xref: /openbmc/linux/arch/s390/kvm/gaccess.c (revision 4c79e98b)
1 /*
2  * guest access functions
3  *
4  * Copyright IBM Corp. 2014
5  *
6  */
7 
8 #include <linux/vmalloc.h>
9 #include <linux/mm_types.h>
10 #include <linux/err.h>
11 
12 #include <asm/pgtable.h>
13 #include <asm/gmap.h>
14 #include "kvm-s390.h"
15 #include "gaccess.h"
16 #include <asm/switch_to.h>
17 
18 union asce {
19 	unsigned long val;
20 	struct {
21 		unsigned long origin : 52; /* Region- or Segment-Table Origin */
22 		unsigned long	 : 2;
23 		unsigned long g  : 1; /* Subspace Group Control */
24 		unsigned long p  : 1; /* Private Space Control */
25 		unsigned long s  : 1; /* Storage-Alteration-Event Control */
26 		unsigned long x  : 1; /* Space-Switch-Event Control */
27 		unsigned long r  : 1; /* Real-Space Control */
28 		unsigned long	 : 1;
29 		unsigned long dt : 2; /* Designation-Type Control */
30 		unsigned long tl : 2; /* Region- or Segment-Table Length */
31 	};
32 };
33 
34 enum {
35 	ASCE_TYPE_SEGMENT = 0,
36 	ASCE_TYPE_REGION3 = 1,
37 	ASCE_TYPE_REGION2 = 2,
38 	ASCE_TYPE_REGION1 = 3
39 };
40 
41 union region1_table_entry {
42 	unsigned long val;
43 	struct {
44 		unsigned long rto: 52;/* Region-Table Origin */
45 		unsigned long	 : 2;
46 		unsigned long p  : 1; /* DAT-Protection Bit */
47 		unsigned long	 : 1;
48 		unsigned long tf : 2; /* Region-Second-Table Offset */
49 		unsigned long i  : 1; /* Region-Invalid Bit */
50 		unsigned long	 : 1;
51 		unsigned long tt : 2; /* Table-Type Bits */
52 		unsigned long tl : 2; /* Region-Second-Table Length */
53 	};
54 };
55 
56 union region2_table_entry {
57 	unsigned long val;
58 	struct {
59 		unsigned long rto: 52;/* Region-Table Origin */
60 		unsigned long	 : 2;
61 		unsigned long p  : 1; /* DAT-Protection Bit */
62 		unsigned long	 : 1;
63 		unsigned long tf : 2; /* Region-Third-Table Offset */
64 		unsigned long i  : 1; /* Region-Invalid Bit */
65 		unsigned long	 : 1;
66 		unsigned long tt : 2; /* Table-Type Bits */
67 		unsigned long tl : 2; /* Region-Third-Table Length */
68 	};
69 };
70 
71 struct region3_table_entry_fc0 {
72 	unsigned long sto: 52;/* Segment-Table Origin */
73 	unsigned long	 : 1;
74 	unsigned long fc : 1; /* Format-Control */
75 	unsigned long p  : 1; /* DAT-Protection Bit */
76 	unsigned long	 : 1;
77 	unsigned long tf : 2; /* Segment-Table Offset */
78 	unsigned long i  : 1; /* Region-Invalid Bit */
79 	unsigned long cr : 1; /* Common-Region Bit */
80 	unsigned long tt : 2; /* Table-Type Bits */
81 	unsigned long tl : 2; /* Segment-Table Length */
82 };
83 
84 struct region3_table_entry_fc1 {
85 	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
86 	unsigned long	 : 14;
87 	unsigned long av : 1; /* ACCF-Validity Control */
88 	unsigned long acc: 4; /* Access-Control Bits */
89 	unsigned long f  : 1; /* Fetch-Protection Bit */
90 	unsigned long fc : 1; /* Format-Control */
91 	unsigned long p  : 1; /* DAT-Protection Bit */
92 	unsigned long co : 1; /* Change-Recording Override */
93 	unsigned long	 : 2;
94 	unsigned long i  : 1; /* Region-Invalid Bit */
95 	unsigned long cr : 1; /* Common-Region Bit */
96 	unsigned long tt : 2; /* Table-Type Bits */
97 	unsigned long	 : 2;
98 };
99 
100 union region3_table_entry {
101 	unsigned long val;
102 	struct region3_table_entry_fc0 fc0;
103 	struct region3_table_entry_fc1 fc1;
104 	struct {
105 		unsigned long	 : 53;
106 		unsigned long fc : 1; /* Format-Control */
107 		unsigned long	 : 4;
108 		unsigned long i  : 1; /* Region-Invalid Bit */
109 		unsigned long cr : 1; /* Common-Region Bit */
110 		unsigned long tt : 2; /* Table-Type Bits */
111 		unsigned long	 : 2;
112 	};
113 };
114 
115 struct segment_entry_fc0 {
116 	unsigned long pto: 53;/* Page-Table Origin */
117 	unsigned long fc : 1; /* Format-Control */
118 	unsigned long p  : 1; /* DAT-Protection Bit */
119 	unsigned long	 : 3;
120 	unsigned long i  : 1; /* Segment-Invalid Bit */
121 	unsigned long cs : 1; /* Common-Segment Bit */
122 	unsigned long tt : 2; /* Table-Type Bits */
123 	unsigned long	 : 2;
124 };
125 
126 struct segment_entry_fc1 {
127 	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
128 	unsigned long	 : 3;
129 	unsigned long av : 1; /* ACCF-Validity Control */
130 	unsigned long acc: 4; /* Access-Control Bits */
131 	unsigned long f  : 1; /* Fetch-Protection Bit */
132 	unsigned long fc : 1; /* Format-Control */
133 	unsigned long p  : 1; /* DAT-Protection Bit */
134 	unsigned long co : 1; /* Change-Recording Override */
135 	unsigned long	 : 2;
136 	unsigned long i  : 1; /* Segment-Invalid Bit */
137 	unsigned long cs : 1; /* Common-Segment Bit */
138 	unsigned long tt : 2; /* Table-Type Bits */
139 	unsigned long	 : 2;
140 };
141 
142 union segment_table_entry {
143 	unsigned long val;
144 	struct segment_entry_fc0 fc0;
145 	struct segment_entry_fc1 fc1;
146 	struct {
147 		unsigned long	 : 53;
148 		unsigned long fc : 1; /* Format-Control */
149 		unsigned long	 : 4;
150 		unsigned long i  : 1; /* Segment-Invalid Bit */
151 		unsigned long cs : 1; /* Common-Segment Bit */
152 		unsigned long tt : 2; /* Table-Type Bits */
153 		unsigned long	 : 2;
154 	};
155 };
156 
157 enum {
158 	TABLE_TYPE_SEGMENT = 0,
159 	TABLE_TYPE_REGION3 = 1,
160 	TABLE_TYPE_REGION2 = 2,
161 	TABLE_TYPE_REGION1 = 3
162 };
163 
164 union page_table_entry {
165 	unsigned long val;
166 	struct {
167 		unsigned long pfra : 52; /* Page-Frame Real Address */
168 		unsigned long z  : 1; /* Zero Bit */
169 		unsigned long i  : 1; /* Page-Invalid Bit */
170 		unsigned long p  : 1; /* DAT-Protection Bit */
171 		unsigned long co : 1; /* Change-Recording Override */
172 		unsigned long	 : 8;
173 	};
174 };
175 
176 /*
177  * vaddress union in order to easily decode a virtual address into its
178  * region first index, region second index etc. parts.
179  */
180 union vaddress {
181 	unsigned long addr;
182 	struct {
183 		unsigned long rfx : 11;
184 		unsigned long rsx : 11;
185 		unsigned long rtx : 11;
186 		unsigned long sx  : 11;
187 		unsigned long px  : 8;
188 		unsigned long bx  : 12;
189 	};
190 	struct {
191 		unsigned long rfx01 : 2;
192 		unsigned long	    : 9;
193 		unsigned long rsx01 : 2;
194 		unsigned long	    : 9;
195 		unsigned long rtx01 : 2;
196 		unsigned long	    : 9;
197 		unsigned long sx01  : 2;
198 		unsigned long	    : 29;
199 	};
200 };
201 
202 /*
203  * raddress union which will contain the result (real or absolute address)
204  * after a page table walk. The rfaa, sfaa and pfra members are used to
205  * simply assign them the value of a region, segment or page table entry.
206  */
207 union raddress {
208 	unsigned long addr;
209 	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
210 	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
211 	unsigned long pfra : 52; /* Page-Frame Real Address */
212 };
213 
214 union alet {
215 	u32 val;
216 	struct {
217 		u32 reserved : 7;
218 		u32 p        : 1;
219 		u32 alesn    : 8;
220 		u32 alen     : 16;
221 	};
222 };
223 
224 union ald {
225 	u32 val;
226 	struct {
227 		u32     : 1;
228 		u32 alo : 24;
229 		u32 all : 7;
230 	};
231 };
232 
233 struct ale {
234 	unsigned long i      : 1; /* ALEN-Invalid Bit */
235 	unsigned long        : 5;
236 	unsigned long fo     : 1; /* Fetch-Only Bit */
237 	unsigned long p      : 1; /* Private Bit */
238 	unsigned long alesn  : 8; /* Access-List-Entry Sequence Number */
239 	unsigned long aleax  : 16; /* Access-List-Entry Authorization Index */
240 	unsigned long        : 32;
241 	unsigned long        : 1;
242 	unsigned long asteo  : 25; /* ASN-Second-Table-Entry Origin */
243 	unsigned long        : 6;
244 	unsigned long astesn : 32; /* ASTE Sequence Number */
245 } __packed;
246 
247 struct aste {
248 	unsigned long i      : 1; /* ASX-Invalid Bit */
249 	unsigned long ato    : 29; /* Authority-Table Origin */
250 	unsigned long        : 1;
251 	unsigned long b      : 1; /* Base-Space Bit */
252 	unsigned long ax     : 16; /* Authorization Index */
253 	unsigned long atl    : 12; /* Authority-Table Length */
254 	unsigned long        : 2;
255 	unsigned long ca     : 1; /* Controlled-ASN Bit */
256 	unsigned long ra     : 1; /* Reusable-ASN Bit */
257 	unsigned long asce   : 64; /* Address-Space-Control Element */
258 	unsigned long ald    : 32;
259 	unsigned long astesn : 32;
260 	/* .. more fields there */
261 } __packed;
262 
263 int ipte_lock_held(struct kvm_vcpu *vcpu)
264 {
265 	if (vcpu->arch.sie_block->eca & 1) {
266 		int rc;
267 
268 		read_lock(&vcpu->kvm->arch.sca_lock);
269 		rc = kvm_s390_get_ipte_control(vcpu->kvm)->kh != 0;
270 		read_unlock(&vcpu->kvm->arch.sca_lock);
271 		return rc;
272 	}
273 	return vcpu->kvm->arch.ipte_lock_count != 0;
274 }
275 
276 static void ipte_lock_simple(struct kvm_vcpu *vcpu)
277 {
278 	union ipte_control old, new, *ic;
279 
280 	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
281 	vcpu->kvm->arch.ipte_lock_count++;
282 	if (vcpu->kvm->arch.ipte_lock_count > 1)
283 		goto out;
284 retry:
285 	read_lock(&vcpu->kvm->arch.sca_lock);
286 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
287 	do {
288 		old = READ_ONCE(*ic);
289 		if (old.k) {
290 			read_unlock(&vcpu->kvm->arch.sca_lock);
291 			cond_resched();
292 			goto retry;
293 		}
294 		new = old;
295 		new.k = 1;
296 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
297 	read_unlock(&vcpu->kvm->arch.sca_lock);
298 out:
299 	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
300 }
301 
302 static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
303 {
304 	union ipte_control old, new, *ic;
305 
306 	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
307 	vcpu->kvm->arch.ipte_lock_count--;
308 	if (vcpu->kvm->arch.ipte_lock_count)
309 		goto out;
310 	read_lock(&vcpu->kvm->arch.sca_lock);
311 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
312 	do {
313 		old = READ_ONCE(*ic);
314 		new = old;
315 		new.k = 0;
316 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
317 	read_unlock(&vcpu->kvm->arch.sca_lock);
318 	wake_up(&vcpu->kvm->arch.ipte_wq);
319 out:
320 	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
321 }
322 
323 static void ipte_lock_siif(struct kvm_vcpu *vcpu)
324 {
325 	union ipte_control old, new, *ic;
326 
327 retry:
328 	read_lock(&vcpu->kvm->arch.sca_lock);
329 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
330 	do {
331 		old = READ_ONCE(*ic);
332 		if (old.kg) {
333 			read_unlock(&vcpu->kvm->arch.sca_lock);
334 			cond_resched();
335 			goto retry;
336 		}
337 		new = old;
338 		new.k = 1;
339 		new.kh++;
340 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
341 	read_unlock(&vcpu->kvm->arch.sca_lock);
342 }
343 
344 static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
345 {
346 	union ipte_control old, new, *ic;
347 
348 	read_lock(&vcpu->kvm->arch.sca_lock);
349 	ic = kvm_s390_get_ipte_control(vcpu->kvm);
350 	do {
351 		old = READ_ONCE(*ic);
352 		new = old;
353 		new.kh--;
354 		if (!new.kh)
355 			new.k = 0;
356 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
357 	read_unlock(&vcpu->kvm->arch.sca_lock);
358 	if (!new.kh)
359 		wake_up(&vcpu->kvm->arch.ipte_wq);
360 }
361 
362 void ipte_lock(struct kvm_vcpu *vcpu)
363 {
364 	if (vcpu->arch.sie_block->eca & 1)
365 		ipte_lock_siif(vcpu);
366 	else
367 		ipte_lock_simple(vcpu);
368 }
369 
370 void ipte_unlock(struct kvm_vcpu *vcpu)
371 {
372 	if (vcpu->arch.sie_block->eca & 1)
373 		ipte_unlock_siif(vcpu);
374 	else
375 		ipte_unlock_simple(vcpu);
376 }
377 
378 static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar,
379 			  enum gacc_mode mode)
380 {
381 	union alet alet;
382 	struct ale ale;
383 	struct aste aste;
384 	unsigned long ald_addr, authority_table_addr;
385 	union ald ald;
386 	int eax, rc;
387 	u8 authority_table;
388 
389 	if (ar >= NUM_ACRS)
390 		return -EINVAL;
391 
392 	save_access_regs(vcpu->run->s.regs.acrs);
393 	alet.val = vcpu->run->s.regs.acrs[ar];
394 
395 	if (ar == 0 || alet.val == 0) {
396 		asce->val = vcpu->arch.sie_block->gcr[1];
397 		return 0;
398 	} else if (alet.val == 1) {
399 		asce->val = vcpu->arch.sie_block->gcr[7];
400 		return 0;
401 	}
402 
403 	if (alet.reserved)
404 		return PGM_ALET_SPECIFICATION;
405 
406 	if (alet.p)
407 		ald_addr = vcpu->arch.sie_block->gcr[5];
408 	else
409 		ald_addr = vcpu->arch.sie_block->gcr[2];
410 	ald_addr &= 0x7fffffc0;
411 
412 	rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
413 	if (rc)
414 		return rc;
415 
416 	if (alet.alen / 8 > ald.all)
417 		return PGM_ALEN_TRANSLATION;
418 
419 	if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
420 		return PGM_ADDRESSING;
421 
422 	rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
423 			     sizeof(struct ale));
424 	if (rc)
425 		return rc;
426 
427 	if (ale.i == 1)
428 		return PGM_ALEN_TRANSLATION;
429 	if (ale.alesn != alet.alesn)
430 		return PGM_ALE_SEQUENCE;
431 
432 	rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
433 	if (rc)
434 		return rc;
435 
436 	if (aste.i)
437 		return PGM_ASTE_VALIDITY;
438 	if (aste.astesn != ale.astesn)
439 		return PGM_ASTE_SEQUENCE;
440 
441 	if (ale.p == 1) {
442 		eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
443 		if (ale.aleax != eax) {
444 			if (eax / 16 > aste.atl)
445 				return PGM_EXTENDED_AUTHORITY;
446 
447 			authority_table_addr = aste.ato * 4 + eax / 4;
448 
449 			rc = read_guest_real(vcpu, authority_table_addr,
450 					     &authority_table,
451 					     sizeof(u8));
452 			if (rc)
453 				return rc;
454 
455 			if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
456 				return PGM_EXTENDED_AUTHORITY;
457 		}
458 	}
459 
460 	if (ale.fo == 1 && mode == GACC_STORE)
461 		return PGM_PROTECTION;
462 
463 	asce->val = aste.asce;
464 	return 0;
465 }
466 
467 struct trans_exc_code_bits {
468 	unsigned long addr : 52; /* Translation-exception Address */
469 	unsigned long fsi  : 2;  /* Access Exception Fetch/Store Indication */
470 	unsigned long	   : 2;
471 	unsigned long b56  : 1;
472 	unsigned long	   : 3;
473 	unsigned long b60  : 1;
474 	unsigned long b61  : 1;
475 	unsigned long as   : 2;  /* ASCE Identifier */
476 };
477 
478 enum {
479 	FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
480 	FSI_STORE   = 1, /* Exception was due to store operation */
481 	FSI_FETCH   = 2  /* Exception was due to fetch operation */
482 };
483 
484 enum prot_type {
485 	PROT_TYPE_LA   = 0,
486 	PROT_TYPE_KEYC = 1,
487 	PROT_TYPE_ALC  = 2,
488 	PROT_TYPE_DAT  = 3,
489 };
490 
491 static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva,
492 		     u8 ar, enum gacc_mode mode, enum prot_type prot)
493 {
494 	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
495 	struct trans_exc_code_bits *tec;
496 
497 	memset(pgm, 0, sizeof(*pgm));
498 	pgm->code = code;
499 	tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
500 
501 	switch (code) {
502 	case PGM_PROTECTION:
503 		switch (prot) {
504 		case PROT_TYPE_LA:
505 			tec->b56 = 1;
506 			break;
507 		case PROT_TYPE_KEYC:
508 			tec->b60 = 1;
509 			break;
510 		case PROT_TYPE_ALC:
511 			tec->b60 = 1;
512 			/* FALL THROUGH */
513 		case PROT_TYPE_DAT:
514 			tec->b61 = 1;
515 			break;
516 		}
517 		/* FALL THROUGH */
518 	case PGM_ASCE_TYPE:
519 	case PGM_PAGE_TRANSLATION:
520 	case PGM_REGION_FIRST_TRANS:
521 	case PGM_REGION_SECOND_TRANS:
522 	case PGM_REGION_THIRD_TRANS:
523 	case PGM_SEGMENT_TRANSLATION:
524 		/*
525 		 * op_access_id only applies to MOVE_PAGE -> set bit 61
526 		 * exc_access_id has to be set to 0 for some instructions. Both
527 		 * cases have to be handled by the caller.
528 		 */
529 		tec->addr = gva >> PAGE_SHIFT;
530 		tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
531 		tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
532 		/* FALL THROUGH */
533 	case PGM_ALEN_TRANSLATION:
534 	case PGM_ALE_SEQUENCE:
535 	case PGM_ASTE_VALIDITY:
536 	case PGM_ASTE_SEQUENCE:
537 	case PGM_EXTENDED_AUTHORITY:
538 		/*
539 		 * We can always store exc_access_id, as it is
540 		 * undefined for non-ar cases. It is undefined for
541 		 * most DAT protection exceptions.
542 		 */
543 		pgm->exc_access_id = ar;
544 		break;
545 	}
546 	return code;
547 }
548 
549 static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
550 			 unsigned long ga, u8 ar, enum gacc_mode mode)
551 {
552 	int rc;
553 	struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
554 
555 	if (!psw.t) {
556 		asce->val = 0;
557 		asce->r = 1;
558 		return 0;
559 	}
560 
561 	if (mode == GACC_IFETCH)
562 		psw.as = psw.as == PSW_AS_HOME ? PSW_AS_HOME : PSW_AS_PRIMARY;
563 
564 	switch (psw.as) {
565 	case PSW_AS_PRIMARY:
566 		asce->val = vcpu->arch.sie_block->gcr[1];
567 		return 0;
568 	case PSW_AS_SECONDARY:
569 		asce->val = vcpu->arch.sie_block->gcr[7];
570 		return 0;
571 	case PSW_AS_HOME:
572 		asce->val = vcpu->arch.sie_block->gcr[13];
573 		return 0;
574 	case PSW_AS_ACCREG:
575 		rc = ar_translation(vcpu, asce, ar, mode);
576 		if (rc > 0)
577 			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
578 		return rc;
579 	}
580 	return 0;
581 }
582 
583 static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
584 {
585 	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
586 }
587 
588 /**
589  * guest_translate - translate a guest virtual into a guest absolute address
590  * @vcpu: virtual cpu
591  * @gva: guest virtual address
592  * @gpa: points to where guest physical (absolute) address should be stored
593  * @asce: effective asce
594  * @mode: indicates the access mode to be used
595  *
596  * Translate a guest virtual address into a guest absolute address by means
597  * of dynamic address translation as specified by the architecture.
598  * If the resulting absolute address is not available in the configuration
599  * an addressing exception is indicated and @gpa will not be changed.
600  *
601  * Returns: - zero on success; @gpa contains the resulting absolute address
602  *	    - a negative value if guest access failed due to e.g. broken
603  *	      guest mapping
604  *	    - a positve value if an access exception happened. In this case
605  *	      the returned value is the program interruption code as defined
606  *	      by the architecture
607  */
608 static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
609 				     unsigned long *gpa, const union asce asce,
610 				     enum gacc_mode mode)
611 {
612 	union vaddress vaddr = {.addr = gva};
613 	union raddress raddr = {.addr = gva};
614 	union page_table_entry pte;
615 	int dat_protection = 0;
616 	union ctlreg0 ctlreg0;
617 	unsigned long ptr;
618 	int edat1, edat2;
619 
620 	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
621 	edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
622 	edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
623 	if (asce.r)
624 		goto real_address;
625 	ptr = asce.origin * 4096;
626 	switch (asce.dt) {
627 	case ASCE_TYPE_REGION1:
628 		if (vaddr.rfx01 > asce.tl)
629 			return PGM_REGION_FIRST_TRANS;
630 		ptr += vaddr.rfx * 8;
631 		break;
632 	case ASCE_TYPE_REGION2:
633 		if (vaddr.rfx)
634 			return PGM_ASCE_TYPE;
635 		if (vaddr.rsx01 > asce.tl)
636 			return PGM_REGION_SECOND_TRANS;
637 		ptr += vaddr.rsx * 8;
638 		break;
639 	case ASCE_TYPE_REGION3:
640 		if (vaddr.rfx || vaddr.rsx)
641 			return PGM_ASCE_TYPE;
642 		if (vaddr.rtx01 > asce.tl)
643 			return PGM_REGION_THIRD_TRANS;
644 		ptr += vaddr.rtx * 8;
645 		break;
646 	case ASCE_TYPE_SEGMENT:
647 		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
648 			return PGM_ASCE_TYPE;
649 		if (vaddr.sx01 > asce.tl)
650 			return PGM_SEGMENT_TRANSLATION;
651 		ptr += vaddr.sx * 8;
652 		break;
653 	}
654 	switch (asce.dt) {
655 	case ASCE_TYPE_REGION1:	{
656 		union region1_table_entry rfte;
657 
658 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
659 			return PGM_ADDRESSING;
660 		if (deref_table(vcpu->kvm, ptr, &rfte.val))
661 			return -EFAULT;
662 		if (rfte.i)
663 			return PGM_REGION_FIRST_TRANS;
664 		if (rfte.tt != TABLE_TYPE_REGION1)
665 			return PGM_TRANSLATION_SPEC;
666 		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
667 			return PGM_REGION_SECOND_TRANS;
668 		if (edat1)
669 			dat_protection |= rfte.p;
670 		ptr = rfte.rto * 4096 + vaddr.rsx * 8;
671 	}
672 		/* fallthrough */
673 	case ASCE_TYPE_REGION2: {
674 		union region2_table_entry rste;
675 
676 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
677 			return PGM_ADDRESSING;
678 		if (deref_table(vcpu->kvm, ptr, &rste.val))
679 			return -EFAULT;
680 		if (rste.i)
681 			return PGM_REGION_SECOND_TRANS;
682 		if (rste.tt != TABLE_TYPE_REGION2)
683 			return PGM_TRANSLATION_SPEC;
684 		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
685 			return PGM_REGION_THIRD_TRANS;
686 		if (edat1)
687 			dat_protection |= rste.p;
688 		ptr = rste.rto * 4096 + vaddr.rtx * 8;
689 	}
690 		/* fallthrough */
691 	case ASCE_TYPE_REGION3: {
692 		union region3_table_entry rtte;
693 
694 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
695 			return PGM_ADDRESSING;
696 		if (deref_table(vcpu->kvm, ptr, &rtte.val))
697 			return -EFAULT;
698 		if (rtte.i)
699 			return PGM_REGION_THIRD_TRANS;
700 		if (rtte.tt != TABLE_TYPE_REGION3)
701 			return PGM_TRANSLATION_SPEC;
702 		if (rtte.cr && asce.p && edat2)
703 			return PGM_TRANSLATION_SPEC;
704 		if (rtte.fc && edat2) {
705 			dat_protection |= rtte.fc1.p;
706 			raddr.rfaa = rtte.fc1.rfaa;
707 			goto absolute_address;
708 		}
709 		if (vaddr.sx01 < rtte.fc0.tf)
710 			return PGM_SEGMENT_TRANSLATION;
711 		if (vaddr.sx01 > rtte.fc0.tl)
712 			return PGM_SEGMENT_TRANSLATION;
713 		if (edat1)
714 			dat_protection |= rtte.fc0.p;
715 		ptr = rtte.fc0.sto * 4096 + vaddr.sx * 8;
716 	}
717 		/* fallthrough */
718 	case ASCE_TYPE_SEGMENT: {
719 		union segment_table_entry ste;
720 
721 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
722 			return PGM_ADDRESSING;
723 		if (deref_table(vcpu->kvm, ptr, &ste.val))
724 			return -EFAULT;
725 		if (ste.i)
726 			return PGM_SEGMENT_TRANSLATION;
727 		if (ste.tt != TABLE_TYPE_SEGMENT)
728 			return PGM_TRANSLATION_SPEC;
729 		if (ste.cs && asce.p)
730 			return PGM_TRANSLATION_SPEC;
731 		if (ste.fc && edat1) {
732 			dat_protection |= ste.fc1.p;
733 			raddr.sfaa = ste.fc1.sfaa;
734 			goto absolute_address;
735 		}
736 		dat_protection |= ste.fc0.p;
737 		ptr = ste.fc0.pto * 2048 + vaddr.px * 8;
738 	}
739 	}
740 	if (kvm_is_error_gpa(vcpu->kvm, ptr))
741 		return PGM_ADDRESSING;
742 	if (deref_table(vcpu->kvm, ptr, &pte.val))
743 		return -EFAULT;
744 	if (pte.i)
745 		return PGM_PAGE_TRANSLATION;
746 	if (pte.z)
747 		return PGM_TRANSLATION_SPEC;
748 	if (pte.co && !edat1)
749 		return PGM_TRANSLATION_SPEC;
750 	dat_protection |= pte.p;
751 	raddr.pfra = pte.pfra;
752 real_address:
753 	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
754 absolute_address:
755 	if (mode == GACC_STORE && dat_protection)
756 		return PGM_PROTECTION;
757 	if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
758 		return PGM_ADDRESSING;
759 	*gpa = raddr.addr;
760 	return 0;
761 }
762 
763 static inline int is_low_address(unsigned long ga)
764 {
765 	/* Check for address ranges 0..511 and 4096..4607 */
766 	return (ga & ~0x11fful) == 0;
767 }
768 
769 static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
770 					  const union asce asce)
771 {
772 	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
773 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
774 
775 	if (!ctlreg0.lap)
776 		return 0;
777 	if (psw_bits(*psw).t && asce.p)
778 		return 0;
779 	return 1;
780 }
781 
782 static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
783 			    unsigned long *pages, unsigned long nr_pages,
784 			    const union asce asce, enum gacc_mode mode)
785 {
786 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
787 	int lap_enabled, rc = 0;
788 
789 	lap_enabled = low_address_protection_enabled(vcpu, asce);
790 	while (nr_pages) {
791 		ga = kvm_s390_logical_to_effective(vcpu, ga);
792 		if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
793 			return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
794 					 PROT_TYPE_LA);
795 		ga &= PAGE_MASK;
796 		if (psw_bits(*psw).t) {
797 			rc = guest_translate(vcpu, ga, pages, asce, mode);
798 			if (rc < 0)
799 				return rc;
800 		} else {
801 			*pages = kvm_s390_real_to_abs(vcpu, ga);
802 			if (kvm_is_error_gpa(vcpu->kvm, *pages))
803 				rc = PGM_ADDRESSING;
804 		}
805 		if (rc)
806 			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_DAT);
807 		ga += PAGE_SIZE;
808 		pages++;
809 		nr_pages--;
810 	}
811 	return 0;
812 }
813 
814 int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar, void *data,
815 		 unsigned long len, enum gacc_mode mode)
816 {
817 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
818 	unsigned long _len, nr_pages, gpa, idx;
819 	unsigned long pages_array[2];
820 	unsigned long *pages;
821 	int need_ipte_lock;
822 	union asce asce;
823 	int rc;
824 
825 	if (!len)
826 		return 0;
827 	ga = kvm_s390_logical_to_effective(vcpu, ga);
828 	rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
829 	if (rc)
830 		return rc;
831 	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
832 	pages = pages_array;
833 	if (nr_pages > ARRAY_SIZE(pages_array))
834 		pages = vmalloc(nr_pages * sizeof(unsigned long));
835 	if (!pages)
836 		return -ENOMEM;
837 	need_ipte_lock = psw_bits(*psw).t && !asce.r;
838 	if (need_ipte_lock)
839 		ipte_lock(vcpu);
840 	rc = guest_page_range(vcpu, ga, ar, pages, nr_pages, asce, mode);
841 	for (idx = 0; idx < nr_pages && !rc; idx++) {
842 		gpa = *(pages + idx) + (ga & ~PAGE_MASK);
843 		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
844 		if (mode == GACC_STORE)
845 			rc = kvm_write_guest(vcpu->kvm, gpa, data, _len);
846 		else
847 			rc = kvm_read_guest(vcpu->kvm, gpa, data, _len);
848 		len -= _len;
849 		ga += _len;
850 		data += _len;
851 	}
852 	if (need_ipte_lock)
853 		ipte_unlock(vcpu);
854 	if (nr_pages > ARRAY_SIZE(pages_array))
855 		vfree(pages);
856 	return rc;
857 }
858 
859 int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
860 		      void *data, unsigned long len, enum gacc_mode mode)
861 {
862 	unsigned long _len, gpa;
863 	int rc = 0;
864 
865 	while (len && !rc) {
866 		gpa = kvm_s390_real_to_abs(vcpu, gra);
867 		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
868 		if (mode)
869 			rc = write_guest_abs(vcpu, gpa, data, _len);
870 		else
871 			rc = read_guest_abs(vcpu, gpa, data, _len);
872 		len -= _len;
873 		gra += _len;
874 		data += _len;
875 	}
876 	return rc;
877 }
878 
879 /**
880  * guest_translate_address - translate guest logical into guest absolute address
881  *
882  * Parameter semantics are the same as the ones from guest_translate.
883  * The memory contents at the guest address are not changed.
884  *
885  * Note: The IPTE lock is not taken during this function, so the caller
886  * has to take care of this.
887  */
888 int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
889 			    unsigned long *gpa, enum gacc_mode mode)
890 {
891 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
892 	union asce asce;
893 	int rc;
894 
895 	gva = kvm_s390_logical_to_effective(vcpu, gva);
896 	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
897 	if (rc)
898 		return rc;
899 	if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) {
900 		if (mode == GACC_STORE)
901 			return trans_exc(vcpu, PGM_PROTECTION, gva, 0,
902 					 mode, PROT_TYPE_LA);
903 	}
904 
905 	if (psw_bits(*psw).t && !asce.r) {	/* Use DAT? */
906 		rc = guest_translate(vcpu, gva, gpa, asce, mode);
907 		if (rc > 0)
908 			return trans_exc(vcpu, rc, gva, 0, mode, PROT_TYPE_DAT);
909 	} else {
910 		*gpa = kvm_s390_real_to_abs(vcpu, gva);
911 		if (kvm_is_error_gpa(vcpu->kvm, *gpa))
912 			return trans_exc(vcpu, rc, gva, PGM_ADDRESSING, mode, 0);
913 	}
914 
915 	return rc;
916 }
917 
918 /**
919  * check_gva_range - test a range of guest virtual addresses for accessibility
920  */
921 int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
922 		    unsigned long length, enum gacc_mode mode)
923 {
924 	unsigned long gpa;
925 	unsigned long currlen;
926 	int rc = 0;
927 
928 	ipte_lock(vcpu);
929 	while (length > 0 && !rc) {
930 		currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE));
931 		rc = guest_translate_address(vcpu, gva, ar, &gpa, mode);
932 		gva += currlen;
933 		length -= currlen;
934 	}
935 	ipte_unlock(vcpu);
936 
937 	return rc;
938 }
939 
940 /**
941  * kvm_s390_check_low_addr_prot_real - check for low-address protection
942  * @gra: Guest real address
943  *
944  * Checks whether an address is subject to low-address protection and set
945  * up vcpu->arch.pgm accordingly if necessary.
946  *
947  * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
948  */
949 int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
950 {
951 	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
952 
953 	if (!ctlreg0.lap || !is_low_address(gra))
954 		return 0;
955 	return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
956 }
957 
958 /**
959  * kvm_s390_shadow_tables - walk the guest page table and create shadow tables
960  * @sg: pointer to the shadow guest address space structure
961  * @saddr: faulting address in the shadow gmap
962  * @pgt: pointer to the page table address result
963  * @fake: pgt references contiguous guest memory block, not a pgtable
964  */
965 static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
966 				  unsigned long *pgt, int *dat_protection,
967 				  int *fake)
968 {
969 	struct gmap *parent;
970 	union asce asce;
971 	union vaddress vaddr;
972 	unsigned long ptr;
973 	int rc;
974 
975 	*fake = 0;
976 	*dat_protection = 0;
977 	parent = sg->parent;
978 	vaddr.addr = saddr;
979 	asce.val = sg->orig_asce;
980 	ptr = asce.origin * 4096;
981 	if (asce.r) {
982 		*fake = 1;
983 		asce.dt = ASCE_TYPE_REGION1;
984 	}
985 	switch (asce.dt) {
986 	case ASCE_TYPE_REGION1:
987 		if (vaddr.rfx01 > asce.tl && !asce.r)
988 			return PGM_REGION_FIRST_TRANS;
989 		break;
990 	case ASCE_TYPE_REGION2:
991 		if (vaddr.rfx)
992 			return PGM_ASCE_TYPE;
993 		if (vaddr.rsx01 > asce.tl)
994 			return PGM_REGION_SECOND_TRANS;
995 		break;
996 	case ASCE_TYPE_REGION3:
997 		if (vaddr.rfx || vaddr.rsx)
998 			return PGM_ASCE_TYPE;
999 		if (vaddr.rtx01 > asce.tl)
1000 			return PGM_REGION_THIRD_TRANS;
1001 		break;
1002 	case ASCE_TYPE_SEGMENT:
1003 		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
1004 			return PGM_ASCE_TYPE;
1005 		if (vaddr.sx01 > asce.tl)
1006 			return PGM_SEGMENT_TRANSLATION;
1007 		break;
1008 	}
1009 
1010 	switch (asce.dt) {
1011 	case ASCE_TYPE_REGION1: {
1012 		union region1_table_entry rfte;
1013 
1014 		if (*fake) {
1015 			/* offset in 16EB guest memory block */
1016 			ptr = ptr + ((unsigned long) vaddr.rsx << 53UL);
1017 			rfte.val = ptr;
1018 			goto shadow_r2t;
1019 		}
1020 		rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
1021 		if (rc)
1022 			return rc;
1023 		if (rfte.i)
1024 			return PGM_REGION_FIRST_TRANS;
1025 		if (rfte.tt != TABLE_TYPE_REGION1)
1026 			return PGM_TRANSLATION_SPEC;
1027 		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
1028 			return PGM_REGION_SECOND_TRANS;
1029 		if (sg->edat_level >= 1)
1030 			*dat_protection |= rfte.p;
1031 		ptr = rfte.rto << 12UL;
1032 shadow_r2t:
1033 		rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
1034 		if (rc)
1035 			return rc;
1036 		/* fallthrough */
1037 	}
1038 	case ASCE_TYPE_REGION2: {
1039 		union region2_table_entry rste;
1040 
1041 		if (*fake) {
1042 			/* offset in 8PB guest memory block */
1043 			ptr = ptr + ((unsigned long) vaddr.rtx << 42UL);
1044 			rste.val = ptr;
1045 			goto shadow_r3t;
1046 		}
1047 		rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
1048 		if (rc)
1049 			return rc;
1050 		if (rste.i)
1051 			return PGM_REGION_SECOND_TRANS;
1052 		if (rste.tt != TABLE_TYPE_REGION2)
1053 			return PGM_TRANSLATION_SPEC;
1054 		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
1055 			return PGM_REGION_THIRD_TRANS;
1056 		if (sg->edat_level >= 1)
1057 			*dat_protection |= rste.p;
1058 		ptr = rste.rto << 12UL;
1059 shadow_r3t:
1060 		rste.p |= *dat_protection;
1061 		rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
1062 		if (rc)
1063 			return rc;
1064 		/* fallthrough */
1065 	}
1066 	case ASCE_TYPE_REGION3: {
1067 		union region3_table_entry rtte;
1068 
1069 		if (*fake) {
1070 			/* offset in 4TB guest memory block */
1071 			ptr = ptr + ((unsigned long) vaddr.sx << 31UL);
1072 			rtte.val = ptr;
1073 			goto shadow_sgt;
1074 		}
1075 		rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
1076 		if (rc)
1077 			return rc;
1078 		if (rtte.i)
1079 			return PGM_REGION_THIRD_TRANS;
1080 		if (rtte.tt != TABLE_TYPE_REGION3)
1081 			return PGM_TRANSLATION_SPEC;
1082 		if (rtte.cr && asce.p && sg->edat_level >= 2)
1083 			return PGM_TRANSLATION_SPEC;
1084 		if (rtte.fc && sg->edat_level >= 2) {
1085 			*dat_protection |= rtte.fc0.p;
1086 			*fake = 1;
1087 			ptr = rtte.fc1.rfaa << 31UL;
1088 			rtte.val = ptr;
1089 			goto shadow_sgt;
1090 		}
1091 		if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
1092 			return PGM_SEGMENT_TRANSLATION;
1093 		if (sg->edat_level >= 1)
1094 			*dat_protection |= rtte.fc0.p;
1095 		ptr = rtte.fc0.sto << 12UL;
1096 shadow_sgt:
1097 		rtte.fc0.p |= *dat_protection;
1098 		rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
1099 		if (rc)
1100 			return rc;
1101 		/* fallthrough */
1102 	}
1103 	case ASCE_TYPE_SEGMENT: {
1104 		union segment_table_entry ste;
1105 
1106 		if (*fake) {
1107 			/* offset in 2G guest memory block */
1108 			ptr = ptr + ((unsigned long) vaddr.sx << 20UL);
1109 			ste.val = ptr;
1110 			goto shadow_pgt;
1111 		}
1112 		rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
1113 		if (rc)
1114 			return rc;
1115 		if (ste.i)
1116 			return PGM_SEGMENT_TRANSLATION;
1117 		if (ste.tt != TABLE_TYPE_SEGMENT)
1118 			return PGM_TRANSLATION_SPEC;
1119 		if (ste.cs && asce.p)
1120 			return PGM_TRANSLATION_SPEC;
1121 		*dat_protection |= ste.fc0.p;
1122 		if (ste.fc && sg->edat_level >= 1) {
1123 			*fake = 1;
1124 			ptr = ste.fc1.sfaa << 20UL;
1125 			ste.val = ptr;
1126 			goto shadow_pgt;
1127 		}
1128 		ptr = ste.fc0.pto << 11UL;
1129 shadow_pgt:
1130 		ste.fc0.p |= *dat_protection;
1131 		rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
1132 		if (rc)
1133 			return rc;
1134 	}
1135 	}
1136 	/* Return the parent address of the page table */
1137 	*pgt = ptr;
1138 	return 0;
1139 }
1140 
1141 /**
1142  * kvm_s390_shadow_fault - handle fault on a shadow page table
1143  * @vcpu: virtual cpu
1144  * @sg: pointer to the shadow guest address space structure
1145  * @saddr: faulting address in the shadow gmap
1146  *
1147  * Returns: - 0 if the shadow fault was successfully resolved
1148  *	    - > 0 (pgm exception code) on exceptions while faulting
1149  *	    - -EAGAIN if the caller can retry immediately
1150  *	    - -EFAULT when accessing invalid guest addresses
1151  *	    - -ENOMEM if out of memory
1152  */
1153 int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
1154 			  unsigned long saddr)
1155 {
1156 	union vaddress vaddr;
1157 	union page_table_entry pte;
1158 	unsigned long pgt;
1159 	int dat_protection, fake;
1160 	int rc;
1161 
1162 	down_read(&sg->mm->mmap_sem);
1163 	/*
1164 	 * We don't want any guest-2 tables to change - so the parent
1165 	 * tables/pointers we read stay valid - unshadowing is however
1166 	 * always possible - only guest_table_lock protects us.
1167 	 */
1168 	ipte_lock(vcpu);
1169 
1170 	rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
1171 	if (rc)
1172 		rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
1173 					    &fake);
1174 
1175 	vaddr.addr = saddr;
1176 	if (fake) {
1177 		/* offset in 1MB guest memory block */
1178 		pte.val = pgt + ((unsigned long) vaddr.px << 12UL);
1179 		goto shadow_page;
1180 	}
1181 	if (!rc)
1182 		rc = gmap_read_table(sg->parent, pgt + vaddr.px * 8, &pte.val);
1183 	if (!rc && pte.i)
1184 		rc = PGM_PAGE_TRANSLATION;
1185 	if (!rc && (pte.z || (pte.co && sg->edat_level < 1)))
1186 		rc = PGM_TRANSLATION_SPEC;
1187 shadow_page:
1188 	pte.p |= dat_protection;
1189 	if (!rc)
1190 		rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
1191 	ipte_unlock(vcpu);
1192 	up_read(&sg->mm->mmap_sem);
1193 	return rc;
1194 }
1195