1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * guest access functions 4 * 5 * Copyright IBM Corp. 2014 6 * 7 */ 8 9 #include <linux/vmalloc.h> 10 #include <linux/mm_types.h> 11 #include <linux/err.h> 12 #include <linux/pgtable.h> 13 14 #include <asm/gmap.h> 15 #include "kvm-s390.h" 16 #include "gaccess.h" 17 #include <asm/switch_to.h> 18 19 union asce { 20 unsigned long val; 21 struct { 22 unsigned long origin : 52; /* Region- or Segment-Table Origin */ 23 unsigned long : 2; 24 unsigned long g : 1; /* Subspace Group Control */ 25 unsigned long p : 1; /* Private Space Control */ 26 unsigned long s : 1; /* Storage-Alteration-Event Control */ 27 unsigned long x : 1; /* Space-Switch-Event Control */ 28 unsigned long r : 1; /* Real-Space Control */ 29 unsigned long : 1; 30 unsigned long dt : 2; /* Designation-Type Control */ 31 unsigned long tl : 2; /* Region- or Segment-Table Length */ 32 }; 33 }; 34 35 enum { 36 ASCE_TYPE_SEGMENT = 0, 37 ASCE_TYPE_REGION3 = 1, 38 ASCE_TYPE_REGION2 = 2, 39 ASCE_TYPE_REGION1 = 3 40 }; 41 42 union region1_table_entry { 43 unsigned long val; 44 struct { 45 unsigned long rto: 52;/* Region-Table Origin */ 46 unsigned long : 2; 47 unsigned long p : 1; /* DAT-Protection Bit */ 48 unsigned long : 1; 49 unsigned long tf : 2; /* Region-Second-Table Offset */ 50 unsigned long i : 1; /* Region-Invalid Bit */ 51 unsigned long : 1; 52 unsigned long tt : 2; /* Table-Type Bits */ 53 unsigned long tl : 2; /* Region-Second-Table Length */ 54 }; 55 }; 56 57 union region2_table_entry { 58 unsigned long val; 59 struct { 60 unsigned long rto: 52;/* Region-Table Origin */ 61 unsigned long : 2; 62 unsigned long p : 1; /* DAT-Protection Bit */ 63 unsigned long : 1; 64 unsigned long tf : 2; /* Region-Third-Table Offset */ 65 unsigned long i : 1; /* Region-Invalid Bit */ 66 unsigned long : 1; 67 unsigned long tt : 2; /* Table-Type Bits */ 68 unsigned long tl : 2; /* Region-Third-Table Length */ 69 }; 70 }; 71 72 struct region3_table_entry_fc0 { 73 unsigned long sto: 52;/* Segment-Table Origin */ 74 unsigned long : 1; 75 unsigned long fc : 1; /* Format-Control */ 76 unsigned long p : 1; /* DAT-Protection Bit */ 77 unsigned long : 1; 78 unsigned long tf : 2; /* Segment-Table Offset */ 79 unsigned long i : 1; /* Region-Invalid Bit */ 80 unsigned long cr : 1; /* Common-Region Bit */ 81 unsigned long tt : 2; /* Table-Type Bits */ 82 unsigned long tl : 2; /* Segment-Table Length */ 83 }; 84 85 struct region3_table_entry_fc1 { 86 unsigned long rfaa : 33; /* Region-Frame Absolute Address */ 87 unsigned long : 14; 88 unsigned long av : 1; /* ACCF-Validity Control */ 89 unsigned long acc: 4; /* Access-Control Bits */ 90 unsigned long f : 1; /* Fetch-Protection Bit */ 91 unsigned long fc : 1; /* Format-Control */ 92 unsigned long p : 1; /* DAT-Protection Bit */ 93 unsigned long iep: 1; /* Instruction-Execution-Protection */ 94 unsigned long : 2; 95 unsigned long i : 1; /* Region-Invalid Bit */ 96 unsigned long cr : 1; /* Common-Region Bit */ 97 unsigned long tt : 2; /* Table-Type Bits */ 98 unsigned long : 2; 99 }; 100 101 union region3_table_entry { 102 unsigned long val; 103 struct region3_table_entry_fc0 fc0; 104 struct region3_table_entry_fc1 fc1; 105 struct { 106 unsigned long : 53; 107 unsigned long fc : 1; /* Format-Control */ 108 unsigned long : 4; 109 unsigned long i : 1; /* Region-Invalid Bit */ 110 unsigned long cr : 1; /* Common-Region Bit */ 111 unsigned long tt : 2; /* Table-Type Bits */ 112 unsigned long : 2; 113 }; 114 }; 115 116 struct segment_entry_fc0 { 117 unsigned long pto: 53;/* Page-Table Origin */ 118 unsigned long fc : 1; /* Format-Control */ 119 unsigned long p : 1; /* DAT-Protection Bit */ 120 unsigned long : 3; 121 unsigned long i : 1; /* Segment-Invalid Bit */ 122 unsigned long cs : 1; /* Common-Segment Bit */ 123 unsigned long tt : 2; /* Table-Type Bits */ 124 unsigned long : 2; 125 }; 126 127 struct segment_entry_fc1 { 128 unsigned long sfaa : 44; /* Segment-Frame Absolute Address */ 129 unsigned long : 3; 130 unsigned long av : 1; /* ACCF-Validity Control */ 131 unsigned long acc: 4; /* Access-Control Bits */ 132 unsigned long f : 1; /* Fetch-Protection Bit */ 133 unsigned long fc : 1; /* Format-Control */ 134 unsigned long p : 1; /* DAT-Protection Bit */ 135 unsigned long iep: 1; /* Instruction-Execution-Protection */ 136 unsigned long : 2; 137 unsigned long i : 1; /* Segment-Invalid Bit */ 138 unsigned long cs : 1; /* Common-Segment Bit */ 139 unsigned long tt : 2; /* Table-Type Bits */ 140 unsigned long : 2; 141 }; 142 143 union segment_table_entry { 144 unsigned long val; 145 struct segment_entry_fc0 fc0; 146 struct segment_entry_fc1 fc1; 147 struct { 148 unsigned long : 53; 149 unsigned long fc : 1; /* Format-Control */ 150 unsigned long : 4; 151 unsigned long i : 1; /* Segment-Invalid Bit */ 152 unsigned long cs : 1; /* Common-Segment Bit */ 153 unsigned long tt : 2; /* Table-Type Bits */ 154 unsigned long : 2; 155 }; 156 }; 157 158 enum { 159 TABLE_TYPE_SEGMENT = 0, 160 TABLE_TYPE_REGION3 = 1, 161 TABLE_TYPE_REGION2 = 2, 162 TABLE_TYPE_REGION1 = 3 163 }; 164 165 union page_table_entry { 166 unsigned long val; 167 struct { 168 unsigned long pfra : 52; /* Page-Frame Real Address */ 169 unsigned long z : 1; /* Zero Bit */ 170 unsigned long i : 1; /* Page-Invalid Bit */ 171 unsigned long p : 1; /* DAT-Protection Bit */ 172 unsigned long iep: 1; /* Instruction-Execution-Protection */ 173 unsigned long : 8; 174 }; 175 }; 176 177 /* 178 * vaddress union in order to easily decode a virtual address into its 179 * region first index, region second index etc. parts. 180 */ 181 union vaddress { 182 unsigned long addr; 183 struct { 184 unsigned long rfx : 11; 185 unsigned long rsx : 11; 186 unsigned long rtx : 11; 187 unsigned long sx : 11; 188 unsigned long px : 8; 189 unsigned long bx : 12; 190 }; 191 struct { 192 unsigned long rfx01 : 2; 193 unsigned long : 9; 194 unsigned long rsx01 : 2; 195 unsigned long : 9; 196 unsigned long rtx01 : 2; 197 unsigned long : 9; 198 unsigned long sx01 : 2; 199 unsigned long : 29; 200 }; 201 }; 202 203 /* 204 * raddress union which will contain the result (real or absolute address) 205 * after a page table walk. The rfaa, sfaa and pfra members are used to 206 * simply assign them the value of a region, segment or page table entry. 207 */ 208 union raddress { 209 unsigned long addr; 210 unsigned long rfaa : 33; /* Region-Frame Absolute Address */ 211 unsigned long sfaa : 44; /* Segment-Frame Absolute Address */ 212 unsigned long pfra : 52; /* Page-Frame Real Address */ 213 }; 214 215 union alet { 216 u32 val; 217 struct { 218 u32 reserved : 7; 219 u32 p : 1; 220 u32 alesn : 8; 221 u32 alen : 16; 222 }; 223 }; 224 225 union ald { 226 u32 val; 227 struct { 228 u32 : 1; 229 u32 alo : 24; 230 u32 all : 7; 231 }; 232 }; 233 234 struct ale { 235 unsigned long i : 1; /* ALEN-Invalid Bit */ 236 unsigned long : 5; 237 unsigned long fo : 1; /* Fetch-Only Bit */ 238 unsigned long p : 1; /* Private Bit */ 239 unsigned long alesn : 8; /* Access-List-Entry Sequence Number */ 240 unsigned long aleax : 16; /* Access-List-Entry Authorization Index */ 241 unsigned long : 32; 242 unsigned long : 1; 243 unsigned long asteo : 25; /* ASN-Second-Table-Entry Origin */ 244 unsigned long : 6; 245 unsigned long astesn : 32; /* ASTE Sequence Number */ 246 }; 247 248 struct aste { 249 unsigned long i : 1; /* ASX-Invalid Bit */ 250 unsigned long ato : 29; /* Authority-Table Origin */ 251 unsigned long : 1; 252 unsigned long b : 1; /* Base-Space Bit */ 253 unsigned long ax : 16; /* Authorization Index */ 254 unsigned long atl : 12; /* Authority-Table Length */ 255 unsigned long : 2; 256 unsigned long ca : 1; /* Controlled-ASN Bit */ 257 unsigned long ra : 1; /* Reusable-ASN Bit */ 258 unsigned long asce : 64; /* Address-Space-Control Element */ 259 unsigned long ald : 32; 260 unsigned long astesn : 32; 261 /* .. more fields there */ 262 }; 263 264 int ipte_lock_held(struct kvm_vcpu *vcpu) 265 { 266 if (vcpu->arch.sie_block->eca & ECA_SII) { 267 int rc; 268 269 read_lock(&vcpu->kvm->arch.sca_lock); 270 rc = kvm_s390_get_ipte_control(vcpu->kvm)->kh != 0; 271 read_unlock(&vcpu->kvm->arch.sca_lock); 272 return rc; 273 } 274 return vcpu->kvm->arch.ipte_lock_count != 0; 275 } 276 277 static void ipte_lock_simple(struct kvm_vcpu *vcpu) 278 { 279 union ipte_control old, new, *ic; 280 281 mutex_lock(&vcpu->kvm->arch.ipte_mutex); 282 vcpu->kvm->arch.ipte_lock_count++; 283 if (vcpu->kvm->arch.ipte_lock_count > 1) 284 goto out; 285 retry: 286 read_lock(&vcpu->kvm->arch.sca_lock); 287 ic = kvm_s390_get_ipte_control(vcpu->kvm); 288 do { 289 old = READ_ONCE(*ic); 290 if (old.k) { 291 read_unlock(&vcpu->kvm->arch.sca_lock); 292 cond_resched(); 293 goto retry; 294 } 295 new = old; 296 new.k = 1; 297 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 298 read_unlock(&vcpu->kvm->arch.sca_lock); 299 out: 300 mutex_unlock(&vcpu->kvm->arch.ipte_mutex); 301 } 302 303 static void ipte_unlock_simple(struct kvm_vcpu *vcpu) 304 { 305 union ipte_control old, new, *ic; 306 307 mutex_lock(&vcpu->kvm->arch.ipte_mutex); 308 vcpu->kvm->arch.ipte_lock_count--; 309 if (vcpu->kvm->arch.ipte_lock_count) 310 goto out; 311 read_lock(&vcpu->kvm->arch.sca_lock); 312 ic = kvm_s390_get_ipte_control(vcpu->kvm); 313 do { 314 old = READ_ONCE(*ic); 315 new = old; 316 new.k = 0; 317 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 318 read_unlock(&vcpu->kvm->arch.sca_lock); 319 wake_up(&vcpu->kvm->arch.ipte_wq); 320 out: 321 mutex_unlock(&vcpu->kvm->arch.ipte_mutex); 322 } 323 324 static void ipte_lock_siif(struct kvm_vcpu *vcpu) 325 { 326 union ipte_control old, new, *ic; 327 328 retry: 329 read_lock(&vcpu->kvm->arch.sca_lock); 330 ic = kvm_s390_get_ipte_control(vcpu->kvm); 331 do { 332 old = READ_ONCE(*ic); 333 if (old.kg) { 334 read_unlock(&vcpu->kvm->arch.sca_lock); 335 cond_resched(); 336 goto retry; 337 } 338 new = old; 339 new.k = 1; 340 new.kh++; 341 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 342 read_unlock(&vcpu->kvm->arch.sca_lock); 343 } 344 345 static void ipte_unlock_siif(struct kvm_vcpu *vcpu) 346 { 347 union ipte_control old, new, *ic; 348 349 read_lock(&vcpu->kvm->arch.sca_lock); 350 ic = kvm_s390_get_ipte_control(vcpu->kvm); 351 do { 352 old = READ_ONCE(*ic); 353 new = old; 354 new.kh--; 355 if (!new.kh) 356 new.k = 0; 357 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 358 read_unlock(&vcpu->kvm->arch.sca_lock); 359 if (!new.kh) 360 wake_up(&vcpu->kvm->arch.ipte_wq); 361 } 362 363 void ipte_lock(struct kvm_vcpu *vcpu) 364 { 365 if (vcpu->arch.sie_block->eca & ECA_SII) 366 ipte_lock_siif(vcpu); 367 else 368 ipte_lock_simple(vcpu); 369 } 370 371 void ipte_unlock(struct kvm_vcpu *vcpu) 372 { 373 if (vcpu->arch.sie_block->eca & ECA_SII) 374 ipte_unlock_siif(vcpu); 375 else 376 ipte_unlock_simple(vcpu); 377 } 378 379 static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar, 380 enum gacc_mode mode) 381 { 382 union alet alet; 383 struct ale ale; 384 struct aste aste; 385 unsigned long ald_addr, authority_table_addr; 386 union ald ald; 387 int eax, rc; 388 u8 authority_table; 389 390 if (ar >= NUM_ACRS) 391 return -EINVAL; 392 393 save_access_regs(vcpu->run->s.regs.acrs); 394 alet.val = vcpu->run->s.regs.acrs[ar]; 395 396 if (ar == 0 || alet.val == 0) { 397 asce->val = vcpu->arch.sie_block->gcr[1]; 398 return 0; 399 } else if (alet.val == 1) { 400 asce->val = vcpu->arch.sie_block->gcr[7]; 401 return 0; 402 } 403 404 if (alet.reserved) 405 return PGM_ALET_SPECIFICATION; 406 407 if (alet.p) 408 ald_addr = vcpu->arch.sie_block->gcr[5]; 409 else 410 ald_addr = vcpu->arch.sie_block->gcr[2]; 411 ald_addr &= 0x7fffffc0; 412 413 rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald)); 414 if (rc) 415 return rc; 416 417 if (alet.alen / 8 > ald.all) 418 return PGM_ALEN_TRANSLATION; 419 420 if (0x7fffffff - ald.alo * 128 < alet.alen * 16) 421 return PGM_ADDRESSING; 422 423 rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale, 424 sizeof(struct ale)); 425 if (rc) 426 return rc; 427 428 if (ale.i == 1) 429 return PGM_ALEN_TRANSLATION; 430 if (ale.alesn != alet.alesn) 431 return PGM_ALE_SEQUENCE; 432 433 rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste)); 434 if (rc) 435 return rc; 436 437 if (aste.i) 438 return PGM_ASTE_VALIDITY; 439 if (aste.astesn != ale.astesn) 440 return PGM_ASTE_SEQUENCE; 441 442 if (ale.p == 1) { 443 eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff; 444 if (ale.aleax != eax) { 445 if (eax / 16 > aste.atl) 446 return PGM_EXTENDED_AUTHORITY; 447 448 authority_table_addr = aste.ato * 4 + eax / 4; 449 450 rc = read_guest_real(vcpu, authority_table_addr, 451 &authority_table, 452 sizeof(u8)); 453 if (rc) 454 return rc; 455 456 if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0) 457 return PGM_EXTENDED_AUTHORITY; 458 } 459 } 460 461 if (ale.fo == 1 && mode == GACC_STORE) 462 return PGM_PROTECTION; 463 464 asce->val = aste.asce; 465 return 0; 466 } 467 468 struct trans_exc_code_bits { 469 unsigned long addr : 52; /* Translation-exception Address */ 470 unsigned long fsi : 2; /* Access Exception Fetch/Store Indication */ 471 unsigned long : 2; 472 unsigned long b56 : 1; 473 unsigned long : 3; 474 unsigned long b60 : 1; 475 unsigned long b61 : 1; 476 unsigned long as : 2; /* ASCE Identifier */ 477 }; 478 479 enum { 480 FSI_UNKNOWN = 0, /* Unknown wether fetch or store */ 481 FSI_STORE = 1, /* Exception was due to store operation */ 482 FSI_FETCH = 2 /* Exception was due to fetch operation */ 483 }; 484 485 enum prot_type { 486 PROT_TYPE_LA = 0, 487 PROT_TYPE_KEYC = 1, 488 PROT_TYPE_ALC = 2, 489 PROT_TYPE_DAT = 3, 490 PROT_TYPE_IEP = 4, 491 }; 492 493 static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva, 494 u8 ar, enum gacc_mode mode, enum prot_type prot) 495 { 496 struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm; 497 struct trans_exc_code_bits *tec; 498 499 memset(pgm, 0, sizeof(*pgm)); 500 pgm->code = code; 501 tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code; 502 503 switch (code) { 504 case PGM_PROTECTION: 505 switch (prot) { 506 case PROT_TYPE_IEP: 507 tec->b61 = 1; 508 fallthrough; 509 case PROT_TYPE_LA: 510 tec->b56 = 1; 511 break; 512 case PROT_TYPE_KEYC: 513 tec->b60 = 1; 514 break; 515 case PROT_TYPE_ALC: 516 tec->b60 = 1; 517 fallthrough; 518 case PROT_TYPE_DAT: 519 tec->b61 = 1; 520 break; 521 } 522 fallthrough; 523 case PGM_ASCE_TYPE: 524 case PGM_PAGE_TRANSLATION: 525 case PGM_REGION_FIRST_TRANS: 526 case PGM_REGION_SECOND_TRANS: 527 case PGM_REGION_THIRD_TRANS: 528 case PGM_SEGMENT_TRANSLATION: 529 /* 530 * op_access_id only applies to MOVE_PAGE -> set bit 61 531 * exc_access_id has to be set to 0 for some instructions. Both 532 * cases have to be handled by the caller. 533 */ 534 tec->addr = gva >> PAGE_SHIFT; 535 tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH; 536 tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as; 537 fallthrough; 538 case PGM_ALEN_TRANSLATION: 539 case PGM_ALE_SEQUENCE: 540 case PGM_ASTE_VALIDITY: 541 case PGM_ASTE_SEQUENCE: 542 case PGM_EXTENDED_AUTHORITY: 543 /* 544 * We can always store exc_access_id, as it is 545 * undefined for non-ar cases. It is undefined for 546 * most DAT protection exceptions. 547 */ 548 pgm->exc_access_id = ar; 549 break; 550 } 551 return code; 552 } 553 554 static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce, 555 unsigned long ga, u8 ar, enum gacc_mode mode) 556 { 557 int rc; 558 struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw); 559 560 if (!psw.dat) { 561 asce->val = 0; 562 asce->r = 1; 563 return 0; 564 } 565 566 if ((mode == GACC_IFETCH) && (psw.as != PSW_BITS_AS_HOME)) 567 psw.as = PSW_BITS_AS_PRIMARY; 568 569 switch (psw.as) { 570 case PSW_BITS_AS_PRIMARY: 571 asce->val = vcpu->arch.sie_block->gcr[1]; 572 return 0; 573 case PSW_BITS_AS_SECONDARY: 574 asce->val = vcpu->arch.sie_block->gcr[7]; 575 return 0; 576 case PSW_BITS_AS_HOME: 577 asce->val = vcpu->arch.sie_block->gcr[13]; 578 return 0; 579 case PSW_BITS_AS_ACCREG: 580 rc = ar_translation(vcpu, asce, ar, mode); 581 if (rc > 0) 582 return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC); 583 return rc; 584 } 585 return 0; 586 } 587 588 static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val) 589 { 590 return kvm_read_guest(kvm, gpa, val, sizeof(*val)); 591 } 592 593 /** 594 * guest_translate - translate a guest virtual into a guest absolute address 595 * @vcpu: virtual cpu 596 * @gva: guest virtual address 597 * @gpa: points to where guest physical (absolute) address should be stored 598 * @asce: effective asce 599 * @mode: indicates the access mode to be used 600 * @prot: returns the type for protection exceptions 601 * 602 * Translate a guest virtual address into a guest absolute address by means 603 * of dynamic address translation as specified by the architecture. 604 * If the resulting absolute address is not available in the configuration 605 * an addressing exception is indicated and @gpa will not be changed. 606 * 607 * Returns: - zero on success; @gpa contains the resulting absolute address 608 * - a negative value if guest access failed due to e.g. broken 609 * guest mapping 610 * - a positve value if an access exception happened. In this case 611 * the returned value is the program interruption code as defined 612 * by the architecture 613 */ 614 static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva, 615 unsigned long *gpa, const union asce asce, 616 enum gacc_mode mode, enum prot_type *prot) 617 { 618 union vaddress vaddr = {.addr = gva}; 619 union raddress raddr = {.addr = gva}; 620 union page_table_entry pte; 621 int dat_protection = 0; 622 int iep_protection = 0; 623 union ctlreg0 ctlreg0; 624 unsigned long ptr; 625 int edat1, edat2, iep; 626 627 ctlreg0.val = vcpu->arch.sie_block->gcr[0]; 628 edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8); 629 edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78); 630 iep = ctlreg0.iep && test_kvm_facility(vcpu->kvm, 130); 631 if (asce.r) 632 goto real_address; 633 ptr = asce.origin * PAGE_SIZE; 634 switch (asce.dt) { 635 case ASCE_TYPE_REGION1: 636 if (vaddr.rfx01 > asce.tl) 637 return PGM_REGION_FIRST_TRANS; 638 ptr += vaddr.rfx * 8; 639 break; 640 case ASCE_TYPE_REGION2: 641 if (vaddr.rfx) 642 return PGM_ASCE_TYPE; 643 if (vaddr.rsx01 > asce.tl) 644 return PGM_REGION_SECOND_TRANS; 645 ptr += vaddr.rsx * 8; 646 break; 647 case ASCE_TYPE_REGION3: 648 if (vaddr.rfx || vaddr.rsx) 649 return PGM_ASCE_TYPE; 650 if (vaddr.rtx01 > asce.tl) 651 return PGM_REGION_THIRD_TRANS; 652 ptr += vaddr.rtx * 8; 653 break; 654 case ASCE_TYPE_SEGMENT: 655 if (vaddr.rfx || vaddr.rsx || vaddr.rtx) 656 return PGM_ASCE_TYPE; 657 if (vaddr.sx01 > asce.tl) 658 return PGM_SEGMENT_TRANSLATION; 659 ptr += vaddr.sx * 8; 660 break; 661 } 662 switch (asce.dt) { 663 case ASCE_TYPE_REGION1: { 664 union region1_table_entry rfte; 665 666 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 667 return PGM_ADDRESSING; 668 if (deref_table(vcpu->kvm, ptr, &rfte.val)) 669 return -EFAULT; 670 if (rfte.i) 671 return PGM_REGION_FIRST_TRANS; 672 if (rfte.tt != TABLE_TYPE_REGION1) 673 return PGM_TRANSLATION_SPEC; 674 if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl) 675 return PGM_REGION_SECOND_TRANS; 676 if (edat1) 677 dat_protection |= rfte.p; 678 ptr = rfte.rto * PAGE_SIZE + vaddr.rsx * 8; 679 } 680 fallthrough; 681 case ASCE_TYPE_REGION2: { 682 union region2_table_entry rste; 683 684 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 685 return PGM_ADDRESSING; 686 if (deref_table(vcpu->kvm, ptr, &rste.val)) 687 return -EFAULT; 688 if (rste.i) 689 return PGM_REGION_SECOND_TRANS; 690 if (rste.tt != TABLE_TYPE_REGION2) 691 return PGM_TRANSLATION_SPEC; 692 if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl) 693 return PGM_REGION_THIRD_TRANS; 694 if (edat1) 695 dat_protection |= rste.p; 696 ptr = rste.rto * PAGE_SIZE + vaddr.rtx * 8; 697 } 698 fallthrough; 699 case ASCE_TYPE_REGION3: { 700 union region3_table_entry rtte; 701 702 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 703 return PGM_ADDRESSING; 704 if (deref_table(vcpu->kvm, ptr, &rtte.val)) 705 return -EFAULT; 706 if (rtte.i) 707 return PGM_REGION_THIRD_TRANS; 708 if (rtte.tt != TABLE_TYPE_REGION3) 709 return PGM_TRANSLATION_SPEC; 710 if (rtte.cr && asce.p && edat2) 711 return PGM_TRANSLATION_SPEC; 712 if (rtte.fc && edat2) { 713 dat_protection |= rtte.fc1.p; 714 iep_protection = rtte.fc1.iep; 715 raddr.rfaa = rtte.fc1.rfaa; 716 goto absolute_address; 717 } 718 if (vaddr.sx01 < rtte.fc0.tf) 719 return PGM_SEGMENT_TRANSLATION; 720 if (vaddr.sx01 > rtte.fc0.tl) 721 return PGM_SEGMENT_TRANSLATION; 722 if (edat1) 723 dat_protection |= rtte.fc0.p; 724 ptr = rtte.fc0.sto * PAGE_SIZE + vaddr.sx * 8; 725 } 726 fallthrough; 727 case ASCE_TYPE_SEGMENT: { 728 union segment_table_entry ste; 729 730 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 731 return PGM_ADDRESSING; 732 if (deref_table(vcpu->kvm, ptr, &ste.val)) 733 return -EFAULT; 734 if (ste.i) 735 return PGM_SEGMENT_TRANSLATION; 736 if (ste.tt != TABLE_TYPE_SEGMENT) 737 return PGM_TRANSLATION_SPEC; 738 if (ste.cs && asce.p) 739 return PGM_TRANSLATION_SPEC; 740 if (ste.fc && edat1) { 741 dat_protection |= ste.fc1.p; 742 iep_protection = ste.fc1.iep; 743 raddr.sfaa = ste.fc1.sfaa; 744 goto absolute_address; 745 } 746 dat_protection |= ste.fc0.p; 747 ptr = ste.fc0.pto * (PAGE_SIZE / 2) + vaddr.px * 8; 748 } 749 } 750 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 751 return PGM_ADDRESSING; 752 if (deref_table(vcpu->kvm, ptr, &pte.val)) 753 return -EFAULT; 754 if (pte.i) 755 return PGM_PAGE_TRANSLATION; 756 if (pte.z) 757 return PGM_TRANSLATION_SPEC; 758 dat_protection |= pte.p; 759 iep_protection = pte.iep; 760 raddr.pfra = pte.pfra; 761 real_address: 762 raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr); 763 absolute_address: 764 if (mode == GACC_STORE && dat_protection) { 765 *prot = PROT_TYPE_DAT; 766 return PGM_PROTECTION; 767 } 768 if (mode == GACC_IFETCH && iep_protection && iep) { 769 *prot = PROT_TYPE_IEP; 770 return PGM_PROTECTION; 771 } 772 if (kvm_is_error_gpa(vcpu->kvm, raddr.addr)) 773 return PGM_ADDRESSING; 774 *gpa = raddr.addr; 775 return 0; 776 } 777 778 static inline int is_low_address(unsigned long ga) 779 { 780 /* Check for address ranges 0..511 and 4096..4607 */ 781 return (ga & ~0x11fful) == 0; 782 } 783 784 static int low_address_protection_enabled(struct kvm_vcpu *vcpu, 785 const union asce asce) 786 { 787 union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]}; 788 psw_t *psw = &vcpu->arch.sie_block->gpsw; 789 790 if (!ctlreg0.lap) 791 return 0; 792 if (psw_bits(*psw).dat && asce.p) 793 return 0; 794 return 1; 795 } 796 797 /** 798 * guest_range_to_gpas() - Calculate guest physical addresses of page fragments 799 * covering a logical range 800 * @vcpu: virtual cpu 801 * @ga: guest address, start of range 802 * @ar: access register 803 * @gpas: output argument, may be NULL 804 * @len: length of range in bytes 805 * @asce: address-space-control element to use for translation 806 * @mode: access mode 807 * 808 * Translate a logical range to a series of guest absolute addresses, 809 * such that the concatenation of page fragments starting at each gpa make up 810 * the whole range. 811 * The translation is performed as if done by the cpu for the given @asce, @ar, 812 * @mode and state of the @vcpu. 813 * If the translation causes an exception, its program interruption code is 814 * returned and the &struct kvm_s390_pgm_info pgm member of @vcpu is modified 815 * such that a subsequent call to kvm_s390_inject_prog_vcpu() will inject 816 * a correct exception into the guest. 817 * The resulting gpas are stored into @gpas, unless it is NULL. 818 * 819 * Note: All fragments except the first one start at the beginning of a page. 820 * When deriving the boundaries of a fragment from a gpa, all but the last 821 * fragment end at the end of the page. 822 * 823 * Return: 824 * * 0 - success 825 * * <0 - translation could not be performed, for example if guest 826 * memory could not be accessed 827 * * >0 - an access exception occurred. In this case the returned value 828 * is the program interruption code and the contents of pgm may 829 * be used to inject an exception into the guest. 830 */ 831 static int guest_range_to_gpas(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar, 832 unsigned long *gpas, unsigned long len, 833 const union asce asce, enum gacc_mode mode) 834 { 835 psw_t *psw = &vcpu->arch.sie_block->gpsw; 836 unsigned int offset = offset_in_page(ga); 837 unsigned int fragment_len; 838 int lap_enabled, rc = 0; 839 enum prot_type prot; 840 unsigned long gpa; 841 842 lap_enabled = low_address_protection_enabled(vcpu, asce); 843 while (min(PAGE_SIZE - offset, len) > 0) { 844 fragment_len = min(PAGE_SIZE - offset, len); 845 ga = kvm_s390_logical_to_effective(vcpu, ga); 846 if (mode == GACC_STORE && lap_enabled && is_low_address(ga)) 847 return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode, 848 PROT_TYPE_LA); 849 if (psw_bits(*psw).dat) { 850 rc = guest_translate(vcpu, ga, &gpa, asce, mode, &prot); 851 if (rc < 0) 852 return rc; 853 } else { 854 gpa = kvm_s390_real_to_abs(vcpu, ga); 855 if (kvm_is_error_gpa(vcpu->kvm, gpa)) 856 rc = PGM_ADDRESSING; 857 } 858 if (rc) 859 return trans_exc(vcpu, rc, ga, ar, mode, prot); 860 if (gpas) 861 *gpas++ = gpa; 862 offset = 0; 863 ga += fragment_len; 864 len -= fragment_len; 865 } 866 return 0; 867 } 868 869 static int access_guest_page(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa, 870 void *data, unsigned int len) 871 { 872 const unsigned int offset = offset_in_page(gpa); 873 const gfn_t gfn = gpa_to_gfn(gpa); 874 int rc; 875 876 if (mode == GACC_STORE) 877 rc = kvm_write_guest_page(kvm, gfn, data, offset, len); 878 else 879 rc = kvm_read_guest_page(kvm, gfn, data, offset, len); 880 return rc; 881 } 882 883 int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar, void *data, 884 unsigned long len, enum gacc_mode mode) 885 { 886 psw_t *psw = &vcpu->arch.sie_block->gpsw; 887 unsigned long nr_pages, idx; 888 unsigned long gpa_array[2]; 889 unsigned int fragment_len; 890 unsigned long *gpas; 891 int need_ipte_lock; 892 union asce asce; 893 int rc; 894 895 if (!len) 896 return 0; 897 ga = kvm_s390_logical_to_effective(vcpu, ga); 898 rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode); 899 if (rc) 900 return rc; 901 nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1; 902 gpas = gpa_array; 903 if (nr_pages > ARRAY_SIZE(gpa_array)) 904 gpas = vmalloc(array_size(nr_pages, sizeof(unsigned long))); 905 if (!gpas) 906 return -ENOMEM; 907 need_ipte_lock = psw_bits(*psw).dat && !asce.r; 908 if (need_ipte_lock) 909 ipte_lock(vcpu); 910 rc = guest_range_to_gpas(vcpu, ga, ar, gpas, len, asce, mode); 911 for (idx = 0; idx < nr_pages && !rc; idx++) { 912 fragment_len = min(PAGE_SIZE - offset_in_page(gpas[idx]), len); 913 rc = access_guest_page(vcpu->kvm, mode, gpas[idx], data, fragment_len); 914 len -= fragment_len; 915 data += fragment_len; 916 } 917 if (need_ipte_lock) 918 ipte_unlock(vcpu); 919 if (nr_pages > ARRAY_SIZE(gpa_array)) 920 vfree(gpas); 921 return rc; 922 } 923 924 int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra, 925 void *data, unsigned long len, enum gacc_mode mode) 926 { 927 unsigned int fragment_len; 928 unsigned long gpa; 929 int rc = 0; 930 931 while (len && !rc) { 932 gpa = kvm_s390_real_to_abs(vcpu, gra); 933 fragment_len = min(PAGE_SIZE - offset_in_page(gpa), len); 934 rc = access_guest_page(vcpu->kvm, mode, gpa, data, fragment_len); 935 len -= fragment_len; 936 gra += fragment_len; 937 data += fragment_len; 938 } 939 return rc; 940 } 941 942 /** 943 * guest_translate_address - translate guest logical into guest absolute address 944 * @vcpu: virtual cpu 945 * @gva: Guest virtual address 946 * @ar: Access register 947 * @gpa: Guest physical address 948 * @mode: Translation access mode 949 * 950 * Parameter semantics are the same as the ones from guest_translate. 951 * The memory contents at the guest address are not changed. 952 * 953 * Note: The IPTE lock is not taken during this function, so the caller 954 * has to take care of this. 955 */ 956 int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar, 957 unsigned long *gpa, enum gacc_mode mode) 958 { 959 union asce asce; 960 int rc; 961 962 gva = kvm_s390_logical_to_effective(vcpu, gva); 963 rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode); 964 if (rc) 965 return rc; 966 return guest_range_to_gpas(vcpu, gva, ar, gpa, 1, asce, mode); 967 } 968 969 /** 970 * check_gva_range - test a range of guest virtual addresses for accessibility 971 * @vcpu: virtual cpu 972 * @gva: Guest virtual address 973 * @ar: Access register 974 * @length: Length of test range 975 * @mode: Translation access mode 976 */ 977 int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar, 978 unsigned long length, enum gacc_mode mode) 979 { 980 union asce asce; 981 int rc = 0; 982 983 rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode); 984 if (rc) 985 return rc; 986 ipte_lock(vcpu); 987 rc = guest_range_to_gpas(vcpu, gva, ar, NULL, length, asce, mode); 988 ipte_unlock(vcpu); 989 990 return rc; 991 } 992 993 /** 994 * kvm_s390_check_low_addr_prot_real - check for low-address protection 995 * @vcpu: virtual cpu 996 * @gra: Guest real address 997 * 998 * Checks whether an address is subject to low-address protection and set 999 * up vcpu->arch.pgm accordingly if necessary. 1000 * 1001 * Return: 0 if no protection exception, or PGM_PROTECTION if protected. 1002 */ 1003 int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra) 1004 { 1005 union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]}; 1006 1007 if (!ctlreg0.lap || !is_low_address(gra)) 1008 return 0; 1009 return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA); 1010 } 1011 1012 /** 1013 * kvm_s390_shadow_tables - walk the guest page table and create shadow tables 1014 * @sg: pointer to the shadow guest address space structure 1015 * @saddr: faulting address in the shadow gmap 1016 * @pgt: pointer to the beginning of the page table for the given address if 1017 * successful (return value 0), or to the first invalid DAT entry in 1018 * case of exceptions (return value > 0) 1019 * @dat_protection: referenced memory is write protected 1020 * @fake: pgt references contiguous guest memory block, not a pgtable 1021 */ 1022 static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr, 1023 unsigned long *pgt, int *dat_protection, 1024 int *fake) 1025 { 1026 struct gmap *parent; 1027 union asce asce; 1028 union vaddress vaddr; 1029 unsigned long ptr; 1030 int rc; 1031 1032 *fake = 0; 1033 *dat_protection = 0; 1034 parent = sg->parent; 1035 vaddr.addr = saddr; 1036 asce.val = sg->orig_asce; 1037 ptr = asce.origin * PAGE_SIZE; 1038 if (asce.r) { 1039 *fake = 1; 1040 ptr = 0; 1041 asce.dt = ASCE_TYPE_REGION1; 1042 } 1043 switch (asce.dt) { 1044 case ASCE_TYPE_REGION1: 1045 if (vaddr.rfx01 > asce.tl && !*fake) 1046 return PGM_REGION_FIRST_TRANS; 1047 break; 1048 case ASCE_TYPE_REGION2: 1049 if (vaddr.rfx) 1050 return PGM_ASCE_TYPE; 1051 if (vaddr.rsx01 > asce.tl) 1052 return PGM_REGION_SECOND_TRANS; 1053 break; 1054 case ASCE_TYPE_REGION3: 1055 if (vaddr.rfx || vaddr.rsx) 1056 return PGM_ASCE_TYPE; 1057 if (vaddr.rtx01 > asce.tl) 1058 return PGM_REGION_THIRD_TRANS; 1059 break; 1060 case ASCE_TYPE_SEGMENT: 1061 if (vaddr.rfx || vaddr.rsx || vaddr.rtx) 1062 return PGM_ASCE_TYPE; 1063 if (vaddr.sx01 > asce.tl) 1064 return PGM_SEGMENT_TRANSLATION; 1065 break; 1066 } 1067 1068 switch (asce.dt) { 1069 case ASCE_TYPE_REGION1: { 1070 union region1_table_entry rfte; 1071 1072 if (*fake) { 1073 ptr += vaddr.rfx * _REGION1_SIZE; 1074 rfte.val = ptr; 1075 goto shadow_r2t; 1076 } 1077 *pgt = ptr + vaddr.rfx * 8; 1078 rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val); 1079 if (rc) 1080 return rc; 1081 if (rfte.i) 1082 return PGM_REGION_FIRST_TRANS; 1083 if (rfte.tt != TABLE_TYPE_REGION1) 1084 return PGM_TRANSLATION_SPEC; 1085 if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl) 1086 return PGM_REGION_SECOND_TRANS; 1087 if (sg->edat_level >= 1) 1088 *dat_protection |= rfte.p; 1089 ptr = rfte.rto * PAGE_SIZE; 1090 shadow_r2t: 1091 rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake); 1092 if (rc) 1093 return rc; 1094 } 1095 fallthrough; 1096 case ASCE_TYPE_REGION2: { 1097 union region2_table_entry rste; 1098 1099 if (*fake) { 1100 ptr += vaddr.rsx * _REGION2_SIZE; 1101 rste.val = ptr; 1102 goto shadow_r3t; 1103 } 1104 *pgt = ptr + vaddr.rsx * 8; 1105 rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val); 1106 if (rc) 1107 return rc; 1108 if (rste.i) 1109 return PGM_REGION_SECOND_TRANS; 1110 if (rste.tt != TABLE_TYPE_REGION2) 1111 return PGM_TRANSLATION_SPEC; 1112 if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl) 1113 return PGM_REGION_THIRD_TRANS; 1114 if (sg->edat_level >= 1) 1115 *dat_protection |= rste.p; 1116 ptr = rste.rto * PAGE_SIZE; 1117 shadow_r3t: 1118 rste.p |= *dat_protection; 1119 rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake); 1120 if (rc) 1121 return rc; 1122 } 1123 fallthrough; 1124 case ASCE_TYPE_REGION3: { 1125 union region3_table_entry rtte; 1126 1127 if (*fake) { 1128 ptr += vaddr.rtx * _REGION3_SIZE; 1129 rtte.val = ptr; 1130 goto shadow_sgt; 1131 } 1132 *pgt = ptr + vaddr.rtx * 8; 1133 rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val); 1134 if (rc) 1135 return rc; 1136 if (rtte.i) 1137 return PGM_REGION_THIRD_TRANS; 1138 if (rtte.tt != TABLE_TYPE_REGION3) 1139 return PGM_TRANSLATION_SPEC; 1140 if (rtte.cr && asce.p && sg->edat_level >= 2) 1141 return PGM_TRANSLATION_SPEC; 1142 if (rtte.fc && sg->edat_level >= 2) { 1143 *dat_protection |= rtte.fc0.p; 1144 *fake = 1; 1145 ptr = rtte.fc1.rfaa * _REGION3_SIZE; 1146 rtte.val = ptr; 1147 goto shadow_sgt; 1148 } 1149 if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl) 1150 return PGM_SEGMENT_TRANSLATION; 1151 if (sg->edat_level >= 1) 1152 *dat_protection |= rtte.fc0.p; 1153 ptr = rtte.fc0.sto * PAGE_SIZE; 1154 shadow_sgt: 1155 rtte.fc0.p |= *dat_protection; 1156 rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake); 1157 if (rc) 1158 return rc; 1159 } 1160 fallthrough; 1161 case ASCE_TYPE_SEGMENT: { 1162 union segment_table_entry ste; 1163 1164 if (*fake) { 1165 ptr += vaddr.sx * _SEGMENT_SIZE; 1166 ste.val = ptr; 1167 goto shadow_pgt; 1168 } 1169 *pgt = ptr + vaddr.sx * 8; 1170 rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val); 1171 if (rc) 1172 return rc; 1173 if (ste.i) 1174 return PGM_SEGMENT_TRANSLATION; 1175 if (ste.tt != TABLE_TYPE_SEGMENT) 1176 return PGM_TRANSLATION_SPEC; 1177 if (ste.cs && asce.p) 1178 return PGM_TRANSLATION_SPEC; 1179 *dat_protection |= ste.fc0.p; 1180 if (ste.fc && sg->edat_level >= 1) { 1181 *fake = 1; 1182 ptr = ste.fc1.sfaa * _SEGMENT_SIZE; 1183 ste.val = ptr; 1184 goto shadow_pgt; 1185 } 1186 ptr = ste.fc0.pto * (PAGE_SIZE / 2); 1187 shadow_pgt: 1188 ste.fc0.p |= *dat_protection; 1189 rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake); 1190 if (rc) 1191 return rc; 1192 } 1193 } 1194 /* Return the parent address of the page table */ 1195 *pgt = ptr; 1196 return 0; 1197 } 1198 1199 /** 1200 * kvm_s390_shadow_fault - handle fault on a shadow page table 1201 * @vcpu: virtual cpu 1202 * @sg: pointer to the shadow guest address space structure 1203 * @saddr: faulting address in the shadow gmap 1204 * @datptr: will contain the address of the faulting DAT table entry, or of 1205 * the valid leaf, plus some flags 1206 * 1207 * Returns: - 0 if the shadow fault was successfully resolved 1208 * - > 0 (pgm exception code) on exceptions while faulting 1209 * - -EAGAIN if the caller can retry immediately 1210 * - -EFAULT when accessing invalid guest addresses 1211 * - -ENOMEM if out of memory 1212 */ 1213 int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg, 1214 unsigned long saddr, unsigned long *datptr) 1215 { 1216 union vaddress vaddr; 1217 union page_table_entry pte; 1218 unsigned long pgt = 0; 1219 int dat_protection, fake; 1220 int rc; 1221 1222 mmap_read_lock(sg->mm); 1223 /* 1224 * We don't want any guest-2 tables to change - so the parent 1225 * tables/pointers we read stay valid - unshadowing is however 1226 * always possible - only guest_table_lock protects us. 1227 */ 1228 ipte_lock(vcpu); 1229 1230 rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake); 1231 if (rc) 1232 rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection, 1233 &fake); 1234 1235 vaddr.addr = saddr; 1236 if (fake) { 1237 pte.val = pgt + vaddr.px * PAGE_SIZE; 1238 goto shadow_page; 1239 } 1240 1241 switch (rc) { 1242 case PGM_SEGMENT_TRANSLATION: 1243 case PGM_REGION_THIRD_TRANS: 1244 case PGM_REGION_SECOND_TRANS: 1245 case PGM_REGION_FIRST_TRANS: 1246 pgt |= PEI_NOT_PTE; 1247 break; 1248 case 0: 1249 pgt += vaddr.px * 8; 1250 rc = gmap_read_table(sg->parent, pgt, &pte.val); 1251 } 1252 if (datptr) 1253 *datptr = pgt | dat_protection * PEI_DAT_PROT; 1254 if (!rc && pte.i) 1255 rc = PGM_PAGE_TRANSLATION; 1256 if (!rc && pte.z) 1257 rc = PGM_TRANSLATION_SPEC; 1258 shadow_page: 1259 pte.p |= dat_protection; 1260 if (!rc) 1261 rc = gmap_shadow_page(sg, saddr, __pte(pte.val)); 1262 ipte_unlock(vcpu); 1263 mmap_read_unlock(sg->mm); 1264 return rc; 1265 } 1266