1 /* 2 * arch/s390/kernel/vtime.c 3 * Virtual cpu timer based timer functions. 4 * 5 * S390 version 6 * Copyright (C) 2004 IBM Deutschland Entwicklung GmbH, IBM Corporation 7 * Author(s): Jan Glauber <jan.glauber@de.ibm.com> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/time.h> 13 #include <linux/delay.h> 14 #include <linux/init.h> 15 #include <linux/smp.h> 16 #include <linux/types.h> 17 #include <linux/timex.h> 18 #include <linux/notifier.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/rcupdate.h> 21 #include <linux/posix-timers.h> 22 23 #include <asm/s390_ext.h> 24 #include <asm/timer.h> 25 #include <asm/irq_regs.h> 26 #include <asm/cpu.h> 27 28 static ext_int_info_t ext_int_info_timer; 29 30 static DEFINE_PER_CPU(struct vtimer_queue, virt_cpu_timer); 31 32 DEFINE_PER_CPU(struct s390_idle_data, s390_idle) = { 33 .lock = __SPIN_LOCK_UNLOCKED(s390_idle.lock) 34 }; 35 36 static inline __u64 get_vtimer(void) 37 { 38 __u64 timer; 39 40 asm volatile("STPT %0" : "=m" (timer)); 41 return timer; 42 } 43 44 static inline void set_vtimer(__u64 expires) 45 { 46 __u64 timer; 47 48 asm volatile (" STPT %0\n" /* Store current cpu timer value */ 49 " SPT %1" /* Set new value immediatly afterwards */ 50 : "=m" (timer) : "m" (expires) ); 51 S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer; 52 S390_lowcore.last_update_timer = expires; 53 } 54 55 /* 56 * Update process times based on virtual cpu times stored by entry.S 57 * to the lowcore fields user_timer, system_timer & steal_clock. 58 */ 59 static void do_account_vtime(struct task_struct *tsk, int hardirq_offset) 60 { 61 struct thread_info *ti = task_thread_info(tsk); 62 __u64 timer, clock, user, system, steal; 63 64 timer = S390_lowcore.last_update_timer; 65 clock = S390_lowcore.last_update_clock; 66 asm volatile (" STPT %0\n" /* Store current cpu timer value */ 67 " STCK %1" /* Store current tod clock value */ 68 : "=m" (S390_lowcore.last_update_timer), 69 "=m" (S390_lowcore.last_update_clock) ); 70 S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer; 71 S390_lowcore.steal_timer += S390_lowcore.last_update_clock - clock; 72 73 user = S390_lowcore.user_timer - ti->user_timer; 74 S390_lowcore.steal_timer -= user; 75 ti->user_timer = S390_lowcore.user_timer; 76 account_user_time(tsk, user, user); 77 78 system = S390_lowcore.system_timer - ti->system_timer; 79 S390_lowcore.steal_timer -= system; 80 ti->system_timer = S390_lowcore.system_timer; 81 account_system_time(tsk, hardirq_offset, system, system); 82 83 steal = S390_lowcore.steal_timer; 84 if ((s64) steal > 0) { 85 S390_lowcore.steal_timer = 0; 86 account_steal_time(steal); 87 } 88 } 89 90 void account_vtime(struct task_struct *prev, struct task_struct *next) 91 { 92 struct thread_info *ti; 93 94 do_account_vtime(prev, 0); 95 ti = task_thread_info(prev); 96 ti->user_timer = S390_lowcore.user_timer; 97 ti->system_timer = S390_lowcore.system_timer; 98 ti = task_thread_info(next); 99 S390_lowcore.user_timer = ti->user_timer; 100 S390_lowcore.system_timer = ti->system_timer; 101 } 102 103 void account_process_tick(struct task_struct *tsk, int user_tick) 104 { 105 do_account_vtime(tsk, HARDIRQ_OFFSET); 106 } 107 108 /* 109 * Update process times based on virtual cpu times stored by entry.S 110 * to the lowcore fields user_timer, system_timer & steal_clock. 111 */ 112 void account_system_vtime(struct task_struct *tsk) 113 { 114 struct thread_info *ti = task_thread_info(tsk); 115 __u64 timer, system; 116 117 timer = S390_lowcore.last_update_timer; 118 S390_lowcore.last_update_timer = get_vtimer(); 119 S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer; 120 121 system = S390_lowcore.system_timer - ti->system_timer; 122 S390_lowcore.steal_timer -= system; 123 ti->system_timer = S390_lowcore.system_timer; 124 account_system_time(tsk, 0, system, system); 125 } 126 EXPORT_SYMBOL_GPL(account_system_vtime); 127 128 void vtime_start_cpu(void) 129 { 130 struct s390_idle_data *idle = &__get_cpu_var(s390_idle); 131 struct vtimer_queue *vq = &__get_cpu_var(virt_cpu_timer); 132 __u64 idle_time, expires; 133 134 /* Account time spent with enabled wait psw loaded as idle time. */ 135 idle_time = S390_lowcore.int_clock - idle->idle_enter; 136 account_idle_time(idle_time); 137 S390_lowcore.steal_timer += 138 idle->idle_enter - S390_lowcore.last_update_clock; 139 S390_lowcore.last_update_clock = S390_lowcore.int_clock; 140 141 /* Account system time spent going idle. */ 142 S390_lowcore.system_timer += S390_lowcore.last_update_timer - vq->idle; 143 S390_lowcore.last_update_timer = S390_lowcore.async_enter_timer; 144 145 /* Restart vtime CPU timer */ 146 if (vq->do_spt) { 147 /* Program old expire value but first save progress. */ 148 expires = vq->idle - S390_lowcore.async_enter_timer; 149 expires += get_vtimer(); 150 set_vtimer(expires); 151 } else { 152 /* Don't account the CPU timer delta while the cpu was idle. */ 153 vq->elapsed -= vq->idle - S390_lowcore.async_enter_timer; 154 } 155 156 spin_lock(&idle->lock); 157 idle->idle_time += idle_time; 158 idle->idle_enter = 0ULL; 159 idle->idle_count++; 160 spin_unlock(&idle->lock); 161 } 162 163 void vtime_stop_cpu(void) 164 { 165 struct s390_idle_data *idle = &__get_cpu_var(s390_idle); 166 struct vtimer_queue *vq = &__get_cpu_var(virt_cpu_timer); 167 psw_t psw; 168 169 /* Wait for external, I/O or machine check interrupt. */ 170 psw.mask = psw_kernel_bits | PSW_MASK_WAIT | PSW_MASK_IO | PSW_MASK_EXT; 171 172 /* Check if the CPU timer needs to be reprogrammed. */ 173 if (vq->do_spt) { 174 __u64 vmax = VTIMER_MAX_SLICE; 175 /* 176 * The inline assembly is equivalent to 177 * vq->idle = get_cpu_timer(); 178 * set_cpu_timer(VTIMER_MAX_SLICE); 179 * idle->idle_enter = get_clock(); 180 * __load_psw_mask(psw_kernel_bits | PSW_MASK_WAIT | 181 * PSW_MASK_IO | PSW_MASK_EXT); 182 * The difference is that the inline assembly makes sure that 183 * the last three instruction are stpt, stck and lpsw in that 184 * order. This is done to increase the precision. 185 */ 186 asm volatile( 187 #ifndef CONFIG_64BIT 188 " basr 1,0\n" 189 "0: ahi 1,1f-0b\n" 190 " st 1,4(%2)\n" 191 #else /* CONFIG_64BIT */ 192 " larl 1,1f\n" 193 " stg 1,8(%2)\n" 194 #endif /* CONFIG_64BIT */ 195 " stpt 0(%4)\n" 196 " spt 0(%5)\n" 197 " stck 0(%3)\n" 198 #ifndef CONFIG_64BIT 199 " lpsw 0(%2)\n" 200 #else /* CONFIG_64BIT */ 201 " lpswe 0(%2)\n" 202 #endif /* CONFIG_64BIT */ 203 "1:" 204 : "=m" (idle->idle_enter), "=m" (vq->idle) 205 : "a" (&psw), "a" (&idle->idle_enter), 206 "a" (&vq->idle), "a" (&vmax), "m" (vmax), "m" (psw) 207 : "memory", "cc", "1"); 208 } else { 209 /* 210 * The inline assembly is equivalent to 211 * vq->idle = get_cpu_timer(); 212 * idle->idle_enter = get_clock(); 213 * __load_psw_mask(psw_kernel_bits | PSW_MASK_WAIT | 214 * PSW_MASK_IO | PSW_MASK_EXT); 215 * The difference is that the inline assembly makes sure that 216 * the last three instruction are stpt, stck and lpsw in that 217 * order. This is done to increase the precision. 218 */ 219 asm volatile( 220 #ifndef CONFIG_64BIT 221 " basr 1,0\n" 222 "0: ahi 1,1f-0b\n" 223 " st 1,4(%2)\n" 224 #else /* CONFIG_64BIT */ 225 " larl 1,1f\n" 226 " stg 1,8(%2)\n" 227 #endif /* CONFIG_64BIT */ 228 " stpt 0(%4)\n" 229 " stck 0(%3)\n" 230 #ifndef CONFIG_64BIT 231 " lpsw 0(%2)\n" 232 #else /* CONFIG_64BIT */ 233 " lpswe 0(%2)\n" 234 #endif /* CONFIG_64BIT */ 235 "1:" 236 : "=m" (idle->idle_enter), "=m" (vq->idle) 237 : "a" (&psw), "a" (&idle->idle_enter), 238 "a" (&vq->idle), "m" (psw) 239 : "memory", "cc", "1"); 240 } 241 } 242 243 cputime64_t s390_get_idle_time(int cpu) 244 { 245 struct s390_idle_data *idle; 246 unsigned long long now, idle_time, idle_enter; 247 248 idle = &per_cpu(s390_idle, cpu); 249 spin_lock(&idle->lock); 250 now = get_clock(); 251 idle_time = 0; 252 idle_enter = idle->idle_enter; 253 if (idle_enter != 0ULL && idle_enter < now) 254 idle_time = now - idle_enter; 255 spin_unlock(&idle->lock); 256 return idle_time; 257 } 258 259 /* 260 * Sorted add to a list. List is linear searched until first bigger 261 * element is found. 262 */ 263 static void list_add_sorted(struct vtimer_list *timer, struct list_head *head) 264 { 265 struct vtimer_list *event; 266 267 list_for_each_entry(event, head, entry) { 268 if (event->expires > timer->expires) { 269 list_add_tail(&timer->entry, &event->entry); 270 return; 271 } 272 } 273 list_add_tail(&timer->entry, head); 274 } 275 276 /* 277 * Do the callback functions of expired vtimer events. 278 * Called from within the interrupt handler. 279 */ 280 static void do_callbacks(struct list_head *cb_list) 281 { 282 struct vtimer_queue *vq; 283 struct vtimer_list *event, *tmp; 284 285 if (list_empty(cb_list)) 286 return; 287 288 vq = &__get_cpu_var(virt_cpu_timer); 289 290 list_for_each_entry_safe(event, tmp, cb_list, entry) { 291 list_del_init(&event->entry); 292 (event->function)(event->data); 293 if (event->interval) { 294 /* Recharge interval timer */ 295 event->expires = event->interval + vq->elapsed; 296 spin_lock(&vq->lock); 297 list_add_sorted(event, &vq->list); 298 spin_unlock(&vq->lock); 299 } 300 } 301 } 302 303 /* 304 * Handler for the virtual CPU timer. 305 */ 306 static void do_cpu_timer_interrupt(__u16 error_code) 307 { 308 struct vtimer_queue *vq; 309 struct vtimer_list *event, *tmp; 310 struct list_head cb_list; /* the callback queue */ 311 __u64 elapsed, next; 312 313 INIT_LIST_HEAD(&cb_list); 314 vq = &__get_cpu_var(virt_cpu_timer); 315 316 /* walk timer list, fire all expired events */ 317 spin_lock(&vq->lock); 318 319 elapsed = vq->elapsed + (vq->timer - S390_lowcore.async_enter_timer); 320 BUG_ON((s64) elapsed < 0); 321 vq->elapsed = 0; 322 list_for_each_entry_safe(event, tmp, &vq->list, entry) { 323 if (event->expires < elapsed) 324 /* move expired timer to the callback queue */ 325 list_move_tail(&event->entry, &cb_list); 326 else 327 event->expires -= elapsed; 328 } 329 spin_unlock(&vq->lock); 330 331 vq->do_spt = list_empty(&cb_list); 332 do_callbacks(&cb_list); 333 334 /* next event is first in list */ 335 next = VTIMER_MAX_SLICE; 336 spin_lock(&vq->lock); 337 if (!list_empty(&vq->list)) { 338 event = list_first_entry(&vq->list, struct vtimer_list, entry); 339 next = event->expires; 340 } else 341 vq->do_spt = 0; 342 spin_unlock(&vq->lock); 343 /* 344 * To improve precision add the time spent by the 345 * interrupt handler to the elapsed time. 346 * Note: CPU timer counts down and we got an interrupt, 347 * the current content is negative 348 */ 349 elapsed = S390_lowcore.async_enter_timer - get_vtimer(); 350 set_vtimer(next - elapsed); 351 vq->timer = next - elapsed; 352 vq->elapsed = elapsed; 353 } 354 355 void init_virt_timer(struct vtimer_list *timer) 356 { 357 timer->function = NULL; 358 INIT_LIST_HEAD(&timer->entry); 359 } 360 EXPORT_SYMBOL(init_virt_timer); 361 362 static inline int vtimer_pending(struct vtimer_list *timer) 363 { 364 return (!list_empty(&timer->entry)); 365 } 366 367 /* 368 * this function should only run on the specified CPU 369 */ 370 static void internal_add_vtimer(struct vtimer_list *timer) 371 { 372 struct vtimer_queue *vq; 373 unsigned long flags; 374 __u64 left, expires; 375 376 vq = &per_cpu(virt_cpu_timer, timer->cpu); 377 spin_lock_irqsave(&vq->lock, flags); 378 379 BUG_ON(timer->cpu != smp_processor_id()); 380 381 if (list_empty(&vq->list)) { 382 /* First timer on this cpu, just program it. */ 383 list_add(&timer->entry, &vq->list); 384 set_vtimer(timer->expires); 385 vq->timer = timer->expires; 386 vq->elapsed = 0; 387 } else { 388 /* Check progress of old timers. */ 389 expires = timer->expires; 390 left = get_vtimer(); 391 if (likely((s64) expires < (s64) left)) { 392 /* The new timer expires before the current timer. */ 393 set_vtimer(expires); 394 vq->elapsed += vq->timer - left; 395 vq->timer = expires; 396 } else { 397 vq->elapsed += vq->timer - left; 398 vq->timer = left; 399 } 400 /* Insert new timer into per cpu list. */ 401 timer->expires += vq->elapsed; 402 list_add_sorted(timer, &vq->list); 403 } 404 405 spin_unlock_irqrestore(&vq->lock, flags); 406 /* release CPU acquired in prepare_vtimer or mod_virt_timer() */ 407 put_cpu(); 408 } 409 410 static inline void prepare_vtimer(struct vtimer_list *timer) 411 { 412 BUG_ON(!timer->function); 413 BUG_ON(!timer->expires || timer->expires > VTIMER_MAX_SLICE); 414 BUG_ON(vtimer_pending(timer)); 415 timer->cpu = get_cpu(); 416 } 417 418 /* 419 * add_virt_timer - add an oneshot virtual CPU timer 420 */ 421 void add_virt_timer(void *new) 422 { 423 struct vtimer_list *timer; 424 425 timer = (struct vtimer_list *)new; 426 prepare_vtimer(timer); 427 timer->interval = 0; 428 internal_add_vtimer(timer); 429 } 430 EXPORT_SYMBOL(add_virt_timer); 431 432 /* 433 * add_virt_timer_int - add an interval virtual CPU timer 434 */ 435 void add_virt_timer_periodic(void *new) 436 { 437 struct vtimer_list *timer; 438 439 timer = (struct vtimer_list *)new; 440 prepare_vtimer(timer); 441 timer->interval = timer->expires; 442 internal_add_vtimer(timer); 443 } 444 EXPORT_SYMBOL(add_virt_timer_periodic); 445 446 int __mod_vtimer(struct vtimer_list *timer, __u64 expires, int periodic) 447 { 448 struct vtimer_queue *vq; 449 unsigned long flags; 450 int cpu; 451 452 BUG_ON(!timer->function); 453 BUG_ON(!expires || expires > VTIMER_MAX_SLICE); 454 455 if (timer->expires == expires && vtimer_pending(timer)) 456 return 1; 457 458 cpu = get_cpu(); 459 vq = &per_cpu(virt_cpu_timer, cpu); 460 461 /* disable interrupts before test if timer is pending */ 462 spin_lock_irqsave(&vq->lock, flags); 463 464 /* if timer isn't pending add it on the current CPU */ 465 if (!vtimer_pending(timer)) { 466 spin_unlock_irqrestore(&vq->lock, flags); 467 468 if (periodic) 469 timer->interval = expires; 470 else 471 timer->interval = 0; 472 timer->expires = expires; 473 timer->cpu = cpu; 474 internal_add_vtimer(timer); 475 return 0; 476 } 477 478 /* check if we run on the right CPU */ 479 BUG_ON(timer->cpu != cpu); 480 481 list_del_init(&timer->entry); 482 timer->expires = expires; 483 if (periodic) 484 timer->interval = expires; 485 486 /* the timer can't expire anymore so we can release the lock */ 487 spin_unlock_irqrestore(&vq->lock, flags); 488 internal_add_vtimer(timer); 489 return 1; 490 } 491 492 /* 493 * If we change a pending timer the function must be called on the CPU 494 * where the timer is running on. 495 * 496 * returns whether it has modified a pending timer (1) or not (0) 497 */ 498 int mod_virt_timer(struct vtimer_list *timer, __u64 expires) 499 { 500 return __mod_vtimer(timer, expires, 0); 501 } 502 EXPORT_SYMBOL(mod_virt_timer); 503 504 /* 505 * If we change a pending timer the function must be called on the CPU 506 * where the timer is running on. 507 * 508 * returns whether it has modified a pending timer (1) or not (0) 509 */ 510 int mod_virt_timer_periodic(struct vtimer_list *timer, __u64 expires) 511 { 512 return __mod_vtimer(timer, expires, 1); 513 } 514 EXPORT_SYMBOL(mod_virt_timer_periodic); 515 516 /* 517 * delete a virtual timer 518 * 519 * returns whether the deleted timer was pending (1) or not (0) 520 */ 521 int del_virt_timer(struct vtimer_list *timer) 522 { 523 unsigned long flags; 524 struct vtimer_queue *vq; 525 526 /* check if timer is pending */ 527 if (!vtimer_pending(timer)) 528 return 0; 529 530 vq = &per_cpu(virt_cpu_timer, timer->cpu); 531 spin_lock_irqsave(&vq->lock, flags); 532 533 /* we don't interrupt a running timer, just let it expire! */ 534 list_del_init(&timer->entry); 535 536 spin_unlock_irqrestore(&vq->lock, flags); 537 return 1; 538 } 539 EXPORT_SYMBOL(del_virt_timer); 540 541 /* 542 * Start the virtual CPU timer on the current CPU. 543 */ 544 void init_cpu_vtimer(void) 545 { 546 struct vtimer_queue *vq; 547 548 /* initialize per cpu vtimer structure */ 549 vq = &__get_cpu_var(virt_cpu_timer); 550 INIT_LIST_HEAD(&vq->list); 551 spin_lock_init(&vq->lock); 552 553 /* enable cpu timer interrupts */ 554 __ctl_set_bit(0,10); 555 } 556 557 void __init vtime_init(void) 558 { 559 /* request the cpu timer external interrupt */ 560 if (register_early_external_interrupt(0x1005, do_cpu_timer_interrupt, 561 &ext_int_info_timer) != 0) 562 panic("Couldn't request external interrupt 0x1005"); 563 564 /* Enable cpu timer interrupts on the boot cpu. */ 565 init_cpu_vtimer(); 566 } 567 568