xref: /openbmc/linux/arch/s390/kernel/vtime.c (revision 647d41d3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Virtual cpu timer based timer functions.
4  *
5  *    Copyright IBM Corp. 2004, 2012
6  *    Author(s): Jan Glauber <jan.glauber@de.ibm.com>
7  */
8 
9 #include <linux/kernel_stat.h>
10 #include <linux/sched/cputime.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/timex.h>
14 #include <linux/types.h>
15 #include <linux/time.h>
16 #include <asm/alternative.h>
17 #include <asm/vtimer.h>
18 #include <asm/vtime.h>
19 #include <asm/cpu_mf.h>
20 #include <asm/smp.h>
21 
22 #include "entry.h"
23 
24 static void virt_timer_expire(void);
25 
26 static LIST_HEAD(virt_timer_list);
27 static DEFINE_SPINLOCK(virt_timer_lock);
28 static atomic64_t virt_timer_current;
29 static atomic64_t virt_timer_elapsed;
30 
31 DEFINE_PER_CPU(u64, mt_cycles[8]);
32 static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
33 static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
34 static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
35 
36 static inline u64 get_vtimer(void)
37 {
38 	u64 timer;
39 
40 	asm volatile("stpt %0" : "=Q" (timer));
41 	return timer;
42 }
43 
44 static inline void set_vtimer(u64 expires)
45 {
46 	u64 timer;
47 
48 	asm volatile(
49 		"	stpt	%0\n"	/* Store current cpu timer value */
50 		"	spt	%1"	/* Set new value imm. afterwards */
51 		: "=Q" (timer) : "Q" (expires));
52 	S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
53 	S390_lowcore.last_update_timer = expires;
54 }
55 
56 static inline int virt_timer_forward(u64 elapsed)
57 {
58 	BUG_ON(!irqs_disabled());
59 
60 	if (list_empty(&virt_timer_list))
61 		return 0;
62 	elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
63 	return elapsed >= atomic64_read(&virt_timer_current);
64 }
65 
66 static void update_mt_scaling(void)
67 {
68 	u64 cycles_new[8], *cycles_old;
69 	u64 delta, fac, mult, div;
70 	int i;
71 
72 	stcctm(MT_DIAG, smp_cpu_mtid + 1, cycles_new);
73 	cycles_old = this_cpu_ptr(mt_cycles);
74 	fac = 1;
75 	mult = div = 0;
76 	for (i = 0; i <= smp_cpu_mtid; i++) {
77 		delta = cycles_new[i] - cycles_old[i];
78 		div += delta;
79 		mult *= i + 1;
80 		mult += delta * fac;
81 		fac *= i + 1;
82 	}
83 	div *= fac;
84 	if (div > 0) {
85 		/* Update scaling factor */
86 		__this_cpu_write(mt_scaling_mult, mult);
87 		__this_cpu_write(mt_scaling_div, div);
88 		memcpy(cycles_old, cycles_new,
89 		       sizeof(u64) * (smp_cpu_mtid + 1));
90 	}
91 	__this_cpu_write(mt_scaling_jiffies, jiffies_64);
92 }
93 
94 static inline u64 update_tsk_timer(unsigned long *tsk_vtime, u64 new)
95 {
96 	u64 delta;
97 
98 	delta = new - *tsk_vtime;
99 	*tsk_vtime = new;
100 	return delta;
101 }
102 
103 
104 static inline u64 scale_vtime(u64 vtime)
105 {
106 	u64 mult = __this_cpu_read(mt_scaling_mult);
107 	u64 div = __this_cpu_read(mt_scaling_div);
108 
109 	if (smp_cpu_mtid)
110 		return vtime * mult / div;
111 	return vtime;
112 }
113 
114 static void account_system_index_scaled(struct task_struct *p, u64 cputime,
115 					enum cpu_usage_stat index)
116 {
117 	p->stimescaled += cputime_to_nsecs(scale_vtime(cputime));
118 	account_system_index_time(p, cputime_to_nsecs(cputime), index);
119 }
120 
121 /*
122  * Update process times based on virtual cpu times stored by entry.S
123  * to the lowcore fields user_timer, system_timer & steal_clock.
124  */
125 static int do_account_vtime(struct task_struct *tsk)
126 {
127 	u64 timer, clock, user, guest, system, hardirq, softirq;
128 
129 	timer = S390_lowcore.last_update_timer;
130 	clock = S390_lowcore.last_update_clock;
131 	/* Use STORE CLOCK by default, STORE CLOCK FAST if available. */
132 	alternative_io("stpt %0\n .insn s,0xb2050000,%1\n",
133 		       "stpt %0\n .insn s,0xb27c0000,%1\n",
134 		       25,
135 		       ASM_OUTPUT2("=Q" (S390_lowcore.last_update_timer),
136 				   "=Q" (S390_lowcore.last_update_clock)),
137 		       ASM_NO_INPUT_CLOBBER("cc"));
138 	clock = S390_lowcore.last_update_clock - clock;
139 	timer -= S390_lowcore.last_update_timer;
140 
141 	if (hardirq_count())
142 		S390_lowcore.hardirq_timer += timer;
143 	else
144 		S390_lowcore.system_timer += timer;
145 
146 	/* Update MT utilization calculation */
147 	if (smp_cpu_mtid &&
148 	    time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
149 		update_mt_scaling();
150 
151 	/* Calculate cputime delta */
152 	user = update_tsk_timer(&tsk->thread.user_timer,
153 				READ_ONCE(S390_lowcore.user_timer));
154 	guest = update_tsk_timer(&tsk->thread.guest_timer,
155 				 READ_ONCE(S390_lowcore.guest_timer));
156 	system = update_tsk_timer(&tsk->thread.system_timer,
157 				  READ_ONCE(S390_lowcore.system_timer));
158 	hardirq = update_tsk_timer(&tsk->thread.hardirq_timer,
159 				   READ_ONCE(S390_lowcore.hardirq_timer));
160 	softirq = update_tsk_timer(&tsk->thread.softirq_timer,
161 				   READ_ONCE(S390_lowcore.softirq_timer));
162 	S390_lowcore.steal_timer +=
163 		clock - user - guest - system - hardirq - softirq;
164 
165 	/* Push account value */
166 	if (user) {
167 		account_user_time(tsk, cputime_to_nsecs(user));
168 		tsk->utimescaled += cputime_to_nsecs(scale_vtime(user));
169 	}
170 
171 	if (guest) {
172 		account_guest_time(tsk, cputime_to_nsecs(guest));
173 		tsk->utimescaled += cputime_to_nsecs(scale_vtime(guest));
174 	}
175 
176 	if (system)
177 		account_system_index_scaled(tsk, system, CPUTIME_SYSTEM);
178 	if (hardirq)
179 		account_system_index_scaled(tsk, hardirq, CPUTIME_IRQ);
180 	if (softirq)
181 		account_system_index_scaled(tsk, softirq, CPUTIME_SOFTIRQ);
182 
183 	return virt_timer_forward(user + guest + system + hardirq + softirq);
184 }
185 
186 void vtime_task_switch(struct task_struct *prev)
187 {
188 	do_account_vtime(prev);
189 	prev->thread.user_timer = S390_lowcore.user_timer;
190 	prev->thread.guest_timer = S390_lowcore.guest_timer;
191 	prev->thread.system_timer = S390_lowcore.system_timer;
192 	prev->thread.hardirq_timer = S390_lowcore.hardirq_timer;
193 	prev->thread.softirq_timer = S390_lowcore.softirq_timer;
194 	S390_lowcore.user_timer = current->thread.user_timer;
195 	S390_lowcore.guest_timer = current->thread.guest_timer;
196 	S390_lowcore.system_timer = current->thread.system_timer;
197 	S390_lowcore.hardirq_timer = current->thread.hardirq_timer;
198 	S390_lowcore.softirq_timer = current->thread.softirq_timer;
199 }
200 
201 /*
202  * In s390, accounting pending user time also implies
203  * accounting system time in order to correctly compute
204  * the stolen time accounting.
205  */
206 void vtime_flush(struct task_struct *tsk)
207 {
208 	u64 steal, avg_steal;
209 
210 	if (do_account_vtime(tsk))
211 		virt_timer_expire();
212 
213 	steal = S390_lowcore.steal_timer;
214 	avg_steal = S390_lowcore.avg_steal_timer / 2;
215 	if ((s64) steal > 0) {
216 		S390_lowcore.steal_timer = 0;
217 		account_steal_time(cputime_to_nsecs(steal));
218 		avg_steal += steal;
219 	}
220 	S390_lowcore.avg_steal_timer = avg_steal;
221 }
222 
223 static u64 vtime_delta(void)
224 {
225 	u64 timer = S390_lowcore.last_update_timer;
226 
227 	S390_lowcore.last_update_timer = get_vtimer();
228 
229 	return timer - S390_lowcore.last_update_timer;
230 }
231 
232 /*
233  * Update process times based on virtual cpu times stored by entry.S
234  * to the lowcore fields user_timer, system_timer & steal_clock.
235  */
236 void vtime_account_kernel(struct task_struct *tsk)
237 {
238 	u64 delta = vtime_delta();
239 
240 	if (tsk->flags & PF_VCPU)
241 		S390_lowcore.guest_timer += delta;
242 	else
243 		S390_lowcore.system_timer += delta;
244 
245 	virt_timer_forward(delta);
246 }
247 EXPORT_SYMBOL_GPL(vtime_account_kernel);
248 
249 void vtime_account_softirq(struct task_struct *tsk)
250 {
251 	u64 delta = vtime_delta();
252 
253 	S390_lowcore.softirq_timer += delta;
254 
255 	virt_timer_forward(delta);
256 }
257 
258 void vtime_account_hardirq(struct task_struct *tsk)
259 {
260 	u64 delta = vtime_delta();
261 
262 	S390_lowcore.hardirq_timer += delta;
263 
264 	virt_timer_forward(delta);
265 }
266 
267 /*
268  * Sorted add to a list. List is linear searched until first bigger
269  * element is found.
270  */
271 static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
272 {
273 	struct vtimer_list *tmp;
274 
275 	list_for_each_entry(tmp, head, entry) {
276 		if (tmp->expires > timer->expires) {
277 			list_add_tail(&timer->entry, &tmp->entry);
278 			return;
279 		}
280 	}
281 	list_add_tail(&timer->entry, head);
282 }
283 
284 /*
285  * Handler for expired virtual CPU timer.
286  */
287 static void virt_timer_expire(void)
288 {
289 	struct vtimer_list *timer, *tmp;
290 	unsigned long elapsed;
291 	LIST_HEAD(cb_list);
292 
293 	/* walk timer list, fire all expired timers */
294 	spin_lock(&virt_timer_lock);
295 	elapsed = atomic64_read(&virt_timer_elapsed);
296 	list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
297 		if (timer->expires < elapsed)
298 			/* move expired timer to the callback queue */
299 			list_move_tail(&timer->entry, &cb_list);
300 		else
301 			timer->expires -= elapsed;
302 	}
303 	if (!list_empty(&virt_timer_list)) {
304 		timer = list_first_entry(&virt_timer_list,
305 					 struct vtimer_list, entry);
306 		atomic64_set(&virt_timer_current, timer->expires);
307 	}
308 	atomic64_sub(elapsed, &virt_timer_elapsed);
309 	spin_unlock(&virt_timer_lock);
310 
311 	/* Do callbacks and recharge periodic timers */
312 	list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
313 		list_del_init(&timer->entry);
314 		timer->function(timer->data);
315 		if (timer->interval) {
316 			/* Recharge interval timer */
317 			timer->expires = timer->interval +
318 				atomic64_read(&virt_timer_elapsed);
319 			spin_lock(&virt_timer_lock);
320 			list_add_sorted(timer, &virt_timer_list);
321 			spin_unlock(&virt_timer_lock);
322 		}
323 	}
324 }
325 
326 void init_virt_timer(struct vtimer_list *timer)
327 {
328 	timer->function = NULL;
329 	INIT_LIST_HEAD(&timer->entry);
330 }
331 EXPORT_SYMBOL(init_virt_timer);
332 
333 static inline int vtimer_pending(struct vtimer_list *timer)
334 {
335 	return !list_empty(&timer->entry);
336 }
337 
338 static void internal_add_vtimer(struct vtimer_list *timer)
339 {
340 	if (list_empty(&virt_timer_list)) {
341 		/* First timer, just program it. */
342 		atomic64_set(&virt_timer_current, timer->expires);
343 		atomic64_set(&virt_timer_elapsed, 0);
344 		list_add(&timer->entry, &virt_timer_list);
345 	} else {
346 		/* Update timer against current base. */
347 		timer->expires += atomic64_read(&virt_timer_elapsed);
348 		if (likely((s64) timer->expires <
349 			   (s64) atomic64_read(&virt_timer_current)))
350 			/* The new timer expires before the current timer. */
351 			atomic64_set(&virt_timer_current, timer->expires);
352 		/* Insert new timer into the list. */
353 		list_add_sorted(timer, &virt_timer_list);
354 	}
355 }
356 
357 static void __add_vtimer(struct vtimer_list *timer, int periodic)
358 {
359 	unsigned long flags;
360 
361 	timer->interval = periodic ? timer->expires : 0;
362 	spin_lock_irqsave(&virt_timer_lock, flags);
363 	internal_add_vtimer(timer);
364 	spin_unlock_irqrestore(&virt_timer_lock, flags);
365 }
366 
367 /*
368  * add_virt_timer - add a oneshot virtual CPU timer
369  */
370 void add_virt_timer(struct vtimer_list *timer)
371 {
372 	__add_vtimer(timer, 0);
373 }
374 EXPORT_SYMBOL(add_virt_timer);
375 
376 /*
377  * add_virt_timer_int - add an interval virtual CPU timer
378  */
379 void add_virt_timer_periodic(struct vtimer_list *timer)
380 {
381 	__add_vtimer(timer, 1);
382 }
383 EXPORT_SYMBOL(add_virt_timer_periodic);
384 
385 static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
386 {
387 	unsigned long flags;
388 	int rc;
389 
390 	BUG_ON(!timer->function);
391 
392 	if (timer->expires == expires && vtimer_pending(timer))
393 		return 1;
394 	spin_lock_irqsave(&virt_timer_lock, flags);
395 	rc = vtimer_pending(timer);
396 	if (rc)
397 		list_del_init(&timer->entry);
398 	timer->interval = periodic ? expires : 0;
399 	timer->expires = expires;
400 	internal_add_vtimer(timer);
401 	spin_unlock_irqrestore(&virt_timer_lock, flags);
402 	return rc;
403 }
404 
405 /*
406  * returns whether it has modified a pending timer (1) or not (0)
407  */
408 int mod_virt_timer(struct vtimer_list *timer, u64 expires)
409 {
410 	return __mod_vtimer(timer, expires, 0);
411 }
412 EXPORT_SYMBOL(mod_virt_timer);
413 
414 /*
415  * returns whether it has modified a pending timer (1) or not (0)
416  */
417 int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
418 {
419 	return __mod_vtimer(timer, expires, 1);
420 }
421 EXPORT_SYMBOL(mod_virt_timer_periodic);
422 
423 /*
424  * Delete a virtual timer.
425  *
426  * returns whether the deleted timer was pending (1) or not (0)
427  */
428 int del_virt_timer(struct vtimer_list *timer)
429 {
430 	unsigned long flags;
431 
432 	if (!vtimer_pending(timer))
433 		return 0;
434 	spin_lock_irqsave(&virt_timer_lock, flags);
435 	list_del_init(&timer->entry);
436 	spin_unlock_irqrestore(&virt_timer_lock, flags);
437 	return 1;
438 }
439 EXPORT_SYMBOL(del_virt_timer);
440 
441 /*
442  * Start the virtual CPU timer on the current CPU.
443  */
444 void vtime_init(void)
445 {
446 	/* set initial cpu timer */
447 	set_vtimer(VTIMER_MAX_SLICE);
448 	/* Setup initial MT scaling values */
449 	if (smp_cpu_mtid) {
450 		__this_cpu_write(mt_scaling_jiffies, jiffies);
451 		__this_cpu_write(mt_scaling_mult, 1);
452 		__this_cpu_write(mt_scaling_div, 1);
453 		stcctm(MT_DIAG, smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
454 	}
455 }
456