edat1, edat2;
566 
567 	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
568 	edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
569 	edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
570 	if (asce.r)
571 		goto real_address;
572 	ptr = asce.origin * 4096;
573 	switch (asce.dt) {
574 	case ASCE_TYPE_REGION1:
575 		if (vaddr.rfx01 > asce.tl)
576 			return PGM_REGION_FIRST_TRANS;
577 		ptr += vaddr.rfx * 8;
578 		break;
579 	case ASCE_TYPE_REGION2:
580 		if (vaddr.rfx)
581 			return PGM_ASCE_TYPE;
582 		if (vaddr.rsx01 > asce.tl)
583 			return PGM_REGION_SECOND_TRANS;
584 		ptr += vaddr.rsx * 8;
585 		break;
586 	case ASCE_TYPE_REGION3:
587 		if (vaddr.rfx || vaddr.rsx)
588 			return PGM_ASCE_TYPE;
589 		if (vaddr.rtx01 > asce.tl)
590 			return PGM_REGION_THIRD_TRANS;
591 		ptr += vaddr.rtx * 8;
592 		break;
593 	case ASCE_TYPE_SEGMENT:
594 		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
595 			return PGM_ASCE_TYPE;
596 		if (vaddr.sx01 > asce.tl)
597 			return PGM_SEGMENT_TRANSLATION;
598 		ptr += vaddr.sx * 8;
599 		break;
600 	}
601 	switch (asce.dt) {
602 	case ASCE_TYPE_REGION1:	{
603 		union region1_table_entry rfte;
604 
605 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
606 			return PGM_ADDRESSING;
607 		if (deref_table(vcpu->kvm, ptr, &rfte.val))
608 			return -EFAULT;
609 		if (rfte.i)
610 			return PGM_REGION_FIRST_TRANS;
611 		if (rfte.tt != TABLE_TYPE_REGION1)
612 			return PGM_TRANSLATION_SPEC;
613 		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
614 			return PGM_REGION_SECOND_TRANS;
615 		if (edat1)
616 			dat_protection |= rfte.p;
617 		ptr = rfte.rto * 4096 + vaddr.rsx * 8;
618 	}
619 		/* fallthrough */
620 	case ASCE_TYPE_REGION2: {
621 		union region2_table_entry rste;
622 
623 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
624 			return PGM_ADDRESSING;
625 		if (deref_table(vcpu->kvm, ptr, &rste.val))
626 			return -EFAULT;
627 		if (rste.i)
628 			return PGM_REGION_SECOND_TRANS;
629 		if (rste.tt != TABLE_TYPE_REGION2)
630 			return PGM_TRANSLATION_SPEC;
631 		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
632 			return PGM_REGION_THIRD_TRANS;
633 		if (edat1)
634 			dat_protection |= rste.p;
635 		ptr = rste.rto * 4096 + vaddr.rtx * 8;
636 	}
637 		/* fallthrough */
638 	case ASCE_TYPE_REGION3: {
639 		union region3_table_entry rtte;
640 
641 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
642 			return PGM_ADDRESSING;
643 		if (deref_table(vcpu->kvm, ptr, &rtte.val))
644 			return -EFAULT;
645 		if (rtte.i)
646 			return PGM_REGION_THIRD_TRANS;
647 		if (rtte.tt != TABLE_TYPE_REGION3)
648 			return PGM_TRANSLATION_SPEC;
649 		if (rtte.cr && asce.p && edat2)
650 			return PGM_TRANSLATION_SPEC;
651 		if (rtte.fc && edat2) {
652 			dat_protection |= rtte.fc1.p;
653 			raddr.rfaa = rtte.fc1.rfaa;
654 			goto absolute_address;
655 		}
656 		if (vaddr.sx01 < rtte.fc0.tf)
657 			return PGM_SEGMENT_TRANSLATION;
658 		if (vaddr.sx01 > rtte.fc0.tl)
659 			return PGM_SEGMENT_TRANSLATION;
660 		if (edat1)
661 			dat_protection |= rtte.fc0.p;
662 		ptr = rtte.fc0.sto * 4096 + vaddr.sx * 8;
663 	}
664 		/* fallthrough */
665 	case ASCE_TYPE_SEGMENT: {
666 		union segment_table_entry ste;
667 
668 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
669 			return PGM_ADDRESSING;
670 		if (deref_table(vcpu->kvm, ptr, &ste.val))
671 			return -EFAULT;
672 		if (ste.i)
673 			return PGM_SEGMENT_TRANSLATION;
674 		if (ste.tt != TABLE_TYPE_SEGMENT)
675 			return PGM_TRANSLATION_SPEC;
676 		if (ste.cs && asce.p)
677 			return PGM_TRANSLATION_SPEC;
678 		if (ste.fc && edat1) {
679 			dat_protection |= ste.fc1.p;
680 			raddr.sfaa = ste.fc1.sfaa;
681 			goto absolute_address;
682 		}
683 		dat_protection |= ste.fc0.p;
684 		ptr = ste.fc0.pto * 2048 + vaddr.px * 8;
685 	}
686 	}
687 	if (kvm_is_error_gpa(vcpu->kvm, ptr))
688 		return PGM_ADDRESSING;
689 	if (deref_table(vcpu->kvm, ptr, &pte.val))
690 		return -EFAULT;
691 	if (pte.i)
692 		return PGM_PAGE_TRANSLATION;
693 	if (pte.z)
694 		return PGM_TRANSLATION_SPEC;
695 	if (pte.co && !edat1)
696 		return PGM_TRANSLATION_SPEC;
697 	dat_protection |= pte.p;
698 	raddr.pfra = pte.pfra;
699 real_address:
700 	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
701 absolute_address:
702 	if (write && dat_protection)
703 		return PGM_PROTECTION;
704 	if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
705 		return PGM_ADDRESSING;
706 	*gpa = raddr.addr;
707 	return 0;
708 }
709 
710 static inline int is_low_address(unsigned long ga)
711 {
712 	/* Check for address ranges 0..511 and 4096..4607 */
713 	return (ga & ~0x11fful) == 0;
714 }
715 
716 static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
717 					  const union asce asce)
718 {
719 	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
720 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
721 
722 	if (!ctlreg0.lap)
723 		return 0;
724 	if (psw_bits(*psw).t && asce.p)
725 		return 0;
726 	return 1;
727 }
728 
729 static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga,
730 			    unsigned long *pages, unsigned long nr_pages,
731 			    const union asce asce, int write)
732 {
733 	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
734 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
735 	struct trans_exc_code_bits *tec_bits;
736 	int lap_enabled, rc;
737 
738 	tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
739 	lap_enabled = low_address_protection_enabled(vcpu, asce);
740 	while (nr_pages) {
741 		ga = kvm_s390_logical_to_effective(vcpu, ga);
742 		tec_bits->addr = ga >> PAGE_SHIFT;
743 		if (write && lap_enabled && is_low_address(ga)) {
744 			pgm->code = PGM_PROTECTION;
745 			return pgm->code;
746 		}
747 		ga &= PAGE_MASK;
748 		if (psw_bits(*psw).t) {
749 			rc = guest_translate(vcpu, ga, pages, asce, write);
750 			if (rc < 0)
751 				return rc;
752 			if (rc == PGM_PROTECTION)
753 				tec_bits->b61 = 1;
754 			if (rc)
755 				pgm->code = rc;
756 		} else {
757 			*pages = kvm_s390_real_to_abs(vcpu, ga);
758 			if (kvm_is_error_gpa(vcpu->kvm, *pages))
759 				pgm->code = PGM_ADDRESSING;
760 		}
761 		if (pgm->code)
762 			return pgm->code;
763 		ga += PAGE_SIZE;
764 		pages++;
765 		nr_pages--;
766 	}
767 	return 0;
768 }
769 
770 int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, ar_t ar, void *data,
771 		 unsigned long len, int write)
772 {
773 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
774 	unsigned long _len, nr_pages, gpa, idx;
775 	unsigned long pages_array[2];
776 	unsigned long *pages;
777 	int need_ipte_lock;
778 	union asce asce;
779 	int rc;
780 
781 	if (!len)
782 		return 0;
783 	rc = get_vcpu_asce(vcpu, &asce, ar, write);
784 	if (rc)
785 		return rc;
786 	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
787 	pages = pages_array;
788 	if (nr_pages > ARRAY_SIZE(pages_array))
789 		pages = vmalloc(nr_pages * sizeof(unsigned long));
790 	if (!pages)
791 		return -ENOMEM;
792 	need_ipte_lock = psw_bits(*psw).t && !asce.r;
793 	if (need_ipte_lock)
794 		ipte_lock(vcpu);
795 	rc = guest_page_range(vcpu, ga, pages, nr_pages, asce, write);
796 	for (idx = 0; idx < nr_pages && !rc; idx++) {
797 		gpa = *(pages + idx) + (ga & ~PAGE_MASK);
798 		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
799 		if (write)
800 			rc = kvm_write_guest(vcpu->kvm, gpa, data, _len);
801 		else
802 			rc = kvm_read_guest(vcpu->kvm, gpa, data, _len);
803 		len -= _len;
804 		ga += _len;
805 		data += _len;
806 	}
807 	if (need_ipte_lock)
808 		ipte_unlock(vcpu);
809 	if (nr_pages > ARRAY_SIZE(pages_array))
810 		vfree(pages);
811 	return rc;
812 }
813 
814 int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
815 		      void *data, unsigned long len, int write)
816 {
817 	unsigned long _len, gpa;
818 	int rc = 0;
819 
820 	while (len && !rc) {
821 		gpa = kvm_s390_real_to_abs(vcpu, gra);
822 		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
823 		if (write)
824 			rc = write_guest_abs(vcpu, gpa, data, _len);
825 		else
826 			rc = read_guest_abs(vcpu, gpa, data, _len);
827 		len -= _len;
828 		gra += _len;
829 		data += _len;
830 	}
831 	return rc;
832 }
833 
834 /**
835  * guest_translate_address - translate guest logical into guest absolute address
836  *
837  * Parameter semantics are the same as the ones from guest_translate.
838  * The memory contents at the guest address are not changed.
839  *
840  * Note: The IPTE lock is not taken during this function, so the caller
841  * has to take care of this.
842  */
843 int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
844 			    unsigned long *gpa, int write)
845 {
846 	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
847 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
848 	struct trans_exc_code_bits *tec;
849 	union asce asce;
850 	int rc;
851 
852 	gva = kvm_s390_logical_to_effective(vcpu, gva);
853 	tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
854 	rc = get_vcpu_asce(vcpu, &asce, ar, write);
855 	tec->addr = gva >> PAGE_SHIFT;
856 	if (rc)
857 		return rc;
858 	if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) {
859 		if (write) {
860 			rc = pgm->code = PGM_PROTECTION;
861 			return rc;
862 		}
863 	}
864 
865 	if (psw_bits(*psw).t && !asce.r) {	/* Use DAT? */
866 		rc = guest_translate(vcpu, gva, gpa, asce, write);
867 		if (rc > 0) {
868 			if (rc == PGM_PROTECTION)
869 				tec->b61 = 1;
870 			pgm->code = rc;
871 		}
872 	} else {
873 		rc = 0;
874 		*gpa = kvm_s390_real_to_abs(vcpu, gva);
875 		if (kvm_is_error_gpa(vcpu->kvm, *gpa))
876 			rc = pgm->code = PGM_ADDRESSING;
877 	}
878 
879 	return rc;
880 }
881 
882 /**
883  * check_gva_range - test a range of guest virtual addresses for accessibility
884  */
885 int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
886 		    unsigned long length, int is_write)
887 {
888 	unsigned long gpa;
889 	unsigned long currlen;
890 	int rc = 0;
891 
892 	ipte_lock(vcpu);
893 	while (length > 0 && !rc) {
894 		currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE));
895 		rc = guest_translate_address(vcpu, gva, ar, &gpa, is_write);
896 		gva += currlen;
897 		length -= currlen;
898 	}
899 	ipte_unlock(vcpu);
900 
901 	return rc;
902 }
903 
904 /**
905  * kvm_s390_check_low_addr_prot_real - check for low-address protection
906  * @gra: Guest real address
907  *
908  * Checks whether an address is subject to low-address protection and set
909  * up vcpu->arch.pgm accordingly if necessary.
910  *
911  * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
912  */
913 int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
914 {
915 	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
916 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
917 	struct trans_exc_code_bits *tec_bits;
918 	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
919 
920 	if (!ctlreg0.lap || !is_low_address(gra))
921 		return 0;
922 
923 	memset(pgm, 0, sizeof(*pgm));
924 	tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
925 	tec_bits->fsi = FSI_STORE;
926 	tec_bits->as = psw_bits(*psw).as;
927 	tec_bits->addr = gra >> PAGE_SHIFT;
928 	pgm->code = PGM_PROTECTION;
929 
930 	return pgm->code;
931 }
932