xref: /openbmc/linux/arch/s390/kvm/gaccess.c (revision 8d08a4c1)
1 /*
2  * guest access functions
3  *
4  * Copyright IBM Corp. 2014
5  *
6  */
7 
8 #include <linux/vmalloc.h>
9 #include <linux/mm_types.h>
10 #include <linux/err.h>
11 
12 #include <asm/pgtable.h>
13 #include <asm/gmap.h>
14 #include "kvm-s390.h"
15 #include "gaccess.h"
16 #include <asm/switch_to.h>
17 
18 union asce {
19 	unsigned long val;
20 	struct {
21 		unsigned long origin : 52; /* Region- or Segment-Table Origin */
22 		unsigned long	 : 2;
23 		unsigned long g  : 1; /* Subspace Group Control */
24 		unsigned long p  : 1; /* Private Space Control */
25 		unsigned long s  : 1; /* Storage-Alteration-Event Control */
26 		unsigned long x  : 1; /* Space-Switch-Event Control */
27 		unsigned long r  : 1; /* Real-Space Control */
28 		unsigned long	 : 1;
29 		unsigned long dt : 2; /* Designation-Type Control */
30 		unsigned long tl : 2; /* Region- or Segment-Table Length */
31 	};
32 };
33 
34 enum {
35 	ASCE_TYPE_SEGMENT = 0,
36 	ASCE_TYPE_REGION3 = 1,
37 	ASCE_TYPE_REGION2 = 2,
38 	ASCE_TYPE_REGION1 = 3
39 };
40 
41 union region1_table_entry {
42 	unsigned long val;
43 	struct {
44 		unsigned long rto: 52;/* Region-Table Origin */
45 		unsigned long	 : 2;
46 		unsigned long p  : 1; /* DAT-Protection Bit */
47 		unsigned long	 : 1;
48 		unsigned long tf : 2; /* Region-Second-Table Offset */
49 		unsigned long i  : 1; /* Region-Invalid Bit */
50 		unsigned long	 : 1;
51 		unsigned long tt : 2; /* Table-Type Bits */
52 		unsigned long tl : 2; /* Region-Second-Table Length */
53 	};
54 };
55 
56 union region2_table_entry {
57 	unsigned long val;
58 	struct {
59 		unsigned long rto: 52;/* Region-Table Origin */
60 		unsigned long	 : 2;
61 		unsigned long p  : 1; /* DAT-Protection Bit */
62 		unsigned long	 : 1;
63 		unsigned long tf : 2; /* Region-Third-Table Offset */
64 		unsigned long i  : 1; /* Region-Invalid Bit */
65 		unsigned long	 : 1;
66 		unsigned long tt : 2; /* Table-Type Bits */
67 		unsigned long tl : 2; /* Region-Third-Table Length */
68 	};
69 };
70 
71 struct region3_table_entry_fc0 {
72 	unsigned long sto: 52;/* Segment-Table Origin */
73 	unsigned long	 : 1;
74 	unsigned long fc : 1; /* Format-Control */
75 	unsigned long p  : 1; /* DAT-Protection Bit */
76 	unsigned long	 : 1;
77 	unsigned long tf : 2; /* Segment-Table Offset */
78 	unsigned long i  : 1; /* Region-Invalid Bit */
79 	unsigned long cr : 1; /* Common-Region Bit */
80 	unsigned long tt : 2; /* Table-Type Bits */
81 	unsigned long tl : 2; /* Segment-Table Length */
82 };
83 
84 struct region3_table_entry_fc1 {
85 	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
86 	unsigned long	 : 14;
87 	unsigned long av : 1; /* ACCF-Validity Control */
88 	unsigned long acc: 4; /* Access-Control Bits */
89 	unsigned long f  : 1; /* Fetch-Protection Bit */
90 	unsigned long fc : 1; /* Format-Control */
91 	unsigned long p  : 1; /* DAT-Protection Bit */
92 	unsigned long iep: 1; /* Instruction-Execution-Protection */
93 	unsigned long	 : 2;
94 	unsigned long i  : 1; /* Region-Invalid Bit */
95 	unsigned long cr : 1; /* Common-Region Bit */
96 	unsigned long tt : 2; /* Table-Type Bits */
97 	unsigned long	 : 2;
98 };
99 
100 union region3_table_entry {
101 	unsigned long val;
102 	struct region3_table_entry_fc0 fc0;
103 	struct region3_table_entry_fc1 fc1;
104 	struct {
105 		unsigned long	 : 53;
106 		unsigned long fc : 1; /* Format-Control */
107 		unsigned long	 : 4;
108 		unsigned long i  : 1; /* Region-Invalid Bit */
109 		unsigned long cr : 1; /* Common-Region Bit */
110 		unsigned long tt : 2; /* Table-Type Bits */
111 		unsigned long	 : 2;
112 	};
113 };
114 
115 struct segment_entry_fc0 {
116 	unsigned long pto: 53;/* Page-Table Origin */
117 	unsigned long fc : 1; /* Format-Control */
118 	unsigned long p  : 1; /* DAT-Protection Bit */
119 	unsigned long	 : 3;
120 	unsigned long i  : 1; /* Segment-Invalid Bit */
121 	unsigned long cs : 1; /* Common-Segment Bit */
122 	unsigned long tt : 2; /* Table-Type Bits */
123 	unsigned long	 : 2;
124 };
125 
126 struct segment_entry_fc1 {
127 	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
128 	unsigned long	 : 3;
129 	unsigned long av : 1; /* ACCF-Validity Control */
130 	unsigned long acc: 4; /* Access-Control Bits */
131 	unsigned long f  : 1; /* Fetch-Protection Bit */
132 	unsigned long fc : 1; /* Format-Control */
133 	unsigned long p  : 1; /* DAT-Protection Bit */
134 	unsigned long iep: 1; /* Instruction-Execution-Protection */
135 	unsigned long	 : 2;
136 	unsigned long i  : 1; /* Segment-Invalid Bit */
137 	unsigned long cs : 1; /* Common-Segment Bit */
138 	unsigned long tt : 2; /* Table-Type Bits */
139 	unsigned long	 : 2;
140 };
141 
142 union segment_table_entry {
143 	unsigned long val;
144 	struct segment_entry_fc0 fc0;
145 	struct segment_entry_fc1 fc1;
146 	struct {
147 		unsigned long	 : 53;
148 		unsigned long fc : 1; /* Format-Control */
149 		unsigned long	 : 4;
150 		unsigned long i  : 1; /* Segment-Invalid Bit */
151 		unsigned long cs : 1; /* Common-Segment Bit */
152 		unsigned long tt : 2; /* Table-Type Bits */
153 		unsigned long	 : 2;
154 	};
155 };
156 
157 enum {
158 	TABLE_TYPE_SEGMENT = 0,
159 	TABLE_TYPE_REGION3 = 1,
160 	TABLE_TYPE_REGION2 = 2,
161 	TABLE_TYPE_REGION1 = 3
162 };
163 
164 union page_table_entry {
165 	unsigned long val;
166 	struct {
167 		unsigned long pfra : 52; /* Page-Frame Real Address */
168 		unsigned long z  : 1; /* Zero Bit */
169 		unsigned long i  : 1; /* Page-Invalid Bit */
170 		unsigned long p  : 1; /* DAT-Protection Bit */
171 		unsigned long iep: 1; /* Instruction-Execution-Protection */
172 		unsigned long	 : 8;
173 	};
174 };
175 
176 /*
177  * vaddress union in order to easily decode a virtual address into its
178  * region first index, region second index etc. parts.
179  */
180 union vaddress {
181 	unsigned long addr;
182 	struct {
183 		unsigned long rfx : 11;
184 		unsigned long rsx : 11;
185 		unsigned long rtx : 11;
186 		unsigned long sx  : 11;
187 		unsigned long px  : 8;
188 		unsigned long bx  : 12;
189 	};
190 	struct {
191 		unsigned long rfx01 : 2;
192 		unsigned long	    : 9;
193 		unsigned long rsx01 : 2;
194 		unsigned long	    : 9;
195 		unsigned long rtx01 : 2;
196 		unsigned long	    : 9;
197 		unsigned long sx01  : 2;
198 		unsigned long	    : 29;
199 	};
200 };
201 
202 /*
203  * raddress union which will contain the result (real or absolute address)
204  * after a page table walk. The rfaa, sfaa and pfra members are used to
205  * simply assign them the value of a region, segment or page table entry.
206  */
207 union raddress {
208 	unsigned long addr;
209 	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
210 	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
211 	unsigned long pfra : 52; /* Page-Frame Real Address */
212 };
213 
214 union alet {
215 	u32 val;
216 	struct {
217 		u32 reserved : 7;
218 		u32 p        : 1;
219 		u32 alesn    : 8;
220 		u32 alen     : 16;
221 	};
222 };
223 
224 union ald {
225 	u32 val;
226 	struct {
227 		u32     : 1;
228 		u32 alo : 24;
229 		u32 all : 7;
230 	};
231 };
232 
233 struct ale {
234 	unsigned long i      : 1; /* ALEN-Invalid Bit */
235 	unsigned long        : 5;
236 	unsigned long fo     : 1; /* Fetch-Only Bit */
237 	unsigned long p      : 1; /* Private Bit */
238 	unsigned long alesn  : 8; /* Access-List-Entry Sequence Number */
239 	unsigned long aleax  : 16; /* Access-List-Entry Authorization Index */
240 	unsigned long        : 32;
241 	unsigned long        : 1;
242 	unsigned long asteo  : 25; /* ASN-Second-Table-Entry Origin */
243 	unsigned long        : 6;
244 	unsigned long astesn : 32; /* ASTE Sequence Number */
245 };
246 
247 struct aste {
248 	unsigned long i      : 1; /* ASX-Invalid Bit */
249 	unsigned long ato    : 29; /* Authority-Table Origin */
250 	unsigned long        : 1;
251 	unsigned long b      : 1; /* Base-Space Bit */
252 	unsigned long ax     : 16; /* Authorization Index */
253 	unsigned long atl    : 12; /* Authority-Table Length */
254 	unsigned long        : 2;
255 	unsigned long ca     : 1; /* Controlled-ASN Bit */
256 	unsigned long ra     : 1; /* Reusable-ASN Bit */
257 	unsigned long asce   : 64; /* Address-Space-Control Element */
258 	unsigned long ald    : 32;
259 	unsigned long astesn : 32;
260 	/* .. more fields there */
261 };
262 
263 int ipte_lock_held(struct kvm_vcpu *vcpu)
264 {
265 	if (vcpu->arch.sie_block->eca & ECA_SII) {
266 		int rc;
267 
268 		read_lock(&vcpu->kvm->arch.sca_lock);
269 		rc = kvm_s390_get_ipte_control(vcpu->kvm)->kh != 0;
270 		read_unlock(&vcpu->kvm->arch.sca_lock);
271 		return rc;
272 	}
273 	return vcpu->kvm->arch.ipte_lock_count != 0;
274 }
275 
276 static void ipte_lock_simple(struct kvm_vcpu *vcpu)
277 {
278 	union ipte_control old, new, *ic;
279 
280 	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
281 	vcpu->kvm->arch.ipte_lock_count++;
282 	if (vcpu->kvm->arch.ipte_lock_count > 1)
283 		goto out;
284 retry:
285 	read_lock(&vcpu->kvm->arch.sca_lock);
286 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
287 	do {
288 		old = READ_ONCE(*ic);
289 		if (old.k) {
290 			read_unlock(&vcpu->kvm->arch.sca_lock);
291 			cond_resched();
292 			goto retry;
293 		}
294 		new = old;
295 		new.k = 1;
296 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
297 	read_unlock(&vcpu->kvm->arch.sca_lock);
298 out:
299 	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
300 }
301 
302 static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
303 {
304 	union ipte_control old, new, *ic;
305 
306 	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
307 	vcpu->kvm->arch.ipte_lock_count--;
308 	if (vcpu->kvm->arch.ipte_lock_count)
309 		goto out;
310 	read_lock(&vcpu->kvm->arch.sca_lock);
311 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
312 	do {
313 		old = READ_ONCE(*ic);
314 		new = old;
315 		new.k = 0;
316 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
317 	read_unlock(&vcpu->kvm->arch.sca_lock);
318 	wake_up(&vcpu->kvm->arch.ipte_wq);
319 out:
320 	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
321 }
322 
323 static void ipte_lock_siif(struct kvm_vcpu *vcpu)
324 {
325 	union ipte_control old, new, *ic;
326 
327 retry:
328 	read_lock(&vcpu->kvm->arch.sca_lock);
329 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
330 	do {
331 		old = READ_ONCE(*ic);
332 		if (old.kg) {
333 			read_unlock(&vcpu->kvm->arch.sca_lock);
334 			cond_resched();
335 			goto retry;
336 		}
337 		new = old;
338 		new.k = 1;
339 		new.kh++;
340 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
341 	read_unlock(&vcpu->kvm->arch.sca_lock);
342 }
343 
344 static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
345 {
346 	union ipte_control old, new, *ic;
347 
348 	read_lock(&vcpu->kvm->arch.sca_lock);
349 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
350 	do {
351 		old = READ_ONCE(*ic);
352 		new = old;
353 		new.kh--;
354 		if (!new.kh)
355 			new.k = 0;
356 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
357 	read_unlock(&vcpu->kvm->arch.sca_lock);
358 	if (!new.kh)
359 		wake_up(&vcpu->kvm->arch.ipte_wq);
360 }
361 
362 void ipte_lock(struct kvm_vcpu *vcpu)
363 {
364 	if (vcpu->arch.sie_block->eca & ECA_SII)
365 		ipte_lock_siif(vcpu);
366 	else
367 		ipte_lock_simple(vcpu);
368 }
369 
370 void ipte_unlock(struct kvm_vcpu *vcpu)
371 {
372 	if (vcpu->arch.sie_block->eca & ECA_SII)
373 		ipte_unlock_siif(vcpu);
374 	else
375 		ipte_unlock_simple(vcpu);
376 }
377 
378 static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar,
379 			  enum gacc_mode mode)
380 {
381 	union alet alet;
382 	struct ale ale;
383 	struct aste aste;
384 	unsigned long ald_addr, authority_table_addr;
385 	union ald ald;
386 	int eax, rc;
387 	u8 authority_table;
388 
389 	if (ar >= NUM_ACRS)
390 		return -EINVAL;
391 
392 	save_access_regs(vcpu->run->s.regs.acrs);
393 	alet.val = vcpu->run->s.regs.acrs[ar];
394 
395 	if (ar == 0 || alet.val == 0) {
396 		asce->val = vcpu->arch.sie_block->gcr[1];
397 		return 0;
398 	} else if (alet.val == 1) {
399 		asce->val = vcpu->arch.sie_block->gcr[7];
400 		return 0;
401 	}
402 
403 	if (alet.reserved)
404 		return PGM_ALET_SPECIFICATION;
405 
406 	if (alet.p)
407 		ald_addr = vcpu->arch.sie_block->gcr[5];
408 	else
409 		ald_addr = vcpu->arch.sie_block->gcr[2];
410 	ald_addr &= 0x7fffffc0;
411 
412 	rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
413 	if (rc)
414 		return rc;
415 
416 	if (alet.alen / 8 > ald.all)
417 		return PGM_ALEN_TRANSLATION;
418 
419 	if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
420 		return PGM_ADDRESSING;
421 
422 	rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
423 			     sizeof(struct ale));
424 	if (rc)
425 		return rc;
426 
427 	if (ale.i == 1)
428 		return PGM_ALEN_TRANSLATION;
429 	if (ale.alesn != alet.alesn)
430 		return PGM_ALE_SEQUENCE;
431 
432 	rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
433 	if (rc)
434 		return rc;
435 
436 	if (aste.i)
437 		return PGM_ASTE_VALIDITY;
438 	if (aste.astesn != ale.astesn)
439 		return PGM_ASTE_SEQUENCE;
440 
441 	if (ale.p == 1) {
442 		eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
443 		if (ale.aleax != eax) {
444 			if (eax / 16 > aste.atl)
445 				return PGM_EXTENDED_AUTHORITY;
446 
447 			authority_table_addr = aste.ato * 4 + eax / 4;
448 
449 			rc = read_guest_real(vcpu, authority_table_addr,
450 					     &authority_table,
451 					     sizeof(u8));
452 			if (rc)
453 				return rc;
454 
455 			if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
456 				return PGM_EXTENDED_AUTHORITY;
457 		}
458 	}
459 
460 	if (ale.fo == 1 && mode == GACC_STORE)
461 		return PGM_PROTECTION;
462 
463 	asce->val = aste.asce;
464 	return 0;
465 }
466 
467 struct trans_exc_code_bits {
468 	unsigned long addr : 52; /* Translation-exception Address */
469 	unsigned long fsi  : 2;  /* Access Exception Fetch/Store Indication */
470 	unsigned long	   : 2;
471 	unsigned long b56  : 1;
472 	unsigned long	   : 3;
473 	unsigned long b60  : 1;
474 	unsigned long b61  : 1;
475 	unsigned long as   : 2;  /* ASCE Identifier */
476 };
477 
478 enum {
479 	FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
480 	FSI_STORE   = 1, /* Exception was due to store operation */
481 	FSI_FETCH   = 2  /* Exception was due to fetch operation */
482 };
483 
484 enum prot_type {
485 	PROT_TYPE_LA   = 0,
486 	PROT_TYPE_KEYC = 1,
487 	PROT_TYPE_ALC  = 2,
488 	PROT_TYPE_DAT  = 3,
489 	PROT_TYPE_IEP  = 4,
490 };
491 
492 static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva,
493 		     u8 ar, enum gacc_mode mode, enum prot_type prot)
494 {
495 	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
496 	struct trans_exc_code_bits *tec;
497 
498 	memset(pgm, 0, sizeof(*pgm));
499 	pgm->code = code;
500 	tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
501 
502 	switch (code) {
503 	case PGM_PROTECTION:
504 		switch (prot) {
505 		case PROT_TYPE_IEP:
506 			tec->b61 = 1;
507 			/* FALL THROUGH */
508 		case PROT_TYPE_LA:
509 			tec->b56 = 1;
510 			break;
511 		case PROT_TYPE_KEYC:
512 			tec->b60 = 1;
513 			break;
514 		case PROT_TYPE_ALC:
515 			tec->b60 = 1;
516 			/* FALL THROUGH */
517 		case PROT_TYPE_DAT:
518 			tec->b61 = 1;
519 			break;
520 		}
521 		/* FALL THROUGH */
522 	case PGM_ASCE_TYPE:
523 	case PGM_PAGE_TRANSLATION:
524 	case PGM_REGION_FIRST_TRANS:
525 	case PGM_REGION_SECOND_TRANS:
526 	case PGM_REGION_THIRD_TRANS:
527 	case PGM_SEGMENT_TRANSLATION:
528 		/*
529 		 * op_access_id only applies to MOVE_PAGE -> set bit 61
530 		 * exc_access_id has to be set to 0 for some instructions. Both
531 		 * cases have to be handled by the caller.
532 		 */
533 		tec->addr = gva >> PAGE_SHIFT;
534 		tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
535 		tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
536 		/* FALL THROUGH */
537 	case PGM_ALEN_TRANSLATION:
538 	case PGM_ALE_SEQUENCE:
539 	case PGM_ASTE_VALIDITY:
540 	case PGM_ASTE_SEQUENCE:
541 	case PGM_EXTENDED_AUTHORITY:
542 		/*
543 		 * We can always store exc_access_id, as it is
544 		 * undefined for non-ar cases. It is undefined for
545 		 * most DAT protection exceptions.
546 		 */
547 		pgm->exc_access_id = ar;
548 		break;
549 	}
550 	return code;
551 }
552 
553 static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
554 			 unsigned long ga, u8 ar, enum gacc_mode mode)
555 {
556 	int rc;
557 	struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
558 
559 	if (!psw.dat) {
560 		asce->val = 0;
561 		asce->r = 1;
562 		return 0;
563 	}
564 
565 	if ((mode == GACC_IFETCH) && (psw.as != PSW_BITS_AS_HOME))
566 		psw.as = PSW_BITS_AS_PRIMARY;
567 
568 	switch (psw.as) {
569 	case PSW_BITS_AS_PRIMARY:
570 		asce->val = vcpu->arch.sie_block->gcr[1];
571 		return 0;
572 	case PSW_BITS_AS_SECONDARY:
573 		asce->val = vcpu->arch.sie_block->gcr[7];
574 		return 0;
575 	case PSW_BITS_AS_HOME:
576 		asce->val = vcpu->arch.sie_block->gcr[13];
577 		return 0;
578 	case PSW_BITS_AS_ACCREG:
579 		rc = ar_translation(vcpu, asce, ar, mode);
580 		if (rc > 0)
581 			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
582 		return rc;
583 	}
584 	return 0;
585 }
586 
587 static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
588 {
589 	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
590 }
591 
592 /**
593  * guest_translate - translate a guest virtual into a guest absolute address
594  * @vcpu: virtual cpu
595  * @gva: guest virtual address
596  * @gpa: points to where guest physical (absolute) address should be stored
597  * @asce: effective asce
598  * @mode: indicates the access mode to be used
599  * @prot: returns the type for protection exceptions
600  *
601  * Translate a guest virtual address into a guest absolute address by means
602  * of dynamic address translation as specified by the architecture.
603  * If the resulting absolute address is not available in the configuration
604  * an addressing exception is indicated and @gpa will not be changed.
605  *
606  * Returns: - zero on success; @gpa contains the resulting absolute address
607  *	    - a negative value if guest access failed due to e.g. broken
608  *	      guest mapping
609  *	    - a positve value if an access exception happened. In this case
610  *	      the returned value is the program interruption code as defined
611  *	      by the architecture
612  */
613 static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
614 				     unsigned long *gpa, const union asce asce,
615 				     enum gacc_mode mode, enum prot_type *prot)
616 {
617 	union vaddress vaddr = {.addr = gva};
618 	union raddress raddr = {.addr = gva};
619 	union page_table_entry pte;
620 	int dat_protection = 0;
621 	int iep_protection = 0;
622 	union ctlreg0 ctlreg0;
623 	unsigned long ptr;
624 	int edat1, edat2, iep;
625 
626 	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
627 	edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
628 	edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
629 	iep = ctlreg0.iep && test_kvm_facility(vcpu->kvm, 130);
630 	if (asce.r)
631 		goto real_address;
632 	ptr = asce.origin * 4096;
633 	switch (asce.dt) {
634 	case ASCE_TYPE_REGION1:
635 		if (vaddr.rfx01 > asce.tl)
636 			return PGM_REGION_FIRST_TRANS;
637 		ptr += vaddr.rfx * 8;
638 		break;
639 	case ASCE_TYPE_REGION2:
640 		if (vaddr.rfx)
641 			return PGM_ASCE_TYPE;
642 		if (vaddr.rsx01 > asce.tl)
643 			return PGM_REGION_SECOND_TRANS;
644 		ptr += vaddr.rsx * 8;
645 		break;
646 	case ASCE_TYPE_REGION3:
647 		if (vaddr.rfx || vaddr.rsx)
648 			return PGM_ASCE_TYPE;
649 		if (vaddr.rtx01 > asce.tl)
650 			return PGM_REGION_THIRD_TRANS;
651 		ptr += vaddr.rtx * 8;
652 		break;
653 	case ASCE_TYPE_SEGMENT:
654 		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
655 			return PGM_ASCE_TYPE;
656 		if (vaddr.sx01 > asce.tl)
657 			return PGM_SEGMENT_TRANSLATION;
658 		ptr += vaddr.sx * 8;
659 		break;
660 	}
661 	switch (asce.dt) {
662 	case ASCE_TYPE_REGION1:	{
663 		union region1_table_entry rfte;
664 
665 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
666 			return PGM_ADDRESSING;
667 		if (deref_table(vcpu->kvm, ptr, &rfte.val))
668 			return -EFAULT;
669 		if (rfte.i)
670 			return PGM_REGION_FIRST_TRANS;
671 		if (rfte.tt != TABLE_TYPE_REGION1)
672 			return PGM_TRANSLATION_SPEC;
673 		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
674 			return PGM_REGION_SECOND_TRANS;
675 		if (edat1)
676 			dat_protection |= rfte.p;
677 		ptr = rfte.rto * 4096 + vaddr.rsx * 8;
678 	}
679 		/* fallthrough */
680 	case ASCE_TYPE_REGION2: {
681 		union region2_table_entry rste;
682 
683 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
684 			return PGM_ADDRESSING;
685 		if (deref_table(vcpu->kvm, ptr, &rste.val))
686 			return -EFAULT;
687 		if (rste.i)
688 			return PGM_REGION_SECOND_TRANS;
689 		if (rste.tt != TABLE_TYPE_REGION2)
690 			return PGM_TRANSLATION_SPEC;
691 		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
692 			return PGM_REGION_THIRD_TRANS;
693 		if (edat1)
694 			dat_protection |= rste.p;
695 		ptr = rste.rto * 4096 + vaddr.rtx * 8;
696 	}
697 		/* fallthrough */
698 	case ASCE_TYPE_REGION3: {
699 		union region3_table_entry rtte;
700 
701 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
702 			return PGM_ADDRESSING;
703 		if (deref_table(vcpu->kvm, ptr, &rtte.val))
704 			return -EFAULT;
705 		if (rtte.i)
706 			return PGM_REGION_THIRD_TRANS;
707 		if (rtte.tt != TABLE_TYPE_REGION3)
708 			return PGM_TRANSLATION_SPEC;
709 		if (rtte.cr && asce.p && edat2)
710 			return PGM_TRANSLATION_SPEC;
711 		if (rtte.fc && edat2) {
712 			dat_protection |= rtte.fc1.p;
713 			iep_protection = rtte.fc1.iep;
714 			raddr.rfaa = rtte.fc1.rfaa;
715 			goto absolute_address;
716 		}
717 		if (vaddr.sx01 < rtte.fc0.tf)
718 			return PGM_SEGMENT_TRANSLATION;
719 		if (vaddr.sx01 > rtte.fc0.tl)
720 			return PGM_SEGMENT_TRANSLATION;
721 		if (edat1)
722 			dat_protection |= rtte.fc0.p;
723 		ptr = rtte.fc0.sto * 4096 + vaddr.sx * 8;
724 	}
725 		/* fallthrough */
726 	case ASCE_TYPE_SEGMENT: {
727 		union segment_table_entry ste;
728 
729 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
730 			return PGM_ADDRESSING;
731 		if (deref_table(vcpu->kvm, ptr, &ste.val))
732 			return -EFAULT;
733 		if (ste.i)
734 			return PGM_SEGMENT_TRANSLATION;
735 		if (ste.tt != TABLE_TYPE_SEGMENT)
736 			return PGM_TRANSLATION_SPEC;
737 		if (ste.cs && asce.p)
738 			return PGM_TRANSLATION_SPEC;
739 		if (ste.fc && edat1) {
740 			dat_protection |= ste.fc1.p;
741 			iep_protection = ste.fc1.iep;
742 			raddr.sfaa = ste.fc1.sfaa;
743 			goto absolute_address;
744 		}
745 		dat_protection |= ste.fc0.p;
746 		ptr = ste.fc0.pto * 2048 + vaddr.px * 8;
747 	}
748 	}
749 	if (kvm_is_error_gpa(vcpu->kvm, ptr))
750 		return PGM_ADDRESSING;
751 	if (deref_table(vcpu->kvm, ptr, &pte.val))
752 		return -EFAULT;
753 	if (pte.i)
754 		return PGM_PAGE_TRANSLATION;
755 	if (pte.z)
756 		return PGM_TRANSLATION_SPEC;
757 	dat_protection |= pte.p;
758 	iep_protection = pte.iep;
759 	raddr.pfra = pte.pfra;
760 real_address:
761 	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
762 absolute_address:
763 	if (mode == GACC_STORE && dat_protection) {
764 		*prot = PROT_TYPE_DAT;
765 		return PGM_PROTECTION;
766 	}
767 	if (mode == GACC_IFETCH && iep_protection && iep) {
768 		*prot = PROT_TYPE_IEP;
769 		return PGM_PROTECTION;
770 	}
771 	if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
772 		return PGM_ADDRESSING;
773 	*gpa = raddr.addr;
774 	return 0;
775 }
776 
777 static inline int is_low_address(unsigned long ga)
778 {
779 	/* Check for address ranges 0..511 and 4096..4607 */
780 	return (ga & ~0x11fful) == 0;
781 }
782 
783 static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
784 					  const union asce asce)
785 {
786 	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
787 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
788 
789 	if (!ctlreg0.lap)
790 		return 0;
791 	if (psw_bits(*psw).dat && asce.p)
792 		return 0;
793 	return 1;
794 }
795 
796 static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
797 			    unsigned long *pages, unsigned long nr_pages,
798 			    const union asce asce, enum gacc_mode mode)
799 {
800 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
801 	int lap_enabled, rc = 0;
802 	enum prot_type prot;
803 
804 	lap_enabled = low_address_protection_enabled(vcpu, asce);
805 	while (nr_pages) {
806 		ga = kvm_s390_logical_to_effective(vcpu, ga);
807 		if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
808 			return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
809 					 PROT_TYPE_LA);
810 		ga &= PAGE_MASK;
811 		if (psw_bits(*psw).dat) {
812 			rc = guest_translate(vcpu, ga, pages, asce, mode, &prot);
813 			if (rc < 0)
814 				return rc;
815 		} else {
816 			*pages = kvm_s390_real_to_abs(vcpu, ga);
817 			if (kvm_is_error_gpa(vcpu->kvm, *pages))
818 				rc = PGM_ADDRESSING;
819 		}
820 		if (rc)
821 			return trans_exc(vcpu, rc, ga, ar, mode, prot);
822 		ga += PAGE_SIZE;
823 		pages++;
824 		nr_pages--;
825 	}
826 	return 0;
827 }
828 
829 int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar, void *data,
830 		 unsigned long len, enum gacc_mode mode)
831 {
832 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
833 	unsigned long _len, nr_pages, gpa, idx;
834 	unsigned long pages_array[2];
835 	unsigned long *pages;
836 	int need_ipte_lock;
837 	union asce asce;
838 	int rc;
839 
840 	if (!len)
841 		return 0;
842 	ga = kvm_s390_logical_to_effective(vcpu, ga);
843 	rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
844 	if (rc)
845 		return rc;
846 	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
847 	pages = pages_array;
848 	if (nr_pages > ARRAY_SIZE(pages_array))
849 		pages = vmalloc(nr_pages * sizeof(unsigned long));
850 	if (!pages)
851 		return -ENOMEM;
852 	need_ipte_lock = psw_bits(*psw).dat && !asce.r;
853 	if (need_ipte_lock)
854 		ipte_lock(vcpu);
855 	rc = guest_page_range(vcpu, ga, ar, pages, nr_pages, asce, mode);
856 	for (idx = 0; idx < nr_pages && !rc; idx++) {
857 		gpa = *(pages + idx) + (ga & ~PAGE_MASK);
858 		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
859 		if (mode == GACC_STORE)
860 			rc = kvm_write_guest(vcpu->kvm, gpa, data, _len);
861 		else
862 			rc = kvm_read_guest(vcpu->kvm, gpa, data, _len);
863 		len -= _len;
864 		ga += _len;
865 		data += _len;
866 	}
867 	if (need_ipte_lock)
868 		ipte_unlock(vcpu);
869 	if (nr_pages > ARRAY_SIZE(pages_array))
870 		vfree(pages);
871 	return rc;
872 }
873 
874 int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
875 		      void *data, unsigned long len, enum gacc_mode mode)
876 {
877 	unsigned long _len, gpa;
878 	int rc = 0;
879 
880 	while (len && !rc) {
881 		gpa = kvm_s390_real_to_abs(vcpu, gra);
882 		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
883 		if (mode)
884 			rc = write_guest_abs(vcpu, gpa, data, _len);
885 		else
886 			rc = read_guest_abs(vcpu, gpa, data, _len);
887 		len -= _len;
888 		gra += _len;
889 		data += _len;
890 	}
891 	return rc;
892 }
893 
894 /**
895  * guest_translate_address - translate guest logical into guest absolute address
896  *
897  * Parameter semantics are the same as the ones from guest_translate.
898  * The memory contents at the guest address are not changed.
899  *
900  * Note: The IPTE lock is not taken during this function, so the caller
901  * has to take care of this.
902  */
903 int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
904 			    unsigned long *gpa, enum gacc_mode mode)
905 {
906 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
907 	enum prot_type prot;
908 	union asce asce;
909 	int rc;
910 
911 	gva = kvm_s390_logical_to_effective(vcpu, gva);
912 	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
913 	if (rc)
914 		return rc;
915 	if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) {
916 		if (mode == GACC_STORE)
917 			return trans_exc(vcpu, PGM_PROTECTION, gva, 0,
918 					 mode, PROT_TYPE_LA);
919 	}
920 
921 	if (psw_bits(*psw).dat && !asce.r) {	/* Use DAT? */
922 		rc = guest_translate(vcpu, gva, gpa, asce, mode, &prot);
923 		if (rc > 0)
924 			return trans_exc(vcpu, rc, gva, 0, mode, prot);
925 	} else {
926 		*gpa = kvm_s390_real_to_abs(vcpu, gva);
927 		if (kvm_is_error_gpa(vcpu->kvm, *gpa))
928 			return trans_exc(vcpu, rc, gva, PGM_ADDRESSING, mode, 0);
929 	}
930 
931 	return rc;
932 }
933 
934 /**
935  * check_gva_range - test a range of guest virtual addresses for accessibility
936  */
937 int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
938 		    unsigned long length, enum gacc_mode mode)
939 {
940 	unsigned long gpa;
941 	unsigned long currlen;
942 	int rc = 0;
943 
944 	ipte_lock(vcpu);
945 	while (length > 0 && !rc) {
946 		currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE));
947 		rc = guest_translate_address(vcpu, gva, ar, &gpa, mode);
948 		gva += currlen;
949 		length -= currlen;
950 	}
951 	ipte_unlock(vcpu);
952 
953 	return rc;
954 }
955 
956 /**
957  * kvm_s390_check_low_addr_prot_real - check for low-address protection
958  * @gra: Guest real address
959  *
960  * Checks whether an address is subject to low-address protection and set
961  * up vcpu->arch.pgm accordingly if necessary.
962  *
963  * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
964  */
965 int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
966 {
967 	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
968 
969 	if (!ctlreg0.lap || !is_low_address(gra))
970 		return 0;
971 	return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
972 }
973 
974 /**
975  * kvm_s390_shadow_tables - walk the guest page table and create shadow tables
976  * @sg: pointer to the shadow guest address space structure
977  * @saddr: faulting address in the shadow gmap
978  * @pgt: pointer to the page table address result
979  * @fake: pgt references contiguous guest memory block, not a pgtable
980  */
981 static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
982 				  unsigned long *pgt, int *dat_protection,
983 				  int *fake)
984 {
985 	struct gmap *parent;
986 	union asce asce;
987 	union vaddress vaddr;
988 	unsigned long ptr;
989 	int rc;
990 
991 	*fake = 0;
992 	*dat_protection = 0;
993 	parent = sg->parent;
994 	vaddr.addr = saddr;
995 	asce.val = sg->orig_asce;
996 	ptr = asce.origin * 4096;
997 	if (asce.r) {
998 		*fake = 1;
999 		ptr = 0;
1000 		asce.dt = ASCE_TYPE_REGION1;
1001 	}
1002 	switch (asce.dt) {
1003 	case ASCE_TYPE_REGION1:
1004 		if (vaddr.rfx01 > asce.tl && !*fake)
1005 			return PGM_REGION_FIRST_TRANS;
1006 		break;
1007 	case ASCE_TYPE_REGION2:
1008 		if (vaddr.rfx)
1009 			return PGM_ASCE_TYPE;
1010 		if (vaddr.rsx01 > asce.tl)
1011 			return PGM_REGION_SECOND_TRANS;
1012 		break;
1013 	case ASCE_TYPE_REGION3:
1014 		if (vaddr.rfx || vaddr.rsx)
1015 			return PGM_ASCE_TYPE;
1016 		if (vaddr.rtx01 > asce.tl)
1017 			return PGM_REGION_THIRD_TRANS;
1018 		break;
1019 	case ASCE_TYPE_SEGMENT:
1020 		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
1021 			return PGM_ASCE_TYPE;
1022 		if (vaddr.sx01 > asce.tl)
1023 			return PGM_SEGMENT_TRANSLATION;
1024 		break;
1025 	}
1026 
1027 	switch (asce.dt) {
1028 	case ASCE_TYPE_REGION1: {
1029 		union region1_table_entry rfte;
1030 
1031 		if (*fake) {
1032 			ptr += (unsigned long) vaddr.rfx << 53;
1033 			rfte.val = ptr;
1034 			goto shadow_r2t;
1035 		}
1036 		rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
1037 		if (rc)
1038 			return rc;
1039 		if (rfte.i)
1040 			return PGM_REGION_FIRST_TRANS;
1041 		if (rfte.tt != TABLE_TYPE_REGION1)
1042 			return PGM_TRANSLATION_SPEC;
1043 		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
1044 			return PGM_REGION_SECOND_TRANS;
1045 		if (sg->edat_level >= 1)
1046 			*dat_protection |= rfte.p;
1047 		ptr = rfte.rto << 12UL;
1048 shadow_r2t:
1049 		rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
1050 		if (rc)
1051 			return rc;
1052 		/* fallthrough */
1053 	}
1054 	case ASCE_TYPE_REGION2: {
1055 		union region2_table_entry rste;
1056 
1057 		if (*fake) {
1058 			ptr += (unsigned long) vaddr.rsx << 42;
1059 			rste.val = ptr;
1060 			goto shadow_r3t;
1061 		}
1062 		rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
1063 		if (rc)
1064 			return rc;
1065 		if (rste.i)
1066 			return PGM_REGION_SECOND_TRANS;
1067 		if (rste.tt != TABLE_TYPE_REGION2)
1068 			return PGM_TRANSLATION_SPEC;
1069 		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
1070 			return PGM_REGION_THIRD_TRANS;
1071 		if (sg->edat_level >= 1)
1072 			*dat_protection |= rste.p;
1073 		ptr = rste.rto << 12UL;
1074 shadow_r3t:
1075 		rste.p |= *dat_protection;
1076 		rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
1077 		if (rc)
1078 			return rc;
1079 		/* fallthrough */
1080 	}
1081 	case ASCE_TYPE_REGION3: {
1082 		union region3_table_entry rtte;
1083 
1084 		if (*fake) {
1085 			ptr += (unsigned long) vaddr.rtx << 31;
1086 			rtte.val = ptr;
1087 			goto shadow_sgt;
1088 		}
1089 		rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
1090 		if (rc)
1091 			return rc;
1092 		if (rtte.i)
1093 			return PGM_REGION_THIRD_TRANS;
1094 		if (rtte.tt != TABLE_TYPE_REGION3)
1095 			return PGM_TRANSLATION_SPEC;
1096 		if (rtte.cr && asce.p && sg->edat_level >= 2)
1097 			return PGM_TRANSLATION_SPEC;
1098 		if (rtte.fc && sg->edat_level >= 2) {
1099 			*dat_protection |= rtte.fc0.p;
1100 			*fake = 1;
1101 			ptr = rtte.fc1.rfaa << 31UL;
1102 			rtte.val = ptr;
1103 			goto shadow_sgt;
1104 		}
1105 		if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
1106 			return PGM_SEGMENT_TRANSLATION;
1107 		if (sg->edat_level >= 1)
1108 			*dat_protection |= rtte.fc0.p;
1109 		ptr = rtte.fc0.sto << 12UL;
1110 shadow_sgt:
1111 		rtte.fc0.p |= *dat_protection;
1112 		rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
1113 		if (rc)
1114 			return rc;
1115 		/* fallthrough */
1116 	}
1117 	case ASCE_TYPE_SEGMENT: {
1118 		union segment_table_entry ste;
1119 
1120 		if (*fake) {
1121 			ptr += (unsigned long) vaddr.sx << 20;
1122 			ste.val = ptr;
1123 			goto shadow_pgt;
1124 		}
1125 		rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
1126 		if (rc)
1127 			return rc;
1128 		if (ste.i)
1129 			return PGM_SEGMENT_TRANSLATION;
1130 		if (ste.tt != TABLE_TYPE_SEGMENT)
1131 			return PGM_TRANSLATION_SPEC;
1132 		if (ste.cs && asce.p)
1133 			return PGM_TRANSLATION_SPEC;
1134 		*dat_protection |= ste.fc0.p;
1135 		if (ste.fc && sg->edat_level >= 1) {
1136 			*fake = 1;
1137 			ptr = ste.fc1.sfaa << 20UL;
1138 			ste.val = ptr;
1139 			goto shadow_pgt;
1140 		}
1141 		ptr = ste.fc0.pto << 11UL;
1142 shadow_pgt:
1143 		ste.fc0.p |= *dat_protection;
1144 		rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
1145 		if (rc)
1146 			return rc;
1147 	}
1148 	}
1149 	/* Return the parent address of the page table */
1150 	*pgt = ptr;
1151 	return 0;
1152 }
1153 
1154 /**
1155  * kvm_s390_shadow_fault - handle fault on a shadow page table
1156  * @vcpu: virtual cpu
1157  * @sg: pointer to the shadow guest address space structure
1158  * @saddr: faulting address in the shadow gmap
1159  *
1160  * Returns: - 0 if the shadow fault was successfully resolved
1161  *	    - > 0 (pgm exception code) on exceptions while faulting
1162  *	    - -EAGAIN if the caller can retry immediately
1163  *	    - -EFAULT when accessing invalid guest addresses
1164  *	    - -ENOMEM if out of memory
1165  */
1166 int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
1167 			  unsigned long saddr)
1168 {
1169 	union vaddress vaddr;
1170 	union page_table_entry pte;
1171 	unsigned long pgt;
1172 	int dat_protection, fake;
1173 	int rc;
1174 
1175 	down_read(&sg->mm->mmap_sem);
1176 	/*
1177 	 * We don't want any guest-2 tables to change - so the parent
1178 	 * tables/pointers we read stay valid - unshadowing is however
1179 	 * always possible - only guest_table_lock protects us.
1180 	 */
1181 	ipte_lock(vcpu);
1182 
1183 	rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
1184 	if (rc)
1185 		rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
1186 					    &fake);
1187 
1188 	vaddr.addr = saddr;
1189 	if (fake) {
1190 		/* offset in 1MB guest memory block */
1191 		pte.val = pgt + ((unsigned long) vaddr.px << 12UL);
1192 		goto shadow_page;
1193 	}
1194 	if (!rc)
1195 		rc = gmap_read_table(sg->parent, pgt + vaddr.px * 8, &pte.val);
1196 	if (!rc && pte.i)
1197 		rc = PGM_PAGE_TRANSLATION;
1198 	if (!rc && pte.z)
1199 		rc = PGM_TRANSLATION_SPEC;
1200 shadow_page:
1201 	pte.p |= dat_protection;
1202 	if (!rc)
1203 		rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
1204 	ipte_unlock(vcpu);
1205 	up_read(&sg->mm->mmap_sem);
1206 	return rc;
1207 }
1208