xref: /openbmc/linux/arch/s390/kvm/gaccess.c (revision 7cc39531)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * guest access functions
4  *
5  * Copyright IBM Corp. 2014
6  *
7  */
8 
9 #include <linux/vmalloc.h>
10 #include <linux/mm_types.h>
11 #include <linux/err.h>
12 #include <linux/pgtable.h>
13 #include <linux/bitfield.h>
14 
15 #include <asm/gmap.h>
16 #include "kvm-s390.h"
17 #include "gaccess.h"
18 #include <asm/switch_to.h>
19 
20 union asce {
21 	unsigned long val;
22 	struct {
23 		unsigned long origin : 52; /* Region- or Segment-Table Origin */
24 		unsigned long	 : 2;
25 		unsigned long g  : 1; /* Subspace Group Control */
26 		unsigned long p  : 1; /* Private Space Control */
27 		unsigned long s  : 1; /* Storage-Alteration-Event Control */
28 		unsigned long x  : 1; /* Space-Switch-Event Control */
29 		unsigned long r  : 1; /* Real-Space Control */
30 		unsigned long	 : 1;
31 		unsigned long dt : 2; /* Designation-Type Control */
32 		unsigned long tl : 2; /* Region- or Segment-Table Length */
33 	};
34 };
35 
36 enum {
37 	ASCE_TYPE_SEGMENT = 0,
38 	ASCE_TYPE_REGION3 = 1,
39 	ASCE_TYPE_REGION2 = 2,
40 	ASCE_TYPE_REGION1 = 3
41 };
42 
43 union region1_table_entry {
44 	unsigned long val;
45 	struct {
46 		unsigned long rto: 52;/* Region-Table Origin */
47 		unsigned long	 : 2;
48 		unsigned long p  : 1; /* DAT-Protection Bit */
49 		unsigned long	 : 1;
50 		unsigned long tf : 2; /* Region-Second-Table Offset */
51 		unsigned long i  : 1; /* Region-Invalid Bit */
52 		unsigned long	 : 1;
53 		unsigned long tt : 2; /* Table-Type Bits */
54 		unsigned long tl : 2; /* Region-Second-Table Length */
55 	};
56 };
57 
58 union region2_table_entry {
59 	unsigned long val;
60 	struct {
61 		unsigned long rto: 52;/* Region-Table Origin */
62 		unsigned long	 : 2;
63 		unsigned long p  : 1; /* DAT-Protection Bit */
64 		unsigned long	 : 1;
65 		unsigned long tf : 2; /* Region-Third-Table Offset */
66 		unsigned long i  : 1; /* Region-Invalid Bit */
67 		unsigned long	 : 1;
68 		unsigned long tt : 2; /* Table-Type Bits */
69 		unsigned long tl : 2; /* Region-Third-Table Length */
70 	};
71 };
72 
73 struct region3_table_entry_fc0 {
74 	unsigned long sto: 52;/* Segment-Table Origin */
75 	unsigned long	 : 1;
76 	unsigned long fc : 1; /* Format-Control */
77 	unsigned long p  : 1; /* DAT-Protection Bit */
78 	unsigned long	 : 1;
79 	unsigned long tf : 2; /* Segment-Table Offset */
80 	unsigned long i  : 1; /* Region-Invalid Bit */
81 	unsigned long cr : 1; /* Common-Region Bit */
82 	unsigned long tt : 2; /* Table-Type Bits */
83 	unsigned long tl : 2; /* Segment-Table Length */
84 };
85 
86 struct region3_table_entry_fc1 {
87 	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
88 	unsigned long	 : 14;
89 	unsigned long av : 1; /* ACCF-Validity Control */
90 	unsigned long acc: 4; /* Access-Control Bits */
91 	unsigned long f  : 1; /* Fetch-Protection Bit */
92 	unsigned long fc : 1; /* Format-Control */
93 	unsigned long p  : 1; /* DAT-Protection Bit */
94 	unsigned long iep: 1; /* Instruction-Execution-Protection */
95 	unsigned long	 : 2;
96 	unsigned long i  : 1; /* Region-Invalid Bit */
97 	unsigned long cr : 1; /* Common-Region Bit */
98 	unsigned long tt : 2; /* Table-Type Bits */
99 	unsigned long	 : 2;
100 };
101 
102 union region3_table_entry {
103 	unsigned long val;
104 	struct region3_table_entry_fc0 fc0;
105 	struct region3_table_entry_fc1 fc1;
106 	struct {
107 		unsigned long	 : 53;
108 		unsigned long fc : 1; /* Format-Control */
109 		unsigned long	 : 4;
110 		unsigned long i  : 1; /* Region-Invalid Bit */
111 		unsigned long cr : 1; /* Common-Region Bit */
112 		unsigned long tt : 2; /* Table-Type Bits */
113 		unsigned long	 : 2;
114 	};
115 };
116 
117 struct segment_entry_fc0 {
118 	unsigned long pto: 53;/* Page-Table Origin */
119 	unsigned long fc : 1; /* Format-Control */
120 	unsigned long p  : 1; /* DAT-Protection Bit */
121 	unsigned long	 : 3;
122 	unsigned long i  : 1; /* Segment-Invalid Bit */
123 	unsigned long cs : 1; /* Common-Segment Bit */
124 	unsigned long tt : 2; /* Table-Type Bits */
125 	unsigned long	 : 2;
126 };
127 
128 struct segment_entry_fc1 {
129 	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
130 	unsigned long	 : 3;
131 	unsigned long av : 1; /* ACCF-Validity Control */
132 	unsigned long acc: 4; /* Access-Control Bits */
133 	unsigned long f  : 1; /* Fetch-Protection Bit */
134 	unsigned long fc : 1; /* Format-Control */
135 	unsigned long p  : 1; /* DAT-Protection Bit */
136 	unsigned long iep: 1; /* Instruction-Execution-Protection */
137 	unsigned long	 : 2;
138 	unsigned long i  : 1; /* Segment-Invalid Bit */
139 	unsigned long cs : 1; /* Common-Segment Bit */
140 	unsigned long tt : 2; /* Table-Type Bits */
141 	unsigned long	 : 2;
142 };
143 
144 union segment_table_entry {
145 	unsigned long val;
146 	struct segment_entry_fc0 fc0;
147 	struct segment_entry_fc1 fc1;
148 	struct {
149 		unsigned long	 : 53;
150 		unsigned long fc : 1; /* Format-Control */
151 		unsigned long	 : 4;
152 		unsigned long i  : 1; /* Segment-Invalid Bit */
153 		unsigned long cs : 1; /* Common-Segment Bit */
154 		unsigned long tt : 2; /* Table-Type Bits */
155 		unsigned long	 : 2;
156 	};
157 };
158 
159 enum {
160 	TABLE_TYPE_SEGMENT = 0,
161 	TABLE_TYPE_REGION3 = 1,
162 	TABLE_TYPE_REGION2 = 2,
163 	TABLE_TYPE_REGION1 = 3
164 };
165 
166 union page_table_entry {
167 	unsigned long val;
168 	struct {
169 		unsigned long pfra : 52; /* Page-Frame Real Address */
170 		unsigned long z  : 1; /* Zero Bit */
171 		unsigned long i  : 1; /* Page-Invalid Bit */
172 		unsigned long p  : 1; /* DAT-Protection Bit */
173 		unsigned long iep: 1; /* Instruction-Execution-Protection */
174 		unsigned long	 : 8;
175 	};
176 };
177 
178 /*
179  * vaddress union in order to easily decode a virtual address into its
180  * region first index, region second index etc. parts.
181  */
182 union vaddress {
183 	unsigned long addr;
184 	struct {
185 		unsigned long rfx : 11;
186 		unsigned long rsx : 11;
187 		unsigned long rtx : 11;
188 		unsigned long sx  : 11;
189 		unsigned long px  : 8;
190 		unsigned long bx  : 12;
191 	};
192 	struct {
193 		unsigned long rfx01 : 2;
194 		unsigned long	    : 9;
195 		unsigned long rsx01 : 2;
196 		unsigned long	    : 9;
197 		unsigned long rtx01 : 2;
198 		unsigned long	    : 9;
199 		unsigned long sx01  : 2;
200 		unsigned long	    : 29;
201 	};
202 };
203 
204 /*
205  * raddress union which will contain the result (real or absolute address)
206  * after a page table walk. The rfaa, sfaa and pfra members are used to
207  * simply assign them the value of a region, segment or page table entry.
208  */
209 union raddress {
210 	unsigned long addr;
211 	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
212 	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
213 	unsigned long pfra : 52; /* Page-Frame Real Address */
214 };
215 
216 union alet {
217 	u32 val;
218 	struct {
219 		u32 reserved : 7;
220 		u32 p        : 1;
221 		u32 alesn    : 8;
222 		u32 alen     : 16;
223 	};
224 };
225 
226 union ald {
227 	u32 val;
228 	struct {
229 		u32     : 1;
230 		u32 alo : 24;
231 		u32 all : 7;
232 	};
233 };
234 
235 struct ale {
236 	unsigned long i      : 1; /* ALEN-Invalid Bit */
237 	unsigned long        : 5;
238 	unsigned long fo     : 1; /* Fetch-Only Bit */
239 	unsigned long p      : 1; /* Private Bit */
240 	unsigned long alesn  : 8; /* Access-List-Entry Sequence Number */
241 	unsigned long aleax  : 16; /* Access-List-Entry Authorization Index */
242 	unsigned long        : 32;
243 	unsigned long        : 1;
244 	unsigned long asteo  : 25; /* ASN-Second-Table-Entry Origin */
245 	unsigned long        : 6;
246 	unsigned long astesn : 32; /* ASTE Sequence Number */
247 };
248 
249 struct aste {
250 	unsigned long i      : 1; /* ASX-Invalid Bit */
251 	unsigned long ato    : 29; /* Authority-Table Origin */
252 	unsigned long        : 1;
253 	unsigned long b      : 1; /* Base-Space Bit */
254 	unsigned long ax     : 16; /* Authorization Index */
255 	unsigned long atl    : 12; /* Authority-Table Length */
256 	unsigned long        : 2;
257 	unsigned long ca     : 1; /* Controlled-ASN Bit */
258 	unsigned long ra     : 1; /* Reusable-ASN Bit */
259 	unsigned long asce   : 64; /* Address-Space-Control Element */
260 	unsigned long ald    : 32;
261 	unsigned long astesn : 32;
262 	/* .. more fields there */
263 };
264 
265 int ipte_lock_held(struct kvm *kvm)
266 {
267 	if (sclp.has_siif) {
268 		int rc;
269 
270 		read_lock(&kvm->arch.sca_lock);
271 		rc = kvm_s390_get_ipte_control(kvm)->kh != 0;
272 		read_unlock(&kvm->arch.sca_lock);
273 		return rc;
274 	}
275 	return kvm->arch.ipte_lock_count != 0;
276 }
277 
278 static void ipte_lock_simple(struct kvm *kvm)
279 {
280 	union ipte_control old, new, *ic;
281 
282 	mutex_lock(&kvm->arch.ipte_mutex);
283 	kvm->arch.ipte_lock_count++;
284 	if (kvm->arch.ipte_lock_count > 1)
285 		goto out;
286 retry:
287 	read_lock(&kvm->arch.sca_lock);
288 	ic = kvm_s390_get_ipte_control(kvm);
289 	do {
290 		old = READ_ONCE(*ic);
291 		if (old.k) {
292 			read_unlock(&kvm->arch.sca_lock);
293 			cond_resched();
294 			goto retry;
295 		}
296 		new = old;
297 		new.k = 1;
298 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
299 	read_unlock(&kvm->arch.sca_lock);
300 out:
301 	mutex_unlock(&kvm->arch.ipte_mutex);
302 }
303 
304 static void ipte_unlock_simple(struct kvm *kvm)
305 {
306 	union ipte_control old, new, *ic;
307 
308 	mutex_lock(&kvm->arch.ipte_mutex);
309 	kvm->arch.ipte_lock_count--;
310 	if (kvm->arch.ipte_lock_count)
311 		goto out;
312 	read_lock(&kvm->arch.sca_lock);
313 	ic = kvm_s390_get_ipte_control(kvm);
314 	do {
315 		old = READ_ONCE(*ic);
316 		new = old;
317 		new.k = 0;
318 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
319 	read_unlock(&kvm->arch.sca_lock);
320 	wake_up(&kvm->arch.ipte_wq);
321 out:
322 	mutex_unlock(&kvm->arch.ipte_mutex);
323 }
324 
325 static void ipte_lock_siif(struct kvm *kvm)
326 {
327 	union ipte_control old, new, *ic;
328 
329 retry:
330 	read_lock(&kvm->arch.sca_lock);
331 	ic = kvm_s390_get_ipte_control(kvm);
332 	do {
333 		old = READ_ONCE(*ic);
334 		if (old.kg) {
335 			read_unlock(&kvm->arch.sca_lock);
336 			cond_resched();
337 			goto retry;
338 		}
339 		new = old;
340 		new.k = 1;
341 		new.kh++;
342 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
343 	read_unlock(&kvm->arch.sca_lock);
344 }
345 
346 static void ipte_unlock_siif(struct kvm *kvm)
347 {
348 	union ipte_control old, new, *ic;
349 
350 	read_lock(&kvm->arch.sca_lock);
351 	ic = kvm_s390_get_ipte_control(kvm);
352 	do {
353 		old = READ_ONCE(*ic);
354 		new = old;
355 		new.kh--;
356 		if (!new.kh)
357 			new.k = 0;
358 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
359 	read_unlock(&kvm->arch.sca_lock);
360 	if (!new.kh)
361 		wake_up(&kvm->arch.ipte_wq);
362 }
363 
364 void ipte_lock(struct kvm *kvm)
365 {
366 	if (sclp.has_siif)
367 		ipte_lock_siif(kvm);
368 	else
369 		ipte_lock_simple(kvm);
370 }
371 
372 void ipte_unlock(struct kvm *kvm)
373 {
374 	if (sclp.has_siif)
375 		ipte_unlock_siif(kvm);
376 	else
377 		ipte_unlock_simple(kvm);
378 }
379 
380 static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar,
381 			  enum gacc_mode mode)
382 {
383 	union alet alet;
384 	struct ale ale;
385 	struct aste aste;
386 	unsigned long ald_addr, authority_table_addr;
387 	union ald ald;
388 	int eax, rc;
389 	u8 authority_table;
390 
391 	if (ar >= NUM_ACRS)
392 		return -EINVAL;
393 
394 	save_access_regs(vcpu->run->s.regs.acrs);
395 	alet.val = vcpu->run->s.regs.acrs[ar];
396 
397 	if (ar == 0 || alet.val == 0) {
398 		asce->val = vcpu->arch.sie_block->gcr[1];
399 		return 0;
400 	} else if (alet.val == 1) {
401 		asce->val = vcpu->arch.sie_block->gcr[7];
402 		return 0;
403 	}
404 
405 	if (alet.reserved)
406 		return PGM_ALET_SPECIFICATION;
407 
408 	if (alet.p)
409 		ald_addr = vcpu->arch.sie_block->gcr[5];
410 	else
411 		ald_addr = vcpu->arch.sie_block->gcr[2];
412 	ald_addr &= 0x7fffffc0;
413 
414 	rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
415 	if (rc)
416 		return rc;
417 
418 	if (alet.alen / 8 > ald.all)
419 		return PGM_ALEN_TRANSLATION;
420 
421 	if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
422 		return PGM_ADDRESSING;
423 
424 	rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
425 			     sizeof(struct ale));
426 	if (rc)
427 		return rc;
428 
429 	if (ale.i == 1)
430 		return PGM_ALEN_TRANSLATION;
431 	if (ale.alesn != alet.alesn)
432 		return PGM_ALE_SEQUENCE;
433 
434 	rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
435 	if (rc)
436 		return rc;
437 
438 	if (aste.i)
439 		return PGM_ASTE_VALIDITY;
440 	if (aste.astesn != ale.astesn)
441 		return PGM_ASTE_SEQUENCE;
442 
443 	if (ale.p == 1) {
444 		eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
445 		if (ale.aleax != eax) {
446 			if (eax / 16 > aste.atl)
447 				return PGM_EXTENDED_AUTHORITY;
448 
449 			authority_table_addr = aste.ato * 4 + eax / 4;
450 
451 			rc = read_guest_real(vcpu, authority_table_addr,
452 					     &authority_table,
453 					     sizeof(u8));
454 			if (rc)
455 				return rc;
456 
457 			if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
458 				return PGM_EXTENDED_AUTHORITY;
459 		}
460 	}
461 
462 	if (ale.fo == 1 && mode == GACC_STORE)
463 		return PGM_PROTECTION;
464 
465 	asce->val = aste.asce;
466 	return 0;
467 }
468 
469 struct trans_exc_code_bits {
470 	unsigned long addr : 52; /* Translation-exception Address */
471 	unsigned long fsi  : 2;  /* Access Exception Fetch/Store Indication */
472 	unsigned long	   : 2;
473 	unsigned long b56  : 1;
474 	unsigned long	   : 3;
475 	unsigned long b60  : 1;
476 	unsigned long b61  : 1;
477 	unsigned long as   : 2;  /* ASCE Identifier */
478 };
479 
480 enum {
481 	FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
482 	FSI_STORE   = 1, /* Exception was due to store operation */
483 	FSI_FETCH   = 2  /* Exception was due to fetch operation */
484 };
485 
486 enum prot_type {
487 	PROT_TYPE_LA   = 0,
488 	PROT_TYPE_KEYC = 1,
489 	PROT_TYPE_ALC  = 2,
490 	PROT_TYPE_DAT  = 3,
491 	PROT_TYPE_IEP  = 4,
492 };
493 
494 static int trans_exc_ending(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar,
495 			    enum gacc_mode mode, enum prot_type prot, bool terminate)
496 {
497 	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
498 	struct trans_exc_code_bits *tec;
499 
500 	memset(pgm, 0, sizeof(*pgm));
501 	pgm->code = code;
502 	tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
503 
504 	switch (code) {
505 	case PGM_PROTECTION:
506 		switch (prot) {
507 		case PROT_TYPE_IEP:
508 			tec->b61 = 1;
509 			fallthrough;
510 		case PROT_TYPE_LA:
511 			tec->b56 = 1;
512 			break;
513 		case PROT_TYPE_KEYC:
514 			tec->b60 = 1;
515 			break;
516 		case PROT_TYPE_ALC:
517 			tec->b60 = 1;
518 			fallthrough;
519 		case PROT_TYPE_DAT:
520 			tec->b61 = 1;
521 			break;
522 		}
523 		if (terminate) {
524 			tec->b56 = 0;
525 			tec->b60 = 0;
526 			tec->b61 = 0;
527 		}
528 		fallthrough;
529 	case PGM_ASCE_TYPE:
530 	case PGM_PAGE_TRANSLATION:
531 	case PGM_REGION_FIRST_TRANS:
532 	case PGM_REGION_SECOND_TRANS:
533 	case PGM_REGION_THIRD_TRANS:
534 	case PGM_SEGMENT_TRANSLATION:
535 		/*
536 		 * op_access_id only applies to MOVE_PAGE -> set bit 61
537 		 * exc_access_id has to be set to 0 for some instructions. Both
538 		 * cases have to be handled by the caller.
539 		 */
540 		tec->addr = gva >> PAGE_SHIFT;
541 		tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
542 		tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
543 		fallthrough;
544 	case PGM_ALEN_TRANSLATION:
545 	case PGM_ALE_SEQUENCE:
546 	case PGM_ASTE_VALIDITY:
547 	case PGM_ASTE_SEQUENCE:
548 	case PGM_EXTENDED_AUTHORITY:
549 		/*
550 		 * We can always store exc_access_id, as it is
551 		 * undefined for non-ar cases. It is undefined for
552 		 * most DAT protection exceptions.
553 		 */
554 		pgm->exc_access_id = ar;
555 		break;
556 	}
557 	return code;
558 }
559 
560 static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar,
561 		     enum gacc_mode mode, enum prot_type prot)
562 {
563 	return trans_exc_ending(vcpu, code, gva, ar, mode, prot, false);
564 }
565 
566 static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
567 			 unsigned long ga, u8 ar, enum gacc_mode mode)
568 {
569 	int rc;
570 	struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
571 
572 	if (!psw.dat) {
573 		asce->val = 0;
574 		asce->r = 1;
575 		return 0;
576 	}
577 
578 	if ((mode == GACC_IFETCH) && (psw.as != PSW_BITS_AS_HOME))
579 		psw.as = PSW_BITS_AS_PRIMARY;
580 
581 	switch (psw.as) {
582 	case PSW_BITS_AS_PRIMARY:
583 		asce->val = vcpu->arch.sie_block->gcr[1];
584 		return 0;
585 	case PSW_BITS_AS_SECONDARY:
586 		asce->val = vcpu->arch.sie_block->gcr[7];
587 		return 0;
588 	case PSW_BITS_AS_HOME:
589 		asce->val = vcpu->arch.sie_block->gcr[13];
590 		return 0;
591 	case PSW_BITS_AS_ACCREG:
592 		rc = ar_translation(vcpu, asce, ar, mode);
593 		if (rc > 0)
594 			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
595 		return rc;
596 	}
597 	return 0;
598 }
599 
600 static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
601 {
602 	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
603 }
604 
605 /**
606  * guest_translate - translate a guest virtual into a guest absolute address
607  * @vcpu: virtual cpu
608  * @gva: guest virtual address
609  * @gpa: points to where guest physical (absolute) address should be stored
610  * @asce: effective asce
611  * @mode: indicates the access mode to be used
612  * @prot: returns the type for protection exceptions
613  *
614  * Translate a guest virtual address into a guest absolute address by means
615  * of dynamic address translation as specified by the architecture.
616  * If the resulting absolute address is not available in the configuration
617  * an addressing exception is indicated and @gpa will not be changed.
618  *
619  * Returns: - zero on success; @gpa contains the resulting absolute address
620  *	    - a negative value if guest access failed due to e.g. broken
621  *	      guest mapping
622  *	    - a positve value if an access exception happened. In this case
623  *	      the returned value is the program interruption code as defined
624  *	      by the architecture
625  */
626 static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
627 				     unsigned long *gpa, const union asce asce,
628 				     enum gacc_mode mode, enum prot_type *prot)
629 {
630 	union vaddress vaddr = {.addr = gva};
631 	union raddress raddr = {.addr = gva};
632 	union page_table_entry pte;
633 	int dat_protection = 0;
634 	int iep_protection = 0;
635 	union ctlreg0 ctlreg0;
636 	unsigned long ptr;
637 	int edat1, edat2, iep;
638 
639 	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
640 	edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
641 	edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
642 	iep = ctlreg0.iep && test_kvm_facility(vcpu->kvm, 130);
643 	if (asce.r)
644 		goto real_address;
645 	ptr = asce.origin * PAGE_SIZE;
646 	switch (asce.dt) {
647 	case ASCE_TYPE_REGION1:
648 		if (vaddr.rfx01 > asce.tl)
649 			return PGM_REGION_FIRST_TRANS;
650 		ptr += vaddr.rfx * 8;
651 		break;
652 	case ASCE_TYPE_REGION2:
653 		if (vaddr.rfx)
654 			return PGM_ASCE_TYPE;
655 		if (vaddr.rsx01 > asce.tl)
656 			return PGM_REGION_SECOND_TRANS;
657 		ptr += vaddr.rsx * 8;
658 		break;
659 	case ASCE_TYPE_REGION3:
660 		if (vaddr.rfx || vaddr.rsx)
661 			return PGM_ASCE_TYPE;
662 		if (vaddr.rtx01 > asce.tl)
663 			return PGM_REGION_THIRD_TRANS;
664 		ptr += vaddr.rtx * 8;
665 		break;
666 	case ASCE_TYPE_SEGMENT:
667 		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
668 			return PGM_ASCE_TYPE;
669 		if (vaddr.sx01 > asce.tl)
670 			return PGM_SEGMENT_TRANSLATION;
671 		ptr += vaddr.sx * 8;
672 		break;
673 	}
674 	switch (asce.dt) {
675 	case ASCE_TYPE_REGION1:	{
676 		union region1_table_entry rfte;
677 
678 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
679 			return PGM_ADDRESSING;
680 		if (deref_table(vcpu->kvm, ptr, &rfte.val))
681 			return -EFAULT;
682 		if (rfte.i)
683 			return PGM_REGION_FIRST_TRANS;
684 		if (rfte.tt != TABLE_TYPE_REGION1)
685 			return PGM_TRANSLATION_SPEC;
686 		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
687 			return PGM_REGION_SECOND_TRANS;
688 		if (edat1)
689 			dat_protection |= rfte.p;
690 		ptr = rfte.rto * PAGE_SIZE + vaddr.rsx * 8;
691 	}
692 		fallthrough;
693 	case ASCE_TYPE_REGION2: {
694 		union region2_table_entry rste;
695 
696 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
697 			return PGM_ADDRESSING;
698 		if (deref_table(vcpu->kvm, ptr, &rste.val))
699 			return -EFAULT;
700 		if (rste.i)
701 			return PGM_REGION_SECOND_TRANS;
702 		if (rste.tt != TABLE_TYPE_REGION2)
703 			return PGM_TRANSLATION_SPEC;
704 		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
705 			return PGM_REGION_THIRD_TRANS;
706 		if (edat1)
707 			dat_protection |= rste.p;
708 		ptr = rste.rto * PAGE_SIZE + vaddr.rtx * 8;
709 	}
710 		fallthrough;
711 	case ASCE_TYPE_REGION3: {
712 		union region3_table_entry rtte;
713 
714 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
715 			return PGM_ADDRESSING;
716 		if (deref_table(vcpu->kvm, ptr, &rtte.val))
717 			return -EFAULT;
718 		if (rtte.i)
719 			return PGM_REGION_THIRD_TRANS;
720 		if (rtte.tt != TABLE_TYPE_REGION3)
721 			return PGM_TRANSLATION_SPEC;
722 		if (rtte.cr && asce.p && edat2)
723 			return PGM_TRANSLATION_SPEC;
724 		if (rtte.fc && edat2) {
725 			dat_protection |= rtte.fc1.p;
726 			iep_protection = rtte.fc1.iep;
727 			raddr.rfaa = rtte.fc1.rfaa;
728 			goto absolute_address;
729 		}
730 		if (vaddr.sx01 < rtte.fc0.tf)
731 			return PGM_SEGMENT_TRANSLATION;
732 		if (vaddr.sx01 > rtte.fc0.tl)
733 			return PGM_SEGMENT_TRANSLATION;
734 		if (edat1)
735 			dat_protection |= rtte.fc0.p;
736 		ptr = rtte.fc0.sto * PAGE_SIZE + vaddr.sx * 8;
737 	}
738 		fallthrough;
739 	case ASCE_TYPE_SEGMENT: {
740 		union segment_table_entry ste;
741 
742 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
743 			return PGM_ADDRESSING;
744 		if (deref_table(vcpu->kvm, ptr, &ste.val))
745 			return -EFAULT;
746 		if (ste.i)
747 			return PGM_SEGMENT_TRANSLATION;
748 		if (ste.tt != TABLE_TYPE_SEGMENT)
749 			return PGM_TRANSLATION_SPEC;
750 		if (ste.cs && asce.p)
751 			return PGM_TRANSLATION_SPEC;
752 		if (ste.fc && edat1) {
753 			dat_protection |= ste.fc1.p;
754 			iep_protection = ste.fc1.iep;
755 			raddr.sfaa = ste.fc1.sfaa;
756 			goto absolute_address;
757 		}
758 		dat_protection |= ste.fc0.p;
759 		ptr = ste.fc0.pto * (PAGE_SIZE / 2) + vaddr.px * 8;
760 	}
761 	}
762 	if (kvm_is_error_gpa(vcpu->kvm, ptr))
763 		return PGM_ADDRESSING;
764 	if (deref_table(vcpu->kvm, ptr, &pte.val))
765 		return -EFAULT;
766 	if (pte.i)
767 		return PGM_PAGE_TRANSLATION;
768 	if (pte.z)
769 		return PGM_TRANSLATION_SPEC;
770 	dat_protection |= pte.p;
771 	iep_protection = pte.iep;
772 	raddr.pfra = pte.pfra;
773 real_address:
774 	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
775 absolute_address:
776 	if (mode == GACC_STORE && dat_protection) {
777 		*prot = PROT_TYPE_DAT;
778 		return PGM_PROTECTION;
779 	}
780 	if (mode == GACC_IFETCH && iep_protection && iep) {
781 		*prot = PROT_TYPE_IEP;
782 		return PGM_PROTECTION;
783 	}
784 	if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
785 		return PGM_ADDRESSING;
786 	*gpa = raddr.addr;
787 	return 0;
788 }
789 
790 static inline int is_low_address(unsigned long ga)
791 {
792 	/* Check for address ranges 0..511 and 4096..4607 */
793 	return (ga & ~0x11fful) == 0;
794 }
795 
796 static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
797 					  const union asce asce)
798 {
799 	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
800 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
801 
802 	if (!ctlreg0.lap)
803 		return 0;
804 	if (psw_bits(*psw).dat && asce.p)
805 		return 0;
806 	return 1;
807 }
808 
809 static int vm_check_access_key(struct kvm *kvm, u8 access_key,
810 			       enum gacc_mode mode, gpa_t gpa)
811 {
812 	u8 storage_key, access_control;
813 	bool fetch_protected;
814 	unsigned long hva;
815 	int r;
816 
817 	if (access_key == 0)
818 		return 0;
819 
820 	hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
821 	if (kvm_is_error_hva(hva))
822 		return PGM_ADDRESSING;
823 
824 	mmap_read_lock(current->mm);
825 	r = get_guest_storage_key(current->mm, hva, &storage_key);
826 	mmap_read_unlock(current->mm);
827 	if (r)
828 		return r;
829 	access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key);
830 	if (access_control == access_key)
831 		return 0;
832 	fetch_protected = storage_key & _PAGE_FP_BIT;
833 	if ((mode == GACC_FETCH || mode == GACC_IFETCH) && !fetch_protected)
834 		return 0;
835 	return PGM_PROTECTION;
836 }
837 
838 static bool fetch_prot_override_applicable(struct kvm_vcpu *vcpu, enum gacc_mode mode,
839 					   union asce asce)
840 {
841 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
842 	unsigned long override;
843 
844 	if (mode == GACC_FETCH || mode == GACC_IFETCH) {
845 		/* check if fetch protection override enabled */
846 		override = vcpu->arch.sie_block->gcr[0];
847 		override &= CR0_FETCH_PROTECTION_OVERRIDE;
848 		/* not applicable if subject to DAT && private space */
849 		override = override && !(psw_bits(*psw).dat && asce.p);
850 		return override;
851 	}
852 	return false;
853 }
854 
855 static bool fetch_prot_override_applies(unsigned long ga, unsigned int len)
856 {
857 	return ga < 2048 && ga + len <= 2048;
858 }
859 
860 static bool storage_prot_override_applicable(struct kvm_vcpu *vcpu)
861 {
862 	/* check if storage protection override enabled */
863 	return vcpu->arch.sie_block->gcr[0] & CR0_STORAGE_PROTECTION_OVERRIDE;
864 }
865 
866 static bool storage_prot_override_applies(u8 access_control)
867 {
868 	/* matches special storage protection override key (9) -> allow */
869 	return access_control == PAGE_SPO_ACC;
870 }
871 
872 static int vcpu_check_access_key(struct kvm_vcpu *vcpu, u8 access_key,
873 				 enum gacc_mode mode, union asce asce, gpa_t gpa,
874 				 unsigned long ga, unsigned int len)
875 {
876 	u8 storage_key, access_control;
877 	unsigned long hva;
878 	int r;
879 
880 	/* access key 0 matches any storage key -> allow */
881 	if (access_key == 0)
882 		return 0;
883 	/*
884 	 * caller needs to ensure that gfn is accessible, so we can
885 	 * assume that this cannot fail
886 	 */
887 	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(gpa));
888 	mmap_read_lock(current->mm);
889 	r = get_guest_storage_key(current->mm, hva, &storage_key);
890 	mmap_read_unlock(current->mm);
891 	if (r)
892 		return r;
893 	access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key);
894 	/* access key matches storage key -> allow */
895 	if (access_control == access_key)
896 		return 0;
897 	if (mode == GACC_FETCH || mode == GACC_IFETCH) {
898 		/* it is a fetch and fetch protection is off -> allow */
899 		if (!(storage_key & _PAGE_FP_BIT))
900 			return 0;
901 		if (fetch_prot_override_applicable(vcpu, mode, asce) &&
902 		    fetch_prot_override_applies(ga, len))
903 			return 0;
904 	}
905 	if (storage_prot_override_applicable(vcpu) &&
906 	    storage_prot_override_applies(access_control))
907 		return 0;
908 	return PGM_PROTECTION;
909 }
910 
911 /**
912  * guest_range_to_gpas() - Calculate guest physical addresses of page fragments
913  * covering a logical range
914  * @vcpu: virtual cpu
915  * @ga: guest address, start of range
916  * @ar: access register
917  * @gpas: output argument, may be NULL
918  * @len: length of range in bytes
919  * @asce: address-space-control element to use for translation
920  * @mode: access mode
921  * @access_key: access key to mach the range's storage keys against
922  *
923  * Translate a logical range to a series of guest absolute addresses,
924  * such that the concatenation of page fragments starting at each gpa make up
925  * the whole range.
926  * The translation is performed as if done by the cpu for the given @asce, @ar,
927  * @mode and state of the @vcpu.
928  * If the translation causes an exception, its program interruption code is
929  * returned and the &struct kvm_s390_pgm_info pgm member of @vcpu is modified
930  * such that a subsequent call to kvm_s390_inject_prog_vcpu() will inject
931  * a correct exception into the guest.
932  * The resulting gpas are stored into @gpas, unless it is NULL.
933  *
934  * Note: All fragments except the first one start at the beginning of a page.
935  *	 When deriving the boundaries of a fragment from a gpa, all but the last
936  *	 fragment end at the end of the page.
937  *
938  * Return:
939  * * 0		- success
940  * * <0		- translation could not be performed, for example if  guest
941  *		  memory could not be accessed
942  * * >0		- an access exception occurred. In this case the returned value
943  *		  is the program interruption code and the contents of pgm may
944  *		  be used to inject an exception into the guest.
945  */
946 static int guest_range_to_gpas(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
947 			       unsigned long *gpas, unsigned long len,
948 			       const union asce asce, enum gacc_mode mode,
949 			       u8 access_key)
950 {
951 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
952 	unsigned int offset = offset_in_page(ga);
953 	unsigned int fragment_len;
954 	int lap_enabled, rc = 0;
955 	enum prot_type prot;
956 	unsigned long gpa;
957 
958 	lap_enabled = low_address_protection_enabled(vcpu, asce);
959 	while (min(PAGE_SIZE - offset, len) > 0) {
960 		fragment_len = min(PAGE_SIZE - offset, len);
961 		ga = kvm_s390_logical_to_effective(vcpu, ga);
962 		if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
963 			return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
964 					 PROT_TYPE_LA);
965 		if (psw_bits(*psw).dat) {
966 			rc = guest_translate(vcpu, ga, &gpa, asce, mode, &prot);
967 			if (rc < 0)
968 				return rc;
969 		} else {
970 			gpa = kvm_s390_real_to_abs(vcpu, ga);
971 			if (kvm_is_error_gpa(vcpu->kvm, gpa))
972 				rc = PGM_ADDRESSING;
973 		}
974 		if (rc)
975 			return trans_exc(vcpu, rc, ga, ar, mode, prot);
976 		rc = vcpu_check_access_key(vcpu, access_key, mode, asce, gpa, ga,
977 					   fragment_len);
978 		if (rc)
979 			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_KEYC);
980 		if (gpas)
981 			*gpas++ = gpa;
982 		offset = 0;
983 		ga += fragment_len;
984 		len -= fragment_len;
985 	}
986 	return 0;
987 }
988 
989 static int access_guest_page(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa,
990 			     void *data, unsigned int len)
991 {
992 	const unsigned int offset = offset_in_page(gpa);
993 	const gfn_t gfn = gpa_to_gfn(gpa);
994 	int rc;
995 
996 	if (mode == GACC_STORE)
997 		rc = kvm_write_guest_page(kvm, gfn, data, offset, len);
998 	else
999 		rc = kvm_read_guest_page(kvm, gfn, data, offset, len);
1000 	return rc;
1001 }
1002 
1003 static int
1004 access_guest_page_with_key(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa,
1005 			   void *data, unsigned int len, u8 access_key)
1006 {
1007 	struct kvm_memory_slot *slot;
1008 	bool writable;
1009 	gfn_t gfn;
1010 	hva_t hva;
1011 	int rc;
1012 
1013 	gfn = gpa >> PAGE_SHIFT;
1014 	slot = gfn_to_memslot(kvm, gfn);
1015 	hva = gfn_to_hva_memslot_prot(slot, gfn, &writable);
1016 
1017 	if (kvm_is_error_hva(hva))
1018 		return PGM_ADDRESSING;
1019 	/*
1020 	 * Check if it's a ro memslot, even tho that can't occur (they're unsupported).
1021 	 * Don't try to actually handle that case.
1022 	 */
1023 	if (!writable && mode == GACC_STORE)
1024 		return -EOPNOTSUPP;
1025 	hva += offset_in_page(gpa);
1026 	if (mode == GACC_STORE)
1027 		rc = copy_to_user_key((void __user *)hva, data, len, access_key);
1028 	else
1029 		rc = copy_from_user_key(data, (void __user *)hva, len, access_key);
1030 	if (rc)
1031 		return PGM_PROTECTION;
1032 	if (mode == GACC_STORE)
1033 		mark_page_dirty_in_slot(kvm, slot, gfn);
1034 	return 0;
1035 }
1036 
1037 int access_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, void *data,
1038 			      unsigned long len, enum gacc_mode mode, u8 access_key)
1039 {
1040 	int offset = offset_in_page(gpa);
1041 	int fragment_len;
1042 	int rc;
1043 
1044 	while (min(PAGE_SIZE - offset, len) > 0) {
1045 		fragment_len = min(PAGE_SIZE - offset, len);
1046 		rc = access_guest_page_with_key(kvm, mode, gpa, data, fragment_len, access_key);
1047 		if (rc)
1048 			return rc;
1049 		offset = 0;
1050 		len -= fragment_len;
1051 		data += fragment_len;
1052 		gpa += fragment_len;
1053 	}
1054 	return 0;
1055 }
1056 
1057 int access_guest_with_key(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
1058 			  void *data, unsigned long len, enum gacc_mode mode,
1059 			  u8 access_key)
1060 {
1061 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
1062 	unsigned long nr_pages, idx;
1063 	unsigned long gpa_array[2];
1064 	unsigned int fragment_len;
1065 	unsigned long *gpas;
1066 	enum prot_type prot;
1067 	int need_ipte_lock;
1068 	union asce asce;
1069 	bool try_storage_prot_override;
1070 	bool try_fetch_prot_override;
1071 	int rc;
1072 
1073 	if (!len)
1074 		return 0;
1075 	ga = kvm_s390_logical_to_effective(vcpu, ga);
1076 	rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
1077 	if (rc)
1078 		return rc;
1079 	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
1080 	gpas = gpa_array;
1081 	if (nr_pages > ARRAY_SIZE(gpa_array))
1082 		gpas = vmalloc(array_size(nr_pages, sizeof(unsigned long)));
1083 	if (!gpas)
1084 		return -ENOMEM;
1085 	try_fetch_prot_override = fetch_prot_override_applicable(vcpu, mode, asce);
1086 	try_storage_prot_override = storage_prot_override_applicable(vcpu);
1087 	need_ipte_lock = psw_bits(*psw).dat && !asce.r;
1088 	if (need_ipte_lock)
1089 		ipte_lock(vcpu->kvm);
1090 	/*
1091 	 * Since we do the access further down ultimately via a move instruction
1092 	 * that does key checking and returns an error in case of a protection
1093 	 * violation, we don't need to do the check during address translation.
1094 	 * Skip it by passing access key 0, which matches any storage key,
1095 	 * obviating the need for any further checks. As a result the check is
1096 	 * handled entirely in hardware on access, we only need to take care to
1097 	 * forego key protection checking if fetch protection override applies or
1098 	 * retry with the special key 9 in case of storage protection override.
1099 	 */
1100 	rc = guest_range_to_gpas(vcpu, ga, ar, gpas, len, asce, mode, 0);
1101 	if (rc)
1102 		goto out_unlock;
1103 	for (idx = 0; idx < nr_pages; idx++) {
1104 		fragment_len = min(PAGE_SIZE - offset_in_page(gpas[idx]), len);
1105 		if (try_fetch_prot_override && fetch_prot_override_applies(ga, fragment_len)) {
1106 			rc = access_guest_page(vcpu->kvm, mode, gpas[idx],
1107 					       data, fragment_len);
1108 		} else {
1109 			rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx],
1110 							data, fragment_len, access_key);
1111 		}
1112 		if (rc == PGM_PROTECTION && try_storage_prot_override)
1113 			rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx],
1114 							data, fragment_len, PAGE_SPO_ACC);
1115 		if (rc == PGM_PROTECTION)
1116 			prot = PROT_TYPE_KEYC;
1117 		if (rc)
1118 			break;
1119 		len -= fragment_len;
1120 		data += fragment_len;
1121 		ga = kvm_s390_logical_to_effective(vcpu, ga + fragment_len);
1122 	}
1123 	if (rc > 0) {
1124 		bool terminate = (mode == GACC_STORE) && (idx > 0);
1125 
1126 		rc = trans_exc_ending(vcpu, rc, ga, ar, mode, prot, terminate);
1127 	}
1128 out_unlock:
1129 	if (need_ipte_lock)
1130 		ipte_unlock(vcpu->kvm);
1131 	if (nr_pages > ARRAY_SIZE(gpa_array))
1132 		vfree(gpas);
1133 	return rc;
1134 }
1135 
1136 int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
1137 		      void *data, unsigned long len, enum gacc_mode mode)
1138 {
1139 	unsigned int fragment_len;
1140 	unsigned long gpa;
1141 	int rc = 0;
1142 
1143 	while (len && !rc) {
1144 		gpa = kvm_s390_real_to_abs(vcpu, gra);
1145 		fragment_len = min(PAGE_SIZE - offset_in_page(gpa), len);
1146 		rc = access_guest_page(vcpu->kvm, mode, gpa, data, fragment_len);
1147 		len -= fragment_len;
1148 		gra += fragment_len;
1149 		data += fragment_len;
1150 	}
1151 	return rc;
1152 }
1153 
1154 /**
1155  * guest_translate_address_with_key - translate guest logical into guest absolute address
1156  * @vcpu: virtual cpu
1157  * @gva: Guest virtual address
1158  * @ar: Access register
1159  * @gpa: Guest physical address
1160  * @mode: Translation access mode
1161  * @access_key: access key to mach the storage key with
1162  *
1163  * Parameter semantics are the same as the ones from guest_translate.
1164  * The memory contents at the guest address are not changed.
1165  *
1166  * Note: The IPTE lock is not taken during this function, so the caller
1167  * has to take care of this.
1168  */
1169 int guest_translate_address_with_key(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
1170 				     unsigned long *gpa, enum gacc_mode mode,
1171 				     u8 access_key)
1172 {
1173 	union asce asce;
1174 	int rc;
1175 
1176 	gva = kvm_s390_logical_to_effective(vcpu, gva);
1177 	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
1178 	if (rc)
1179 		return rc;
1180 	return guest_range_to_gpas(vcpu, gva, ar, gpa, 1, asce, mode,
1181 				   access_key);
1182 }
1183 
1184 /**
1185  * check_gva_range - test a range of guest virtual addresses for accessibility
1186  * @vcpu: virtual cpu
1187  * @gva: Guest virtual address
1188  * @ar: Access register
1189  * @length: Length of test range
1190  * @mode: Translation access mode
1191  * @access_key: access key to mach the storage keys with
1192  */
1193 int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
1194 		    unsigned long length, enum gacc_mode mode, u8 access_key)
1195 {
1196 	union asce asce;
1197 	int rc = 0;
1198 
1199 	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
1200 	if (rc)
1201 		return rc;
1202 	ipte_lock(vcpu->kvm);
1203 	rc = guest_range_to_gpas(vcpu, gva, ar, NULL, length, asce, mode,
1204 				 access_key);
1205 	ipte_unlock(vcpu->kvm);
1206 
1207 	return rc;
1208 }
1209 
1210 /**
1211  * check_gpa_range - test a range of guest physical addresses for accessibility
1212  * @kvm: virtual machine instance
1213  * @gpa: guest physical address
1214  * @length: length of test range
1215  * @mode: access mode to test, relevant for storage keys
1216  * @access_key: access key to mach the storage keys with
1217  */
1218 int check_gpa_range(struct kvm *kvm, unsigned long gpa, unsigned long length,
1219 		    enum gacc_mode mode, u8 access_key)
1220 {
1221 	unsigned int fragment_len;
1222 	int rc = 0;
1223 
1224 	while (length && !rc) {
1225 		fragment_len = min(PAGE_SIZE - offset_in_page(gpa), length);
1226 		rc = vm_check_access_key(kvm, access_key, mode, gpa);
1227 		length -= fragment_len;
1228 		gpa += fragment_len;
1229 	}
1230 	return rc;
1231 }
1232 
1233 /**
1234  * kvm_s390_check_low_addr_prot_real - check for low-address protection
1235  * @vcpu: virtual cpu
1236  * @gra: Guest real address
1237  *
1238  * Checks whether an address is subject to low-address protection and set
1239  * up vcpu->arch.pgm accordingly if necessary.
1240  *
1241  * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
1242  */
1243 int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
1244 {
1245 	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
1246 
1247 	if (!ctlreg0.lap || !is_low_address(gra))
1248 		return 0;
1249 	return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
1250 }
1251 
1252 /**
1253  * kvm_s390_shadow_tables - walk the guest page table and create shadow tables
1254  * @sg: pointer to the shadow guest address space structure
1255  * @saddr: faulting address in the shadow gmap
1256  * @pgt: pointer to the beginning of the page table for the given address if
1257  *	 successful (return value 0), or to the first invalid DAT entry in
1258  *	 case of exceptions (return value > 0)
1259  * @dat_protection: referenced memory is write protected
1260  * @fake: pgt references contiguous guest memory block, not a pgtable
1261  */
1262 static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
1263 				  unsigned long *pgt, int *dat_protection,
1264 				  int *fake)
1265 {
1266 	struct gmap *parent;
1267 	union asce asce;
1268 	union vaddress vaddr;
1269 	unsigned long ptr;
1270 	int rc;
1271 
1272 	*fake = 0;
1273 	*dat_protection = 0;
1274 	parent = sg->parent;
1275 	vaddr.addr = saddr;
1276 	asce.val = sg->orig_asce;
1277 	ptr = asce.origin * PAGE_SIZE;
1278 	if (asce.r) {
1279 		*fake = 1;
1280 		ptr = 0;
1281 		asce.dt = ASCE_TYPE_REGION1;
1282 	}
1283 	switch (asce.dt) {
1284 	case ASCE_TYPE_REGION1:
1285 		if (vaddr.rfx01 > asce.tl && !*fake)
1286 			return PGM_REGION_FIRST_TRANS;
1287 		break;
1288 	case ASCE_TYPE_REGION2:
1289 		if (vaddr.rfx)
1290 			return PGM_ASCE_TYPE;
1291 		if (vaddr.rsx01 > asce.tl)
1292 			return PGM_REGION_SECOND_TRANS;
1293 		break;
1294 	case ASCE_TYPE_REGION3:
1295 		if (vaddr.rfx || vaddr.rsx)
1296 			return PGM_ASCE_TYPE;
1297 		if (vaddr.rtx01 > asce.tl)
1298 			return PGM_REGION_THIRD_TRANS;
1299 		break;
1300 	case ASCE_TYPE_SEGMENT:
1301 		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
1302 			return PGM_ASCE_TYPE;
1303 		if (vaddr.sx01 > asce.tl)
1304 			return PGM_SEGMENT_TRANSLATION;
1305 		break;
1306 	}
1307 
1308 	switch (asce.dt) {
1309 	case ASCE_TYPE_REGION1: {
1310 		union region1_table_entry rfte;
1311 
1312 		if (*fake) {
1313 			ptr += vaddr.rfx * _REGION1_SIZE;
1314 			rfte.val = ptr;
1315 			goto shadow_r2t;
1316 		}
1317 		*pgt = ptr + vaddr.rfx * 8;
1318 		rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
1319 		if (rc)
1320 			return rc;
1321 		if (rfte.i)
1322 			return PGM_REGION_FIRST_TRANS;
1323 		if (rfte.tt != TABLE_TYPE_REGION1)
1324 			return PGM_TRANSLATION_SPEC;
1325 		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
1326 			return PGM_REGION_SECOND_TRANS;
1327 		if (sg->edat_level >= 1)
1328 			*dat_protection |= rfte.p;
1329 		ptr = rfte.rto * PAGE_SIZE;
1330 shadow_r2t:
1331 		rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
1332 		if (rc)
1333 			return rc;
1334 	}
1335 		fallthrough;
1336 	case ASCE_TYPE_REGION2: {
1337 		union region2_table_entry rste;
1338 
1339 		if (*fake) {
1340 			ptr += vaddr.rsx * _REGION2_SIZE;
1341 			rste.val = ptr;
1342 			goto shadow_r3t;
1343 		}
1344 		*pgt = ptr + vaddr.rsx * 8;
1345 		rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
1346 		if (rc)
1347 			return rc;
1348 		if (rste.i)
1349 			return PGM_REGION_SECOND_TRANS;
1350 		if (rste.tt != TABLE_TYPE_REGION2)
1351 			return PGM_TRANSLATION_SPEC;
1352 		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
1353 			return PGM_REGION_THIRD_TRANS;
1354 		if (sg->edat_level >= 1)
1355 			*dat_protection |= rste.p;
1356 		ptr = rste.rto * PAGE_SIZE;
1357 shadow_r3t:
1358 		rste.p |= *dat_protection;
1359 		rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
1360 		if (rc)
1361 			return rc;
1362 	}
1363 		fallthrough;
1364 	case ASCE_TYPE_REGION3: {
1365 		union region3_table_entry rtte;
1366 
1367 		if (*fake) {
1368 			ptr += vaddr.rtx * _REGION3_SIZE;
1369 			rtte.val = ptr;
1370 			goto shadow_sgt;
1371 		}
1372 		*pgt = ptr + vaddr.rtx * 8;
1373 		rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
1374 		if (rc)
1375 			return rc;
1376 		if (rtte.i)
1377 			return PGM_REGION_THIRD_TRANS;
1378 		if (rtte.tt != TABLE_TYPE_REGION3)
1379 			return PGM_TRANSLATION_SPEC;
1380 		if (rtte.cr && asce.p && sg->edat_level >= 2)
1381 			return PGM_TRANSLATION_SPEC;
1382 		if (rtte.fc && sg->edat_level >= 2) {
1383 			*dat_protection |= rtte.fc0.p;
1384 			*fake = 1;
1385 			ptr = rtte.fc1.rfaa * _REGION3_SIZE;
1386 			rtte.val = ptr;
1387 			goto shadow_sgt;
1388 		}
1389 		if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
1390 			return PGM_SEGMENT_TRANSLATION;
1391 		if (sg->edat_level >= 1)
1392 			*dat_protection |= rtte.fc0.p;
1393 		ptr = rtte.fc0.sto * PAGE_SIZE;
1394 shadow_sgt:
1395 		rtte.fc0.p |= *dat_protection;
1396 		rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
1397 		if (rc)
1398 			return rc;
1399 	}
1400 		fallthrough;
1401 	case ASCE_TYPE_SEGMENT: {
1402 		union segment_table_entry ste;
1403 
1404 		if (*fake) {
1405 			ptr += vaddr.sx * _SEGMENT_SIZE;
1406 			ste.val = ptr;
1407 			goto shadow_pgt;
1408 		}
1409 		*pgt = ptr + vaddr.sx * 8;
1410 		rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
1411 		if (rc)
1412 			return rc;
1413 		if (ste.i)
1414 			return PGM_SEGMENT_TRANSLATION;
1415 		if (ste.tt != TABLE_TYPE_SEGMENT)
1416 			return PGM_TRANSLATION_SPEC;
1417 		if (ste.cs && asce.p)
1418 			return PGM_TRANSLATION_SPEC;
1419 		*dat_protection |= ste.fc0.p;
1420 		if (ste.fc && sg->edat_level >= 1) {
1421 			*fake = 1;
1422 			ptr = ste.fc1.sfaa * _SEGMENT_SIZE;
1423 			ste.val = ptr;
1424 			goto shadow_pgt;
1425 		}
1426 		ptr = ste.fc0.pto * (PAGE_SIZE / 2);
1427 shadow_pgt:
1428 		ste.fc0.p |= *dat_protection;
1429 		rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
1430 		if (rc)
1431 			return rc;
1432 	}
1433 	}
1434 	/* Return the parent address of the page table */
1435 	*pgt = ptr;
1436 	return 0;
1437 }
1438 
1439 /**
1440  * kvm_s390_shadow_fault - handle fault on a shadow page table
1441  * @vcpu: virtual cpu
1442  * @sg: pointer to the shadow guest address space structure
1443  * @saddr: faulting address in the shadow gmap
1444  * @datptr: will contain the address of the faulting DAT table entry, or of
1445  *	    the valid leaf, plus some flags
1446  *
1447  * Returns: - 0 if the shadow fault was successfully resolved
1448  *	    - > 0 (pgm exception code) on exceptions while faulting
1449  *	    - -EAGAIN if the caller can retry immediately
1450  *	    - -EFAULT when accessing invalid guest addresses
1451  *	    - -ENOMEM if out of memory
1452  */
1453 int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
1454 			  unsigned long saddr, unsigned long *datptr)
1455 {
1456 	union vaddress vaddr;
1457 	union page_table_entry pte;
1458 	unsigned long pgt = 0;
1459 	int dat_protection, fake;
1460 	int rc;
1461 
1462 	mmap_read_lock(sg->mm);
1463 	/*
1464 	 * We don't want any guest-2 tables to change - so the parent
1465 	 * tables/pointers we read stay valid - unshadowing is however
1466 	 * always possible - only guest_table_lock protects us.
1467 	 */
1468 	ipte_lock(vcpu->kvm);
1469 
1470 	rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
1471 	if (rc)
1472 		rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
1473 					    &fake);
1474 
1475 	vaddr.addr = saddr;
1476 	if (fake) {
1477 		pte.val = pgt + vaddr.px * PAGE_SIZE;
1478 		goto shadow_page;
1479 	}
1480 
1481 	switch (rc) {
1482 	case PGM_SEGMENT_TRANSLATION:
1483 	case PGM_REGION_THIRD_TRANS:
1484 	case PGM_REGION_SECOND_TRANS:
1485 	case PGM_REGION_FIRST_TRANS:
1486 		pgt |= PEI_NOT_PTE;
1487 		break;
1488 	case 0:
1489 		pgt += vaddr.px * 8;
1490 		rc = gmap_read_table(sg->parent, pgt, &pte.val);
1491 	}
1492 	if (datptr)
1493 		*datptr = pgt | dat_protection * PEI_DAT_PROT;
1494 	if (!rc && pte.i)
1495 		rc = PGM_PAGE_TRANSLATION;
1496 	if (!rc && pte.z)
1497 		rc = PGM_TRANSLATION_SPEC;
1498 shadow_page:
1499 	pte.p |= dat_protection;
1500 	if (!rc)
1501 		rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
1502 	ipte_unlock(vcpu->kvm);
1503 	mmap_read_unlock(sg->mm);
1504 	return rc;
1505 }
1506