xref: /openbmc/linux/arch/s390/kernel/vtime.c (revision f4c3b83b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Virtual cpu timer based timer functions.
4  *
5  *    Copyright IBM Corp. 2004, 2012
6  *    Author(s): Jan Glauber <jan.glauber@de.ibm.com>
7  */
8 
9 #include <linux/kernel_stat.h>
10 #include <linux/sched/cputime.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/timex.h>
14 #include <linux/types.h>
15 #include <linux/time.h>
16 
17 #include <asm/vtimer.h>
18 #include <asm/vtime.h>
19 #include <asm/cpu_mf.h>
20 #include <asm/smp.h>
21 
22 #include "entry.h"
23 
24 static void virt_timer_expire(void);
25 
26 static LIST_HEAD(virt_timer_list);
27 static DEFINE_SPINLOCK(virt_timer_lock);
28 static atomic64_t virt_timer_current;
29 static atomic64_t virt_timer_elapsed;
30 
31 DEFINE_PER_CPU(u64, mt_cycles[8]);
32 static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
33 static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
34 static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
35 
36 static inline u64 get_vtimer(void)
37 {
38 	u64 timer;
39 
40 	asm volatile("stpt %0" : "=Q" (timer));
41 	return timer;
42 }
43 
44 static inline void set_vtimer(u64 expires)
45 {
46 	u64 timer;
47 
48 	asm volatile(
49 		"	stpt	%0\n"	/* Store current cpu timer value */
50 		"	spt	%1"	/* Set new value imm. afterwards */
51 		: "=Q" (timer) : "Q" (expires));
52 	S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
53 	S390_lowcore.last_update_timer = expires;
54 }
55 
56 static inline int virt_timer_forward(u64 elapsed)
57 {
58 	BUG_ON(!irqs_disabled());
59 
60 	if (list_empty(&virt_timer_list))
61 		return 0;
62 	elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
63 	return elapsed >= atomic64_read(&virt_timer_current);
64 }
65 
66 static void update_mt_scaling(void)
67 {
68 	u64 cycles_new[8], *cycles_old;
69 	u64 delta, fac, mult, div;
70 	int i;
71 
72 	stcctm(MT_DIAG, smp_cpu_mtid + 1, cycles_new);
73 	cycles_old = this_cpu_ptr(mt_cycles);
74 	fac = 1;
75 	mult = div = 0;
76 	for (i = 0; i <= smp_cpu_mtid; i++) {
77 		delta = cycles_new[i] - cycles_old[i];
78 		div += delta;
79 		mult *= i + 1;
80 		mult += delta * fac;
81 		fac *= i + 1;
82 	}
83 	div *= fac;
84 	if (div > 0) {
85 		/* Update scaling factor */
86 		__this_cpu_write(mt_scaling_mult, mult);
87 		__this_cpu_write(mt_scaling_div, div);
88 		memcpy(cycles_old, cycles_new,
89 		       sizeof(u64) * (smp_cpu_mtid + 1));
90 	}
91 	__this_cpu_write(mt_scaling_jiffies, jiffies_64);
92 }
93 
94 static inline u64 update_tsk_timer(unsigned long *tsk_vtime, u64 new)
95 {
96 	u64 delta;
97 
98 	delta = new - *tsk_vtime;
99 	*tsk_vtime = new;
100 	return delta;
101 }
102 
103 
104 static inline u64 scale_vtime(u64 vtime)
105 {
106 	u64 mult = __this_cpu_read(mt_scaling_mult);
107 	u64 div = __this_cpu_read(mt_scaling_div);
108 
109 	if (smp_cpu_mtid)
110 		return vtime * mult / div;
111 	return vtime;
112 }
113 
114 static void account_system_index_scaled(struct task_struct *p, u64 cputime,
115 					enum cpu_usage_stat index)
116 {
117 	p->stimescaled += cputime_to_nsecs(scale_vtime(cputime));
118 	account_system_index_time(p, cputime_to_nsecs(cputime), index);
119 }
120 
121 /*
122  * Update process times based on virtual cpu times stored by entry.S
123  * to the lowcore fields user_timer, system_timer & steal_clock.
124  */
125 static int do_account_vtime(struct task_struct *tsk)
126 {
127 	u64 timer, clock, user, guest, system, hardirq, softirq;
128 
129 	timer = S390_lowcore.last_update_timer;
130 	clock = S390_lowcore.last_update_clock;
131 	asm volatile(
132 		"	stpt	%0\n"	/* Store current cpu timer value */
133 #ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES
134 		"	stckf	%1"	/* Store current tod clock value */
135 #else
136 		"	stck	%1"	/* Store current tod clock value */
137 #endif
138 		: "=Q" (S390_lowcore.last_update_timer),
139 		  "=Q" (S390_lowcore.last_update_clock));
140 	clock = S390_lowcore.last_update_clock - clock;
141 	timer -= S390_lowcore.last_update_timer;
142 
143 	if (hardirq_count())
144 		S390_lowcore.hardirq_timer += timer;
145 	else
146 		S390_lowcore.system_timer += timer;
147 
148 	/* Update MT utilization calculation */
149 	if (smp_cpu_mtid &&
150 	    time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
151 		update_mt_scaling();
152 
153 	/* Calculate cputime delta */
154 	user = update_tsk_timer(&tsk->thread.user_timer,
155 				READ_ONCE(S390_lowcore.user_timer));
156 	guest = update_tsk_timer(&tsk->thread.guest_timer,
157 				 READ_ONCE(S390_lowcore.guest_timer));
158 	system = update_tsk_timer(&tsk->thread.system_timer,
159 				  READ_ONCE(S390_lowcore.system_timer));
160 	hardirq = update_tsk_timer(&tsk->thread.hardirq_timer,
161 				   READ_ONCE(S390_lowcore.hardirq_timer));
162 	softirq = update_tsk_timer(&tsk->thread.softirq_timer,
163 				   READ_ONCE(S390_lowcore.softirq_timer));
164 	S390_lowcore.steal_timer +=
165 		clock - user - guest - system - hardirq - softirq;
166 
167 	/* Push account value */
168 	if (user) {
169 		account_user_time(tsk, cputime_to_nsecs(user));
170 		tsk->utimescaled += cputime_to_nsecs(scale_vtime(user));
171 	}
172 
173 	if (guest) {
174 		account_guest_time(tsk, cputime_to_nsecs(guest));
175 		tsk->utimescaled += cputime_to_nsecs(scale_vtime(guest));
176 	}
177 
178 	if (system)
179 		account_system_index_scaled(tsk, system, CPUTIME_SYSTEM);
180 	if (hardirq)
181 		account_system_index_scaled(tsk, hardirq, CPUTIME_IRQ);
182 	if (softirq)
183 		account_system_index_scaled(tsk, softirq, CPUTIME_SOFTIRQ);
184 
185 	return virt_timer_forward(user + guest + system + hardirq + softirq);
186 }
187 
188 void vtime_task_switch(struct task_struct *prev)
189 {
190 	do_account_vtime(prev);
191 	prev->thread.user_timer = S390_lowcore.user_timer;
192 	prev->thread.guest_timer = S390_lowcore.guest_timer;
193 	prev->thread.system_timer = S390_lowcore.system_timer;
194 	prev->thread.hardirq_timer = S390_lowcore.hardirq_timer;
195 	prev->thread.softirq_timer = S390_lowcore.softirq_timer;
196 	S390_lowcore.user_timer = current->thread.user_timer;
197 	S390_lowcore.guest_timer = current->thread.guest_timer;
198 	S390_lowcore.system_timer = current->thread.system_timer;
199 	S390_lowcore.hardirq_timer = current->thread.hardirq_timer;
200 	S390_lowcore.softirq_timer = current->thread.softirq_timer;
201 }
202 
203 /*
204  * In s390, accounting pending user time also implies
205  * accounting system time in order to correctly compute
206  * the stolen time accounting.
207  */
208 void vtime_flush(struct task_struct *tsk)
209 {
210 	u64 steal, avg_steal;
211 
212 	if (do_account_vtime(tsk))
213 		virt_timer_expire();
214 
215 	steal = S390_lowcore.steal_timer;
216 	avg_steal = S390_lowcore.avg_steal_timer / 2;
217 	if ((s64) steal > 0) {
218 		S390_lowcore.steal_timer = 0;
219 		account_steal_time(steal);
220 		avg_steal += steal;
221 	}
222 	S390_lowcore.avg_steal_timer = avg_steal;
223 }
224 
225 static u64 vtime_delta(void)
226 {
227 	u64 timer = S390_lowcore.last_update_timer;
228 
229 	S390_lowcore.last_update_timer = get_vtimer();
230 
231 	return timer - S390_lowcore.last_update_timer;
232 }
233 
234 /*
235  * Update process times based on virtual cpu times stored by entry.S
236  * to the lowcore fields user_timer, system_timer & steal_clock.
237  */
238 void vtime_account_kernel(struct task_struct *tsk)
239 {
240 	u64 delta = vtime_delta();
241 
242 	if (tsk->flags & PF_VCPU)
243 		S390_lowcore.guest_timer += delta;
244 	else
245 		S390_lowcore.system_timer += delta;
246 
247 	virt_timer_forward(delta);
248 }
249 EXPORT_SYMBOL_GPL(vtime_account_kernel);
250 
251 void vtime_account_softirq(struct task_struct *tsk)
252 {
253 	u64 delta = vtime_delta();
254 
255 	S390_lowcore.softirq_timer += delta;
256 
257 	virt_timer_forward(delta);
258 }
259 
260 void vtime_account_hardirq(struct task_struct *tsk)
261 {
262 	u64 delta = vtime_delta();
263 
264 	S390_lowcore.hardirq_timer += delta;
265 
266 	virt_timer_forward(delta);
267 }
268 
269 /*
270  * Sorted add to a list. List is linear searched until first bigger
271  * element is found.
272  */
273 static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
274 {
275 	struct vtimer_list *tmp;
276 
277 	list_for_each_entry(tmp, head, entry) {
278 		if (tmp->expires > timer->expires) {
279 			list_add_tail(&timer->entry, &tmp->entry);
280 			return;
281 		}
282 	}
283 	list_add_tail(&timer->entry, head);
284 }
285 
286 /*
287  * Handler for expired virtual CPU timer.
288  */
289 static void virt_timer_expire(void)
290 {
291 	struct vtimer_list *timer, *tmp;
292 	unsigned long elapsed;
293 	LIST_HEAD(cb_list);
294 
295 	/* walk timer list, fire all expired timers */
296 	spin_lock(&virt_timer_lock);
297 	elapsed = atomic64_read(&virt_timer_elapsed);
298 	list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
299 		if (timer->expires < elapsed)
300 			/* move expired timer to the callback queue */
301 			list_move_tail(&timer->entry, &cb_list);
302 		else
303 			timer->expires -= elapsed;
304 	}
305 	if (!list_empty(&virt_timer_list)) {
306 		timer = list_first_entry(&virt_timer_list,
307 					 struct vtimer_list, entry);
308 		atomic64_set(&virt_timer_current, timer->expires);
309 	}
310 	atomic64_sub(elapsed, &virt_timer_elapsed);
311 	spin_unlock(&virt_timer_lock);
312 
313 	/* Do callbacks and recharge periodic timers */
314 	list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
315 		list_del_init(&timer->entry);
316 		timer->function(timer->data);
317 		if (timer->interval) {
318 			/* Recharge interval timer */
319 			timer->expires = timer->interval +
320 				atomic64_read(&virt_timer_elapsed);
321 			spin_lock(&virt_timer_lock);
322 			list_add_sorted(timer, &virt_timer_list);
323 			spin_unlock(&virt_timer_lock);
324 		}
325 	}
326 }
327 
328 void init_virt_timer(struct vtimer_list *timer)
329 {
330 	timer->function = NULL;
331 	INIT_LIST_HEAD(&timer->entry);
332 }
333 EXPORT_SYMBOL(init_virt_timer);
334 
335 static inline int vtimer_pending(struct vtimer_list *timer)
336 {
337 	return !list_empty(&timer->entry);
338 }
339 
340 static void internal_add_vtimer(struct vtimer_list *timer)
341 {
342 	if (list_empty(&virt_timer_list)) {
343 		/* First timer, just program it. */
344 		atomic64_set(&virt_timer_current, timer->expires);
345 		atomic64_set(&virt_timer_elapsed, 0);
346 		list_add(&timer->entry, &virt_timer_list);
347 	} else {
348 		/* Update timer against current base. */
349 		timer->expires += atomic64_read(&virt_timer_elapsed);
350 		if (likely((s64) timer->expires <
351 			   (s64) atomic64_read(&virt_timer_current)))
352 			/* The new timer expires before the current timer. */
353 			atomic64_set(&virt_timer_current, timer->expires);
354 		/* Insert new timer into the list. */
355 		list_add_sorted(timer, &virt_timer_list);
356 	}
357 }
358 
359 static void __add_vtimer(struct vtimer_list *timer, int periodic)
360 {
361 	unsigned long flags;
362 
363 	timer->interval = periodic ? timer->expires : 0;
364 	spin_lock_irqsave(&virt_timer_lock, flags);
365 	internal_add_vtimer(timer);
366 	spin_unlock_irqrestore(&virt_timer_lock, flags);
367 }
368 
369 /*
370  * add_virt_timer - add a oneshot virtual CPU timer
371  */
372 void add_virt_timer(struct vtimer_list *timer)
373 {
374 	__add_vtimer(timer, 0);
375 }
376 EXPORT_SYMBOL(add_virt_timer);
377 
378 /*
379  * add_virt_timer_int - add an interval virtual CPU timer
380  */
381 void add_virt_timer_periodic(struct vtimer_list *timer)
382 {
383 	__add_vtimer(timer, 1);
384 }
385 EXPORT_SYMBOL(add_virt_timer_periodic);
386 
387 static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
388 {
389 	unsigned long flags;
390 	int rc;
391 
392 	BUG_ON(!timer->function);
393 
394 	if (timer->expires == expires && vtimer_pending(timer))
395 		return 1;
396 	spin_lock_irqsave(&virt_timer_lock, flags);
397 	rc = vtimer_pending(timer);
398 	if (rc)
399 		list_del_init(&timer->entry);
400 	timer->interval = periodic ? expires : 0;
401 	timer->expires = expires;
402 	internal_add_vtimer(timer);
403 	spin_unlock_irqrestore(&virt_timer_lock, flags);
404 	return rc;
405 }
406 
407 /*
408  * returns whether it has modified a pending timer (1) or not (0)
409  */
410 int mod_virt_timer(struct vtimer_list *timer, u64 expires)
411 {
412 	return __mod_vtimer(timer, expires, 0);
413 }
414 EXPORT_SYMBOL(mod_virt_timer);
415 
416 /*
417  * returns whether it has modified a pending timer (1) or not (0)
418  */
419 int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
420 {
421 	return __mod_vtimer(timer, expires, 1);
422 }
423 EXPORT_SYMBOL(mod_virt_timer_periodic);
424 
425 /*
426  * Delete a virtual timer.
427  *
428  * returns whether the deleted timer was pending (1) or not (0)
429  */
430 int del_virt_timer(struct vtimer_list *timer)
431 {
432 	unsigned long flags;
433 
434 	if (!vtimer_pending(timer))
435 		return 0;
436 	spin_lock_irqsave(&virt_timer_lock, flags);
437 	list_del_init(&timer->entry);
438 	spin_unlock_irqrestore(&virt_timer_lock, flags);
439 	return 1;
440 }
441 EXPORT_SYMBOL(del_virt_timer);
442 
443 /*
444  * Start the virtual CPU timer on the current CPU.
445  */
446 void vtime_init(void)
447 {
448 	/* set initial cpu timer */
449 	set_vtimer(VTIMER_MAX_SLICE);
450 	/* Setup initial MT scaling values */
451 	if (smp_cpu_mtid) {
452 		__this_cpu_write(mt_scaling_jiffies, jiffies);
453 		__this_cpu_write(mt_scaling_mult, 1);
454 		__this_cpu_write(mt_scaling_div, 1);
455 		stcctm(MT_DIAG, smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
456 	}
457 }
458