xref: /openbmc/linux/arch/s390/kvm/gaccess.c (revision 3ca9760fdfa411f7e5db54b3437fbb858d2ec825)
1  /*
2   * guest access functions
3   *
4   * Copyright IBM Corp. 2014
5   *
6   */
7  
8  #include <linux/vmalloc.h>
9  #include <linux/err.h>
10  #include <asm/pgtable.h>
11  #include <asm/gmap.h>
12  #include "kvm-s390.h"
13  #include "gaccess.h"
14  #include <asm/switch_to.h>
15  
16  union asce {
17  	unsigned long val;
18  	struct {
19  		unsigned long origin : 52; /* Region- or Segment-Table Origin */
20  		unsigned long	 : 2;
21  		unsigned long g  : 1; /* Subspace Group Control */
22  		unsigned long p  : 1; /* Private Space Control */
23  		unsigned long s  : 1; /* Storage-Alteration-Event Control */
24  		unsigned long x  : 1; /* Space-Switch-Event Control */
25  		unsigned long r  : 1; /* Real-Space Control */
26  		unsigned long	 : 1;
27  		unsigned long dt : 2; /* Designation-Type Control */
28  		unsigned long tl : 2; /* Region- or Segment-Table Length */
29  	};
30  };
31  
32  enum {
33  	ASCE_TYPE_SEGMENT = 0,
34  	ASCE_TYPE_REGION3 = 1,
35  	ASCE_TYPE_REGION2 = 2,
36  	ASCE_TYPE_REGION1 = 3
37  };
38  
39  union region1_table_entry {
40  	unsigned long val;
41  	struct {
42  		unsigned long rto: 52;/* Region-Table Origin */
43  		unsigned long	 : 2;
44  		unsigned long p  : 1; /* DAT-Protection Bit */
45  		unsigned long	 : 1;
46  		unsigned long tf : 2; /* Region-Second-Table Offset */
47  		unsigned long i  : 1; /* Region-Invalid Bit */
48  		unsigned long	 : 1;
49  		unsigned long tt : 2; /* Table-Type Bits */
50  		unsigned long tl : 2; /* Region-Second-Table Length */
51  	};
52  };
53  
54  union region2_table_entry {
55  	unsigned long val;
56  	struct {
57  		unsigned long rto: 52;/* Region-Table Origin */
58  		unsigned long	 : 2;
59  		unsigned long p  : 1; /* DAT-Protection Bit */
60  		unsigned long	 : 1;
61  		unsigned long tf : 2; /* Region-Third-Table Offset */
62  		unsigned long i  : 1; /* Region-Invalid Bit */
63  		unsigned long	 : 1;
64  		unsigned long tt : 2; /* Table-Type Bits */
65  		unsigned long tl : 2; /* Region-Third-Table Length */
66  	};
67  };
68  
69  struct region3_table_entry_fc0 {
70  	unsigned long sto: 52;/* Segment-Table Origin */
71  	unsigned long	 : 1;
72  	unsigned long fc : 1; /* Format-Control */
73  	unsigned long p  : 1; /* DAT-Protection Bit */
74  	unsigned long	 : 1;
75  	unsigned long tf : 2; /* Segment-Table Offset */
76  	unsigned long i  : 1; /* Region-Invalid Bit */
77  	unsigned long cr : 1; /* Common-Region Bit */
78  	unsigned long tt : 2; /* Table-Type Bits */
79  	unsigned long tl : 2; /* Segment-Table Length */
80  };
81  
82  struct region3_table_entry_fc1 {
83  	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
84  	unsigned long	 : 14;
85  	unsigned long av : 1; /* ACCF-Validity Control */
86  	unsigned long acc: 4; /* Access-Control Bits */
87  	unsigned long f  : 1; /* Fetch-Protection Bit */
88  	unsigned long fc : 1; /* Format-Control */
89  	unsigned long p  : 1; /* DAT-Protection Bit */
90  	unsigned long co : 1; /* Change-Recording Override */
91  	unsigned long	 : 2;
92  	unsigned long i  : 1; /* Region-Invalid Bit */
93  	unsigned long cr : 1; /* Common-Region Bit */
94  	unsigned long tt : 2; /* Table-Type Bits */
95  	unsigned long	 : 2;
96  };
97  
98  union region3_table_entry {
99  	unsigned long val;
100  	struct region3_table_entry_fc0 fc0;
101  	struct region3_table_entry_fc1 fc1;
102  	struct {
103  		unsigned long	 : 53;
104  		unsigned long fc : 1; /* Format-Control */
105  		unsigned long	 : 4;
106  		unsigned long i  : 1; /* Region-Invalid Bit */
107  		unsigned long cr : 1; /* Common-Region Bit */
108  		unsigned long tt : 2; /* Table-Type Bits */
109  		unsigned long	 : 2;
110  	};
111  };
112  
113  struct segment_entry_fc0 {
114  	unsigned long pto: 53;/* Page-Table Origin */
115  	unsigned long fc : 1; /* Format-Control */
116  	unsigned long p  : 1; /* DAT-Protection Bit */
117  	unsigned long	 : 3;
118  	unsigned long i  : 1; /* Segment-Invalid Bit */
119  	unsigned long cs : 1; /* Common-Segment Bit */
120  	unsigned long tt : 2; /* Table-Type Bits */
121  	unsigned long	 : 2;
122  };
123  
124  struct segment_entry_fc1 {
125  	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
126  	unsigned long	 : 3;
127  	unsigned long av : 1; /* ACCF-Validity Control */
128  	unsigned long acc: 4; /* Access-Control Bits */
129  	unsigned long f  : 1; /* Fetch-Protection Bit */
130  	unsigned long fc : 1; /* Format-Control */
131  	unsigned long p  : 1; /* DAT-Protection Bit */
132  	unsigned long co : 1; /* Change-Recording Override */
133  	unsigned long	 : 2;
134  	unsigned long i  : 1; /* Segment-Invalid Bit */
135  	unsigned long cs : 1; /* Common-Segment Bit */
136  	unsigned long tt : 2; /* Table-Type Bits */
137  	unsigned long	 : 2;
138  };
139  
140  union segment_table_entry {
141  	unsigned long val;
142  	struct segment_entry_fc0 fc0;
143  	struct segment_entry_fc1 fc1;
144  	struct {
145  		unsigned long	 : 53;
146  		unsigned long fc : 1; /* Format-Control */
147  		unsigned long	 : 4;
148  		unsigned long i  : 1; /* Segment-Invalid Bit */
149  		unsigned long cs : 1; /* Common-Segment Bit */
150  		unsigned long tt : 2; /* Table-Type Bits */
151  		unsigned long	 : 2;
152  	};
153  };
154  
155  enum {
156  	TABLE_TYPE_SEGMENT = 0,
157  	TABLE_TYPE_REGION3 = 1,
158  	TABLE_TYPE_REGION2 = 2,
159  	TABLE_TYPE_REGION1 = 3
160  };
161  
162  union page_table_entry {
163  	unsigned long val;
164  	struct {
165  		unsigned long pfra : 52; /* Page-Frame Real Address */
166  		unsigned long z  : 1; /* Zero Bit */
167  		unsigned long i  : 1; /* Page-Invalid Bit */
168  		unsigned long p  : 1; /* DAT-Protection Bit */
169  		unsigned long co : 1; /* Change-Recording Override */
170  		unsigned long	 : 8;
171  	};
172  };
173  
174  /*
175   * vaddress union in order to easily decode a virtual address into its
176   * region first index, region second index etc. parts.
177   */
178  union vaddress {
179  	unsigned long addr;
180  	struct {
181  		unsigned long rfx : 11;
182  		unsigned long rsx : 11;
183  		unsigned long rtx : 11;
184  		unsigned long sx  : 11;
185  		unsigned long px  : 8;
186  		unsigned long bx  : 12;
187  	};
188  	struct {
189  		unsigned long rfx01 : 2;
190  		unsigned long	    : 9;
191  		unsigned long rsx01 : 2;
192  		unsigned long	    : 9;
193  		unsigned long rtx01 : 2;
194  		unsigned long	    : 9;
195  		unsigned long sx01  : 2;
196  		unsigned long	    : 29;
197  	};
198  };
199  
200  /*
201   * raddress union which will contain the result (real or absolute address)
202   * after a page table walk. The rfaa, sfaa and pfra members are used to
203   * simply assign them the value of a region, segment or page table entry.
204   */
205  union raddress {
206  	unsigned long addr;
207  	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
208  	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
209  	unsigned long pfra : 52; /* Page-Frame Real Address */
210  };
211  
212  union alet {
213  	u32 val;
214  	struct {
215  		u32 reserved : 7;
216  		u32 p        : 1;
217  		u32 alesn    : 8;
218  		u32 alen     : 16;
219  	};
220  };
221  
222  union ald {
223  	u32 val;
224  	struct {
225  		u32     : 1;
226  		u32 alo : 24;
227  		u32 all : 7;
228  	};
229  };
230  
231  struct ale {
232  	unsigned long i      : 1; /* ALEN-Invalid Bit */
233  	unsigned long        : 5;
234  	unsigned long fo     : 1; /* Fetch-Only Bit */
235  	unsigned long p      : 1; /* Private Bit */
236  	unsigned long alesn  : 8; /* Access-List-Entry Sequence Number */
237  	unsigned long aleax  : 16; /* Access-List-Entry Authorization Index */
238  	unsigned long        : 32;
239  	unsigned long        : 1;
240  	unsigned long asteo  : 25; /* ASN-Second-Table-Entry Origin */
241  	unsigned long        : 6;
242  	unsigned long astesn : 32; /* ASTE Sequence Number */
243  } __packed;
244  
245  struct aste {
246  	unsigned long i      : 1; /* ASX-Invalid Bit */
247  	unsigned long ato    : 29; /* Authority-Table Origin */
248  	unsigned long        : 1;
249  	unsigned long b      : 1; /* Base-Space Bit */
250  	unsigned long ax     : 16; /* Authorization Index */
251  	unsigned long atl    : 12; /* Authority-Table Length */
252  	unsigned long        : 2;
253  	unsigned long ca     : 1; /* Controlled-ASN Bit */
254  	unsigned long ra     : 1; /* Reusable-ASN Bit */
255  	unsigned long asce   : 64; /* Address-Space-Control Element */
256  	unsigned long ald    : 32;
257  	unsigned long astesn : 32;
258  	/* .. more fields there */
259  } __packed;
260  
261  int ipte_lock_held(struct kvm_vcpu *vcpu)
262  {
263  	if (vcpu->arch.sie_block->eca & 1) {
264  		int rc;
265  
266  		read_lock(&vcpu->kvm->arch.sca_lock);
267  		rc = kvm_s390_get_ipte_control(vcpu->kvm)->kh != 0;
268  		read_unlock(&vcpu->kvm->arch.sca_lock);
269  		return rc;
270  	}
271  	return vcpu->kvm->arch.ipte_lock_count != 0;
272  }
273  
274  static void ipte_lock_simple(struct kvm_vcpu *vcpu)
275  {
276  	union ipte_control old, new, *ic;
277  
278  	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
279  	vcpu->kvm->arch.ipte_lock_count++;
280  	if (vcpu->kvm->arch.ipte_lock_count > 1)
281  		goto out;
282  retry:
283  	read_lock(&vcpu->kvm->arch.sca_lock);
284  	ic = kvm_s390_get_ipte_control(vcpu->kvm);
285  	do {
286  		old = READ_ONCE(*ic);
287  		if (old.k) {
288  			read_unlock(&vcpu->kvm->arch.sca_lock);
289  			cond_resched();
290  			goto retry;
291  		}
292  		new = old;
293  		new.k = 1;
294  	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
295  	read_unlock(&vcpu->kvm->arch.sca_lock);
296  out:
297  	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
298  }
299  
300  static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
301  {
302  	union ipte_control old, new, *ic;
303  
304  	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
305  	vcpu->kvm->arch.ipte_lock_count--;
306  	if (vcpu->kvm->arch.ipte_lock_count)
307  		goto out;
308  	read_lock(&vcpu->kvm->arch.sca_lock);
309  	ic = kvm_s390_get_ipte_control(vcpu->kvm);
310  	do {
311  		old = READ_ONCE(*ic);
312  		new = old;
313  		new.k = 0;
314  	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
315  	read_unlock(&vcpu->kvm->arch.sca_lock);
316  	wake_up(&vcpu->kvm->arch.ipte_wq);
317  out:
318  	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
319  }
320  
321  static void ipte_lock_siif(struct kvm_vcpu *vcpu)
322  {
323  	union ipte_control old, new, *ic;
324  
325  retry:
326  	read_lock(&vcpu->kvm->arch.sca_lock);
327  	ic = kvm_s390_get_ipte_control(vcpu->kvm);
328  	do {
329  		old = READ_ONCE(*ic);
330  		if (old.kg) {
331  			read_unlock(&vcpu->kvm->arch.sca_lock);
332  			cond_resched();
333  			goto retry;
334  		}
335  		new = old;
336  		new.k = 1;
337  		new.kh++;
338  	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
339  	read_unlock(&vcpu->kvm->arch.sca_lock);
340  }
341  
342  static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
343  {
344  	union ipte_control old, new, *ic;
345  
346  	read_lock(&vcpu->kvm->arch.sca_lock);
347  	ic = kvm_s390_get_ipte_control(vcpu->kvm);
348  	do {
349  		old = READ_ONCE(*ic);
350  		new = old;
351  		new.kh--;
352  		if (!new.kh)
353  			new.k = 0;
354  	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
355  	read_unlock(&vcpu->kvm->arch.sca_lock);
356  	if (!new.kh)
357  		wake_up(&vcpu->kvm->arch.ipte_wq);
358  }
359  
360  void ipte_lock(struct kvm_vcpu *vcpu)
361  {
362  	if (vcpu->arch.sie_block->eca & 1)
363  		ipte_lock_siif(vcpu);
364  	else
365  		ipte_lock_simple(vcpu);
366  }
367  
368  void ipte_unlock(struct kvm_vcpu *vcpu)
369  {
370  	if (vcpu->arch.sie_block->eca & 1)
371  		ipte_unlock_siif(vcpu);
372  	else
373  		ipte_unlock_simple(vcpu);
374  }
375  
376  static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, ar_t ar,
377  			  enum gacc_mode mode)
378  {
379  	union alet alet;
380  	struct ale ale;
381  	struct aste aste;
382  	unsigned long ald_addr, authority_table_addr;
383  	union ald ald;
384  	int eax, rc;
385  	u8 authority_table;
386  
387  	if (ar >= NUM_ACRS)
388  		return -EINVAL;
389  
390  	save_access_regs(vcpu->run->s.regs.acrs);
391  	alet.val = vcpu->run->s.regs.acrs[ar];
392  
393  	if (ar == 0 || alet.val == 0) {
394  		asce->val = vcpu->arch.sie_block->gcr[1];
395  		return 0;
396  	} else if (alet.val == 1) {
397  		asce->val = vcpu->arch.sie_block->gcr[7];
398  		return 0;
399  	}
400  
401  	if (alet.reserved)
402  		return PGM_ALET_SPECIFICATION;
403  
404  	if (alet.p)
405  		ald_addr = vcpu->arch.sie_block->gcr[5];
406  	else
407  		ald_addr = vcpu->arch.sie_block->gcr[2];
408  	ald_addr &= 0x7fffffc0;
409  
410  	rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
411  	if (rc)
412  		return rc;
413  
414  	if (alet.alen / 8 > ald.all)
415  		return PGM_ALEN_TRANSLATION;
416  
417  	if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
418  		return PGM_ADDRESSING;
419  
420  	rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
421  			     sizeof(struct ale));
422  	if (rc)
423  		return rc;
424  
425  	if (ale.i == 1)
426  		return PGM_ALEN_TRANSLATION;
427  	if (ale.alesn != alet.alesn)
428  		return PGM_ALE_SEQUENCE;
429  
430  	rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
431  	if (rc)
432  		return rc;
433  
434  	if (aste.i)
435  		return PGM_ASTE_VALIDITY;
436  	if (aste.astesn != ale.astesn)
437  		return PGM_ASTE_SEQUENCE;
438  
439  	if (ale.p == 1) {
440  		eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
441  		if (ale.aleax != eax) {
442  			if (eax / 16 > aste.atl)
443  				return PGM_EXTENDED_AUTHORITY;
444  
445  			authority_table_addr = aste.ato * 4 + eax / 4;
446  
447  			rc = read_guest_real(vcpu, authority_table_addr,
448  					     &authority_table,
449  					     sizeof(u8));
450  			if (rc)
451  				return rc;
452  
453  			if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
454  				return PGM_EXTENDED_AUTHORITY;
455  		}
456  	}
457  
458  	if (ale.fo == 1 && mode == GACC_STORE)
459  		return PGM_PROTECTION;
460  
461  	asce->val = aste.asce;
462  	return 0;
463  }
464  
465  struct trans_exc_code_bits {
466  	unsigned long addr : 52; /* Translation-exception Address */
467  	unsigned long fsi  : 2;  /* Access Exception Fetch/Store Indication */
468  	unsigned long	   : 6;
469  	unsigned long b60  : 1;
470  	unsigned long b61  : 1;
471  	unsigned long as   : 2;  /* ASCE Identifier */
472  };
473  
474  enum {
475  	FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
476  	FSI_STORE   = 1, /* Exception was due to store operation */
477  	FSI_FETCH   = 2  /* Exception was due to fetch operation */
478  };
479  
480  enum prot_type {
481  	PROT_TYPE_LA   = 0,
482  	PROT_TYPE_KEYC = 1,
483  	PROT_TYPE_ALC  = 2,
484  	PROT_TYPE_DAT  = 3,
485  };
486  
487  static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva,
488  		     ar_t ar, enum gacc_mode mode, enum prot_type prot)
489  {
490  	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
491  	struct trans_exc_code_bits *tec;
492  
493  	memset(pgm, 0, sizeof(*pgm));
494  	pgm->code = code;
495  	tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
496  
497  	switch (code) {
498  	case PGM_ASCE_TYPE:
499  	case PGM_PAGE_TRANSLATION:
500  	case PGM_REGION_FIRST_TRANS:
501  	case PGM_REGION_SECOND_TRANS:
502  	case PGM_REGION_THIRD_TRANS:
503  	case PGM_SEGMENT_TRANSLATION:
504  		/*
505  		 * op_access_id only applies to MOVE_PAGE -> set bit 61
506  		 * exc_access_id has to be set to 0 for some instructions. Both
507  		 * cases have to be handled by the caller. We can always store
508  		 * exc_access_id, as it is undefined for non-ar cases.
509  		 */
510  		tec->addr = gva >> PAGE_SHIFT;
511  		tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
512  		tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
513  		/* FALL THROUGH */
514  	case PGM_ALEN_TRANSLATION:
515  	case PGM_ALE_SEQUENCE:
516  	case PGM_ASTE_VALIDITY:
517  	case PGM_ASTE_SEQUENCE:
518  	case PGM_EXTENDED_AUTHORITY:
519  		pgm->exc_access_id = ar;
520  		break;
521  	case PGM_PROTECTION:
522  		switch (prot) {
523  		case PROT_TYPE_ALC:
524  			tec->b60 = 1;
525  			/* FALL THROUGH */
526  		case PROT_TYPE_DAT:
527  			tec->b61 = 1;
528  			tec->addr = gva >> PAGE_SHIFT;
529  			tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
530  			tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
531  			/* exc_access_id is undefined for most cases */
532  			pgm->exc_access_id = ar;
533  			break;
534  		default: /* LA and KEYC set b61 to 0, other params undefined */
535  			break;
536  		}
537  		break;
538  	}
539  	return code;
540  }
541  
542  static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
543  			 unsigned long ga, ar_t ar, enum gacc_mode mode)
544  {
545  	int rc;
546  	struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
547  
548  	if (!psw.t) {
549  		asce->val = 0;
550  		asce->r = 1;
551  		return 0;
552  	}
553  
554  	if (mode == GACC_IFETCH)
555  		psw.as = psw.as == PSW_AS_HOME ? PSW_AS_HOME : PSW_AS_PRIMARY;
556  
557  	switch (psw.as) {
558  	case PSW_AS_PRIMARY:
559  		asce->val = vcpu->arch.sie_block->gcr[1];
560  		return 0;
561  	case PSW_AS_SECONDARY:
562  		asce->val = vcpu->arch.sie_block->gcr[7];
563  		return 0;
564  	case PSW_AS_HOME:
565  		asce->val = vcpu->arch.sie_block->gcr[13];
566  		return 0;
567  	case PSW_AS_ACCREG:
568  		rc = ar_translation(vcpu, asce, ar, mode);
569  		if (rc > 0)
570  			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
571  		return rc;
572  	}
573  	return 0;
574  }
575  
576  static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
577  {
578  	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
579  }
580  
581  /**
582   * guest_translate - translate a guest virtual into a guest absolute address
583   * @vcpu: virtual cpu
584   * @gva: guest virtual address
585   * @gpa: points to where guest physical (absolute) address should be stored
586   * @asce: effective asce
587   * @mode: indicates the access mode to be used
588   *
589   * Translate a guest virtual address into a guest absolute address by means
590   * of dynamic address translation as specified by the architecture.
591   * If the resulting absolute address is not available in the configuration
592   * an addressing exception is indicated and @gpa will not be changed.
593   *
594   * Returns: - zero on success; @gpa contains the resulting absolute address
595   *	    - a negative value if guest access failed due to e.g. broken
596   *	      guest mapping
597   *	    - a positve value if an access exception happened. In this case
598   *	      the returned value is the program interruption code as defined
599   *	      by the architecture
600   */
601  static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
602  				     unsigned long *gpa, const union asce asce,
603  				     enum gacc_mode mode)
604  {
605  	union vaddress vaddr = {.addr = gva};
606  	union raddress raddr = {.addr = gva};
607  	union page_table_entry pte;
608  	int dat_protection = 0;
609  	union ctlreg0 ctlreg0;
610  	unsigned long ptr;
611  	int edat1, edat2;
612  
613  	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
614  	edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
615  	edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
616  	if (asce.r)
617  		goto real_address;
618  	ptr = asce.origin * 4096;
619  	switch (asce.dt) {
620  	case ASCE_TYPE_REGION1:
621  		if (vaddr.rfx01 > asce.tl)
622  			return PGM_REGION_FIRST_TRANS;
623  		ptr += vaddr.rfx * 8;
624  		break;
625  	case ASCE_TYPE_REGION2:
626  		if (vaddr.rfx)
627  			return PGM_ASCE_TYPE;
628  		if (vaddr.rsx01 > asce.tl)
629  			return PGM_REGION_SECOND_TRANS;
630  		ptr += vaddr.rsx * 8;
631  		break;
632  	case ASCE_TYPE_REGION3:
633  		if (vaddr.rfx || vaddr.rsx)
634  			return PGM_ASCE_TYPE;
635  		if (vaddr.rtx01 > asce.tl)
636  			return PGM_REGION_THIRD_TRANS;
637  		ptr += vaddr.rtx * 8;
638  		break;
639  	case ASCE_TYPE_SEGMENT:
640  		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
641  			return PGM_ASCE_TYPE;
642  		if (vaddr.sx01 > asce.tl)
643  			return PGM_SEGMENT_TRANSLATION;
644  		ptr += vaddr.sx * 8;
645  		break;
646  	}
647  	switch (asce.dt) {
648  	case ASCE_TYPE_REGION1:	{
649  		union region1_table_entry rfte;
650  
651  		if (kvm_is_error_gpa(vcpu->kvm, ptr))
652  			return PGM_ADDRESSING;
653  		if (deref_table(vcpu->kvm, ptr, &rfte.val))
654  			return -EFAULT;
655  		if (rfte.i)
656  			return PGM_REGION_FIRST_TRANS;
657  		if (rfte.tt != TABLE_TYPE_REGION1)
658  			return PGM_TRANSLATION_SPEC;
659  		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
660  			return PGM_REGION_SECOND_TRANS;
661  		if (edat1)
662  			dat_protection |= rfte.p;
663  		ptr = rfte.rto * 4096 + vaddr.rsx * 8;
664  	}
665  		/* fallthrough */
666  	case ASCE_TYPE_REGION2: {
667  		union region2_table_entry rste;
668  
669  		if (kvm_is_error_gpa(vcpu->kvm, ptr))
670  			return PGM_ADDRESSING;
671  		if (deref_table(vcpu->kvm, ptr, &rste.val))
672  			return -EFAULT;
673  		if (rste.i)
674  			return PGM_REGION_SECOND_TRANS;
675  		if (rste.tt != TABLE_TYPE_REGION2)
676  			return PGM_TRANSLATION_SPEC;
677  		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
678  			return PGM_REGION_THIRD_TRANS;
679  		if (edat1)
680  			dat_protection |= rste.p;
681  		ptr = rste.rto * 4096 + vaddr.rtx * 8;
682  	}
683  		/* fallthrough */
684  	case ASCE_TYPE_REGION3: {
685  		union region3_table_entry rtte;
686  
687  		if (kvm_is_error_gpa(vcpu->kvm, ptr))
688  			return PGM_ADDRESSING;
689  		if (deref_table(vcpu->kvm, ptr, &rtte.val))
690  			return -EFAULT;
691  		if (rtte.i)
692  			return PGM_REGION_THIRD_TRANS;
693  		if (rtte.tt != TABLE_TYPE_REGION3)
694  			return PGM_TRANSLATION_SPEC;
695  		if (rtte.cr && asce.p && edat2)
696  			return PGM_TRANSLATION_SPEC;
697  		if (rtte.fc && edat2) {
698  			dat_protection |= rtte.fc1.p;
699  			raddr.rfaa = rtte.fc1.rfaa;
700  			goto absolute_address;
701  		}
702  		if (vaddr.sx01 < rtte.fc0.tf)
703  			return PGM_SEGMENT_TRANSLATION;
704  		if (vaddr.sx01 > rtte.fc0.tl)
705  			return PGM_SEGMENT_TRANSLATION;
706  		if (edat1)
707  			dat_protection |= rtte.fc0.p;
708  		ptr = rtte.fc0.sto * 4096 + vaddr.sx * 8;
709  	}
710  		/* fallthrough */
711  	case ASCE_TYPE_SEGMENT: {
712  		union segment_table_entry ste;
713  
714  		if (kvm_is_error_gpa(vcpu->kvm, ptr))
715  			return PGM_ADDRESSING;
716  		if (deref_table(vcpu->kvm, ptr, &ste.val))
717  			return -EFAULT;
718  		if (ste.i)
719  			return PGM_SEGMENT_TRANSLATION;
720  		if (ste.tt != TABLE_TYPE_SEGMENT)
721  			return PGM_TRANSLATION_SPEC;
722  		if (ste.cs && asce.p)
723  			return PGM_TRANSLATION_SPEC;
724  		if (ste.fc && edat1) {
725  			dat_protection |= ste.fc1.p;
726  			raddr.sfaa = ste.fc1.sfaa;
727  			goto absolute_address;
728  		}
729  		dat_protection |= ste.fc0.p;
730  		ptr = ste.fc0.pto * 2048 + vaddr.px * 8;
731  	}
732  	}
733  	if (kvm_is_error_gpa(vcpu->kvm, ptr))
734  		return PGM_ADDRESSING;
735  	if (deref_table(vcpu->kvm, ptr, &pte.val))
736  		return -EFAULT;
737  	if (pte.i)
738  		return PGM_PAGE_TRANSLATION;
739  	if (pte.z)
740  		return PGM_TRANSLATION_SPEC;
741  	if (pte.co && !edat1)
742  		return PGM_TRANSLATION_SPEC;
743  	dat_protection |= pte.p;
744  	raddr.pfra = pte.pfra;
745  real_address:
746  	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
747  absolute_address:
748  	if (mode == GACC_STORE && dat_protection)
749  		return PGM_PROTECTION;
750  	if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
751  		return PGM_ADDRESSING;
752  	*gpa = raddr.addr;
753  	return 0;
754  }
755  
756  static inline int is_low_address(unsigned long ga)
757  {
758  	/* Check for address ranges 0..511 and 4096..4607 */
759  	return (ga & ~0x11fful) == 0;
760  }
761  
762  static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
763  					  const union asce asce)
764  {
765  	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
766  	psw_t *psw = &vcpu->arch.sie_block->gpsw;
767  
768  	if (!ctlreg0.lap)
769  		return 0;
770  	if (psw_bits(*psw).t && asce.p)
771  		return 0;
772  	return 1;
773  }
774  
775  static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga, ar_t ar,
776  			    unsigned long *pages, unsigned long nr_pages,
777  			    const union asce asce, enum gacc_mode mode)
778  {
779  	psw_t *psw = &vcpu->arch.sie_block->gpsw;
780  	int lap_enabled, rc = 0;
781  
782  	lap_enabled = low_address_protection_enabled(vcpu, asce);
783  	while (nr_pages) {
784  		ga = kvm_s390_logical_to_effective(vcpu, ga);
785  		if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
786  			return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
787  					 PROT_TYPE_LA);
788  		ga &= PAGE_MASK;
789  		if (psw_bits(*psw).t) {
790  			rc = guest_translate(vcpu, ga, pages, asce, mode);
791  			if (rc < 0)
792  				return rc;
793  		} else {
794  			*pages = kvm_s390_real_to_abs(vcpu, ga);
795  			if (kvm_is_error_gpa(vcpu->kvm, *pages))
796  				rc = PGM_ADDRESSING;
797  		}
798  		if (rc)
799  			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_DAT);
800  		ga += PAGE_SIZE;
801  		pages++;
802  		nr_pages--;
803  	}
804  	return 0;
805  }
806  
807  int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, ar_t ar, void *data,
808  		 unsigned long len, enum gacc_mode mode)
809  {
810  	psw_t *psw = &vcpu->arch.sie_block->gpsw;
811  	unsigned long _len, nr_pages, gpa, idx;
812  	unsigned long pages_array[2];
813  	unsigned long *pages;
814  	int need_ipte_lock;
815  	union asce asce;
816  	int rc;
817  
818  	if (!len)
819  		return 0;
820  	ga = kvm_s390_logical_to_effective(vcpu, ga);
821  	rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
822  	if (rc)
823  		return rc;
824  	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
825  	pages = pages_array;
826  	if (nr_pages > ARRAY_SIZE(pages_array))
827  		pages = vmalloc(nr_pages * sizeof(unsigned long));
828  	if (!pages)
829  		return -ENOMEM;
830  	need_ipte_lock = psw_bits(*psw).t && !asce.r;
831  	if (need_ipte_lock)
832  		ipte_lock(vcpu);
833  	rc = guest_page_range(vcpu, ga, ar, pages, nr_pages, asce, mode);
834  	for (idx = 0; idx < nr_pages && !rc; idx++) {
835  		gpa = *(pages + idx) + (ga & ~PAGE_MASK);
836  		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
837  		if (mode == GACC_STORE)
838  			rc = kvm_write_guest(vcpu->kvm, gpa, data, _len);
839  		else
840  			rc = kvm_read_guest(vcpu->kvm, gpa, data, _len);
841  		len -= _len;
842  		ga += _len;
843  		data += _len;
844  	}
845  	if (need_ipte_lock)
846  		ipte_unlock(vcpu);
847  	if (nr_pages > ARRAY_SIZE(pages_array))
848  		vfree(pages);
849  	return rc;
850  }
851  
852  int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
853  		      void *data, unsigned long len, enum gacc_mode mode)
854  {
855  	unsigned long _len, gpa;
856  	int rc = 0;
857  
858  	while (len && !rc) {
859  		gpa = kvm_s390_real_to_abs(vcpu, gra);
860  		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
861  		if (mode)
862  			rc = write_guest_abs(vcpu, gpa, data, _len);
863  		else
864  			rc = read_guest_abs(vcpu, gpa, data, _len);
865  		len -= _len;
866  		gra += _len;
867  		data += _len;
868  	}
869  	return rc;
870  }
871  
872  /**
873   * guest_translate_address - translate guest logical into guest absolute address
874   *
875   * Parameter semantics are the same as the ones from guest_translate.
876   * The memory contents at the guest address are not changed.
877   *
878   * Note: The IPTE lock is not taken during this function, so the caller
879   * has to take care of this.
880   */
881  int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
882  			    unsigned long *gpa, enum gacc_mode mode)
883  {
884  	psw_t *psw = &vcpu->arch.sie_block->gpsw;
885  	union asce asce;
886  	int rc;
887  
888  	gva = kvm_s390_logical_to_effective(vcpu, gva);
889  	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
890  	if (rc)
891  		return rc;
892  	if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) {
893  		if (mode == GACC_STORE)
894  			return trans_exc(vcpu, PGM_PROTECTION, gva, 0,
895  					 mode, PROT_TYPE_LA);
896  	}
897  
898  	if (psw_bits(*psw).t && !asce.r) {	/* Use DAT? */
899  		rc = guest_translate(vcpu, gva, gpa, asce, mode);
900  		if (rc > 0)
901  			return trans_exc(vcpu, rc, gva, 0, mode, PROT_TYPE_DAT);
902  	} else {
903  		*gpa = kvm_s390_real_to_abs(vcpu, gva);
904  		if (kvm_is_error_gpa(vcpu->kvm, *gpa))
905  			return trans_exc(vcpu, rc, gva, PGM_ADDRESSING, mode, 0);
906  	}
907  
908  	return rc;
909  }
910  
911  /**
912   * check_gva_range - test a range of guest virtual addresses for accessibility
913   */
914  int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
915  		    unsigned long length, enum gacc_mode mode)
916  {
917  	unsigned long gpa;
918  	unsigned long currlen;
919  	int rc = 0;
920  
921  	ipte_lock(vcpu);
922  	while (length > 0 && !rc) {
923  		currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE));
924  		rc = guest_translate_address(vcpu, gva, ar, &gpa, mode);
925  		gva += currlen;
926  		length -= currlen;
927  	}
928  	ipte_unlock(vcpu);
929  
930  	return rc;
931  }
932  
933  /**
934   * kvm_s390_check_low_addr_prot_real - check for low-address protection
935   * @gra: Guest real address
936   *
937   * Checks whether an address is subject to low-address protection and set
938   * up vcpu->arch.pgm accordingly if necessary.
939   *
940   * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
941   */
942  int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
943  {
944  	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
945  
946  	if (!ctlreg0.lap || !is_low_address(gra))
947  		return 0;
948  	return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
949  }
950  
951  /**
952   * kvm_s390_shadow_tables - walk the guest page table and create shadow tables
953   * @sg: pointer to the shadow guest address space structure
954   * @saddr: faulting address in the shadow gmap
955   * @pgt: pointer to the page table address result
956   * @fake: pgt references contiguous guest memory block, not a pgtable
957   */
958  static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
959  				  unsigned long *pgt, int *dat_protection,
960  				  int *fake)
961  {
962  	struct gmap *parent;
963  	union asce asce;
964  	union vaddress vaddr;
965  	unsigned long ptr;
966  	int rc;
967  
968  	*fake = 0;
969  	*dat_protection = 0;
970  	parent = sg->parent;
971  	vaddr.addr = saddr;
972  	asce.val = sg->orig_asce;
973  	ptr = asce.origin * 4096;
974  	if (asce.r) {
975  		*fake = 1;
976  		asce.dt = ASCE_TYPE_REGION1;
977  	}
978  	switch (asce.dt) {
979  	case ASCE_TYPE_REGION1:
980  		if (vaddr.rfx01 > asce.tl && !asce.r)
981  			return PGM_REGION_FIRST_TRANS;
982  		break;
983  	case ASCE_TYPE_REGION2:
984  		if (vaddr.rfx)
985  			return PGM_ASCE_TYPE;
986  		if (vaddr.rsx01 > asce.tl)
987  			return PGM_REGION_SECOND_TRANS;
988  		break;
989  	case ASCE_TYPE_REGION3:
990  		if (vaddr.rfx || vaddr.rsx)
991  			return PGM_ASCE_TYPE;
992  		if (vaddr.rtx01 > asce.tl)
993  			return PGM_REGION_THIRD_TRANS;
994  		break;
995  	case ASCE_TYPE_SEGMENT:
996  		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
997  			return PGM_ASCE_TYPE;
998  		if (vaddr.sx01 > asce.tl)
999  			return PGM_SEGMENT_TRANSLATION;
1000  		break;
1001  	}
1002  
1003  	switch (asce.dt) {
1004  	case ASCE_TYPE_REGION1: {
1005  		union region1_table_entry rfte;
1006  
1007  		if (*fake) {
1008  			/* offset in 16EB guest memory block */
1009  			ptr = ptr + ((unsigned long) vaddr.rsx << 53UL);
1010  			rfte.val = ptr;
1011  			goto shadow_r2t;
1012  		}
1013  		rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
1014  		if (rc)
1015  			return rc;
1016  		if (rfte.i)
1017  			return PGM_REGION_FIRST_TRANS;
1018  		if (rfte.tt != TABLE_TYPE_REGION1)
1019  			return PGM_TRANSLATION_SPEC;
1020  		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
1021  			return PGM_REGION_SECOND_TRANS;
1022  		if (sg->edat_level >= 1)
1023  			*dat_protection |= rfte.p;
1024  		ptr = rfte.rto << 12UL;
1025  shadow_r2t:
1026  		rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
1027  		if (rc)
1028  			return rc;
1029  		/* fallthrough */
1030  	}
1031  	case ASCE_TYPE_REGION2: {
1032  		union region2_table_entry rste;
1033  
1034  		if (*fake) {
1035  			/* offset in 8PB guest memory block */
1036  			ptr = ptr + ((unsigned long) vaddr.rtx << 42UL);
1037  			rste.val = ptr;
1038  			goto shadow_r3t;
1039  		}
1040  		rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
1041  		if (rc)
1042  			return rc;
1043  		if (rste.i)
1044  			return PGM_REGION_SECOND_TRANS;
1045  		if (rste.tt != TABLE_TYPE_REGION2)
1046  			return PGM_TRANSLATION_SPEC;
1047  		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
1048  			return PGM_REGION_THIRD_TRANS;
1049  		if (sg->edat_level >= 1)
1050  			*dat_protection |= rste.p;
1051  		ptr = rste.rto << 12UL;
1052  shadow_r3t:
1053  		rste.p |= *dat_protection;
1054  		rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
1055  		if (rc)
1056  			return rc;
1057  		/* fallthrough */
1058  	}
1059  	case ASCE_TYPE_REGION3: {
1060  		union region3_table_entry rtte;
1061  
1062  		if (*fake) {
1063  			/* offset in 4TB guest memory block */
1064  			ptr = ptr + ((unsigned long) vaddr.sx << 31UL);
1065  			rtte.val = ptr;
1066  			goto shadow_sgt;
1067  		}
1068  		rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
1069  		if (rc)
1070  			return rc;
1071  		if (rtte.i)
1072  			return PGM_REGION_THIRD_TRANS;
1073  		if (rtte.tt != TABLE_TYPE_REGION3)
1074  			return PGM_TRANSLATION_SPEC;
1075  		if (rtte.cr && asce.p && sg->edat_level >= 2)
1076  			return PGM_TRANSLATION_SPEC;
1077  		if (rtte.fc && sg->edat_level >= 2) {
1078  			*dat_protection |= rtte.fc0.p;
1079  			*fake = 1;
1080  			ptr = rtte.fc1.rfaa << 31UL;
1081  			rtte.val = ptr;
1082  			goto shadow_sgt;
1083  		}
1084  		if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
1085  			return PGM_SEGMENT_TRANSLATION;
1086  		if (sg->edat_level >= 1)
1087  			*dat_protection |= rtte.fc0.p;
1088  		ptr = rtte.fc0.sto << 12UL;
1089  shadow_sgt:
1090  		rtte.fc0.p |= *dat_protection;
1091  		rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
1092  		if (rc)
1093  			return rc;
1094  		/* fallthrough */
1095  	}
1096  	case ASCE_TYPE_SEGMENT: {
1097  		union segment_table_entry ste;
1098  
1099  		if (*fake) {
1100  			/* offset in 2G guest memory block */
1101  			ptr = ptr + ((unsigned long) vaddr.sx << 20UL);
1102  			ste.val = ptr;
1103  			goto shadow_pgt;
1104  		}
1105  		rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
1106  		if (rc)
1107  			return rc;
1108  		if (ste.i)
1109  			return PGM_SEGMENT_TRANSLATION;
1110  		if (ste.tt != TABLE_TYPE_SEGMENT)
1111  			return PGM_TRANSLATION_SPEC;
1112  		if (ste.cs && asce.p)
1113  			return PGM_TRANSLATION_SPEC;
1114  		*dat_protection |= ste.fc0.p;
1115  		if (ste.fc && sg->edat_level >= 1) {
1116  			*fake = 1;
1117  			ptr = ste.fc1.sfaa << 20UL;
1118  			ste.val = ptr;
1119  			goto shadow_pgt;
1120  		}
1121  		ptr = ste.fc0.pto << 11UL;
1122  shadow_pgt:
1123  		ste.fc0.p |= *dat_protection;
1124  		rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
1125  		if (rc)
1126  			return rc;
1127  	}
1128  	}
1129  	/* Return the parent address of the page table */
1130  	*pgt = ptr;
1131  	return 0;
1132  }
1133  
1134  /**
1135   * kvm_s390_shadow_fault - handle fault on a shadow page table
1136   * @vcpu: virtual cpu
1137   * @sg: pointer to the shadow guest address space structure
1138   * @saddr: faulting address in the shadow gmap
1139   *
1140   * Returns: - 0 if the shadow fault was successfully resolved
1141   *	    - > 0 (pgm exception code) on exceptions while faulting
1142   *	    - -EAGAIN if the caller can retry immediately
1143   *	    - -EFAULT when accessing invalid guest addresses
1144   *	    - -ENOMEM if out of memory
1145   */
1146  int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
1147  			  unsigned long saddr)
1148  {
1149  	union vaddress vaddr;
1150  	union page_table_entry pte;
1151  	unsigned long pgt;
1152  	int dat_protection, fake;
1153  	int rc;
1154  
1155  	down_read(&sg->mm->mmap_sem);
1156  	/*
1157  	 * We don't want any guest-2 tables to change - so the parent
1158  	 * tables/pointers we read stay valid - unshadowing is however
1159  	 * always possible - only guest_table_lock protects us.
1160  	 */
1161  	ipte_lock(vcpu);
1162  
1163  	rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
1164  	if (rc)
1165  		rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
1166  					    &fake);
1167  
1168  	vaddr.addr = saddr;
1169  	if (fake) {
1170  		/* offset in 1MB guest memory block */
1171  		pte.val = pgt + ((unsigned long) vaddr.px << 12UL);
1172  		goto shadow_page;
1173  	}
1174  	if (!rc)
1175  		rc = gmap_read_table(sg->parent, pgt + vaddr.px * 8, &pte.val);
1176  	if (!rc && pte.i)
1177  		rc = PGM_PAGE_TRANSLATION;
1178  	if (!rc && (pte.z || (pte.co && sg->edat_level < 1)))
1179  		rc = PGM_TRANSLATION_SPEC;
1180  shadow_page:
1181  	pte.p |= dat_protection;
1182  	if (!rc)
1183  		rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
1184  	ipte_unlock(vcpu);
1185  	up_read(&sg->mm->mmap_sem);
1186  	return rc;
1187  }
1188