xref: /openbmc/linux/arch/s390/kernel/vtime.c (revision e8e0929d)
1 /*
2  *  arch/s390/kernel/vtime.c
3  *    Virtual cpu timer based timer functions.
4  *
5  *  S390 version
6  *    Copyright (C) 2004 IBM Deutschland Entwicklung GmbH, IBM Corporation
7  *    Author(s): Jan Glauber <jan.glauber@de.ibm.com>
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/time.h>
13 #include <linux/delay.h>
14 #include <linux/init.h>
15 #include <linux/smp.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/notifier.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/rcupdate.h>
21 #include <linux/posix-timers.h>
22 
23 #include <asm/s390_ext.h>
24 #include <asm/timer.h>
25 #include <asm/irq_regs.h>
26 #include <asm/cputime.h>
27 
28 static DEFINE_PER_CPU(struct vtimer_queue, virt_cpu_timer);
29 
30 DEFINE_PER_CPU(struct s390_idle_data, s390_idle);
31 
32 static inline __u64 get_vtimer(void)
33 {
34 	__u64 timer;
35 
36 	asm volatile("STPT %0" : "=m" (timer));
37 	return timer;
38 }
39 
40 static inline void set_vtimer(__u64 expires)
41 {
42 	__u64 timer;
43 
44 	asm volatile ("  STPT %0\n"  /* Store current cpu timer value */
45 		      "  SPT %1"     /* Set new value immediatly afterwards */
46 		      : "=m" (timer) : "m" (expires) );
47 	S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
48 	S390_lowcore.last_update_timer = expires;
49 }
50 
51 /*
52  * Update process times based on virtual cpu times stored by entry.S
53  * to the lowcore fields user_timer, system_timer & steal_clock.
54  */
55 static void do_account_vtime(struct task_struct *tsk, int hardirq_offset)
56 {
57 	struct thread_info *ti = task_thread_info(tsk);
58 	__u64 timer, clock, user, system, steal;
59 
60 	timer = S390_lowcore.last_update_timer;
61 	clock = S390_lowcore.last_update_clock;
62 	asm volatile ("  STPT %0\n"    /* Store current cpu timer value */
63 		      "  STCK %1"      /* Store current tod clock value */
64 		      : "=m" (S390_lowcore.last_update_timer),
65 		        "=m" (S390_lowcore.last_update_clock) );
66 	S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
67 	S390_lowcore.steal_timer += S390_lowcore.last_update_clock - clock;
68 
69 	user = S390_lowcore.user_timer - ti->user_timer;
70 	S390_lowcore.steal_timer -= user;
71 	ti->user_timer = S390_lowcore.user_timer;
72 	account_user_time(tsk, user, user);
73 
74 	system = S390_lowcore.system_timer - ti->system_timer;
75 	S390_lowcore.steal_timer -= system;
76 	ti->system_timer = S390_lowcore.system_timer;
77 	account_system_time(tsk, hardirq_offset, system, system);
78 
79 	steal = S390_lowcore.steal_timer;
80 	if ((s64) steal > 0) {
81 		S390_lowcore.steal_timer = 0;
82 		account_steal_time(steal);
83 	}
84 }
85 
86 void account_vtime(struct task_struct *prev, struct task_struct *next)
87 {
88 	struct thread_info *ti;
89 
90 	do_account_vtime(prev, 0);
91 	ti = task_thread_info(prev);
92 	ti->user_timer = S390_lowcore.user_timer;
93 	ti->system_timer = S390_lowcore.system_timer;
94 	ti = task_thread_info(next);
95 	S390_lowcore.user_timer = ti->user_timer;
96 	S390_lowcore.system_timer = ti->system_timer;
97 }
98 
99 void account_process_tick(struct task_struct *tsk, int user_tick)
100 {
101 	do_account_vtime(tsk, HARDIRQ_OFFSET);
102 }
103 
104 /*
105  * Update process times based on virtual cpu times stored by entry.S
106  * to the lowcore fields user_timer, system_timer & steal_clock.
107  */
108 void account_system_vtime(struct task_struct *tsk)
109 {
110 	struct thread_info *ti = task_thread_info(tsk);
111 	__u64 timer, system;
112 
113 	timer = S390_lowcore.last_update_timer;
114 	S390_lowcore.last_update_timer = get_vtimer();
115 	S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
116 
117 	system = S390_lowcore.system_timer - ti->system_timer;
118 	S390_lowcore.steal_timer -= system;
119 	ti->system_timer = S390_lowcore.system_timer;
120 	account_system_time(tsk, 0, system, system);
121 }
122 EXPORT_SYMBOL_GPL(account_system_vtime);
123 
124 void vtime_start_cpu(void)
125 {
126 	struct s390_idle_data *idle = &__get_cpu_var(s390_idle);
127 	struct vtimer_queue *vq = &__get_cpu_var(virt_cpu_timer);
128 	__u64 idle_time, expires;
129 
130 	/* Account time spent with enabled wait psw loaded as idle time. */
131 	idle_time = S390_lowcore.int_clock - idle->idle_enter;
132 	account_idle_time(idle_time);
133 	S390_lowcore.steal_timer +=
134 		idle->idle_enter - S390_lowcore.last_update_clock;
135 	S390_lowcore.last_update_clock = S390_lowcore.int_clock;
136 
137 	/* Account system time spent going idle. */
138 	S390_lowcore.system_timer += S390_lowcore.last_update_timer - vq->idle;
139 	S390_lowcore.last_update_timer = S390_lowcore.async_enter_timer;
140 
141 	/* Restart vtime CPU timer */
142 	if (vq->do_spt) {
143 		/* Program old expire value but first save progress. */
144 		expires = vq->idle - S390_lowcore.async_enter_timer;
145 		expires += get_vtimer();
146 		set_vtimer(expires);
147 	} else {
148 		/* Don't account the CPU timer delta while the cpu was idle. */
149 		vq->elapsed -= vq->idle - S390_lowcore.async_enter_timer;
150 	}
151 
152 	idle->sequence++;
153 	smp_wmb();
154 	idle->idle_time += idle_time;
155 	idle->idle_enter = 0ULL;
156 	idle->idle_count++;
157 	smp_wmb();
158 	idle->sequence++;
159 }
160 
161 void vtime_stop_cpu(void)
162 {
163 	struct s390_idle_data *idle = &__get_cpu_var(s390_idle);
164 	struct vtimer_queue *vq = &__get_cpu_var(virt_cpu_timer);
165 	psw_t psw;
166 
167 	/* Wait for external, I/O or machine check interrupt. */
168 	psw.mask = psw_kernel_bits | PSW_MASK_WAIT | PSW_MASK_IO | PSW_MASK_EXT;
169 
170 	/* Check if the CPU timer needs to be reprogrammed. */
171 	if (vq->do_spt) {
172 		__u64 vmax = VTIMER_MAX_SLICE;
173 		/*
174 		 * The inline assembly is equivalent to
175 		 *	vq->idle = get_cpu_timer();
176 		 *	set_cpu_timer(VTIMER_MAX_SLICE);
177 		 *	idle->idle_enter = get_clock();
178 		 *	__load_psw_mask(psw_kernel_bits | PSW_MASK_WAIT |
179 		 *			   PSW_MASK_IO | PSW_MASK_EXT);
180 		 * The difference is that the inline assembly makes sure that
181 		 * the last three instruction are stpt, stck and lpsw in that
182 		 * order. This is done to increase the precision.
183 		 */
184 		asm volatile(
185 #ifndef CONFIG_64BIT
186 			"	basr	1,0\n"
187 			"0:	ahi	1,1f-0b\n"
188 			"	st	1,4(%2)\n"
189 #else /* CONFIG_64BIT */
190 			"	larl	1,1f\n"
191 			"	stg	1,8(%2)\n"
192 #endif /* CONFIG_64BIT */
193 			"	stpt	0(%4)\n"
194 			"	spt	0(%5)\n"
195 			"	stck	0(%3)\n"
196 #ifndef CONFIG_64BIT
197 			"	lpsw	0(%2)\n"
198 #else /* CONFIG_64BIT */
199 			"	lpswe	0(%2)\n"
200 #endif /* CONFIG_64BIT */
201 			"1:"
202 			: "=m" (idle->idle_enter), "=m" (vq->idle)
203 			: "a" (&psw), "a" (&idle->idle_enter),
204 			  "a" (&vq->idle), "a" (&vmax), "m" (vmax), "m" (psw)
205 			: "memory", "cc", "1");
206 	} else {
207 		/*
208 		 * The inline assembly is equivalent to
209 		 *	vq->idle = get_cpu_timer();
210 		 *	idle->idle_enter = get_clock();
211 		 *	__load_psw_mask(psw_kernel_bits | PSW_MASK_WAIT |
212 		 *			   PSW_MASK_IO | PSW_MASK_EXT);
213 		 * The difference is that the inline assembly makes sure that
214 		 * the last three instruction are stpt, stck and lpsw in that
215 		 * order. This is done to increase the precision.
216 		 */
217 		asm volatile(
218 #ifndef CONFIG_64BIT
219 			"	basr	1,0\n"
220 			"0:	ahi	1,1f-0b\n"
221 			"	st	1,4(%2)\n"
222 #else /* CONFIG_64BIT */
223 			"	larl	1,1f\n"
224 			"	stg	1,8(%2)\n"
225 #endif /* CONFIG_64BIT */
226 			"	stpt	0(%4)\n"
227 			"	stck	0(%3)\n"
228 #ifndef CONFIG_64BIT
229 			"	lpsw	0(%2)\n"
230 #else /* CONFIG_64BIT */
231 			"	lpswe	0(%2)\n"
232 #endif /* CONFIG_64BIT */
233 			"1:"
234 			: "=m" (idle->idle_enter), "=m" (vq->idle)
235 			: "a" (&psw), "a" (&idle->idle_enter),
236 			  "a" (&vq->idle), "m" (psw)
237 			: "memory", "cc", "1");
238 	}
239 }
240 
241 cputime64_t s390_get_idle_time(int cpu)
242 {
243 	struct s390_idle_data *idle;
244 	unsigned long long now, idle_time, idle_enter;
245 	unsigned int sequence;
246 
247 	idle = &per_cpu(s390_idle, cpu);
248 
249 	now = get_clock();
250 repeat:
251 	sequence = idle->sequence;
252 	smp_rmb();
253 	if (sequence & 1)
254 		goto repeat;
255 	idle_time = 0;
256 	idle_enter = idle->idle_enter;
257 	if (idle_enter != 0ULL && idle_enter < now)
258 		idle_time = now - idle_enter;
259 	smp_rmb();
260 	if (idle->sequence != sequence)
261 		goto repeat;
262 	return idle_time;
263 }
264 
265 /*
266  * Sorted add to a list. List is linear searched until first bigger
267  * element is found.
268  */
269 static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
270 {
271 	struct vtimer_list *event;
272 
273 	list_for_each_entry(event, head, entry) {
274 		if (event->expires > timer->expires) {
275 			list_add_tail(&timer->entry, &event->entry);
276 			return;
277 		}
278 	}
279 	list_add_tail(&timer->entry, head);
280 }
281 
282 /*
283  * Do the callback functions of expired vtimer events.
284  * Called from within the interrupt handler.
285  */
286 static void do_callbacks(struct list_head *cb_list)
287 {
288 	struct vtimer_queue *vq;
289 	struct vtimer_list *event, *tmp;
290 
291 	if (list_empty(cb_list))
292 		return;
293 
294 	vq = &__get_cpu_var(virt_cpu_timer);
295 
296 	list_for_each_entry_safe(event, tmp, cb_list, entry) {
297 		list_del_init(&event->entry);
298 		(event->function)(event->data);
299 		if (event->interval) {
300 			/* Recharge interval timer */
301 			event->expires = event->interval + vq->elapsed;
302 			spin_lock(&vq->lock);
303 			list_add_sorted(event, &vq->list);
304 			spin_unlock(&vq->lock);
305 		}
306 	}
307 }
308 
309 /*
310  * Handler for the virtual CPU timer.
311  */
312 static void do_cpu_timer_interrupt(__u16 error_code)
313 {
314 	struct vtimer_queue *vq;
315 	struct vtimer_list *event, *tmp;
316 	struct list_head cb_list;	/* the callback queue */
317 	__u64 elapsed, next;
318 
319 	INIT_LIST_HEAD(&cb_list);
320 	vq = &__get_cpu_var(virt_cpu_timer);
321 
322 	/* walk timer list, fire all expired events */
323 	spin_lock(&vq->lock);
324 
325 	elapsed = vq->elapsed + (vq->timer - S390_lowcore.async_enter_timer);
326 	BUG_ON((s64) elapsed < 0);
327 	vq->elapsed = 0;
328 	list_for_each_entry_safe(event, tmp, &vq->list, entry) {
329 		if (event->expires < elapsed)
330 			/* move expired timer to the callback queue */
331 			list_move_tail(&event->entry, &cb_list);
332 		else
333 			event->expires -= elapsed;
334 	}
335 	spin_unlock(&vq->lock);
336 
337 	vq->do_spt = list_empty(&cb_list);
338 	do_callbacks(&cb_list);
339 
340 	/* next event is first in list */
341 	next = VTIMER_MAX_SLICE;
342 	spin_lock(&vq->lock);
343 	if (!list_empty(&vq->list)) {
344 		event = list_first_entry(&vq->list, struct vtimer_list, entry);
345 		next = event->expires;
346 	} else
347 		vq->do_spt = 0;
348 	spin_unlock(&vq->lock);
349 	/*
350 	 * To improve precision add the time spent by the
351 	 * interrupt handler to the elapsed time.
352 	 * Note: CPU timer counts down and we got an interrupt,
353 	 *	 the current content is negative
354 	 */
355 	elapsed = S390_lowcore.async_enter_timer - get_vtimer();
356 	set_vtimer(next - elapsed);
357 	vq->timer = next - elapsed;
358 	vq->elapsed = elapsed;
359 }
360 
361 void init_virt_timer(struct vtimer_list *timer)
362 {
363 	timer->function = NULL;
364 	INIT_LIST_HEAD(&timer->entry);
365 }
366 EXPORT_SYMBOL(init_virt_timer);
367 
368 static inline int vtimer_pending(struct vtimer_list *timer)
369 {
370 	return (!list_empty(&timer->entry));
371 }
372 
373 /*
374  * this function should only run on the specified CPU
375  */
376 static void internal_add_vtimer(struct vtimer_list *timer)
377 {
378 	struct vtimer_queue *vq;
379 	unsigned long flags;
380 	__u64 left, expires;
381 
382 	vq = &per_cpu(virt_cpu_timer, timer->cpu);
383 	spin_lock_irqsave(&vq->lock, flags);
384 
385 	BUG_ON(timer->cpu != smp_processor_id());
386 
387 	if (list_empty(&vq->list)) {
388 		/* First timer on this cpu, just program it. */
389 		list_add(&timer->entry, &vq->list);
390 		set_vtimer(timer->expires);
391 		vq->timer = timer->expires;
392 		vq->elapsed = 0;
393 	} else {
394 		/* Check progress of old timers. */
395 		expires = timer->expires;
396 		left = get_vtimer();
397 		if (likely((s64) expires < (s64) left)) {
398 			/* The new timer expires before the current timer. */
399 			set_vtimer(expires);
400 			vq->elapsed += vq->timer - left;
401 			vq->timer = expires;
402 		} else {
403 			vq->elapsed += vq->timer - left;
404 			vq->timer = left;
405 		}
406 		/* Insert new timer into per cpu list. */
407 		timer->expires += vq->elapsed;
408 		list_add_sorted(timer, &vq->list);
409 	}
410 
411 	spin_unlock_irqrestore(&vq->lock, flags);
412 	/* release CPU acquired in prepare_vtimer or mod_virt_timer() */
413 	put_cpu();
414 }
415 
416 static inline void prepare_vtimer(struct vtimer_list *timer)
417 {
418 	BUG_ON(!timer->function);
419 	BUG_ON(!timer->expires || timer->expires > VTIMER_MAX_SLICE);
420 	BUG_ON(vtimer_pending(timer));
421 	timer->cpu = get_cpu();
422 }
423 
424 /*
425  * add_virt_timer - add an oneshot virtual CPU timer
426  */
427 void add_virt_timer(void *new)
428 {
429 	struct vtimer_list *timer;
430 
431 	timer = (struct vtimer_list *)new;
432 	prepare_vtimer(timer);
433 	timer->interval = 0;
434 	internal_add_vtimer(timer);
435 }
436 EXPORT_SYMBOL(add_virt_timer);
437 
438 /*
439  * add_virt_timer_int - add an interval virtual CPU timer
440  */
441 void add_virt_timer_periodic(void *new)
442 {
443 	struct vtimer_list *timer;
444 
445 	timer = (struct vtimer_list *)new;
446 	prepare_vtimer(timer);
447 	timer->interval = timer->expires;
448 	internal_add_vtimer(timer);
449 }
450 EXPORT_SYMBOL(add_virt_timer_periodic);
451 
452 int __mod_vtimer(struct vtimer_list *timer, __u64 expires, int periodic)
453 {
454 	struct vtimer_queue *vq;
455 	unsigned long flags;
456 	int cpu;
457 
458 	BUG_ON(!timer->function);
459 	BUG_ON(!expires || expires > VTIMER_MAX_SLICE);
460 
461 	if (timer->expires == expires && vtimer_pending(timer))
462 		return 1;
463 
464 	cpu = get_cpu();
465 	vq = &per_cpu(virt_cpu_timer, cpu);
466 
467 	/* disable interrupts before test if timer is pending */
468 	spin_lock_irqsave(&vq->lock, flags);
469 
470 	/* if timer isn't pending add it on the current CPU */
471 	if (!vtimer_pending(timer)) {
472 		spin_unlock_irqrestore(&vq->lock, flags);
473 
474 		if (periodic)
475 			timer->interval = expires;
476 		else
477 			timer->interval = 0;
478 		timer->expires = expires;
479 		timer->cpu = cpu;
480 		internal_add_vtimer(timer);
481 		return 0;
482 	}
483 
484 	/* check if we run on the right CPU */
485 	BUG_ON(timer->cpu != cpu);
486 
487 	list_del_init(&timer->entry);
488 	timer->expires = expires;
489 	if (periodic)
490 		timer->interval = expires;
491 
492 	/* the timer can't expire anymore so we can release the lock */
493 	spin_unlock_irqrestore(&vq->lock, flags);
494 	internal_add_vtimer(timer);
495 	return 1;
496 }
497 
498 /*
499  * If we change a pending timer the function must be called on the CPU
500  * where the timer is running on.
501  *
502  * returns whether it has modified a pending timer (1) or not (0)
503  */
504 int mod_virt_timer(struct vtimer_list *timer, __u64 expires)
505 {
506 	return __mod_vtimer(timer, expires, 0);
507 }
508 EXPORT_SYMBOL(mod_virt_timer);
509 
510 /*
511  * If we change a pending timer the function must be called on the CPU
512  * where the timer is running on.
513  *
514  * returns whether it has modified a pending timer (1) or not (0)
515  */
516 int mod_virt_timer_periodic(struct vtimer_list *timer, __u64 expires)
517 {
518 	return __mod_vtimer(timer, expires, 1);
519 }
520 EXPORT_SYMBOL(mod_virt_timer_periodic);
521 
522 /*
523  * delete a virtual timer
524  *
525  * returns whether the deleted timer was pending (1) or not (0)
526  */
527 int del_virt_timer(struct vtimer_list *timer)
528 {
529 	unsigned long flags;
530 	struct vtimer_queue *vq;
531 
532 	/* check if timer is pending */
533 	if (!vtimer_pending(timer))
534 		return 0;
535 
536 	vq = &per_cpu(virt_cpu_timer, timer->cpu);
537 	spin_lock_irqsave(&vq->lock, flags);
538 
539 	/* we don't interrupt a running timer, just let it expire! */
540 	list_del_init(&timer->entry);
541 
542 	spin_unlock_irqrestore(&vq->lock, flags);
543 	return 1;
544 }
545 EXPORT_SYMBOL(del_virt_timer);
546 
547 /*
548  * Start the virtual CPU timer on the current CPU.
549  */
550 void init_cpu_vtimer(void)
551 {
552 	struct vtimer_queue *vq;
553 
554 	/* initialize per cpu vtimer structure */
555 	vq = &__get_cpu_var(virt_cpu_timer);
556 	INIT_LIST_HEAD(&vq->list);
557 	spin_lock_init(&vq->lock);
558 
559 	/* enable cpu timer interrupts */
560 	__ctl_set_bit(0,10);
561 }
562 
563 void __init vtime_init(void)
564 {
565 	/* request the cpu timer external interrupt */
566 	if (register_external_interrupt(0x1005, do_cpu_timer_interrupt))
567 		panic("Couldn't request external interrupt 0x1005");
568 
569 	/* Enable cpu timer interrupts on the boot cpu. */
570 	init_cpu_vtimer();
571 }
572 
573