xref: /openbmc/linux/arch/s390/kvm/gaccess.c (revision 206204a1)
1 /*
2  * guest access functions
3  *
4  * Copyright IBM Corp. 2014
5  *
6  */
7 
8 #include <linux/vmalloc.h>
9 #include <linux/err.h>
10 #include <asm/pgtable.h>
11 #include "kvm-s390.h"
12 #include "gaccess.h"
13 
14 union asce {
15 	unsigned long val;
16 	struct {
17 		unsigned long origin : 52; /* Region- or Segment-Table Origin */
18 		unsigned long	 : 2;
19 		unsigned long g  : 1; /* Subspace Group Control */
20 		unsigned long p  : 1; /* Private Space Control */
21 		unsigned long s  : 1; /* Storage-Alteration-Event Control */
22 		unsigned long x  : 1; /* Space-Switch-Event Control */
23 		unsigned long r  : 1; /* Real-Space Control */
24 		unsigned long	 : 1;
25 		unsigned long dt : 2; /* Designation-Type Control */
26 		unsigned long tl : 2; /* Region- or Segment-Table Length */
27 	};
28 };
29 
30 enum {
31 	ASCE_TYPE_SEGMENT = 0,
32 	ASCE_TYPE_REGION3 = 1,
33 	ASCE_TYPE_REGION2 = 2,
34 	ASCE_TYPE_REGION1 = 3
35 };
36 
37 union region1_table_entry {
38 	unsigned long val;
39 	struct {
40 		unsigned long rto: 52;/* Region-Table Origin */
41 		unsigned long	 : 2;
42 		unsigned long p  : 1; /* DAT-Protection Bit */
43 		unsigned long	 : 1;
44 		unsigned long tf : 2; /* Region-Second-Table Offset */
45 		unsigned long i  : 1; /* Region-Invalid Bit */
46 		unsigned long	 : 1;
47 		unsigned long tt : 2; /* Table-Type Bits */
48 		unsigned long tl : 2; /* Region-Second-Table Length */
49 	};
50 };
51 
52 union region2_table_entry {
53 	unsigned long val;
54 	struct {
55 		unsigned long rto: 52;/* Region-Table Origin */
56 		unsigned long	 : 2;
57 		unsigned long p  : 1; /* DAT-Protection Bit */
58 		unsigned long	 : 1;
59 		unsigned long tf : 2; /* Region-Third-Table Offset */
60 		unsigned long i  : 1; /* Region-Invalid Bit */
61 		unsigned long	 : 1;
62 		unsigned long tt : 2; /* Table-Type Bits */
63 		unsigned long tl : 2; /* Region-Third-Table Length */
64 	};
65 };
66 
67 struct region3_table_entry_fc0 {
68 	unsigned long sto: 52;/* Segment-Table Origin */
69 	unsigned long	 : 1;
70 	unsigned long fc : 1; /* Format-Control */
71 	unsigned long p  : 1; /* DAT-Protection Bit */
72 	unsigned long	 : 1;
73 	unsigned long tf : 2; /* Segment-Table Offset */
74 	unsigned long i  : 1; /* Region-Invalid Bit */
75 	unsigned long cr : 1; /* Common-Region Bit */
76 	unsigned long tt : 2; /* Table-Type Bits */
77 	unsigned long tl : 2; /* Segment-Table Length */
78 };
79 
80 struct region3_table_entry_fc1 {
81 	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
82 	unsigned long	 : 14;
83 	unsigned long av : 1; /* ACCF-Validity Control */
84 	unsigned long acc: 4; /* Access-Control Bits */
85 	unsigned long f  : 1; /* Fetch-Protection Bit */
86 	unsigned long fc : 1; /* Format-Control */
87 	unsigned long p  : 1; /* DAT-Protection Bit */
88 	unsigned long co : 1; /* Change-Recording Override */
89 	unsigned long	 : 2;
90 	unsigned long i  : 1; /* Region-Invalid Bit */
91 	unsigned long cr : 1; /* Common-Region Bit */
92 	unsigned long tt : 2; /* Table-Type Bits */
93 	unsigned long	 : 2;
94 };
95 
96 union region3_table_entry {
97 	unsigned long val;
98 	struct region3_table_entry_fc0 fc0;
99 	struct region3_table_entry_fc1 fc1;
100 	struct {
101 		unsigned long	 : 53;
102 		unsigned long fc : 1; /* Format-Control */
103 		unsigned long	 : 4;
104 		unsigned long i  : 1; /* Region-Invalid Bit */
105 		unsigned long cr : 1; /* Common-Region Bit */
106 		unsigned long tt : 2; /* Table-Type Bits */
107 		unsigned long	 : 2;
108 	};
109 };
110 
111 struct segment_entry_fc0 {
112 	unsigned long pto: 53;/* Page-Table Origin */
113 	unsigned long fc : 1; /* Format-Control */
114 	unsigned long p  : 1; /* DAT-Protection Bit */
115 	unsigned long	 : 3;
116 	unsigned long i  : 1; /* Segment-Invalid Bit */
117 	unsigned long cs : 1; /* Common-Segment Bit */
118 	unsigned long tt : 2; /* Table-Type Bits */
119 	unsigned long	 : 2;
120 };
121 
122 struct segment_entry_fc1 {
123 	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
124 	unsigned long	 : 3;
125 	unsigned long av : 1; /* ACCF-Validity Control */
126 	unsigned long acc: 4; /* Access-Control Bits */
127 	unsigned long f  : 1; /* Fetch-Protection Bit */
128 	unsigned long fc : 1; /* Format-Control */
129 	unsigned long p  : 1; /* DAT-Protection Bit */
130 	unsigned long co : 1; /* Change-Recording Override */
131 	unsigned long	 : 2;
132 	unsigned long i  : 1; /* Segment-Invalid Bit */
133 	unsigned long cs : 1; /* Common-Segment Bit */
134 	unsigned long tt : 2; /* Table-Type Bits */
135 	unsigned long	 : 2;
136 };
137 
138 union segment_table_entry {
139 	unsigned long val;
140 	struct segment_entry_fc0 fc0;
141 	struct segment_entry_fc1 fc1;
142 	struct {
143 		unsigned long	 : 53;
144 		unsigned long fc : 1; /* Format-Control */
145 		unsigned long	 : 4;
146 		unsigned long i  : 1; /* Segment-Invalid Bit */
147 		unsigned long cs : 1; /* Common-Segment Bit */
148 		unsigned long tt : 2; /* Table-Type Bits */
149 		unsigned long	 : 2;
150 	};
151 };
152 
153 enum {
154 	TABLE_TYPE_SEGMENT = 0,
155 	TABLE_TYPE_REGION3 = 1,
156 	TABLE_TYPE_REGION2 = 2,
157 	TABLE_TYPE_REGION1 = 3
158 };
159 
160 union page_table_entry {
161 	unsigned long val;
162 	struct {
163 		unsigned long pfra : 52; /* Page-Frame Real Address */
164 		unsigned long z  : 1; /* Zero Bit */
165 		unsigned long i  : 1; /* Page-Invalid Bit */
166 		unsigned long p  : 1; /* DAT-Protection Bit */
167 		unsigned long co : 1; /* Change-Recording Override */
168 		unsigned long	 : 8;
169 	};
170 };
171 
172 /*
173  * vaddress union in order to easily decode a virtual address into its
174  * region first index, region second index etc. parts.
175  */
176 union vaddress {
177 	unsigned long addr;
178 	struct {
179 		unsigned long rfx : 11;
180 		unsigned long rsx : 11;
181 		unsigned long rtx : 11;
182 		unsigned long sx  : 11;
183 		unsigned long px  : 8;
184 		unsigned long bx  : 12;
185 	};
186 	struct {
187 		unsigned long rfx01 : 2;
188 		unsigned long	    : 9;
189 		unsigned long rsx01 : 2;
190 		unsigned long	    : 9;
191 		unsigned long rtx01 : 2;
192 		unsigned long	    : 9;
193 		unsigned long sx01  : 2;
194 		unsigned long	    : 29;
195 	};
196 };
197 
198 /*
199  * raddress union which will contain the result (real or absolute address)
200  * after a page table walk. The rfaa, sfaa and pfra members are used to
201  * simply assign them the value of a region, segment or page table entry.
202  */
203 union raddress {
204 	unsigned long addr;
205 	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
206 	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
207 	unsigned long pfra : 52; /* Page-Frame Real Address */
208 };
209 
210 static int ipte_lock_count;
211 static DEFINE_MUTEX(ipte_mutex);
212 
213 int ipte_lock_held(struct kvm_vcpu *vcpu)
214 {
215 	union ipte_control *ic = &vcpu->kvm->arch.sca->ipte_control;
216 
217 	if (vcpu->arch.sie_block->eca & 1)
218 		return ic->kh != 0;
219 	return ipte_lock_count != 0;
220 }
221 
222 static void ipte_lock_simple(struct kvm_vcpu *vcpu)
223 {
224 	union ipte_control old, new, *ic;
225 
226 	mutex_lock(&ipte_mutex);
227 	ipte_lock_count++;
228 	if (ipte_lock_count > 1)
229 		goto out;
230 	ic = &vcpu->kvm->arch.sca->ipte_control;
231 	do {
232 		old = ACCESS_ONCE(*ic);
233 		while (old.k) {
234 			cond_resched();
235 			old = ACCESS_ONCE(*ic);
236 		}
237 		new = old;
238 		new.k = 1;
239 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
240 out:
241 	mutex_unlock(&ipte_mutex);
242 }
243 
244 static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
245 {
246 	union ipte_control old, new, *ic;
247 
248 	mutex_lock(&ipte_mutex);
249 	ipte_lock_count--;
250 	if (ipte_lock_count)
251 		goto out;
252 	ic = &vcpu->kvm->arch.sca->ipte_control;
253 	do {
254 		new = old = ACCESS_ONCE(*ic);
255 		new.k = 0;
256 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
257 	if (!ipte_lock_count)
258 		wake_up(&vcpu->kvm->arch.ipte_wq);
259 out:
260 	mutex_unlock(&ipte_mutex);
261 }
262 
263 static void ipte_lock_siif(struct kvm_vcpu *vcpu)
264 {
265 	union ipte_control old, new, *ic;
266 
267 	ic = &vcpu->kvm->arch.sca->ipte_control;
268 	do {
269 		old = ACCESS_ONCE(*ic);
270 		while (old.kg) {
271 			cond_resched();
272 			old = ACCESS_ONCE(*ic);
273 		}
274 		new = old;
275 		new.k = 1;
276 		new.kh++;
277 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
278 }
279 
280 static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
281 {
282 	union ipte_control old, new, *ic;
283 
284 	ic = &vcpu->kvm->arch.sca->ipte_control;
285 	do {
286 		new = old = ACCESS_ONCE(*ic);
287 		new.kh--;
288 		if (!new.kh)
289 			new.k = 0;
290 	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
291 	if (!new.kh)
292 		wake_up(&vcpu->kvm->arch.ipte_wq);
293 }
294 
295 void ipte_lock(struct kvm_vcpu *vcpu)
296 {
297 	if (vcpu->arch.sie_block->eca & 1)
298 		ipte_lock_siif(vcpu);
299 	else
300 		ipte_lock_simple(vcpu);
301 }
302 
303 void ipte_unlock(struct kvm_vcpu *vcpu)
304 {
305 	if (vcpu->arch.sie_block->eca & 1)
306 		ipte_unlock_siif(vcpu);
307 	else
308 		ipte_unlock_simple(vcpu);
309 }
310 
311 static unsigned long get_vcpu_asce(struct kvm_vcpu *vcpu)
312 {
313 	switch (psw_bits(vcpu->arch.sie_block->gpsw).as) {
314 	case PSW_AS_PRIMARY:
315 		return vcpu->arch.sie_block->gcr[1];
316 	case PSW_AS_SECONDARY:
317 		return vcpu->arch.sie_block->gcr[7];
318 	case PSW_AS_HOME:
319 		return vcpu->arch.sie_block->gcr[13];
320 	}
321 	return 0;
322 }
323 
324 static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
325 {
326 	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
327 }
328 
329 /**
330  * guest_translate - translate a guest virtual into a guest absolute address
331  * @vcpu: virtual cpu
332  * @gva: guest virtual address
333  * @gpa: points to where guest physical (absolute) address should be stored
334  * @write: indicates if access is a write access
335  *
336  * Translate a guest virtual address into a guest absolute address by means
337  * of dynamic address translation as specified by the architecuture.
338  * If the resulting absolute address is not available in the configuration
339  * an addressing exception is indicated and @gpa will not be changed.
340  *
341  * Returns: - zero on success; @gpa contains the resulting absolute address
342  *	    - a negative value if guest access failed due to e.g. broken
343  *	      guest mapping
344  *	    - a positve value if an access exception happened. In this case
345  *	      the returned value is the program interruption code as defined
346  *	      by the architecture
347  */
348 static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
349 				     unsigned long *gpa, int write)
350 {
351 	union vaddress vaddr = {.addr = gva};
352 	union raddress raddr = {.addr = gva};
353 	union page_table_entry pte;
354 	int dat_protection = 0;
355 	union ctlreg0 ctlreg0;
356 	unsigned long ptr;
357 	int edat1, edat2;
358 	union asce asce;
359 
360 	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
361 	edat1 = ctlreg0.edat && test_vfacility(8);
362 	edat2 = edat1 && test_vfacility(78);
363 	asce.val = get_vcpu_asce(vcpu);
364 	if (asce.r)
365 		goto real_address;
366 	ptr = asce.origin * 4096;
367 	switch (asce.dt) {
368 	case ASCE_TYPE_REGION1:
369 		if (vaddr.rfx01 > asce.tl)
370 			return PGM_REGION_FIRST_TRANS;
371 		ptr += vaddr.rfx * 8;
372 		break;
373 	case ASCE_TYPE_REGION2:
374 		if (vaddr.rfx)
375 			return PGM_ASCE_TYPE;
376 		if (vaddr.rsx01 > asce.tl)
377 			return PGM_REGION_SECOND_TRANS;
378 		ptr += vaddr.rsx * 8;
379 		break;
380 	case ASCE_TYPE_REGION3:
381 		if (vaddr.rfx || vaddr.rsx)
382 			return PGM_ASCE_TYPE;
383 		if (vaddr.rtx01 > asce.tl)
384 			return PGM_REGION_THIRD_TRANS;
385 		ptr += vaddr.rtx * 8;
386 		break;
387 	case ASCE_TYPE_SEGMENT:
388 		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
389 			return PGM_ASCE_TYPE;
390 		if (vaddr.sx01 > asce.tl)
391 			return PGM_SEGMENT_TRANSLATION;
392 		ptr += vaddr.sx * 8;
393 		break;
394 	}
395 	switch (asce.dt) {
396 	case ASCE_TYPE_REGION1:	{
397 		union region1_table_entry rfte;
398 
399 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
400 			return PGM_ADDRESSING;
401 		if (deref_table(vcpu->kvm, ptr, &rfte.val))
402 			return -EFAULT;
403 		if (rfte.i)
404 			return PGM_REGION_FIRST_TRANS;
405 		if (rfte.tt != TABLE_TYPE_REGION1)
406 			return PGM_TRANSLATION_SPEC;
407 		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
408 			return PGM_REGION_SECOND_TRANS;
409 		if (edat1)
410 			dat_protection |= rfte.p;
411 		ptr = rfte.rto * 4096 + vaddr.rsx * 8;
412 	}
413 		/* fallthrough */
414 	case ASCE_TYPE_REGION2: {
415 		union region2_table_entry rste;
416 
417 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
418 			return PGM_ADDRESSING;
419 		if (deref_table(vcpu->kvm, ptr, &rste.val))
420 			return -EFAULT;
421 		if (rste.i)
422 			return PGM_REGION_SECOND_TRANS;
423 		if (rste.tt != TABLE_TYPE_REGION2)
424 			return PGM_TRANSLATION_SPEC;
425 		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
426 			return PGM_REGION_THIRD_TRANS;
427 		if (edat1)
428 			dat_protection |= rste.p;
429 		ptr = rste.rto * 4096 + vaddr.rtx * 8;
430 	}
431 		/* fallthrough */
432 	case ASCE_TYPE_REGION3: {
433 		union region3_table_entry rtte;
434 
435 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
436 			return PGM_ADDRESSING;
437 		if (deref_table(vcpu->kvm, ptr, &rtte.val))
438 			return -EFAULT;
439 		if (rtte.i)
440 			return PGM_REGION_THIRD_TRANS;
441 		if (rtte.tt != TABLE_TYPE_REGION3)
442 			return PGM_TRANSLATION_SPEC;
443 		if (rtte.cr && asce.p && edat2)
444 			return PGM_TRANSLATION_SPEC;
445 		if (rtte.fc && edat2) {
446 			dat_protection |= rtte.fc1.p;
447 			raddr.rfaa = rtte.fc1.rfaa;
448 			goto absolute_address;
449 		}
450 		if (vaddr.sx01 < rtte.fc0.tf)
451 			return PGM_SEGMENT_TRANSLATION;
452 		if (vaddr.sx01 > rtte.fc0.tl)
453 			return PGM_SEGMENT_TRANSLATION;
454 		if (edat1)
455 			dat_protection |= rtte.fc0.p;
456 		ptr = rtte.fc0.sto * 4096 + vaddr.sx * 8;
457 	}
458 		/* fallthrough */
459 	case ASCE_TYPE_SEGMENT: {
460 		union segment_table_entry ste;
461 
462 		if (kvm_is_error_gpa(vcpu->kvm, ptr))
463 			return PGM_ADDRESSING;
464 		if (deref_table(vcpu->kvm, ptr, &ste.val))
465 			return -EFAULT;
466 		if (ste.i)
467 			return PGM_SEGMENT_TRANSLATION;
468 		if (ste.tt != TABLE_TYPE_SEGMENT)
469 			return PGM_TRANSLATION_SPEC;
470 		if (ste.cs && asce.p)
471 			return PGM_TRANSLATION_SPEC;
472 		if (ste.fc && edat1) {
473 			dat_protection |= ste.fc1.p;
474 			raddr.sfaa = ste.fc1.sfaa;
475 			goto absolute_address;
476 		}
477 		dat_protection |= ste.fc0.p;
478 		ptr = ste.fc0.pto * 2048 + vaddr.px * 8;
479 	}
480 	}
481 	if (kvm_is_error_gpa(vcpu->kvm, ptr))
482 		return PGM_ADDRESSING;
483 	if (deref_table(vcpu->kvm, ptr, &pte.val))
484 		return -EFAULT;
485 	if (pte.i)
486 		return PGM_PAGE_TRANSLATION;
487 	if (pte.z)
488 		return PGM_TRANSLATION_SPEC;
489 	if (pte.co && !edat1)
490 		return PGM_TRANSLATION_SPEC;
491 	dat_protection |= pte.p;
492 	raddr.pfra = pte.pfra;
493 real_address:
494 	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
495 absolute_address:
496 	if (write && dat_protection)
497 		return PGM_PROTECTION;
498 	if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
499 		return PGM_ADDRESSING;
500 	*gpa = raddr.addr;
501 	return 0;
502 }
503 
504 static inline int is_low_address(unsigned long ga)
505 {
506 	/* Check for address ranges 0..511 and 4096..4607 */
507 	return (ga & ~0x11fful) == 0;
508 }
509 
510 static int low_address_protection_enabled(struct kvm_vcpu *vcpu)
511 {
512 	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
513 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
514 	union asce asce;
515 
516 	if (!ctlreg0.lap)
517 		return 0;
518 	asce.val = get_vcpu_asce(vcpu);
519 	if (psw_bits(*psw).t && asce.p)
520 		return 0;
521 	return 1;
522 }
523 
524 struct trans_exc_code_bits {
525 	unsigned long addr : 52; /* Translation-exception Address */
526 	unsigned long fsi  : 2;  /* Access Exception Fetch/Store Indication */
527 	unsigned long	   : 7;
528 	unsigned long b61  : 1;
529 	unsigned long as   : 2;  /* ASCE Identifier */
530 };
531 
532 enum {
533 	FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
534 	FSI_STORE   = 1, /* Exception was due to store operation */
535 	FSI_FETCH   = 2  /* Exception was due to fetch operation */
536 };
537 
538 static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga,
539 			    unsigned long *pages, unsigned long nr_pages,
540 			    int write)
541 {
542 	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
543 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
544 	struct trans_exc_code_bits *tec_bits;
545 	int lap_enabled, rc;
546 
547 	memset(pgm, 0, sizeof(*pgm));
548 	tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
549 	tec_bits->fsi = write ? FSI_STORE : FSI_FETCH;
550 	tec_bits->as = psw_bits(*psw).as;
551 	lap_enabled = low_address_protection_enabled(vcpu);
552 	while (nr_pages) {
553 		ga = kvm_s390_logical_to_effective(vcpu, ga);
554 		tec_bits->addr = ga >> PAGE_SHIFT;
555 		if (write && lap_enabled && is_low_address(ga)) {
556 			pgm->code = PGM_PROTECTION;
557 			return pgm->code;
558 		}
559 		ga &= PAGE_MASK;
560 		if (psw_bits(*psw).t) {
561 			rc = guest_translate(vcpu, ga, pages, write);
562 			if (rc < 0)
563 				return rc;
564 			if (rc == PGM_PROTECTION)
565 				tec_bits->b61 = 1;
566 			if (rc)
567 				pgm->code = rc;
568 		} else {
569 			*pages = kvm_s390_real_to_abs(vcpu, ga);
570 			if (kvm_is_error_gpa(vcpu->kvm, *pages))
571 				pgm->code = PGM_ADDRESSING;
572 		}
573 		if (pgm->code)
574 			return pgm->code;
575 		ga += PAGE_SIZE;
576 		pages++;
577 		nr_pages--;
578 	}
579 	return 0;
580 }
581 
582 int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, void *data,
583 		 unsigned long len, int write)
584 {
585 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
586 	unsigned long _len, nr_pages, gpa, idx;
587 	unsigned long pages_array[2];
588 	unsigned long *pages;
589 	int need_ipte_lock;
590 	union asce asce;
591 	int rc;
592 
593 	if (!len)
594 		return 0;
595 	/* Access register mode is not supported yet. */
596 	if (psw_bits(*psw).t && psw_bits(*psw).as == PSW_AS_ACCREG)
597 		return -EOPNOTSUPP;
598 	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
599 	pages = pages_array;
600 	if (nr_pages > ARRAY_SIZE(pages_array))
601 		pages = vmalloc(nr_pages * sizeof(unsigned long));
602 	if (!pages)
603 		return -ENOMEM;
604 	asce.val = get_vcpu_asce(vcpu);
605 	need_ipte_lock = psw_bits(*psw).t && !asce.r;
606 	if (need_ipte_lock)
607 		ipte_lock(vcpu);
608 	rc = guest_page_range(vcpu, ga, pages, nr_pages, write);
609 	for (idx = 0; idx < nr_pages && !rc; idx++) {
610 		gpa = *(pages + idx) + (ga & ~PAGE_MASK);
611 		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
612 		if (write)
613 			rc = kvm_write_guest(vcpu->kvm, gpa, data, _len);
614 		else
615 			rc = kvm_read_guest(vcpu->kvm, gpa, data, _len);
616 		len -= _len;
617 		ga += _len;
618 		data += _len;
619 	}
620 	if (need_ipte_lock)
621 		ipte_unlock(vcpu);
622 	if (nr_pages > ARRAY_SIZE(pages_array))
623 		vfree(pages);
624 	return rc;
625 }
626 
627 int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
628 		      void *data, unsigned long len, int write)
629 {
630 	unsigned long _len, gpa;
631 	int rc = 0;
632 
633 	while (len && !rc) {
634 		gpa = kvm_s390_real_to_abs(vcpu, gra);
635 		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
636 		if (write)
637 			rc = write_guest_abs(vcpu, gpa, data, _len);
638 		else
639 			rc = read_guest_abs(vcpu, gpa, data, _len);
640 		len -= _len;
641 		gra += _len;
642 		data += _len;
643 	}
644 	return rc;
645 }
646 
647 /**
648  * guest_translate_address - translate guest logical into guest absolute address
649  *
650  * Parameter semantics are the same as the ones from guest_translate.
651  * The memory contents at the guest address are not changed.
652  *
653  * Note: The IPTE lock is not taken during this function, so the caller
654  * has to take care of this.
655  */
656 int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva,
657 			    unsigned long *gpa, int write)
658 {
659 	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
660 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
661 	struct trans_exc_code_bits *tec;
662 	union asce asce;
663 	int rc;
664 
665 	/* Access register mode is not supported yet. */
666 	if (psw_bits(*psw).t && psw_bits(*psw).as == PSW_AS_ACCREG)
667 		return -EOPNOTSUPP;
668 
669 	gva = kvm_s390_logical_to_effective(vcpu, gva);
670 	memset(pgm, 0, sizeof(*pgm));
671 	tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
672 	tec->as = psw_bits(*psw).as;
673 	tec->fsi = write ? FSI_STORE : FSI_FETCH;
674 	tec->addr = gva >> PAGE_SHIFT;
675 	if (is_low_address(gva) && low_address_protection_enabled(vcpu)) {
676 		if (write) {
677 			rc = pgm->code = PGM_PROTECTION;
678 			return rc;
679 		}
680 	}
681 
682 	asce.val = get_vcpu_asce(vcpu);
683 	if (psw_bits(*psw).t && !asce.r) {	/* Use DAT? */
684 		rc = guest_translate(vcpu, gva, gpa, write);
685 		if (rc > 0) {
686 			if (rc == PGM_PROTECTION)
687 				tec->b61 = 1;
688 			pgm->code = rc;
689 		}
690 	} else {
691 		rc = 0;
692 		*gpa = kvm_s390_real_to_abs(vcpu, gva);
693 		if (kvm_is_error_gpa(vcpu->kvm, *gpa))
694 			rc = pgm->code = PGM_ADDRESSING;
695 	}
696 
697 	return rc;
698 }
699 
700 /**
701  * kvm_s390_check_low_addr_protection - check for low-address protection
702  * @ga: Guest address
703  *
704  * Checks whether an address is subject to low-address protection and set
705  * up vcpu->arch.pgm accordingly if necessary.
706  *
707  * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
708  */
709 int kvm_s390_check_low_addr_protection(struct kvm_vcpu *vcpu, unsigned long ga)
710 {
711 	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
712 	psw_t *psw = &vcpu->arch.sie_block->gpsw;
713 	struct trans_exc_code_bits *tec_bits;
714 
715 	if (!is_low_address(ga) || !low_address_protection_enabled(vcpu))
716 		return 0;
717 
718 	memset(pgm, 0, sizeof(*pgm));
719 	tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
720 	tec_bits->fsi = FSI_STORE;
721 	tec_bits->as = psw_bits(*psw).as;
722 	tec_bits->addr = ga >> PAGE_SHIFT;
723 	pgm->code = PGM_PROTECTION;
724 
725 	return pgm->code;
726 }
727