1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * guest access functions 4 * 5 * Copyright IBM Corp. 2014 6 * 7 */ 8 9 #include <linux/vmalloc.h> 10 #include <linux/mm_types.h> 11 #include <linux/err.h> 12 #include <linux/pgtable.h> 13 #include <linux/bitfield.h> 14 15 #include <asm/gmap.h> 16 #include "kvm-s390.h" 17 #include "gaccess.h" 18 #include <asm/switch_to.h> 19 20 union asce { 21 unsigned long val; 22 struct { 23 unsigned long origin : 52; /* Region- or Segment-Table Origin */ 24 unsigned long : 2; 25 unsigned long g : 1; /* Subspace Group Control */ 26 unsigned long p : 1; /* Private Space Control */ 27 unsigned long s : 1; /* Storage-Alteration-Event Control */ 28 unsigned long x : 1; /* Space-Switch-Event Control */ 29 unsigned long r : 1; /* Real-Space Control */ 30 unsigned long : 1; 31 unsigned long dt : 2; /* Designation-Type Control */ 32 unsigned long tl : 2; /* Region- or Segment-Table Length */ 33 }; 34 }; 35 36 enum { 37 ASCE_TYPE_SEGMENT = 0, 38 ASCE_TYPE_REGION3 = 1, 39 ASCE_TYPE_REGION2 = 2, 40 ASCE_TYPE_REGION1 = 3 41 }; 42 43 union region1_table_entry { 44 unsigned long val; 45 struct { 46 unsigned long rto: 52;/* Region-Table Origin */ 47 unsigned long : 2; 48 unsigned long p : 1; /* DAT-Protection Bit */ 49 unsigned long : 1; 50 unsigned long tf : 2; /* Region-Second-Table Offset */ 51 unsigned long i : 1; /* Region-Invalid Bit */ 52 unsigned long : 1; 53 unsigned long tt : 2; /* Table-Type Bits */ 54 unsigned long tl : 2; /* Region-Second-Table Length */ 55 }; 56 }; 57 58 union region2_table_entry { 59 unsigned long val; 60 struct { 61 unsigned long rto: 52;/* Region-Table Origin */ 62 unsigned long : 2; 63 unsigned long p : 1; /* DAT-Protection Bit */ 64 unsigned long : 1; 65 unsigned long tf : 2; /* Region-Third-Table Offset */ 66 unsigned long i : 1; /* Region-Invalid Bit */ 67 unsigned long : 1; 68 unsigned long tt : 2; /* Table-Type Bits */ 69 unsigned long tl : 2; /* Region-Third-Table Length */ 70 }; 71 }; 72 73 struct region3_table_entry_fc0 { 74 unsigned long sto: 52;/* Segment-Table Origin */ 75 unsigned long : 1; 76 unsigned long fc : 1; /* Format-Control */ 77 unsigned long p : 1; /* DAT-Protection Bit */ 78 unsigned long : 1; 79 unsigned long tf : 2; /* Segment-Table Offset */ 80 unsigned long i : 1; /* Region-Invalid Bit */ 81 unsigned long cr : 1; /* Common-Region Bit */ 82 unsigned long tt : 2; /* Table-Type Bits */ 83 unsigned long tl : 2; /* Segment-Table Length */ 84 }; 85 86 struct region3_table_entry_fc1 { 87 unsigned long rfaa : 33; /* Region-Frame Absolute Address */ 88 unsigned long : 14; 89 unsigned long av : 1; /* ACCF-Validity Control */ 90 unsigned long acc: 4; /* Access-Control Bits */ 91 unsigned long f : 1; /* Fetch-Protection Bit */ 92 unsigned long fc : 1; /* Format-Control */ 93 unsigned long p : 1; /* DAT-Protection Bit */ 94 unsigned long iep: 1; /* Instruction-Execution-Protection */ 95 unsigned long : 2; 96 unsigned long i : 1; /* Region-Invalid Bit */ 97 unsigned long cr : 1; /* Common-Region Bit */ 98 unsigned long tt : 2; /* Table-Type Bits */ 99 unsigned long : 2; 100 }; 101 102 union region3_table_entry { 103 unsigned long val; 104 struct region3_table_entry_fc0 fc0; 105 struct region3_table_entry_fc1 fc1; 106 struct { 107 unsigned long : 53; 108 unsigned long fc : 1; /* Format-Control */ 109 unsigned long : 4; 110 unsigned long i : 1; /* Region-Invalid Bit */ 111 unsigned long cr : 1; /* Common-Region Bit */ 112 unsigned long tt : 2; /* Table-Type Bits */ 113 unsigned long : 2; 114 }; 115 }; 116 117 struct segment_entry_fc0 { 118 unsigned long pto: 53;/* Page-Table Origin */ 119 unsigned long fc : 1; /* Format-Control */ 120 unsigned long p : 1; /* DAT-Protection Bit */ 121 unsigned long : 3; 122 unsigned long i : 1; /* Segment-Invalid Bit */ 123 unsigned long cs : 1; /* Common-Segment Bit */ 124 unsigned long tt : 2; /* Table-Type Bits */ 125 unsigned long : 2; 126 }; 127 128 struct segment_entry_fc1 { 129 unsigned long sfaa : 44; /* Segment-Frame Absolute Address */ 130 unsigned long : 3; 131 unsigned long av : 1; /* ACCF-Validity Control */ 132 unsigned long acc: 4; /* Access-Control Bits */ 133 unsigned long f : 1; /* Fetch-Protection Bit */ 134 unsigned long fc : 1; /* Format-Control */ 135 unsigned long p : 1; /* DAT-Protection Bit */ 136 unsigned long iep: 1; /* Instruction-Execution-Protection */ 137 unsigned long : 2; 138 unsigned long i : 1; /* Segment-Invalid Bit */ 139 unsigned long cs : 1; /* Common-Segment Bit */ 140 unsigned long tt : 2; /* Table-Type Bits */ 141 unsigned long : 2; 142 }; 143 144 union segment_table_entry { 145 unsigned long val; 146 struct segment_entry_fc0 fc0; 147 struct segment_entry_fc1 fc1; 148 struct { 149 unsigned long : 53; 150 unsigned long fc : 1; /* Format-Control */ 151 unsigned long : 4; 152 unsigned long i : 1; /* Segment-Invalid Bit */ 153 unsigned long cs : 1; /* Common-Segment Bit */ 154 unsigned long tt : 2; /* Table-Type Bits */ 155 unsigned long : 2; 156 }; 157 }; 158 159 enum { 160 TABLE_TYPE_SEGMENT = 0, 161 TABLE_TYPE_REGION3 = 1, 162 TABLE_TYPE_REGION2 = 2, 163 TABLE_TYPE_REGION1 = 3 164 }; 165 166 union page_table_entry { 167 unsigned long val; 168 struct { 169 unsigned long pfra : 52; /* Page-Frame Real Address */ 170 unsigned long z : 1; /* Zero Bit */ 171 unsigned long i : 1; /* Page-Invalid Bit */ 172 unsigned long p : 1; /* DAT-Protection Bit */ 173 unsigned long iep: 1; /* Instruction-Execution-Protection */ 174 unsigned long : 8; 175 }; 176 }; 177 178 /* 179 * vaddress union in order to easily decode a virtual address into its 180 * region first index, region second index etc. parts. 181 */ 182 union vaddress { 183 unsigned long addr; 184 struct { 185 unsigned long rfx : 11; 186 unsigned long rsx : 11; 187 unsigned long rtx : 11; 188 unsigned long sx : 11; 189 unsigned long px : 8; 190 unsigned long bx : 12; 191 }; 192 struct { 193 unsigned long rfx01 : 2; 194 unsigned long : 9; 195 unsigned long rsx01 : 2; 196 unsigned long : 9; 197 unsigned long rtx01 : 2; 198 unsigned long : 9; 199 unsigned long sx01 : 2; 200 unsigned long : 29; 201 }; 202 }; 203 204 /* 205 * raddress union which will contain the result (real or absolute address) 206 * after a page table walk. The rfaa, sfaa and pfra members are used to 207 * simply assign them the value of a region, segment or page table entry. 208 */ 209 union raddress { 210 unsigned long addr; 211 unsigned long rfaa : 33; /* Region-Frame Absolute Address */ 212 unsigned long sfaa : 44; /* Segment-Frame Absolute Address */ 213 unsigned long pfra : 52; /* Page-Frame Real Address */ 214 }; 215 216 union alet { 217 u32 val; 218 struct { 219 u32 reserved : 7; 220 u32 p : 1; 221 u32 alesn : 8; 222 u32 alen : 16; 223 }; 224 }; 225 226 union ald { 227 u32 val; 228 struct { 229 u32 : 1; 230 u32 alo : 24; 231 u32 all : 7; 232 }; 233 }; 234 235 struct ale { 236 unsigned long i : 1; /* ALEN-Invalid Bit */ 237 unsigned long : 5; 238 unsigned long fo : 1; /* Fetch-Only Bit */ 239 unsigned long p : 1; /* Private Bit */ 240 unsigned long alesn : 8; /* Access-List-Entry Sequence Number */ 241 unsigned long aleax : 16; /* Access-List-Entry Authorization Index */ 242 unsigned long : 32; 243 unsigned long : 1; 244 unsigned long asteo : 25; /* ASN-Second-Table-Entry Origin */ 245 unsigned long : 6; 246 unsigned long astesn : 32; /* ASTE Sequence Number */ 247 }; 248 249 struct aste { 250 unsigned long i : 1; /* ASX-Invalid Bit */ 251 unsigned long ato : 29; /* Authority-Table Origin */ 252 unsigned long : 1; 253 unsigned long b : 1; /* Base-Space Bit */ 254 unsigned long ax : 16; /* Authorization Index */ 255 unsigned long atl : 12; /* Authority-Table Length */ 256 unsigned long : 2; 257 unsigned long ca : 1; /* Controlled-ASN Bit */ 258 unsigned long ra : 1; /* Reusable-ASN Bit */ 259 unsigned long asce : 64; /* Address-Space-Control Element */ 260 unsigned long ald : 32; 261 unsigned long astesn : 32; 262 /* .. more fields there */ 263 }; 264 265 int ipte_lock_held(struct kvm *kvm) 266 { 267 if (sclp.has_siif) { 268 int rc; 269 270 read_lock(&kvm->arch.sca_lock); 271 rc = kvm_s390_get_ipte_control(kvm)->kh != 0; 272 read_unlock(&kvm->arch.sca_lock); 273 return rc; 274 } 275 return kvm->arch.ipte_lock_count != 0; 276 } 277 278 static void ipte_lock_simple(struct kvm *kvm) 279 { 280 union ipte_control old, new, *ic; 281 282 mutex_lock(&kvm->arch.ipte_mutex); 283 kvm->arch.ipte_lock_count++; 284 if (kvm->arch.ipte_lock_count > 1) 285 goto out; 286 retry: 287 read_lock(&kvm->arch.sca_lock); 288 ic = kvm_s390_get_ipte_control(kvm); 289 do { 290 old = READ_ONCE(*ic); 291 if (old.k) { 292 read_unlock(&kvm->arch.sca_lock); 293 cond_resched(); 294 goto retry; 295 } 296 new = old; 297 new.k = 1; 298 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 299 read_unlock(&kvm->arch.sca_lock); 300 out: 301 mutex_unlock(&kvm->arch.ipte_mutex); 302 } 303 304 static void ipte_unlock_simple(struct kvm *kvm) 305 { 306 union ipte_control old, new, *ic; 307 308 mutex_lock(&kvm->arch.ipte_mutex); 309 kvm->arch.ipte_lock_count--; 310 if (kvm->arch.ipte_lock_count) 311 goto out; 312 read_lock(&kvm->arch.sca_lock); 313 ic = kvm_s390_get_ipte_control(kvm); 314 do { 315 old = READ_ONCE(*ic); 316 new = old; 317 new.k = 0; 318 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 319 read_unlock(&kvm->arch.sca_lock); 320 wake_up(&kvm->arch.ipte_wq); 321 out: 322 mutex_unlock(&kvm->arch.ipte_mutex); 323 } 324 325 static void ipte_lock_siif(struct kvm *kvm) 326 { 327 union ipte_control old, new, *ic; 328 329 retry: 330 read_lock(&kvm->arch.sca_lock); 331 ic = kvm_s390_get_ipte_control(kvm); 332 do { 333 old = READ_ONCE(*ic); 334 if (old.kg) { 335 read_unlock(&kvm->arch.sca_lock); 336 cond_resched(); 337 goto retry; 338 } 339 new = old; 340 new.k = 1; 341 new.kh++; 342 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 343 read_unlock(&kvm->arch.sca_lock); 344 } 345 346 static void ipte_unlock_siif(struct kvm *kvm) 347 { 348 union ipte_control old, new, *ic; 349 350 read_lock(&kvm->arch.sca_lock); 351 ic = kvm_s390_get_ipte_control(kvm); 352 do { 353 old = READ_ONCE(*ic); 354 new = old; 355 new.kh--; 356 if (!new.kh) 357 new.k = 0; 358 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 359 read_unlock(&kvm->arch.sca_lock); 360 if (!new.kh) 361 wake_up(&kvm->arch.ipte_wq); 362 } 363 364 void ipte_lock(struct kvm *kvm) 365 { 366 if (sclp.has_siif) 367 ipte_lock_siif(kvm); 368 else 369 ipte_lock_simple(kvm); 370 } 371 372 void ipte_unlock(struct kvm *kvm) 373 { 374 if (sclp.has_siif) 375 ipte_unlock_siif(kvm); 376 else 377 ipte_unlock_simple(kvm); 378 } 379 380 static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar, 381 enum gacc_mode mode) 382 { 383 union alet alet; 384 struct ale ale; 385 struct aste aste; 386 unsigned long ald_addr, authority_table_addr; 387 union ald ald; 388 int eax, rc; 389 u8 authority_table; 390 391 if (ar >= NUM_ACRS) 392 return -EINVAL; 393 394 save_access_regs(vcpu->run->s.regs.acrs); 395 alet.val = vcpu->run->s.regs.acrs[ar]; 396 397 if (ar == 0 || alet.val == 0) { 398 asce->val = vcpu->arch.sie_block->gcr[1]; 399 return 0; 400 } else if (alet.val == 1) { 401 asce->val = vcpu->arch.sie_block->gcr[7]; 402 return 0; 403 } 404 405 if (alet.reserved) 406 return PGM_ALET_SPECIFICATION; 407 408 if (alet.p) 409 ald_addr = vcpu->arch.sie_block->gcr[5]; 410 else 411 ald_addr = vcpu->arch.sie_block->gcr[2]; 412 ald_addr &= 0x7fffffc0; 413 414 rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald)); 415 if (rc) 416 return rc; 417 418 if (alet.alen / 8 > ald.all) 419 return PGM_ALEN_TRANSLATION; 420 421 if (0x7fffffff - ald.alo * 128 < alet.alen * 16) 422 return PGM_ADDRESSING; 423 424 rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale, 425 sizeof(struct ale)); 426 if (rc) 427 return rc; 428 429 if (ale.i == 1) 430 return PGM_ALEN_TRANSLATION; 431 if (ale.alesn != alet.alesn) 432 return PGM_ALE_SEQUENCE; 433 434 rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste)); 435 if (rc) 436 return rc; 437 438 if (aste.i) 439 return PGM_ASTE_VALIDITY; 440 if (aste.astesn != ale.astesn) 441 return PGM_ASTE_SEQUENCE; 442 443 if (ale.p == 1) { 444 eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff; 445 if (ale.aleax != eax) { 446 if (eax / 16 > aste.atl) 447 return PGM_EXTENDED_AUTHORITY; 448 449 authority_table_addr = aste.ato * 4 + eax / 4; 450 451 rc = read_guest_real(vcpu, authority_table_addr, 452 &authority_table, 453 sizeof(u8)); 454 if (rc) 455 return rc; 456 457 if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0) 458 return PGM_EXTENDED_AUTHORITY; 459 } 460 } 461 462 if (ale.fo == 1 && mode == GACC_STORE) 463 return PGM_PROTECTION; 464 465 asce->val = aste.asce; 466 return 0; 467 } 468 469 struct trans_exc_code_bits { 470 unsigned long addr : 52; /* Translation-exception Address */ 471 unsigned long fsi : 2; /* Access Exception Fetch/Store Indication */ 472 unsigned long : 2; 473 unsigned long b56 : 1; 474 unsigned long : 3; 475 unsigned long b60 : 1; 476 unsigned long b61 : 1; 477 unsigned long as : 2; /* ASCE Identifier */ 478 }; 479 480 enum { 481 FSI_UNKNOWN = 0, /* Unknown wether fetch or store */ 482 FSI_STORE = 1, /* Exception was due to store operation */ 483 FSI_FETCH = 2 /* Exception was due to fetch operation */ 484 }; 485 486 enum prot_type { 487 PROT_TYPE_LA = 0, 488 PROT_TYPE_KEYC = 1, 489 PROT_TYPE_ALC = 2, 490 PROT_TYPE_DAT = 3, 491 PROT_TYPE_IEP = 4, 492 }; 493 494 static int trans_exc_ending(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar, 495 enum gacc_mode mode, enum prot_type prot, bool terminate) 496 { 497 struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm; 498 struct trans_exc_code_bits *tec; 499 500 memset(pgm, 0, sizeof(*pgm)); 501 pgm->code = code; 502 tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code; 503 504 switch (code) { 505 case PGM_PROTECTION: 506 switch (prot) { 507 case PROT_TYPE_IEP: 508 tec->b61 = 1; 509 fallthrough; 510 case PROT_TYPE_LA: 511 tec->b56 = 1; 512 break; 513 case PROT_TYPE_KEYC: 514 tec->b60 = 1; 515 break; 516 case PROT_TYPE_ALC: 517 tec->b60 = 1; 518 fallthrough; 519 case PROT_TYPE_DAT: 520 tec->b61 = 1; 521 break; 522 } 523 if (terminate) { 524 tec->b56 = 0; 525 tec->b60 = 0; 526 tec->b61 = 0; 527 } 528 fallthrough; 529 case PGM_ASCE_TYPE: 530 case PGM_PAGE_TRANSLATION: 531 case PGM_REGION_FIRST_TRANS: 532 case PGM_REGION_SECOND_TRANS: 533 case PGM_REGION_THIRD_TRANS: 534 case PGM_SEGMENT_TRANSLATION: 535 /* 536 * op_access_id only applies to MOVE_PAGE -> set bit 61 537 * exc_access_id has to be set to 0 for some instructions. Both 538 * cases have to be handled by the caller. 539 */ 540 tec->addr = gva >> PAGE_SHIFT; 541 tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH; 542 tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as; 543 fallthrough; 544 case PGM_ALEN_TRANSLATION: 545 case PGM_ALE_SEQUENCE: 546 case PGM_ASTE_VALIDITY: 547 case PGM_ASTE_SEQUENCE: 548 case PGM_EXTENDED_AUTHORITY: 549 /* 550 * We can always store exc_access_id, as it is 551 * undefined for non-ar cases. It is undefined for 552 * most DAT protection exceptions. 553 */ 554 pgm->exc_access_id = ar; 555 break; 556 } 557 return code; 558 } 559 560 static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar, 561 enum gacc_mode mode, enum prot_type prot) 562 { 563 return trans_exc_ending(vcpu, code, gva, ar, mode, prot, false); 564 } 565 566 static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce, 567 unsigned long ga, u8 ar, enum gacc_mode mode) 568 { 569 int rc; 570 struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw); 571 572 if (!psw.dat) { 573 asce->val = 0; 574 asce->r = 1; 575 return 0; 576 } 577 578 if ((mode == GACC_IFETCH) && (psw.as != PSW_BITS_AS_HOME)) 579 psw.as = PSW_BITS_AS_PRIMARY; 580 581 switch (psw.as) { 582 case PSW_BITS_AS_PRIMARY: 583 asce->val = vcpu->arch.sie_block->gcr[1]; 584 return 0; 585 case PSW_BITS_AS_SECONDARY: 586 asce->val = vcpu->arch.sie_block->gcr[7]; 587 return 0; 588 case PSW_BITS_AS_HOME: 589 asce->val = vcpu->arch.sie_block->gcr[13]; 590 return 0; 591 case PSW_BITS_AS_ACCREG: 592 rc = ar_translation(vcpu, asce, ar, mode); 593 if (rc > 0) 594 return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC); 595 return rc; 596 } 597 return 0; 598 } 599 600 static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val) 601 { 602 return kvm_read_guest(kvm, gpa, val, sizeof(*val)); 603 } 604 605 /** 606 * guest_translate - translate a guest virtual into a guest absolute address 607 * @vcpu: virtual cpu 608 * @gva: guest virtual address 609 * @gpa: points to where guest physical (absolute) address should be stored 610 * @asce: effective asce 611 * @mode: indicates the access mode to be used 612 * @prot: returns the type for protection exceptions 613 * 614 * Translate a guest virtual address into a guest absolute address by means 615 * of dynamic address translation as specified by the architecture. 616 * If the resulting absolute address is not available in the configuration 617 * an addressing exception is indicated and @gpa will not be changed. 618 * 619 * Returns: - zero on success; @gpa contains the resulting absolute address 620 * - a negative value if guest access failed due to e.g. broken 621 * guest mapping 622 * - a positve value if an access exception happened. In this case 623 * the returned value is the program interruption code as defined 624 * by the architecture 625 */ 626 static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva, 627 unsigned long *gpa, const union asce asce, 628 enum gacc_mode mode, enum prot_type *prot) 629 { 630 union vaddress vaddr = {.addr = gva}; 631 union raddress raddr = {.addr = gva}; 632 union page_table_entry pte; 633 int dat_protection = 0; 634 int iep_protection = 0; 635 union ctlreg0 ctlreg0; 636 unsigned long ptr; 637 int edat1, edat2, iep; 638 639 ctlreg0.val = vcpu->arch.sie_block->gcr[0]; 640 edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8); 641 edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78); 642 iep = ctlreg0.iep && test_kvm_facility(vcpu->kvm, 130); 643 if (asce.r) 644 goto real_address; 645 ptr = asce.origin * PAGE_SIZE; 646 switch (asce.dt) { 647 case ASCE_TYPE_REGION1: 648 if (vaddr.rfx01 > asce.tl) 649 return PGM_REGION_FIRST_TRANS; 650 ptr += vaddr.rfx * 8; 651 break; 652 case ASCE_TYPE_REGION2: 653 if (vaddr.rfx) 654 return PGM_ASCE_TYPE; 655 if (vaddr.rsx01 > asce.tl) 656 return PGM_REGION_SECOND_TRANS; 657 ptr += vaddr.rsx * 8; 658 break; 659 case ASCE_TYPE_REGION3: 660 if (vaddr.rfx || vaddr.rsx) 661 return PGM_ASCE_TYPE; 662 if (vaddr.rtx01 > asce.tl) 663 return PGM_REGION_THIRD_TRANS; 664 ptr += vaddr.rtx * 8; 665 break; 666 case ASCE_TYPE_SEGMENT: 667 if (vaddr.rfx || vaddr.rsx || vaddr.rtx) 668 return PGM_ASCE_TYPE; 669 if (vaddr.sx01 > asce.tl) 670 return PGM_SEGMENT_TRANSLATION; 671 ptr += vaddr.sx * 8; 672 break; 673 } 674 switch (asce.dt) { 675 case ASCE_TYPE_REGION1: { 676 union region1_table_entry rfte; 677 678 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 679 return PGM_ADDRESSING; 680 if (deref_table(vcpu->kvm, ptr, &rfte.val)) 681 return -EFAULT; 682 if (rfte.i) 683 return PGM_REGION_FIRST_TRANS; 684 if (rfte.tt != TABLE_TYPE_REGION1) 685 return PGM_TRANSLATION_SPEC; 686 if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl) 687 return PGM_REGION_SECOND_TRANS; 688 if (edat1) 689 dat_protection |= rfte.p; 690 ptr = rfte.rto * PAGE_SIZE + vaddr.rsx * 8; 691 } 692 fallthrough; 693 case ASCE_TYPE_REGION2: { 694 union region2_table_entry rste; 695 696 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 697 return PGM_ADDRESSING; 698 if (deref_table(vcpu->kvm, ptr, &rste.val)) 699 return -EFAULT; 700 if (rste.i) 701 return PGM_REGION_SECOND_TRANS; 702 if (rste.tt != TABLE_TYPE_REGION2) 703 return PGM_TRANSLATION_SPEC; 704 if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl) 705 return PGM_REGION_THIRD_TRANS; 706 if (edat1) 707 dat_protection |= rste.p; 708 ptr = rste.rto * PAGE_SIZE + vaddr.rtx * 8; 709 } 710 fallthrough; 711 case ASCE_TYPE_REGION3: { 712 union region3_table_entry rtte; 713 714 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 715 return PGM_ADDRESSING; 716 if (deref_table(vcpu->kvm, ptr, &rtte.val)) 717 return -EFAULT; 718 if (rtte.i) 719 return PGM_REGION_THIRD_TRANS; 720 if (rtte.tt != TABLE_TYPE_REGION3) 721 return PGM_TRANSLATION_SPEC; 722 if (rtte.cr && asce.p && edat2) 723 return PGM_TRANSLATION_SPEC; 724 if (rtte.fc && edat2) { 725 dat_protection |= rtte.fc1.p; 726 iep_protection = rtte.fc1.iep; 727 raddr.rfaa = rtte.fc1.rfaa; 728 goto absolute_address; 729 } 730 if (vaddr.sx01 < rtte.fc0.tf) 731 return PGM_SEGMENT_TRANSLATION; 732 if (vaddr.sx01 > rtte.fc0.tl) 733 return PGM_SEGMENT_TRANSLATION; 734 if (edat1) 735 dat_protection |= rtte.fc0.p; 736 ptr = rtte.fc0.sto * PAGE_SIZE + vaddr.sx * 8; 737 } 738 fallthrough; 739 case ASCE_TYPE_SEGMENT: { 740 union segment_table_entry ste; 741 742 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 743 return PGM_ADDRESSING; 744 if (deref_table(vcpu->kvm, ptr, &ste.val)) 745 return -EFAULT; 746 if (ste.i) 747 return PGM_SEGMENT_TRANSLATION; 748 if (ste.tt != TABLE_TYPE_SEGMENT) 749 return PGM_TRANSLATION_SPEC; 750 if (ste.cs && asce.p) 751 return PGM_TRANSLATION_SPEC; 752 if (ste.fc && edat1) { 753 dat_protection |= ste.fc1.p; 754 iep_protection = ste.fc1.iep; 755 raddr.sfaa = ste.fc1.sfaa; 756 goto absolute_address; 757 } 758 dat_protection |= ste.fc0.p; 759 ptr = ste.fc0.pto * (PAGE_SIZE / 2) + vaddr.px * 8; 760 } 761 } 762 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 763 return PGM_ADDRESSING; 764 if (deref_table(vcpu->kvm, ptr, &pte.val)) 765 return -EFAULT; 766 if (pte.i) 767 return PGM_PAGE_TRANSLATION; 768 if (pte.z) 769 return PGM_TRANSLATION_SPEC; 770 dat_protection |= pte.p; 771 iep_protection = pte.iep; 772 raddr.pfra = pte.pfra; 773 real_address: 774 raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr); 775 absolute_address: 776 if (mode == GACC_STORE && dat_protection) { 777 *prot = PROT_TYPE_DAT; 778 return PGM_PROTECTION; 779 } 780 if (mode == GACC_IFETCH && iep_protection && iep) { 781 *prot = PROT_TYPE_IEP; 782 return PGM_PROTECTION; 783 } 784 if (kvm_is_error_gpa(vcpu->kvm, raddr.addr)) 785 return PGM_ADDRESSING; 786 *gpa = raddr.addr; 787 return 0; 788 } 789 790 static inline int is_low_address(unsigned long ga) 791 { 792 /* Check for address ranges 0..511 and 4096..4607 */ 793 return (ga & ~0x11fful) == 0; 794 } 795 796 static int low_address_protection_enabled(struct kvm_vcpu *vcpu, 797 const union asce asce) 798 { 799 union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]}; 800 psw_t *psw = &vcpu->arch.sie_block->gpsw; 801 802 if (!ctlreg0.lap) 803 return 0; 804 if (psw_bits(*psw).dat && asce.p) 805 return 0; 806 return 1; 807 } 808 809 static int vm_check_access_key(struct kvm *kvm, u8 access_key, 810 enum gacc_mode mode, gpa_t gpa) 811 { 812 u8 storage_key, access_control; 813 bool fetch_protected; 814 unsigned long hva; 815 int r; 816 817 if (access_key == 0) 818 return 0; 819 820 hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 821 if (kvm_is_error_hva(hva)) 822 return PGM_ADDRESSING; 823 824 mmap_read_lock(current->mm); 825 r = get_guest_storage_key(current->mm, hva, &storage_key); 826 mmap_read_unlock(current->mm); 827 if (r) 828 return r; 829 access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key); 830 if (access_control == access_key) 831 return 0; 832 fetch_protected = storage_key & _PAGE_FP_BIT; 833 if ((mode == GACC_FETCH || mode == GACC_IFETCH) && !fetch_protected) 834 return 0; 835 return PGM_PROTECTION; 836 } 837 838 static bool fetch_prot_override_applicable(struct kvm_vcpu *vcpu, enum gacc_mode mode, 839 union asce asce) 840 { 841 psw_t *psw = &vcpu->arch.sie_block->gpsw; 842 unsigned long override; 843 844 if (mode == GACC_FETCH || mode == GACC_IFETCH) { 845 /* check if fetch protection override enabled */ 846 override = vcpu->arch.sie_block->gcr[0]; 847 override &= CR0_FETCH_PROTECTION_OVERRIDE; 848 /* not applicable if subject to DAT && private space */ 849 override = override && !(psw_bits(*psw).dat && asce.p); 850 return override; 851 } 852 return false; 853 } 854 855 static bool fetch_prot_override_applies(unsigned long ga, unsigned int len) 856 { 857 return ga < 2048 && ga + len <= 2048; 858 } 859 860 static bool storage_prot_override_applicable(struct kvm_vcpu *vcpu) 861 { 862 /* check if storage protection override enabled */ 863 return vcpu->arch.sie_block->gcr[0] & CR0_STORAGE_PROTECTION_OVERRIDE; 864 } 865 866 static bool storage_prot_override_applies(u8 access_control) 867 { 868 /* matches special storage protection override key (9) -> allow */ 869 return access_control == PAGE_SPO_ACC; 870 } 871 872 static int vcpu_check_access_key(struct kvm_vcpu *vcpu, u8 access_key, 873 enum gacc_mode mode, union asce asce, gpa_t gpa, 874 unsigned long ga, unsigned int len) 875 { 876 u8 storage_key, access_control; 877 unsigned long hva; 878 int r; 879 880 /* access key 0 matches any storage key -> allow */ 881 if (access_key == 0) 882 return 0; 883 /* 884 * caller needs to ensure that gfn is accessible, so we can 885 * assume that this cannot fail 886 */ 887 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(gpa)); 888 mmap_read_lock(current->mm); 889 r = get_guest_storage_key(current->mm, hva, &storage_key); 890 mmap_read_unlock(current->mm); 891 if (r) 892 return r; 893 access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key); 894 /* access key matches storage key -> allow */ 895 if (access_control == access_key) 896 return 0; 897 if (mode == GACC_FETCH || mode == GACC_IFETCH) { 898 /* it is a fetch and fetch protection is off -> allow */ 899 if (!(storage_key & _PAGE_FP_BIT)) 900 return 0; 901 if (fetch_prot_override_applicable(vcpu, mode, asce) && 902 fetch_prot_override_applies(ga, len)) 903 return 0; 904 } 905 if (storage_prot_override_applicable(vcpu) && 906 storage_prot_override_applies(access_control)) 907 return 0; 908 return PGM_PROTECTION; 909 } 910 911 /** 912 * guest_range_to_gpas() - Calculate guest physical addresses of page fragments 913 * covering a logical range 914 * @vcpu: virtual cpu 915 * @ga: guest address, start of range 916 * @ar: access register 917 * @gpas: output argument, may be NULL 918 * @len: length of range in bytes 919 * @asce: address-space-control element to use for translation 920 * @mode: access mode 921 * @access_key: access key to mach the range's storage keys against 922 * 923 * Translate a logical range to a series of guest absolute addresses, 924 * such that the concatenation of page fragments starting at each gpa make up 925 * the whole range. 926 * The translation is performed as if done by the cpu for the given @asce, @ar, 927 * @mode and state of the @vcpu. 928 * If the translation causes an exception, its program interruption code is 929 * returned and the &struct kvm_s390_pgm_info pgm member of @vcpu is modified 930 * such that a subsequent call to kvm_s390_inject_prog_vcpu() will inject 931 * a correct exception into the guest. 932 * The resulting gpas are stored into @gpas, unless it is NULL. 933 * 934 * Note: All fragments except the first one start at the beginning of a page. 935 * When deriving the boundaries of a fragment from a gpa, all but the last 936 * fragment end at the end of the page. 937 * 938 * Return: 939 * * 0 - success 940 * * <0 - translation could not be performed, for example if guest 941 * memory could not be accessed 942 * * >0 - an access exception occurred. In this case the returned value 943 * is the program interruption code and the contents of pgm may 944 * be used to inject an exception into the guest. 945 */ 946 static int guest_range_to_gpas(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar, 947 unsigned long *gpas, unsigned long len, 948 const union asce asce, enum gacc_mode mode, 949 u8 access_key) 950 { 951 psw_t *psw = &vcpu->arch.sie_block->gpsw; 952 unsigned int offset = offset_in_page(ga); 953 unsigned int fragment_len; 954 int lap_enabled, rc = 0; 955 enum prot_type prot; 956 unsigned long gpa; 957 958 lap_enabled = low_address_protection_enabled(vcpu, asce); 959 while (min(PAGE_SIZE - offset, len) > 0) { 960 fragment_len = min(PAGE_SIZE - offset, len); 961 ga = kvm_s390_logical_to_effective(vcpu, ga); 962 if (mode == GACC_STORE && lap_enabled && is_low_address(ga)) 963 return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode, 964 PROT_TYPE_LA); 965 if (psw_bits(*psw).dat) { 966 rc = guest_translate(vcpu, ga, &gpa, asce, mode, &prot); 967 if (rc < 0) 968 return rc; 969 } else { 970 gpa = kvm_s390_real_to_abs(vcpu, ga); 971 if (kvm_is_error_gpa(vcpu->kvm, gpa)) 972 rc = PGM_ADDRESSING; 973 } 974 if (rc) 975 return trans_exc(vcpu, rc, ga, ar, mode, prot); 976 rc = vcpu_check_access_key(vcpu, access_key, mode, asce, gpa, ga, 977 fragment_len); 978 if (rc) 979 return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_KEYC); 980 if (gpas) 981 *gpas++ = gpa; 982 offset = 0; 983 ga += fragment_len; 984 len -= fragment_len; 985 } 986 return 0; 987 } 988 989 static int access_guest_page(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa, 990 void *data, unsigned int len) 991 { 992 const unsigned int offset = offset_in_page(gpa); 993 const gfn_t gfn = gpa_to_gfn(gpa); 994 int rc; 995 996 if (mode == GACC_STORE) 997 rc = kvm_write_guest_page(kvm, gfn, data, offset, len); 998 else 999 rc = kvm_read_guest_page(kvm, gfn, data, offset, len); 1000 return rc; 1001 } 1002 1003 static int 1004 access_guest_page_with_key(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa, 1005 void *data, unsigned int len, u8 access_key) 1006 { 1007 struct kvm_memory_slot *slot; 1008 bool writable; 1009 gfn_t gfn; 1010 hva_t hva; 1011 int rc; 1012 1013 gfn = gpa >> PAGE_SHIFT; 1014 slot = gfn_to_memslot(kvm, gfn); 1015 hva = gfn_to_hva_memslot_prot(slot, gfn, &writable); 1016 1017 if (kvm_is_error_hva(hva)) 1018 return PGM_ADDRESSING; 1019 /* 1020 * Check if it's a ro memslot, even tho that can't occur (they're unsupported). 1021 * Don't try to actually handle that case. 1022 */ 1023 if (!writable && mode == GACC_STORE) 1024 return -EOPNOTSUPP; 1025 hva += offset_in_page(gpa); 1026 if (mode == GACC_STORE) 1027 rc = copy_to_user_key((void __user *)hva, data, len, access_key); 1028 else 1029 rc = copy_from_user_key(data, (void __user *)hva, len, access_key); 1030 if (rc) 1031 return PGM_PROTECTION; 1032 if (mode == GACC_STORE) 1033 mark_page_dirty_in_slot(kvm, slot, gfn); 1034 return 0; 1035 } 1036 1037 int access_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, void *data, 1038 unsigned long len, enum gacc_mode mode, u8 access_key) 1039 { 1040 int offset = offset_in_page(gpa); 1041 int fragment_len; 1042 int rc; 1043 1044 while (min(PAGE_SIZE - offset, len) > 0) { 1045 fragment_len = min(PAGE_SIZE - offset, len); 1046 rc = access_guest_page_with_key(kvm, mode, gpa, data, fragment_len, access_key); 1047 if (rc) 1048 return rc; 1049 offset = 0; 1050 len -= fragment_len; 1051 data += fragment_len; 1052 gpa += fragment_len; 1053 } 1054 return 0; 1055 } 1056 1057 int access_guest_with_key(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar, 1058 void *data, unsigned long len, enum gacc_mode mode, 1059 u8 access_key) 1060 { 1061 psw_t *psw = &vcpu->arch.sie_block->gpsw; 1062 unsigned long nr_pages, idx; 1063 unsigned long gpa_array[2]; 1064 unsigned int fragment_len; 1065 unsigned long *gpas; 1066 enum prot_type prot; 1067 int need_ipte_lock; 1068 union asce asce; 1069 bool try_storage_prot_override; 1070 bool try_fetch_prot_override; 1071 int rc; 1072 1073 if (!len) 1074 return 0; 1075 ga = kvm_s390_logical_to_effective(vcpu, ga); 1076 rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode); 1077 if (rc) 1078 return rc; 1079 nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1; 1080 gpas = gpa_array; 1081 if (nr_pages > ARRAY_SIZE(gpa_array)) 1082 gpas = vmalloc(array_size(nr_pages, sizeof(unsigned long))); 1083 if (!gpas) 1084 return -ENOMEM; 1085 try_fetch_prot_override = fetch_prot_override_applicable(vcpu, mode, asce); 1086 try_storage_prot_override = storage_prot_override_applicable(vcpu); 1087 need_ipte_lock = psw_bits(*psw).dat && !asce.r; 1088 if (need_ipte_lock) 1089 ipte_lock(vcpu->kvm); 1090 /* 1091 * Since we do the access further down ultimately via a move instruction 1092 * that does key checking and returns an error in case of a protection 1093 * violation, we don't need to do the check during address translation. 1094 * Skip it by passing access key 0, which matches any storage key, 1095 * obviating the need for any further checks. As a result the check is 1096 * handled entirely in hardware on access, we only need to take care to 1097 * forego key protection checking if fetch protection override applies or 1098 * retry with the special key 9 in case of storage protection override. 1099 */ 1100 rc = guest_range_to_gpas(vcpu, ga, ar, gpas, len, asce, mode, 0); 1101 if (rc) 1102 goto out_unlock; 1103 for (idx = 0; idx < nr_pages; idx++) { 1104 fragment_len = min(PAGE_SIZE - offset_in_page(gpas[idx]), len); 1105 if (try_fetch_prot_override && fetch_prot_override_applies(ga, fragment_len)) { 1106 rc = access_guest_page(vcpu->kvm, mode, gpas[idx], 1107 data, fragment_len); 1108 } else { 1109 rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx], 1110 data, fragment_len, access_key); 1111 } 1112 if (rc == PGM_PROTECTION && try_storage_prot_override) 1113 rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx], 1114 data, fragment_len, PAGE_SPO_ACC); 1115 if (rc == PGM_PROTECTION) 1116 prot = PROT_TYPE_KEYC; 1117 if (rc) 1118 break; 1119 len -= fragment_len; 1120 data += fragment_len; 1121 ga = kvm_s390_logical_to_effective(vcpu, ga + fragment_len); 1122 } 1123 if (rc > 0) { 1124 bool terminate = (mode == GACC_STORE) && (idx > 0); 1125 1126 rc = trans_exc_ending(vcpu, rc, ga, ar, mode, prot, terminate); 1127 } 1128 out_unlock: 1129 if (need_ipte_lock) 1130 ipte_unlock(vcpu->kvm); 1131 if (nr_pages > ARRAY_SIZE(gpa_array)) 1132 vfree(gpas); 1133 return rc; 1134 } 1135 1136 int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra, 1137 void *data, unsigned long len, enum gacc_mode mode) 1138 { 1139 unsigned int fragment_len; 1140 unsigned long gpa; 1141 int rc = 0; 1142 1143 while (len && !rc) { 1144 gpa = kvm_s390_real_to_abs(vcpu, gra); 1145 fragment_len = min(PAGE_SIZE - offset_in_page(gpa), len); 1146 rc = access_guest_page(vcpu->kvm, mode, gpa, data, fragment_len); 1147 len -= fragment_len; 1148 gra += fragment_len; 1149 data += fragment_len; 1150 } 1151 return rc; 1152 } 1153 1154 /** 1155 * guest_translate_address_with_key - translate guest logical into guest absolute address 1156 * @vcpu: virtual cpu 1157 * @gva: Guest virtual address 1158 * @ar: Access register 1159 * @gpa: Guest physical address 1160 * @mode: Translation access mode 1161 * @access_key: access key to mach the storage key with 1162 * 1163 * Parameter semantics are the same as the ones from guest_translate. 1164 * The memory contents at the guest address are not changed. 1165 * 1166 * Note: The IPTE lock is not taken during this function, so the caller 1167 * has to take care of this. 1168 */ 1169 int guest_translate_address_with_key(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar, 1170 unsigned long *gpa, enum gacc_mode mode, 1171 u8 access_key) 1172 { 1173 union asce asce; 1174 int rc; 1175 1176 gva = kvm_s390_logical_to_effective(vcpu, gva); 1177 rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode); 1178 if (rc) 1179 return rc; 1180 return guest_range_to_gpas(vcpu, gva, ar, gpa, 1, asce, mode, 1181 access_key); 1182 } 1183 1184 /** 1185 * check_gva_range - test a range of guest virtual addresses for accessibility 1186 * @vcpu: virtual cpu 1187 * @gva: Guest virtual address 1188 * @ar: Access register 1189 * @length: Length of test range 1190 * @mode: Translation access mode 1191 * @access_key: access key to mach the storage keys with 1192 */ 1193 int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar, 1194 unsigned long length, enum gacc_mode mode, u8 access_key) 1195 { 1196 union asce asce; 1197 int rc = 0; 1198 1199 rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode); 1200 if (rc) 1201 return rc; 1202 ipte_lock(vcpu->kvm); 1203 rc = guest_range_to_gpas(vcpu, gva, ar, NULL, length, asce, mode, 1204 access_key); 1205 ipte_unlock(vcpu->kvm); 1206 1207 return rc; 1208 } 1209 1210 /** 1211 * check_gpa_range - test a range of guest physical addresses for accessibility 1212 * @kvm: virtual machine instance 1213 * @gpa: guest physical address 1214 * @length: length of test range 1215 * @mode: access mode to test, relevant for storage keys 1216 * @access_key: access key to mach the storage keys with 1217 */ 1218 int check_gpa_range(struct kvm *kvm, unsigned long gpa, unsigned long length, 1219 enum gacc_mode mode, u8 access_key) 1220 { 1221 unsigned int fragment_len; 1222 int rc = 0; 1223 1224 while (length && !rc) { 1225 fragment_len = min(PAGE_SIZE - offset_in_page(gpa), length); 1226 rc = vm_check_access_key(kvm, access_key, mode, gpa); 1227 length -= fragment_len; 1228 gpa += fragment_len; 1229 } 1230 return rc; 1231 } 1232 1233 /** 1234 * kvm_s390_check_low_addr_prot_real - check for low-address protection 1235 * @vcpu: virtual cpu 1236 * @gra: Guest real address 1237 * 1238 * Checks whether an address is subject to low-address protection and set 1239 * up vcpu->arch.pgm accordingly if necessary. 1240 * 1241 * Return: 0 if no protection exception, or PGM_PROTECTION if protected. 1242 */ 1243 int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra) 1244 { 1245 union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]}; 1246 1247 if (!ctlreg0.lap || !is_low_address(gra)) 1248 return 0; 1249 return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA); 1250 } 1251 1252 /** 1253 * kvm_s390_shadow_tables - walk the guest page table and create shadow tables 1254 * @sg: pointer to the shadow guest address space structure 1255 * @saddr: faulting address in the shadow gmap 1256 * @pgt: pointer to the beginning of the page table for the given address if 1257 * successful (return value 0), or to the first invalid DAT entry in 1258 * case of exceptions (return value > 0) 1259 * @dat_protection: referenced memory is write protected 1260 * @fake: pgt references contiguous guest memory block, not a pgtable 1261 */ 1262 static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr, 1263 unsigned long *pgt, int *dat_protection, 1264 int *fake) 1265 { 1266 struct gmap *parent; 1267 union asce asce; 1268 union vaddress vaddr; 1269 unsigned long ptr; 1270 int rc; 1271 1272 *fake = 0; 1273 *dat_protection = 0; 1274 parent = sg->parent; 1275 vaddr.addr = saddr; 1276 asce.val = sg->orig_asce; 1277 ptr = asce.origin * PAGE_SIZE; 1278 if (asce.r) { 1279 *fake = 1; 1280 ptr = 0; 1281 asce.dt = ASCE_TYPE_REGION1; 1282 } 1283 switch (asce.dt) { 1284 case ASCE_TYPE_REGION1: 1285 if (vaddr.rfx01 > asce.tl && !*fake) 1286 return PGM_REGION_FIRST_TRANS; 1287 break; 1288 case ASCE_TYPE_REGION2: 1289 if (vaddr.rfx) 1290 return PGM_ASCE_TYPE; 1291 if (vaddr.rsx01 > asce.tl) 1292 return PGM_REGION_SECOND_TRANS; 1293 break; 1294 case ASCE_TYPE_REGION3: 1295 if (vaddr.rfx || vaddr.rsx) 1296 return PGM_ASCE_TYPE; 1297 if (vaddr.rtx01 > asce.tl) 1298 return PGM_REGION_THIRD_TRANS; 1299 break; 1300 case ASCE_TYPE_SEGMENT: 1301 if (vaddr.rfx || vaddr.rsx || vaddr.rtx) 1302 return PGM_ASCE_TYPE; 1303 if (vaddr.sx01 > asce.tl) 1304 return PGM_SEGMENT_TRANSLATION; 1305 break; 1306 } 1307 1308 switch (asce.dt) { 1309 case ASCE_TYPE_REGION1: { 1310 union region1_table_entry rfte; 1311 1312 if (*fake) { 1313 ptr += vaddr.rfx * _REGION1_SIZE; 1314 rfte.val = ptr; 1315 goto shadow_r2t; 1316 } 1317 *pgt = ptr + vaddr.rfx * 8; 1318 rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val); 1319 if (rc) 1320 return rc; 1321 if (rfte.i) 1322 return PGM_REGION_FIRST_TRANS; 1323 if (rfte.tt != TABLE_TYPE_REGION1) 1324 return PGM_TRANSLATION_SPEC; 1325 if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl) 1326 return PGM_REGION_SECOND_TRANS; 1327 if (sg->edat_level >= 1) 1328 *dat_protection |= rfte.p; 1329 ptr = rfte.rto * PAGE_SIZE; 1330 shadow_r2t: 1331 rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake); 1332 if (rc) 1333 return rc; 1334 } 1335 fallthrough; 1336 case ASCE_TYPE_REGION2: { 1337 union region2_table_entry rste; 1338 1339 if (*fake) { 1340 ptr += vaddr.rsx * _REGION2_SIZE; 1341 rste.val = ptr; 1342 goto shadow_r3t; 1343 } 1344 *pgt = ptr + vaddr.rsx * 8; 1345 rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val); 1346 if (rc) 1347 return rc; 1348 if (rste.i) 1349 return PGM_REGION_SECOND_TRANS; 1350 if (rste.tt != TABLE_TYPE_REGION2) 1351 return PGM_TRANSLATION_SPEC; 1352 if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl) 1353 return PGM_REGION_THIRD_TRANS; 1354 if (sg->edat_level >= 1) 1355 *dat_protection |= rste.p; 1356 ptr = rste.rto * PAGE_SIZE; 1357 shadow_r3t: 1358 rste.p |= *dat_protection; 1359 rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake); 1360 if (rc) 1361 return rc; 1362 } 1363 fallthrough; 1364 case ASCE_TYPE_REGION3: { 1365 union region3_table_entry rtte; 1366 1367 if (*fake) { 1368 ptr += vaddr.rtx * _REGION3_SIZE; 1369 rtte.val = ptr; 1370 goto shadow_sgt; 1371 } 1372 *pgt = ptr + vaddr.rtx * 8; 1373 rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val); 1374 if (rc) 1375 return rc; 1376 if (rtte.i) 1377 return PGM_REGION_THIRD_TRANS; 1378 if (rtte.tt != TABLE_TYPE_REGION3) 1379 return PGM_TRANSLATION_SPEC; 1380 if (rtte.cr && asce.p && sg->edat_level >= 2) 1381 return PGM_TRANSLATION_SPEC; 1382 if (rtte.fc && sg->edat_level >= 2) { 1383 *dat_protection |= rtte.fc0.p; 1384 *fake = 1; 1385 ptr = rtte.fc1.rfaa * _REGION3_SIZE; 1386 rtte.val = ptr; 1387 goto shadow_sgt; 1388 } 1389 if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl) 1390 return PGM_SEGMENT_TRANSLATION; 1391 if (sg->edat_level >= 1) 1392 *dat_protection |= rtte.fc0.p; 1393 ptr = rtte.fc0.sto * PAGE_SIZE; 1394 shadow_sgt: 1395 rtte.fc0.p |= *dat_protection; 1396 rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake); 1397 if (rc) 1398 return rc; 1399 } 1400 fallthrough; 1401 case ASCE_TYPE_SEGMENT: { 1402 union segment_table_entry ste; 1403 1404 if (*fake) { 1405 ptr += vaddr.sx * _SEGMENT_SIZE; 1406 ste.val = ptr; 1407 goto shadow_pgt; 1408 } 1409 *pgt = ptr + vaddr.sx * 8; 1410 rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val); 1411 if (rc) 1412 return rc; 1413 if (ste.i) 1414 return PGM_SEGMENT_TRANSLATION; 1415 if (ste.tt != TABLE_TYPE_SEGMENT) 1416 return PGM_TRANSLATION_SPEC; 1417 if (ste.cs && asce.p) 1418 return PGM_TRANSLATION_SPEC; 1419 *dat_protection |= ste.fc0.p; 1420 if (ste.fc && sg->edat_level >= 1) { 1421 *fake = 1; 1422 ptr = ste.fc1.sfaa * _SEGMENT_SIZE; 1423 ste.val = ptr; 1424 goto shadow_pgt; 1425 } 1426 ptr = ste.fc0.pto * (PAGE_SIZE / 2); 1427 shadow_pgt: 1428 ste.fc0.p |= *dat_protection; 1429 rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake); 1430 if (rc) 1431 return rc; 1432 } 1433 } 1434 /* Return the parent address of the page table */ 1435 *pgt = ptr; 1436 return 0; 1437 } 1438 1439 /** 1440 * kvm_s390_shadow_fault - handle fault on a shadow page table 1441 * @vcpu: virtual cpu 1442 * @sg: pointer to the shadow guest address space structure 1443 * @saddr: faulting address in the shadow gmap 1444 * @datptr: will contain the address of the faulting DAT table entry, or of 1445 * the valid leaf, plus some flags 1446 * 1447 * Returns: - 0 if the shadow fault was successfully resolved 1448 * - > 0 (pgm exception code) on exceptions while faulting 1449 * - -EAGAIN if the caller can retry immediately 1450 * - -EFAULT when accessing invalid guest addresses 1451 * - -ENOMEM if out of memory 1452 */ 1453 int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg, 1454 unsigned long saddr, unsigned long *datptr) 1455 { 1456 union vaddress vaddr; 1457 union page_table_entry pte; 1458 unsigned long pgt = 0; 1459 int dat_protection, fake; 1460 int rc; 1461 1462 mmap_read_lock(sg->mm); 1463 /* 1464 * We don't want any guest-2 tables to change - so the parent 1465 * tables/pointers we read stay valid - unshadowing is however 1466 * always possible - only guest_table_lock protects us. 1467 */ 1468 ipte_lock(vcpu->kvm); 1469 1470 rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake); 1471 if (rc) 1472 rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection, 1473 &fake); 1474 1475 vaddr.addr = saddr; 1476 if (fake) { 1477 pte.val = pgt + vaddr.px * PAGE_SIZE; 1478 goto shadow_page; 1479 } 1480 1481 switch (rc) { 1482 case PGM_SEGMENT_TRANSLATION: 1483 case PGM_REGION_THIRD_TRANS: 1484 case PGM_REGION_SECOND_TRANS: 1485 case PGM_REGION_FIRST_TRANS: 1486 pgt |= PEI_NOT_PTE; 1487 break; 1488 case 0: 1489 pgt += vaddr.px * 8; 1490 rc = gmap_read_table(sg->parent, pgt, &pte.val); 1491 } 1492 if (datptr) 1493 *datptr = pgt | dat_protection * PEI_DAT_PROT; 1494 if (!rc && pte.i) 1495 rc = PGM_PAGE_TRANSLATION; 1496 if (!rc && pte.z) 1497 rc = PGM_TRANSLATION_SPEC; 1498 shadow_page: 1499 pte.p |= dat_protection; 1500 if (!rc) 1501 rc = gmap_shadow_page(sg, saddr, __pte(pte.val)); 1502 ipte_unlock(vcpu->kvm); 1503 mmap_read_unlock(sg->mm); 1504 return rc; 1505 } 1506