1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * guest access functions 4 * 5 * Copyright IBM Corp. 2014 6 * 7 */ 8 9 #include <linux/vmalloc.h> 10 #include <linux/mm_types.h> 11 #include <linux/err.h> 12 #include <linux/pgtable.h> 13 #include <linux/bitfield.h> 14 15 #include <asm/gmap.h> 16 #include "kvm-s390.h" 17 #include "gaccess.h" 18 #include <asm/switch_to.h> 19 20 union asce { 21 unsigned long val; 22 struct { 23 unsigned long origin : 52; /* Region- or Segment-Table Origin */ 24 unsigned long : 2; 25 unsigned long g : 1; /* Subspace Group Control */ 26 unsigned long p : 1; /* Private Space Control */ 27 unsigned long s : 1; /* Storage-Alteration-Event Control */ 28 unsigned long x : 1; /* Space-Switch-Event Control */ 29 unsigned long r : 1; /* Real-Space Control */ 30 unsigned long : 1; 31 unsigned long dt : 2; /* Designation-Type Control */ 32 unsigned long tl : 2; /* Region- or Segment-Table Length */ 33 }; 34 }; 35 36 enum { 37 ASCE_TYPE_SEGMENT = 0, 38 ASCE_TYPE_REGION3 = 1, 39 ASCE_TYPE_REGION2 = 2, 40 ASCE_TYPE_REGION1 = 3 41 }; 42 43 union region1_table_entry { 44 unsigned long val; 45 struct { 46 unsigned long rto: 52;/* Region-Table Origin */ 47 unsigned long : 2; 48 unsigned long p : 1; /* DAT-Protection Bit */ 49 unsigned long : 1; 50 unsigned long tf : 2; /* Region-Second-Table Offset */ 51 unsigned long i : 1; /* Region-Invalid Bit */ 52 unsigned long : 1; 53 unsigned long tt : 2; /* Table-Type Bits */ 54 unsigned long tl : 2; /* Region-Second-Table Length */ 55 }; 56 }; 57 58 union region2_table_entry { 59 unsigned long val; 60 struct { 61 unsigned long rto: 52;/* Region-Table Origin */ 62 unsigned long : 2; 63 unsigned long p : 1; /* DAT-Protection Bit */ 64 unsigned long : 1; 65 unsigned long tf : 2; /* Region-Third-Table Offset */ 66 unsigned long i : 1; /* Region-Invalid Bit */ 67 unsigned long : 1; 68 unsigned long tt : 2; /* Table-Type Bits */ 69 unsigned long tl : 2; /* Region-Third-Table Length */ 70 }; 71 }; 72 73 struct region3_table_entry_fc0 { 74 unsigned long sto: 52;/* Segment-Table Origin */ 75 unsigned long : 1; 76 unsigned long fc : 1; /* Format-Control */ 77 unsigned long p : 1; /* DAT-Protection Bit */ 78 unsigned long : 1; 79 unsigned long tf : 2; /* Segment-Table Offset */ 80 unsigned long i : 1; /* Region-Invalid Bit */ 81 unsigned long cr : 1; /* Common-Region Bit */ 82 unsigned long tt : 2; /* Table-Type Bits */ 83 unsigned long tl : 2; /* Segment-Table Length */ 84 }; 85 86 struct region3_table_entry_fc1 { 87 unsigned long rfaa : 33; /* Region-Frame Absolute Address */ 88 unsigned long : 14; 89 unsigned long av : 1; /* ACCF-Validity Control */ 90 unsigned long acc: 4; /* Access-Control Bits */ 91 unsigned long f : 1; /* Fetch-Protection Bit */ 92 unsigned long fc : 1; /* Format-Control */ 93 unsigned long p : 1; /* DAT-Protection Bit */ 94 unsigned long iep: 1; /* Instruction-Execution-Protection */ 95 unsigned long : 2; 96 unsigned long i : 1; /* Region-Invalid Bit */ 97 unsigned long cr : 1; /* Common-Region Bit */ 98 unsigned long tt : 2; /* Table-Type Bits */ 99 unsigned long : 2; 100 }; 101 102 union region3_table_entry { 103 unsigned long val; 104 struct region3_table_entry_fc0 fc0; 105 struct region3_table_entry_fc1 fc1; 106 struct { 107 unsigned long : 53; 108 unsigned long fc : 1; /* Format-Control */ 109 unsigned long : 4; 110 unsigned long i : 1; /* Region-Invalid Bit */ 111 unsigned long cr : 1; /* Common-Region Bit */ 112 unsigned long tt : 2; /* Table-Type Bits */ 113 unsigned long : 2; 114 }; 115 }; 116 117 struct segment_entry_fc0 { 118 unsigned long pto: 53;/* Page-Table Origin */ 119 unsigned long fc : 1; /* Format-Control */ 120 unsigned long p : 1; /* DAT-Protection Bit */ 121 unsigned long : 3; 122 unsigned long i : 1; /* Segment-Invalid Bit */ 123 unsigned long cs : 1; /* Common-Segment Bit */ 124 unsigned long tt : 2; /* Table-Type Bits */ 125 unsigned long : 2; 126 }; 127 128 struct segment_entry_fc1 { 129 unsigned long sfaa : 44; /* Segment-Frame Absolute Address */ 130 unsigned long : 3; 131 unsigned long av : 1; /* ACCF-Validity Control */ 132 unsigned long acc: 4; /* Access-Control Bits */ 133 unsigned long f : 1; /* Fetch-Protection Bit */ 134 unsigned long fc : 1; /* Format-Control */ 135 unsigned long p : 1; /* DAT-Protection Bit */ 136 unsigned long iep: 1; /* Instruction-Execution-Protection */ 137 unsigned long : 2; 138 unsigned long i : 1; /* Segment-Invalid Bit */ 139 unsigned long cs : 1; /* Common-Segment Bit */ 140 unsigned long tt : 2; /* Table-Type Bits */ 141 unsigned long : 2; 142 }; 143 144 union segment_table_entry { 145 unsigned long val; 146 struct segment_entry_fc0 fc0; 147 struct segment_entry_fc1 fc1; 148 struct { 149 unsigned long : 53; 150 unsigned long fc : 1; /* Format-Control */ 151 unsigned long : 4; 152 unsigned long i : 1; /* Segment-Invalid Bit */ 153 unsigned long cs : 1; /* Common-Segment Bit */ 154 unsigned long tt : 2; /* Table-Type Bits */ 155 unsigned long : 2; 156 }; 157 }; 158 159 enum { 160 TABLE_TYPE_SEGMENT = 0, 161 TABLE_TYPE_REGION3 = 1, 162 TABLE_TYPE_REGION2 = 2, 163 TABLE_TYPE_REGION1 = 3 164 }; 165 166 union page_table_entry { 167 unsigned long val; 168 struct { 169 unsigned long pfra : 52; /* Page-Frame Real Address */ 170 unsigned long z : 1; /* Zero Bit */ 171 unsigned long i : 1; /* Page-Invalid Bit */ 172 unsigned long p : 1; /* DAT-Protection Bit */ 173 unsigned long iep: 1; /* Instruction-Execution-Protection */ 174 unsigned long : 8; 175 }; 176 }; 177 178 /* 179 * vaddress union in order to easily decode a virtual address into its 180 * region first index, region second index etc. parts. 181 */ 182 union vaddress { 183 unsigned long addr; 184 struct { 185 unsigned long rfx : 11; 186 unsigned long rsx : 11; 187 unsigned long rtx : 11; 188 unsigned long sx : 11; 189 unsigned long px : 8; 190 unsigned long bx : 12; 191 }; 192 struct { 193 unsigned long rfx01 : 2; 194 unsigned long : 9; 195 unsigned long rsx01 : 2; 196 unsigned long : 9; 197 unsigned long rtx01 : 2; 198 unsigned long : 9; 199 unsigned long sx01 : 2; 200 unsigned long : 29; 201 }; 202 }; 203 204 /* 205 * raddress union which will contain the result (real or absolute address) 206 * after a page table walk. The rfaa, sfaa and pfra members are used to 207 * simply assign them the value of a region, segment or page table entry. 208 */ 209 union raddress { 210 unsigned long addr; 211 unsigned long rfaa : 33; /* Region-Frame Absolute Address */ 212 unsigned long sfaa : 44; /* Segment-Frame Absolute Address */ 213 unsigned long pfra : 52; /* Page-Frame Real Address */ 214 }; 215 216 union alet { 217 u32 val; 218 struct { 219 u32 reserved : 7; 220 u32 p : 1; 221 u32 alesn : 8; 222 u32 alen : 16; 223 }; 224 }; 225 226 union ald { 227 u32 val; 228 struct { 229 u32 : 1; 230 u32 alo : 24; 231 u32 all : 7; 232 }; 233 }; 234 235 struct ale { 236 unsigned long i : 1; /* ALEN-Invalid Bit */ 237 unsigned long : 5; 238 unsigned long fo : 1; /* Fetch-Only Bit */ 239 unsigned long p : 1; /* Private Bit */ 240 unsigned long alesn : 8; /* Access-List-Entry Sequence Number */ 241 unsigned long aleax : 16; /* Access-List-Entry Authorization Index */ 242 unsigned long : 32; 243 unsigned long : 1; 244 unsigned long asteo : 25; /* ASN-Second-Table-Entry Origin */ 245 unsigned long : 6; 246 unsigned long astesn : 32; /* ASTE Sequence Number */ 247 }; 248 249 struct aste { 250 unsigned long i : 1; /* ASX-Invalid Bit */ 251 unsigned long ato : 29; /* Authority-Table Origin */ 252 unsigned long : 1; 253 unsigned long b : 1; /* Base-Space Bit */ 254 unsigned long ax : 16; /* Authorization Index */ 255 unsigned long atl : 12; /* Authority-Table Length */ 256 unsigned long : 2; 257 unsigned long ca : 1; /* Controlled-ASN Bit */ 258 unsigned long ra : 1; /* Reusable-ASN Bit */ 259 unsigned long asce : 64; /* Address-Space-Control Element */ 260 unsigned long ald : 32; 261 unsigned long astesn : 32; 262 /* .. more fields there */ 263 }; 264 265 int ipte_lock_held(struct kvm *kvm) 266 { 267 if (sclp.has_siif) { 268 int rc; 269 270 read_lock(&kvm->arch.sca_lock); 271 rc = kvm_s390_get_ipte_control(kvm)->kh != 0; 272 read_unlock(&kvm->arch.sca_lock); 273 return rc; 274 } 275 return kvm->arch.ipte_lock_count != 0; 276 } 277 278 static void ipte_lock_simple(struct kvm *kvm) 279 { 280 union ipte_control old, new, *ic; 281 282 mutex_lock(&kvm->arch.ipte_mutex); 283 kvm->arch.ipte_lock_count++; 284 if (kvm->arch.ipte_lock_count > 1) 285 goto out; 286 retry: 287 read_lock(&kvm->arch.sca_lock); 288 ic = kvm_s390_get_ipte_control(kvm); 289 do { 290 old = READ_ONCE(*ic); 291 if (old.k) { 292 read_unlock(&kvm->arch.sca_lock); 293 cond_resched(); 294 goto retry; 295 } 296 new = old; 297 new.k = 1; 298 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 299 read_unlock(&kvm->arch.sca_lock); 300 out: 301 mutex_unlock(&kvm->arch.ipte_mutex); 302 } 303 304 static void ipte_unlock_simple(struct kvm *kvm) 305 { 306 union ipte_control old, new, *ic; 307 308 mutex_lock(&kvm->arch.ipte_mutex); 309 kvm->arch.ipte_lock_count--; 310 if (kvm->arch.ipte_lock_count) 311 goto out; 312 read_lock(&kvm->arch.sca_lock); 313 ic = kvm_s390_get_ipte_control(kvm); 314 do { 315 old = READ_ONCE(*ic); 316 new = old; 317 new.k = 0; 318 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 319 read_unlock(&kvm->arch.sca_lock); 320 wake_up(&kvm->arch.ipte_wq); 321 out: 322 mutex_unlock(&kvm->arch.ipte_mutex); 323 } 324 325 static void ipte_lock_siif(struct kvm *kvm) 326 { 327 union ipte_control old, new, *ic; 328 329 retry: 330 read_lock(&kvm->arch.sca_lock); 331 ic = kvm_s390_get_ipte_control(kvm); 332 do { 333 old = READ_ONCE(*ic); 334 if (old.kg) { 335 read_unlock(&kvm->arch.sca_lock); 336 cond_resched(); 337 goto retry; 338 } 339 new = old; 340 new.k = 1; 341 new.kh++; 342 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 343 read_unlock(&kvm->arch.sca_lock); 344 } 345 346 static void ipte_unlock_siif(struct kvm *kvm) 347 { 348 union ipte_control old, new, *ic; 349 350 read_lock(&kvm->arch.sca_lock); 351 ic = kvm_s390_get_ipte_control(kvm); 352 do { 353 old = READ_ONCE(*ic); 354 new = old; 355 new.kh--; 356 if (!new.kh) 357 new.k = 0; 358 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 359 read_unlock(&kvm->arch.sca_lock); 360 if (!new.kh) 361 wake_up(&kvm->arch.ipte_wq); 362 } 363 364 void ipte_lock(struct kvm *kvm) 365 { 366 if (sclp.has_siif) 367 ipte_lock_siif(kvm); 368 else 369 ipte_lock_simple(kvm); 370 } 371 372 void ipte_unlock(struct kvm *kvm) 373 { 374 if (sclp.has_siif) 375 ipte_unlock_siif(kvm); 376 else 377 ipte_unlock_simple(kvm); 378 } 379 380 static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar, 381 enum gacc_mode mode) 382 { 383 union alet alet; 384 struct ale ale; 385 struct aste aste; 386 unsigned long ald_addr, authority_table_addr; 387 union ald ald; 388 int eax, rc; 389 u8 authority_table; 390 391 if (ar >= NUM_ACRS) 392 return -EINVAL; 393 394 save_access_regs(vcpu->run->s.regs.acrs); 395 alet.val = vcpu->run->s.regs.acrs[ar]; 396 397 if (ar == 0 || alet.val == 0) { 398 asce->val = vcpu->arch.sie_block->gcr[1]; 399 return 0; 400 } else if (alet.val == 1) { 401 asce->val = vcpu->arch.sie_block->gcr[7]; 402 return 0; 403 } 404 405 if (alet.reserved) 406 return PGM_ALET_SPECIFICATION; 407 408 if (alet.p) 409 ald_addr = vcpu->arch.sie_block->gcr[5]; 410 else 411 ald_addr = vcpu->arch.sie_block->gcr[2]; 412 ald_addr &= 0x7fffffc0; 413 414 rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald)); 415 if (rc) 416 return rc; 417 418 if (alet.alen / 8 > ald.all) 419 return PGM_ALEN_TRANSLATION; 420 421 if (0x7fffffff - ald.alo * 128 < alet.alen * 16) 422 return PGM_ADDRESSING; 423 424 rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale, 425 sizeof(struct ale)); 426 if (rc) 427 return rc; 428 429 if (ale.i == 1) 430 return PGM_ALEN_TRANSLATION; 431 if (ale.alesn != alet.alesn) 432 return PGM_ALE_SEQUENCE; 433 434 rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste)); 435 if (rc) 436 return rc; 437 438 if (aste.i) 439 return PGM_ASTE_VALIDITY; 440 if (aste.astesn != ale.astesn) 441 return PGM_ASTE_SEQUENCE; 442 443 if (ale.p == 1) { 444 eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff; 445 if (ale.aleax != eax) { 446 if (eax / 16 > aste.atl) 447 return PGM_EXTENDED_AUTHORITY; 448 449 authority_table_addr = aste.ato * 4 + eax / 4; 450 451 rc = read_guest_real(vcpu, authority_table_addr, 452 &authority_table, 453 sizeof(u8)); 454 if (rc) 455 return rc; 456 457 if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0) 458 return PGM_EXTENDED_AUTHORITY; 459 } 460 } 461 462 if (ale.fo == 1 && mode == GACC_STORE) 463 return PGM_PROTECTION; 464 465 asce->val = aste.asce; 466 return 0; 467 } 468 469 struct trans_exc_code_bits { 470 unsigned long addr : 52; /* Translation-exception Address */ 471 unsigned long fsi : 2; /* Access Exception Fetch/Store Indication */ 472 unsigned long : 2; 473 unsigned long b56 : 1; 474 unsigned long : 3; 475 unsigned long b60 : 1; 476 unsigned long b61 : 1; 477 unsigned long as : 2; /* ASCE Identifier */ 478 }; 479 480 enum { 481 FSI_UNKNOWN = 0, /* Unknown whether fetch or store */ 482 FSI_STORE = 1, /* Exception was due to store operation */ 483 FSI_FETCH = 2 /* Exception was due to fetch operation */ 484 }; 485 486 enum prot_type { 487 PROT_TYPE_LA = 0, 488 PROT_TYPE_KEYC = 1, 489 PROT_TYPE_ALC = 2, 490 PROT_TYPE_DAT = 3, 491 PROT_TYPE_IEP = 4, 492 /* Dummy value for passing an initialized value when code != PGM_PROTECTION */ 493 PROT_NONE, 494 }; 495 496 static int trans_exc_ending(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar, 497 enum gacc_mode mode, enum prot_type prot, bool terminate) 498 { 499 struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm; 500 struct trans_exc_code_bits *tec; 501 502 memset(pgm, 0, sizeof(*pgm)); 503 pgm->code = code; 504 tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code; 505 506 switch (code) { 507 case PGM_PROTECTION: 508 switch (prot) { 509 case PROT_NONE: 510 /* We should never get here, acts like termination */ 511 WARN_ON_ONCE(1); 512 break; 513 case PROT_TYPE_IEP: 514 tec->b61 = 1; 515 fallthrough; 516 case PROT_TYPE_LA: 517 tec->b56 = 1; 518 break; 519 case PROT_TYPE_KEYC: 520 tec->b60 = 1; 521 break; 522 case PROT_TYPE_ALC: 523 tec->b60 = 1; 524 fallthrough; 525 case PROT_TYPE_DAT: 526 tec->b61 = 1; 527 break; 528 } 529 if (terminate) { 530 tec->b56 = 0; 531 tec->b60 = 0; 532 tec->b61 = 0; 533 } 534 fallthrough; 535 case PGM_ASCE_TYPE: 536 case PGM_PAGE_TRANSLATION: 537 case PGM_REGION_FIRST_TRANS: 538 case PGM_REGION_SECOND_TRANS: 539 case PGM_REGION_THIRD_TRANS: 540 case PGM_SEGMENT_TRANSLATION: 541 /* 542 * op_access_id only applies to MOVE_PAGE -> set bit 61 543 * exc_access_id has to be set to 0 for some instructions. Both 544 * cases have to be handled by the caller. 545 */ 546 tec->addr = gva >> PAGE_SHIFT; 547 tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH; 548 tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as; 549 fallthrough; 550 case PGM_ALEN_TRANSLATION: 551 case PGM_ALE_SEQUENCE: 552 case PGM_ASTE_VALIDITY: 553 case PGM_ASTE_SEQUENCE: 554 case PGM_EXTENDED_AUTHORITY: 555 /* 556 * We can always store exc_access_id, as it is 557 * undefined for non-ar cases. It is undefined for 558 * most DAT protection exceptions. 559 */ 560 pgm->exc_access_id = ar; 561 break; 562 } 563 return code; 564 } 565 566 static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar, 567 enum gacc_mode mode, enum prot_type prot) 568 { 569 return trans_exc_ending(vcpu, code, gva, ar, mode, prot, false); 570 } 571 572 static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce, 573 unsigned long ga, u8 ar, enum gacc_mode mode) 574 { 575 int rc; 576 struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw); 577 578 if (!psw.dat) { 579 asce->val = 0; 580 asce->r = 1; 581 return 0; 582 } 583 584 if ((mode == GACC_IFETCH) && (psw.as != PSW_BITS_AS_HOME)) 585 psw.as = PSW_BITS_AS_PRIMARY; 586 587 switch (psw.as) { 588 case PSW_BITS_AS_PRIMARY: 589 asce->val = vcpu->arch.sie_block->gcr[1]; 590 return 0; 591 case PSW_BITS_AS_SECONDARY: 592 asce->val = vcpu->arch.sie_block->gcr[7]; 593 return 0; 594 case PSW_BITS_AS_HOME: 595 asce->val = vcpu->arch.sie_block->gcr[13]; 596 return 0; 597 case PSW_BITS_AS_ACCREG: 598 rc = ar_translation(vcpu, asce, ar, mode); 599 if (rc > 0) 600 return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC); 601 return rc; 602 } 603 return 0; 604 } 605 606 static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val) 607 { 608 return kvm_read_guest(kvm, gpa, val, sizeof(*val)); 609 } 610 611 /** 612 * guest_translate - translate a guest virtual into a guest absolute address 613 * @vcpu: virtual cpu 614 * @gva: guest virtual address 615 * @gpa: points to where guest physical (absolute) address should be stored 616 * @asce: effective asce 617 * @mode: indicates the access mode to be used 618 * @prot: returns the type for protection exceptions 619 * 620 * Translate a guest virtual address into a guest absolute address by means 621 * of dynamic address translation as specified by the architecture. 622 * If the resulting absolute address is not available in the configuration 623 * an addressing exception is indicated and @gpa will not be changed. 624 * 625 * Returns: - zero on success; @gpa contains the resulting absolute address 626 * - a negative value if guest access failed due to e.g. broken 627 * guest mapping 628 * - a positive value if an access exception happened. In this case 629 * the returned value is the program interruption code as defined 630 * by the architecture 631 */ 632 static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva, 633 unsigned long *gpa, const union asce asce, 634 enum gacc_mode mode, enum prot_type *prot) 635 { 636 union vaddress vaddr = {.addr = gva}; 637 union raddress raddr = {.addr = gva}; 638 union page_table_entry pte; 639 int dat_protection = 0; 640 int iep_protection = 0; 641 union ctlreg0 ctlreg0; 642 unsigned long ptr; 643 int edat1, edat2, iep; 644 645 ctlreg0.val = vcpu->arch.sie_block->gcr[0]; 646 edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8); 647 edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78); 648 iep = ctlreg0.iep && test_kvm_facility(vcpu->kvm, 130); 649 if (asce.r) 650 goto real_address; 651 ptr = asce.origin * PAGE_SIZE; 652 switch (asce.dt) { 653 case ASCE_TYPE_REGION1: 654 if (vaddr.rfx01 > asce.tl) 655 return PGM_REGION_FIRST_TRANS; 656 ptr += vaddr.rfx * 8; 657 break; 658 case ASCE_TYPE_REGION2: 659 if (vaddr.rfx) 660 return PGM_ASCE_TYPE; 661 if (vaddr.rsx01 > asce.tl) 662 return PGM_REGION_SECOND_TRANS; 663 ptr += vaddr.rsx * 8; 664 break; 665 case ASCE_TYPE_REGION3: 666 if (vaddr.rfx || vaddr.rsx) 667 return PGM_ASCE_TYPE; 668 if (vaddr.rtx01 > asce.tl) 669 return PGM_REGION_THIRD_TRANS; 670 ptr += vaddr.rtx * 8; 671 break; 672 case ASCE_TYPE_SEGMENT: 673 if (vaddr.rfx || vaddr.rsx || vaddr.rtx) 674 return PGM_ASCE_TYPE; 675 if (vaddr.sx01 > asce.tl) 676 return PGM_SEGMENT_TRANSLATION; 677 ptr += vaddr.sx * 8; 678 break; 679 } 680 switch (asce.dt) { 681 case ASCE_TYPE_REGION1: { 682 union region1_table_entry rfte; 683 684 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 685 return PGM_ADDRESSING; 686 if (deref_table(vcpu->kvm, ptr, &rfte.val)) 687 return -EFAULT; 688 if (rfte.i) 689 return PGM_REGION_FIRST_TRANS; 690 if (rfte.tt != TABLE_TYPE_REGION1) 691 return PGM_TRANSLATION_SPEC; 692 if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl) 693 return PGM_REGION_SECOND_TRANS; 694 if (edat1) 695 dat_protection |= rfte.p; 696 ptr = rfte.rto * PAGE_SIZE + vaddr.rsx * 8; 697 } 698 fallthrough; 699 case ASCE_TYPE_REGION2: { 700 union region2_table_entry rste; 701 702 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 703 return PGM_ADDRESSING; 704 if (deref_table(vcpu->kvm, ptr, &rste.val)) 705 return -EFAULT; 706 if (rste.i) 707 return PGM_REGION_SECOND_TRANS; 708 if (rste.tt != TABLE_TYPE_REGION2) 709 return PGM_TRANSLATION_SPEC; 710 if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl) 711 return PGM_REGION_THIRD_TRANS; 712 if (edat1) 713 dat_protection |= rste.p; 714 ptr = rste.rto * PAGE_SIZE + vaddr.rtx * 8; 715 } 716 fallthrough; 717 case ASCE_TYPE_REGION3: { 718 union region3_table_entry rtte; 719 720 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 721 return PGM_ADDRESSING; 722 if (deref_table(vcpu->kvm, ptr, &rtte.val)) 723 return -EFAULT; 724 if (rtte.i) 725 return PGM_REGION_THIRD_TRANS; 726 if (rtte.tt != TABLE_TYPE_REGION3) 727 return PGM_TRANSLATION_SPEC; 728 if (rtte.cr && asce.p && edat2) 729 return PGM_TRANSLATION_SPEC; 730 if (rtte.fc && edat2) { 731 dat_protection |= rtte.fc1.p; 732 iep_protection = rtte.fc1.iep; 733 raddr.rfaa = rtte.fc1.rfaa; 734 goto absolute_address; 735 } 736 if (vaddr.sx01 < rtte.fc0.tf) 737 return PGM_SEGMENT_TRANSLATION; 738 if (vaddr.sx01 > rtte.fc0.tl) 739 return PGM_SEGMENT_TRANSLATION; 740 if (edat1) 741 dat_protection |= rtte.fc0.p; 742 ptr = rtte.fc0.sto * PAGE_SIZE + vaddr.sx * 8; 743 } 744 fallthrough; 745 case ASCE_TYPE_SEGMENT: { 746 union segment_table_entry ste; 747 748 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 749 return PGM_ADDRESSING; 750 if (deref_table(vcpu->kvm, ptr, &ste.val)) 751 return -EFAULT; 752 if (ste.i) 753 return PGM_SEGMENT_TRANSLATION; 754 if (ste.tt != TABLE_TYPE_SEGMENT) 755 return PGM_TRANSLATION_SPEC; 756 if (ste.cs && asce.p) 757 return PGM_TRANSLATION_SPEC; 758 if (ste.fc && edat1) { 759 dat_protection |= ste.fc1.p; 760 iep_protection = ste.fc1.iep; 761 raddr.sfaa = ste.fc1.sfaa; 762 goto absolute_address; 763 } 764 dat_protection |= ste.fc0.p; 765 ptr = ste.fc0.pto * (PAGE_SIZE / 2) + vaddr.px * 8; 766 } 767 } 768 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 769 return PGM_ADDRESSING; 770 if (deref_table(vcpu->kvm, ptr, &pte.val)) 771 return -EFAULT; 772 if (pte.i) 773 return PGM_PAGE_TRANSLATION; 774 if (pte.z) 775 return PGM_TRANSLATION_SPEC; 776 dat_protection |= pte.p; 777 iep_protection = pte.iep; 778 raddr.pfra = pte.pfra; 779 real_address: 780 raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr); 781 absolute_address: 782 if (mode == GACC_STORE && dat_protection) { 783 *prot = PROT_TYPE_DAT; 784 return PGM_PROTECTION; 785 } 786 if (mode == GACC_IFETCH && iep_protection && iep) { 787 *prot = PROT_TYPE_IEP; 788 return PGM_PROTECTION; 789 } 790 if (kvm_is_error_gpa(vcpu->kvm, raddr.addr)) 791 return PGM_ADDRESSING; 792 *gpa = raddr.addr; 793 return 0; 794 } 795 796 static inline int is_low_address(unsigned long ga) 797 { 798 /* Check for address ranges 0..511 and 4096..4607 */ 799 return (ga & ~0x11fful) == 0; 800 } 801 802 static int low_address_protection_enabled(struct kvm_vcpu *vcpu, 803 const union asce asce) 804 { 805 union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]}; 806 psw_t *psw = &vcpu->arch.sie_block->gpsw; 807 808 if (!ctlreg0.lap) 809 return 0; 810 if (psw_bits(*psw).dat && asce.p) 811 return 0; 812 return 1; 813 } 814 815 static int vm_check_access_key(struct kvm *kvm, u8 access_key, 816 enum gacc_mode mode, gpa_t gpa) 817 { 818 u8 storage_key, access_control; 819 bool fetch_protected; 820 unsigned long hva; 821 int r; 822 823 if (access_key == 0) 824 return 0; 825 826 hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 827 if (kvm_is_error_hva(hva)) 828 return PGM_ADDRESSING; 829 830 mmap_read_lock(current->mm); 831 r = get_guest_storage_key(current->mm, hva, &storage_key); 832 mmap_read_unlock(current->mm); 833 if (r) 834 return r; 835 access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key); 836 if (access_control == access_key) 837 return 0; 838 fetch_protected = storage_key & _PAGE_FP_BIT; 839 if ((mode == GACC_FETCH || mode == GACC_IFETCH) && !fetch_protected) 840 return 0; 841 return PGM_PROTECTION; 842 } 843 844 static bool fetch_prot_override_applicable(struct kvm_vcpu *vcpu, enum gacc_mode mode, 845 union asce asce) 846 { 847 psw_t *psw = &vcpu->arch.sie_block->gpsw; 848 unsigned long override; 849 850 if (mode == GACC_FETCH || mode == GACC_IFETCH) { 851 /* check if fetch protection override enabled */ 852 override = vcpu->arch.sie_block->gcr[0]; 853 override &= CR0_FETCH_PROTECTION_OVERRIDE; 854 /* not applicable if subject to DAT && private space */ 855 override = override && !(psw_bits(*psw).dat && asce.p); 856 return override; 857 } 858 return false; 859 } 860 861 static bool fetch_prot_override_applies(unsigned long ga, unsigned int len) 862 { 863 return ga < 2048 && ga + len <= 2048; 864 } 865 866 static bool storage_prot_override_applicable(struct kvm_vcpu *vcpu) 867 { 868 /* check if storage protection override enabled */ 869 return vcpu->arch.sie_block->gcr[0] & CR0_STORAGE_PROTECTION_OVERRIDE; 870 } 871 872 static bool storage_prot_override_applies(u8 access_control) 873 { 874 /* matches special storage protection override key (9) -> allow */ 875 return access_control == PAGE_SPO_ACC; 876 } 877 878 static int vcpu_check_access_key(struct kvm_vcpu *vcpu, u8 access_key, 879 enum gacc_mode mode, union asce asce, gpa_t gpa, 880 unsigned long ga, unsigned int len) 881 { 882 u8 storage_key, access_control; 883 unsigned long hva; 884 int r; 885 886 /* access key 0 matches any storage key -> allow */ 887 if (access_key == 0) 888 return 0; 889 /* 890 * caller needs to ensure that gfn is accessible, so we can 891 * assume that this cannot fail 892 */ 893 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(gpa)); 894 mmap_read_lock(current->mm); 895 r = get_guest_storage_key(current->mm, hva, &storage_key); 896 mmap_read_unlock(current->mm); 897 if (r) 898 return r; 899 access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key); 900 /* access key matches storage key -> allow */ 901 if (access_control == access_key) 902 return 0; 903 if (mode == GACC_FETCH || mode == GACC_IFETCH) { 904 /* it is a fetch and fetch protection is off -> allow */ 905 if (!(storage_key & _PAGE_FP_BIT)) 906 return 0; 907 if (fetch_prot_override_applicable(vcpu, mode, asce) && 908 fetch_prot_override_applies(ga, len)) 909 return 0; 910 } 911 if (storage_prot_override_applicable(vcpu) && 912 storage_prot_override_applies(access_control)) 913 return 0; 914 return PGM_PROTECTION; 915 } 916 917 /** 918 * guest_range_to_gpas() - Calculate guest physical addresses of page fragments 919 * covering a logical range 920 * @vcpu: virtual cpu 921 * @ga: guest address, start of range 922 * @ar: access register 923 * @gpas: output argument, may be NULL 924 * @len: length of range in bytes 925 * @asce: address-space-control element to use for translation 926 * @mode: access mode 927 * @access_key: access key to mach the range's storage keys against 928 * 929 * Translate a logical range to a series of guest absolute addresses, 930 * such that the concatenation of page fragments starting at each gpa make up 931 * the whole range. 932 * The translation is performed as if done by the cpu for the given @asce, @ar, 933 * @mode and state of the @vcpu. 934 * If the translation causes an exception, its program interruption code is 935 * returned and the &struct kvm_s390_pgm_info pgm member of @vcpu is modified 936 * such that a subsequent call to kvm_s390_inject_prog_vcpu() will inject 937 * a correct exception into the guest. 938 * The resulting gpas are stored into @gpas, unless it is NULL. 939 * 940 * Note: All fragments except the first one start at the beginning of a page. 941 * When deriving the boundaries of a fragment from a gpa, all but the last 942 * fragment end at the end of the page. 943 * 944 * Return: 945 * * 0 - success 946 * * <0 - translation could not be performed, for example if guest 947 * memory could not be accessed 948 * * >0 - an access exception occurred. In this case the returned value 949 * is the program interruption code and the contents of pgm may 950 * be used to inject an exception into the guest. 951 */ 952 static int guest_range_to_gpas(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar, 953 unsigned long *gpas, unsigned long len, 954 const union asce asce, enum gacc_mode mode, 955 u8 access_key) 956 { 957 psw_t *psw = &vcpu->arch.sie_block->gpsw; 958 unsigned int offset = offset_in_page(ga); 959 unsigned int fragment_len; 960 int lap_enabled, rc = 0; 961 enum prot_type prot; 962 unsigned long gpa; 963 964 lap_enabled = low_address_protection_enabled(vcpu, asce); 965 while (min(PAGE_SIZE - offset, len) > 0) { 966 fragment_len = min(PAGE_SIZE - offset, len); 967 ga = kvm_s390_logical_to_effective(vcpu, ga); 968 if (mode == GACC_STORE && lap_enabled && is_low_address(ga)) 969 return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode, 970 PROT_TYPE_LA); 971 if (psw_bits(*psw).dat) { 972 rc = guest_translate(vcpu, ga, &gpa, asce, mode, &prot); 973 if (rc < 0) 974 return rc; 975 } else { 976 gpa = kvm_s390_real_to_abs(vcpu, ga); 977 if (kvm_is_error_gpa(vcpu->kvm, gpa)) { 978 rc = PGM_ADDRESSING; 979 prot = PROT_NONE; 980 } 981 } 982 if (rc) 983 return trans_exc(vcpu, rc, ga, ar, mode, prot); 984 rc = vcpu_check_access_key(vcpu, access_key, mode, asce, gpa, ga, 985 fragment_len); 986 if (rc) 987 return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_KEYC); 988 if (gpas) 989 *gpas++ = gpa; 990 offset = 0; 991 ga += fragment_len; 992 len -= fragment_len; 993 } 994 return 0; 995 } 996 997 static int access_guest_page(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa, 998 void *data, unsigned int len) 999 { 1000 const unsigned int offset = offset_in_page(gpa); 1001 const gfn_t gfn = gpa_to_gfn(gpa); 1002 int rc; 1003 1004 if (!gfn_to_memslot(kvm, gfn)) 1005 return PGM_ADDRESSING; 1006 if (mode == GACC_STORE) 1007 rc = kvm_write_guest_page(kvm, gfn, data, offset, len); 1008 else 1009 rc = kvm_read_guest_page(kvm, gfn, data, offset, len); 1010 return rc; 1011 } 1012 1013 static int 1014 access_guest_page_with_key(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa, 1015 void *data, unsigned int len, u8 access_key) 1016 { 1017 struct kvm_memory_slot *slot; 1018 bool writable; 1019 gfn_t gfn; 1020 hva_t hva; 1021 int rc; 1022 1023 gfn = gpa >> PAGE_SHIFT; 1024 slot = gfn_to_memslot(kvm, gfn); 1025 hva = gfn_to_hva_memslot_prot(slot, gfn, &writable); 1026 1027 if (kvm_is_error_hva(hva)) 1028 return PGM_ADDRESSING; 1029 /* 1030 * Check if it's a ro memslot, even tho that can't occur (they're unsupported). 1031 * Don't try to actually handle that case. 1032 */ 1033 if (!writable && mode == GACC_STORE) 1034 return -EOPNOTSUPP; 1035 hva += offset_in_page(gpa); 1036 if (mode == GACC_STORE) 1037 rc = copy_to_user_key((void __user *)hva, data, len, access_key); 1038 else 1039 rc = copy_from_user_key(data, (void __user *)hva, len, access_key); 1040 if (rc) 1041 return PGM_PROTECTION; 1042 if (mode == GACC_STORE) 1043 mark_page_dirty_in_slot(kvm, slot, gfn); 1044 return 0; 1045 } 1046 1047 int access_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, void *data, 1048 unsigned long len, enum gacc_mode mode, u8 access_key) 1049 { 1050 int offset = offset_in_page(gpa); 1051 int fragment_len; 1052 int rc; 1053 1054 while (min(PAGE_SIZE - offset, len) > 0) { 1055 fragment_len = min(PAGE_SIZE - offset, len); 1056 rc = access_guest_page_with_key(kvm, mode, gpa, data, fragment_len, access_key); 1057 if (rc) 1058 return rc; 1059 offset = 0; 1060 len -= fragment_len; 1061 data += fragment_len; 1062 gpa += fragment_len; 1063 } 1064 return 0; 1065 } 1066 1067 int access_guest_with_key(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar, 1068 void *data, unsigned long len, enum gacc_mode mode, 1069 u8 access_key) 1070 { 1071 psw_t *psw = &vcpu->arch.sie_block->gpsw; 1072 unsigned long nr_pages, idx; 1073 unsigned long gpa_array[2]; 1074 unsigned int fragment_len; 1075 unsigned long *gpas; 1076 enum prot_type prot; 1077 int need_ipte_lock; 1078 union asce asce; 1079 bool try_storage_prot_override; 1080 bool try_fetch_prot_override; 1081 int rc; 1082 1083 if (!len) 1084 return 0; 1085 ga = kvm_s390_logical_to_effective(vcpu, ga); 1086 rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode); 1087 if (rc) 1088 return rc; 1089 nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1; 1090 gpas = gpa_array; 1091 if (nr_pages > ARRAY_SIZE(gpa_array)) 1092 gpas = vmalloc(array_size(nr_pages, sizeof(unsigned long))); 1093 if (!gpas) 1094 return -ENOMEM; 1095 try_fetch_prot_override = fetch_prot_override_applicable(vcpu, mode, asce); 1096 try_storage_prot_override = storage_prot_override_applicable(vcpu); 1097 need_ipte_lock = psw_bits(*psw).dat && !asce.r; 1098 if (need_ipte_lock) 1099 ipte_lock(vcpu->kvm); 1100 /* 1101 * Since we do the access further down ultimately via a move instruction 1102 * that does key checking and returns an error in case of a protection 1103 * violation, we don't need to do the check during address translation. 1104 * Skip it by passing access key 0, which matches any storage key, 1105 * obviating the need for any further checks. As a result the check is 1106 * handled entirely in hardware on access, we only need to take care to 1107 * forego key protection checking if fetch protection override applies or 1108 * retry with the special key 9 in case of storage protection override. 1109 */ 1110 rc = guest_range_to_gpas(vcpu, ga, ar, gpas, len, asce, mode, 0); 1111 if (rc) 1112 goto out_unlock; 1113 for (idx = 0; idx < nr_pages; idx++) { 1114 fragment_len = min(PAGE_SIZE - offset_in_page(gpas[idx]), len); 1115 if (try_fetch_prot_override && fetch_prot_override_applies(ga, fragment_len)) { 1116 rc = access_guest_page(vcpu->kvm, mode, gpas[idx], 1117 data, fragment_len); 1118 } else { 1119 rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx], 1120 data, fragment_len, access_key); 1121 } 1122 if (rc == PGM_PROTECTION && try_storage_prot_override) 1123 rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx], 1124 data, fragment_len, PAGE_SPO_ACC); 1125 if (rc) 1126 break; 1127 len -= fragment_len; 1128 data += fragment_len; 1129 ga = kvm_s390_logical_to_effective(vcpu, ga + fragment_len); 1130 } 1131 if (rc > 0) { 1132 bool terminate = (mode == GACC_STORE) && (idx > 0); 1133 1134 if (rc == PGM_PROTECTION) 1135 prot = PROT_TYPE_KEYC; 1136 else 1137 prot = PROT_NONE; 1138 rc = trans_exc_ending(vcpu, rc, ga, ar, mode, prot, terminate); 1139 } 1140 out_unlock: 1141 if (need_ipte_lock) 1142 ipte_unlock(vcpu->kvm); 1143 if (nr_pages > ARRAY_SIZE(gpa_array)) 1144 vfree(gpas); 1145 return rc; 1146 } 1147 1148 int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra, 1149 void *data, unsigned long len, enum gacc_mode mode) 1150 { 1151 unsigned int fragment_len; 1152 unsigned long gpa; 1153 int rc = 0; 1154 1155 while (len && !rc) { 1156 gpa = kvm_s390_real_to_abs(vcpu, gra); 1157 fragment_len = min(PAGE_SIZE - offset_in_page(gpa), len); 1158 rc = access_guest_page(vcpu->kvm, mode, gpa, data, fragment_len); 1159 len -= fragment_len; 1160 gra += fragment_len; 1161 data += fragment_len; 1162 } 1163 if (rc > 0) 1164 vcpu->arch.pgm.code = rc; 1165 return rc; 1166 } 1167 1168 /** 1169 * cmpxchg_guest_abs_with_key() - Perform cmpxchg on guest absolute address. 1170 * @kvm: Virtual machine instance. 1171 * @gpa: Absolute guest address of the location to be changed. 1172 * @len: Operand length of the cmpxchg, required: 1 <= len <= 16. Providing a 1173 * non power of two will result in failure. 1174 * @old_addr: Pointer to old value. If the location at @gpa contains this value, 1175 * the exchange will succeed. After calling cmpxchg_guest_abs_with_key() 1176 * *@old_addr contains the value at @gpa before the attempt to 1177 * exchange the value. 1178 * @new: The value to place at @gpa. 1179 * @access_key: The access key to use for the guest access. 1180 * @success: output value indicating if an exchange occurred. 1181 * 1182 * Atomically exchange the value at @gpa by @new, if it contains *@old. 1183 * Honors storage keys. 1184 * 1185 * Return: * 0: successful exchange 1186 * * >0: a program interruption code indicating the reason cmpxchg could 1187 * not be attempted 1188 * * -EINVAL: address misaligned or len not power of two 1189 * * -EAGAIN: transient failure (len 1 or 2) 1190 * * -EOPNOTSUPP: read-only memslot (should never occur) 1191 */ 1192 int cmpxchg_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, int len, 1193 __uint128_t *old_addr, __uint128_t new, 1194 u8 access_key, bool *success) 1195 { 1196 gfn_t gfn = gpa_to_gfn(gpa); 1197 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1198 bool writable; 1199 hva_t hva; 1200 int ret; 1201 1202 if (!IS_ALIGNED(gpa, len)) 1203 return -EINVAL; 1204 1205 hva = gfn_to_hva_memslot_prot(slot, gfn, &writable); 1206 if (kvm_is_error_hva(hva)) 1207 return PGM_ADDRESSING; 1208 /* 1209 * Check if it's a read-only memslot, even though that cannot occur 1210 * since those are unsupported. 1211 * Don't try to actually handle that case. 1212 */ 1213 if (!writable) 1214 return -EOPNOTSUPP; 1215 1216 hva += offset_in_page(gpa); 1217 /* 1218 * The cmpxchg_user_key macro depends on the type of "old", so we need 1219 * a case for each valid length and get some code duplication as long 1220 * as we don't introduce a new macro. 1221 */ 1222 switch (len) { 1223 case 1: { 1224 u8 old; 1225 1226 ret = cmpxchg_user_key((u8 __user *)hva, &old, *old_addr, new, access_key); 1227 *success = !ret && old == *old_addr; 1228 *old_addr = old; 1229 break; 1230 } 1231 case 2: { 1232 u16 old; 1233 1234 ret = cmpxchg_user_key((u16 __user *)hva, &old, *old_addr, new, access_key); 1235 *success = !ret && old == *old_addr; 1236 *old_addr = old; 1237 break; 1238 } 1239 case 4: { 1240 u32 old; 1241 1242 ret = cmpxchg_user_key((u32 __user *)hva, &old, *old_addr, new, access_key); 1243 *success = !ret && old == *old_addr; 1244 *old_addr = old; 1245 break; 1246 } 1247 case 8: { 1248 u64 old; 1249 1250 ret = cmpxchg_user_key((u64 __user *)hva, &old, *old_addr, new, access_key); 1251 *success = !ret && old == *old_addr; 1252 *old_addr = old; 1253 break; 1254 } 1255 case 16: { 1256 __uint128_t old; 1257 1258 ret = cmpxchg_user_key((__uint128_t __user *)hva, &old, *old_addr, new, access_key); 1259 *success = !ret && old == *old_addr; 1260 *old_addr = old; 1261 break; 1262 } 1263 default: 1264 return -EINVAL; 1265 } 1266 if (*success) 1267 mark_page_dirty_in_slot(kvm, slot, gfn); 1268 /* 1269 * Assume that the fault is caused by protection, either key protection 1270 * or user page write protection. 1271 */ 1272 if (ret == -EFAULT) 1273 ret = PGM_PROTECTION; 1274 return ret; 1275 } 1276 1277 /** 1278 * guest_translate_address_with_key - translate guest logical into guest absolute address 1279 * @vcpu: virtual cpu 1280 * @gva: Guest virtual address 1281 * @ar: Access register 1282 * @gpa: Guest physical address 1283 * @mode: Translation access mode 1284 * @access_key: access key to mach the storage key with 1285 * 1286 * Parameter semantics are the same as the ones from guest_translate. 1287 * The memory contents at the guest address are not changed. 1288 * 1289 * Note: The IPTE lock is not taken during this function, so the caller 1290 * has to take care of this. 1291 */ 1292 int guest_translate_address_with_key(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar, 1293 unsigned long *gpa, enum gacc_mode mode, 1294 u8 access_key) 1295 { 1296 union asce asce; 1297 int rc; 1298 1299 gva = kvm_s390_logical_to_effective(vcpu, gva); 1300 rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode); 1301 if (rc) 1302 return rc; 1303 return guest_range_to_gpas(vcpu, gva, ar, gpa, 1, asce, mode, 1304 access_key); 1305 } 1306 1307 /** 1308 * check_gva_range - test a range of guest virtual addresses for accessibility 1309 * @vcpu: virtual cpu 1310 * @gva: Guest virtual address 1311 * @ar: Access register 1312 * @length: Length of test range 1313 * @mode: Translation access mode 1314 * @access_key: access key to mach the storage keys with 1315 */ 1316 int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar, 1317 unsigned long length, enum gacc_mode mode, u8 access_key) 1318 { 1319 union asce asce; 1320 int rc = 0; 1321 1322 rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode); 1323 if (rc) 1324 return rc; 1325 ipte_lock(vcpu->kvm); 1326 rc = guest_range_to_gpas(vcpu, gva, ar, NULL, length, asce, mode, 1327 access_key); 1328 ipte_unlock(vcpu->kvm); 1329 1330 return rc; 1331 } 1332 1333 /** 1334 * check_gpa_range - test a range of guest physical addresses for accessibility 1335 * @kvm: virtual machine instance 1336 * @gpa: guest physical address 1337 * @length: length of test range 1338 * @mode: access mode to test, relevant for storage keys 1339 * @access_key: access key to mach the storage keys with 1340 */ 1341 int check_gpa_range(struct kvm *kvm, unsigned long gpa, unsigned long length, 1342 enum gacc_mode mode, u8 access_key) 1343 { 1344 unsigned int fragment_len; 1345 int rc = 0; 1346 1347 while (length && !rc) { 1348 fragment_len = min(PAGE_SIZE - offset_in_page(gpa), length); 1349 rc = vm_check_access_key(kvm, access_key, mode, gpa); 1350 length -= fragment_len; 1351 gpa += fragment_len; 1352 } 1353 return rc; 1354 } 1355 1356 /** 1357 * kvm_s390_check_low_addr_prot_real - check for low-address protection 1358 * @vcpu: virtual cpu 1359 * @gra: Guest real address 1360 * 1361 * Checks whether an address is subject to low-address protection and set 1362 * up vcpu->arch.pgm accordingly if necessary. 1363 * 1364 * Return: 0 if no protection exception, or PGM_PROTECTION if protected. 1365 */ 1366 int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra) 1367 { 1368 union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]}; 1369 1370 if (!ctlreg0.lap || !is_low_address(gra)) 1371 return 0; 1372 return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA); 1373 } 1374 1375 /** 1376 * kvm_s390_shadow_tables - walk the guest page table and create shadow tables 1377 * @sg: pointer to the shadow guest address space structure 1378 * @saddr: faulting address in the shadow gmap 1379 * @pgt: pointer to the beginning of the page table for the given address if 1380 * successful (return value 0), or to the first invalid DAT entry in 1381 * case of exceptions (return value > 0) 1382 * @dat_protection: referenced memory is write protected 1383 * @fake: pgt references contiguous guest memory block, not a pgtable 1384 */ 1385 static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr, 1386 unsigned long *pgt, int *dat_protection, 1387 int *fake) 1388 { 1389 struct kvm *kvm; 1390 struct gmap *parent; 1391 union asce asce; 1392 union vaddress vaddr; 1393 unsigned long ptr; 1394 int rc; 1395 1396 *fake = 0; 1397 *dat_protection = 0; 1398 kvm = sg->private; 1399 parent = sg->parent; 1400 vaddr.addr = saddr; 1401 asce.val = sg->orig_asce; 1402 ptr = asce.origin * PAGE_SIZE; 1403 if (asce.r) { 1404 *fake = 1; 1405 ptr = 0; 1406 asce.dt = ASCE_TYPE_REGION1; 1407 } 1408 switch (asce.dt) { 1409 case ASCE_TYPE_REGION1: 1410 if (vaddr.rfx01 > asce.tl && !*fake) 1411 return PGM_REGION_FIRST_TRANS; 1412 break; 1413 case ASCE_TYPE_REGION2: 1414 if (vaddr.rfx) 1415 return PGM_ASCE_TYPE; 1416 if (vaddr.rsx01 > asce.tl) 1417 return PGM_REGION_SECOND_TRANS; 1418 break; 1419 case ASCE_TYPE_REGION3: 1420 if (vaddr.rfx || vaddr.rsx) 1421 return PGM_ASCE_TYPE; 1422 if (vaddr.rtx01 > asce.tl) 1423 return PGM_REGION_THIRD_TRANS; 1424 break; 1425 case ASCE_TYPE_SEGMENT: 1426 if (vaddr.rfx || vaddr.rsx || vaddr.rtx) 1427 return PGM_ASCE_TYPE; 1428 if (vaddr.sx01 > asce.tl) 1429 return PGM_SEGMENT_TRANSLATION; 1430 break; 1431 } 1432 1433 switch (asce.dt) { 1434 case ASCE_TYPE_REGION1: { 1435 union region1_table_entry rfte; 1436 1437 if (*fake) { 1438 ptr += vaddr.rfx * _REGION1_SIZE; 1439 rfte.val = ptr; 1440 goto shadow_r2t; 1441 } 1442 *pgt = ptr + vaddr.rfx * 8; 1443 rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val); 1444 if (rc) 1445 return rc; 1446 if (rfte.i) 1447 return PGM_REGION_FIRST_TRANS; 1448 if (rfte.tt != TABLE_TYPE_REGION1) 1449 return PGM_TRANSLATION_SPEC; 1450 if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl) 1451 return PGM_REGION_SECOND_TRANS; 1452 if (sg->edat_level >= 1) 1453 *dat_protection |= rfte.p; 1454 ptr = rfte.rto * PAGE_SIZE; 1455 shadow_r2t: 1456 rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake); 1457 if (rc) 1458 return rc; 1459 kvm->stat.gmap_shadow_r1_entry++; 1460 } 1461 fallthrough; 1462 case ASCE_TYPE_REGION2: { 1463 union region2_table_entry rste; 1464 1465 if (*fake) { 1466 ptr += vaddr.rsx * _REGION2_SIZE; 1467 rste.val = ptr; 1468 goto shadow_r3t; 1469 } 1470 *pgt = ptr + vaddr.rsx * 8; 1471 rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val); 1472 if (rc) 1473 return rc; 1474 if (rste.i) 1475 return PGM_REGION_SECOND_TRANS; 1476 if (rste.tt != TABLE_TYPE_REGION2) 1477 return PGM_TRANSLATION_SPEC; 1478 if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl) 1479 return PGM_REGION_THIRD_TRANS; 1480 if (sg->edat_level >= 1) 1481 *dat_protection |= rste.p; 1482 ptr = rste.rto * PAGE_SIZE; 1483 shadow_r3t: 1484 rste.p |= *dat_protection; 1485 rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake); 1486 if (rc) 1487 return rc; 1488 kvm->stat.gmap_shadow_r2_entry++; 1489 } 1490 fallthrough; 1491 case ASCE_TYPE_REGION3: { 1492 union region3_table_entry rtte; 1493 1494 if (*fake) { 1495 ptr += vaddr.rtx * _REGION3_SIZE; 1496 rtte.val = ptr; 1497 goto shadow_sgt; 1498 } 1499 *pgt = ptr + vaddr.rtx * 8; 1500 rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val); 1501 if (rc) 1502 return rc; 1503 if (rtte.i) 1504 return PGM_REGION_THIRD_TRANS; 1505 if (rtte.tt != TABLE_TYPE_REGION3) 1506 return PGM_TRANSLATION_SPEC; 1507 if (rtte.cr && asce.p && sg->edat_level >= 2) 1508 return PGM_TRANSLATION_SPEC; 1509 if (rtte.fc && sg->edat_level >= 2) { 1510 *dat_protection |= rtte.fc0.p; 1511 *fake = 1; 1512 ptr = rtte.fc1.rfaa * _REGION3_SIZE; 1513 rtte.val = ptr; 1514 goto shadow_sgt; 1515 } 1516 if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl) 1517 return PGM_SEGMENT_TRANSLATION; 1518 if (sg->edat_level >= 1) 1519 *dat_protection |= rtte.fc0.p; 1520 ptr = rtte.fc0.sto * PAGE_SIZE; 1521 shadow_sgt: 1522 rtte.fc0.p |= *dat_protection; 1523 rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake); 1524 if (rc) 1525 return rc; 1526 kvm->stat.gmap_shadow_r3_entry++; 1527 } 1528 fallthrough; 1529 case ASCE_TYPE_SEGMENT: { 1530 union segment_table_entry ste; 1531 1532 if (*fake) { 1533 ptr += vaddr.sx * _SEGMENT_SIZE; 1534 ste.val = ptr; 1535 goto shadow_pgt; 1536 } 1537 *pgt = ptr + vaddr.sx * 8; 1538 rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val); 1539 if (rc) 1540 return rc; 1541 if (ste.i) 1542 return PGM_SEGMENT_TRANSLATION; 1543 if (ste.tt != TABLE_TYPE_SEGMENT) 1544 return PGM_TRANSLATION_SPEC; 1545 if (ste.cs && asce.p) 1546 return PGM_TRANSLATION_SPEC; 1547 *dat_protection |= ste.fc0.p; 1548 if (ste.fc && sg->edat_level >= 1) { 1549 *fake = 1; 1550 ptr = ste.fc1.sfaa * _SEGMENT_SIZE; 1551 ste.val = ptr; 1552 goto shadow_pgt; 1553 } 1554 ptr = ste.fc0.pto * (PAGE_SIZE / 2); 1555 shadow_pgt: 1556 ste.fc0.p |= *dat_protection; 1557 rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake); 1558 if (rc) 1559 return rc; 1560 kvm->stat.gmap_shadow_sg_entry++; 1561 } 1562 } 1563 /* Return the parent address of the page table */ 1564 *pgt = ptr; 1565 return 0; 1566 } 1567 1568 /** 1569 * kvm_s390_shadow_fault - handle fault on a shadow page table 1570 * @vcpu: virtual cpu 1571 * @sg: pointer to the shadow guest address space structure 1572 * @saddr: faulting address in the shadow gmap 1573 * @datptr: will contain the address of the faulting DAT table entry, or of 1574 * the valid leaf, plus some flags 1575 * 1576 * Returns: - 0 if the shadow fault was successfully resolved 1577 * - > 0 (pgm exception code) on exceptions while faulting 1578 * - -EAGAIN if the caller can retry immediately 1579 * - -EFAULT when accessing invalid guest addresses 1580 * - -ENOMEM if out of memory 1581 */ 1582 int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg, 1583 unsigned long saddr, unsigned long *datptr) 1584 { 1585 union vaddress vaddr; 1586 union page_table_entry pte; 1587 unsigned long pgt = 0; 1588 int dat_protection, fake; 1589 int rc; 1590 1591 mmap_read_lock(sg->mm); 1592 /* 1593 * We don't want any guest-2 tables to change - so the parent 1594 * tables/pointers we read stay valid - unshadowing is however 1595 * always possible - only guest_table_lock protects us. 1596 */ 1597 ipte_lock(vcpu->kvm); 1598 1599 rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake); 1600 if (rc) 1601 rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection, 1602 &fake); 1603 1604 vaddr.addr = saddr; 1605 if (fake) { 1606 pte.val = pgt + vaddr.px * PAGE_SIZE; 1607 goto shadow_page; 1608 } 1609 1610 switch (rc) { 1611 case PGM_SEGMENT_TRANSLATION: 1612 case PGM_REGION_THIRD_TRANS: 1613 case PGM_REGION_SECOND_TRANS: 1614 case PGM_REGION_FIRST_TRANS: 1615 pgt |= PEI_NOT_PTE; 1616 break; 1617 case 0: 1618 pgt += vaddr.px * 8; 1619 rc = gmap_read_table(sg->parent, pgt, &pte.val); 1620 } 1621 if (datptr) 1622 *datptr = pgt | dat_protection * PEI_DAT_PROT; 1623 if (!rc && pte.i) 1624 rc = PGM_PAGE_TRANSLATION; 1625 if (!rc && pte.z) 1626 rc = PGM_TRANSLATION_SPEC; 1627 shadow_page: 1628 pte.p |= dat_protection; 1629 if (!rc) 1630 rc = gmap_shadow_page(sg, saddr, __pte(pte.val)); 1631 vcpu->kvm->stat.gmap_shadow_pg_entry++; 1632 ipte_unlock(vcpu->kvm); 1633 mmap_read_unlock(sg->mm); 1634 return rc; 1635 } 1636