xref: /openbmc/linux/arch/s390/kernel/uv.c (revision eb96b740192b2a09720aaed8a8c132e6a29d5bdb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Ultravisor functions and initialization
4  *
5  * Copyright IBM Corp. 2019, 2020
6  */
7 #define KMSG_COMPONENT "prot_virt"
8 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/sizes.h>
13 #include <linux/bitmap.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <asm/facility.h>
18 #include <asm/sections.h>
19 #include <asm/uv.h>
20 
21 /* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */
22 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
23 int __bootdata_preserved(prot_virt_guest);
24 #endif
25 
26 struct uv_info __bootdata_preserved(uv_info);
27 
28 #if IS_ENABLED(CONFIG_KVM)
29 int __bootdata_preserved(prot_virt_host);
30 EXPORT_SYMBOL(prot_virt_host);
31 EXPORT_SYMBOL(uv_info);
32 
33 static int __init uv_init(phys_addr_t stor_base, unsigned long stor_len)
34 {
35 	struct uv_cb_init uvcb = {
36 		.header.cmd = UVC_CMD_INIT_UV,
37 		.header.len = sizeof(uvcb),
38 		.stor_origin = stor_base,
39 		.stor_len = stor_len,
40 	};
41 
42 	if (uv_call(0, (uint64_t)&uvcb)) {
43 		pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n",
44 		       uvcb.header.rc, uvcb.header.rrc);
45 		return -1;
46 	}
47 	return 0;
48 }
49 
50 void __init setup_uv(void)
51 {
52 	void *uv_stor_base;
53 
54 	if (!is_prot_virt_host())
55 		return;
56 
57 	uv_stor_base = memblock_alloc_try_nid(
58 		uv_info.uv_base_stor_len, SZ_1M, SZ_2G,
59 		MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
60 	if (!uv_stor_base) {
61 		pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n",
62 			uv_info.uv_base_stor_len);
63 		goto fail;
64 	}
65 
66 	if (uv_init(__pa(uv_stor_base), uv_info.uv_base_stor_len)) {
67 		memblock_free(uv_stor_base, uv_info.uv_base_stor_len);
68 		goto fail;
69 	}
70 
71 	pr_info("Reserving %luMB as ultravisor base storage\n",
72 		uv_info.uv_base_stor_len >> 20);
73 	return;
74 fail:
75 	pr_info("Disabling support for protected virtualization");
76 	prot_virt_host = 0;
77 }
78 
79 /*
80  * Requests the Ultravisor to pin the page in the shared state. This will
81  * cause an intercept when the guest attempts to unshare the pinned page.
82  */
83 static int uv_pin_shared(unsigned long paddr)
84 {
85 	struct uv_cb_cfs uvcb = {
86 		.header.cmd = UVC_CMD_PIN_PAGE_SHARED,
87 		.header.len = sizeof(uvcb),
88 		.paddr = paddr,
89 	};
90 
91 	if (uv_call(0, (u64)&uvcb))
92 		return -EINVAL;
93 	return 0;
94 }
95 
96 /*
97  * Requests the Ultravisor to destroy a guest page and make it
98  * accessible to the host. The destroy clears the page instead of
99  * exporting.
100  *
101  * @paddr: Absolute host address of page to be destroyed
102  */
103 static int uv_destroy_page(unsigned long paddr)
104 {
105 	struct uv_cb_cfs uvcb = {
106 		.header.cmd = UVC_CMD_DESTR_SEC_STOR,
107 		.header.len = sizeof(uvcb),
108 		.paddr = paddr
109 	};
110 
111 	if (uv_call(0, (u64)&uvcb)) {
112 		/*
113 		 * Older firmware uses 107/d as an indication of a non secure
114 		 * page. Let us emulate the newer variant (no-op).
115 		 */
116 		if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd)
117 			return 0;
118 		return -EINVAL;
119 	}
120 	return 0;
121 }
122 
123 /*
124  * The caller must already hold a reference to the page
125  */
126 int uv_destroy_owned_page(unsigned long paddr)
127 {
128 	struct page *page = phys_to_page(paddr);
129 	int rc;
130 
131 	get_page(page);
132 	rc = uv_destroy_page(paddr);
133 	if (!rc)
134 		clear_bit(PG_arch_1, &page->flags);
135 	put_page(page);
136 	return rc;
137 }
138 
139 /*
140  * Requests the Ultravisor to encrypt a guest page and make it
141  * accessible to the host for paging (export).
142  *
143  * @paddr: Absolute host address of page to be exported
144  */
145 int uv_convert_from_secure(unsigned long paddr)
146 {
147 	struct uv_cb_cfs uvcb = {
148 		.header.cmd = UVC_CMD_CONV_FROM_SEC_STOR,
149 		.header.len = sizeof(uvcb),
150 		.paddr = paddr
151 	};
152 
153 	if (uv_call(0, (u64)&uvcb))
154 		return -EINVAL;
155 	return 0;
156 }
157 
158 /*
159  * The caller must already hold a reference to the page
160  */
161 int uv_convert_owned_from_secure(unsigned long paddr)
162 {
163 	struct page *page = phys_to_page(paddr);
164 	int rc;
165 
166 	get_page(page);
167 	rc = uv_convert_from_secure(paddr);
168 	if (!rc)
169 		clear_bit(PG_arch_1, &page->flags);
170 	put_page(page);
171 	return rc;
172 }
173 
174 /*
175  * Calculate the expected ref_count for a page that would otherwise have no
176  * further pins. This was cribbed from similar functions in other places in
177  * the kernel, but with some slight modifications. We know that a secure
178  * page can not be a huge page for example.
179  */
180 static int expected_page_refs(struct page *page)
181 {
182 	int res;
183 
184 	res = page_mapcount(page);
185 	if (PageSwapCache(page)) {
186 		res++;
187 	} else if (page_mapping(page)) {
188 		res++;
189 		if (page_has_private(page))
190 			res++;
191 	}
192 	return res;
193 }
194 
195 static int make_secure_pte(pte_t *ptep, unsigned long addr,
196 			   struct page *exp_page, struct uv_cb_header *uvcb)
197 {
198 	pte_t entry = READ_ONCE(*ptep);
199 	struct page *page;
200 	int expected, cc = 0;
201 
202 	if (!pte_present(entry))
203 		return -ENXIO;
204 	if (pte_val(entry) & _PAGE_INVALID)
205 		return -ENXIO;
206 
207 	page = pte_page(entry);
208 	if (page != exp_page)
209 		return -ENXIO;
210 	if (PageWriteback(page))
211 		return -EAGAIN;
212 	expected = expected_page_refs(page);
213 	if (!page_ref_freeze(page, expected))
214 		return -EBUSY;
215 	set_bit(PG_arch_1, &page->flags);
216 	/*
217 	 * If the UVC does not succeed or fail immediately, we don't want to
218 	 * loop for long, or we might get stall notifications.
219 	 * On the other hand, this is a complex scenario and we are holding a lot of
220 	 * locks, so we can't easily sleep and reschedule. We try only once,
221 	 * and if the UVC returned busy or partial completion, we return
222 	 * -EAGAIN and we let the callers deal with it.
223 	 */
224 	cc = __uv_call(0, (u64)uvcb);
225 	page_ref_unfreeze(page, expected);
226 	/*
227 	 * Return -ENXIO if the page was not mapped, -EINVAL for other errors.
228 	 * If busy or partially completed, return -EAGAIN.
229 	 */
230 	if (cc == UVC_CC_OK)
231 		return 0;
232 	else if (cc == UVC_CC_BUSY || cc == UVC_CC_PARTIAL)
233 		return -EAGAIN;
234 	return uvcb->rc == 0x10a ? -ENXIO : -EINVAL;
235 }
236 
237 /**
238  * should_export_before_import - Determine whether an export is needed
239  * before an import-like operation
240  * @uvcb: the Ultravisor control block of the UVC to be performed
241  * @mm: the mm of the process
242  *
243  * Returns whether an export is needed before every import-like operation.
244  * This is needed for shared pages, which don't trigger a secure storage
245  * exception when accessed from a different guest.
246  *
247  * Although considered as one, the Unpin Page UVC is not an actual import,
248  * so it is not affected.
249  *
250  * No export is needed also when there is only one protected VM, because the
251  * page cannot belong to the wrong VM in that case (there is no "other VM"
252  * it can belong to).
253  *
254  * Return: true if an export is needed before every import, otherwise false.
255  */
256 static bool should_export_before_import(struct uv_cb_header *uvcb, struct mm_struct *mm)
257 {
258 	/*
259 	 * The misc feature indicates, among other things, that importing a
260 	 * shared page from a different protected VM will automatically also
261 	 * transfer its ownership.
262 	 */
263 	if (test_bit_inv(BIT_UV_FEAT_MISC, &uv_info.uv_feature_indications))
264 		return false;
265 	if (uvcb->cmd == UVC_CMD_UNPIN_PAGE_SHARED)
266 		return false;
267 	return atomic_read(&mm->context.protected_count) > 1;
268 }
269 
270 /*
271  * Requests the Ultravisor to make a page accessible to a guest.
272  * If it's brought in the first time, it will be cleared. If
273  * it has been exported before, it will be decrypted and integrity
274  * checked.
275  */
276 int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb)
277 {
278 	struct vm_area_struct *vma;
279 	bool local_drain = false;
280 	spinlock_t *ptelock;
281 	unsigned long uaddr;
282 	struct page *page;
283 	pte_t *ptep;
284 	int rc;
285 
286 again:
287 	rc = -EFAULT;
288 	mmap_read_lock(gmap->mm);
289 
290 	uaddr = __gmap_translate(gmap, gaddr);
291 	if (IS_ERR_VALUE(uaddr))
292 		goto out;
293 	vma = vma_lookup(gmap->mm, uaddr);
294 	if (!vma)
295 		goto out;
296 	/*
297 	 * Secure pages cannot be huge and userspace should not combine both.
298 	 * In case userspace does it anyway this will result in an -EFAULT for
299 	 * the unpack. The guest is thus never reaching secure mode. If
300 	 * userspace is playing dirty tricky with mapping huge pages later
301 	 * on this will result in a segmentation fault.
302 	 */
303 	if (is_vm_hugetlb_page(vma))
304 		goto out;
305 
306 	rc = -ENXIO;
307 	page = follow_page(vma, uaddr, FOLL_WRITE);
308 	if (IS_ERR_OR_NULL(page))
309 		goto out;
310 
311 	lock_page(page);
312 	ptep = get_locked_pte(gmap->mm, uaddr, &ptelock);
313 	if (should_export_before_import(uvcb, gmap->mm))
314 		uv_convert_from_secure(page_to_phys(page));
315 	rc = make_secure_pte(ptep, uaddr, page, uvcb);
316 	pte_unmap_unlock(ptep, ptelock);
317 	unlock_page(page);
318 out:
319 	mmap_read_unlock(gmap->mm);
320 
321 	if (rc == -EAGAIN) {
322 		/*
323 		 * If we are here because the UVC returned busy or partial
324 		 * completion, this is just a useless check, but it is safe.
325 		 */
326 		wait_on_page_writeback(page);
327 	} else if (rc == -EBUSY) {
328 		/*
329 		 * If we have tried a local drain and the page refcount
330 		 * still does not match our expected safe value, try with a
331 		 * system wide drain. This is needed if the pagevecs holding
332 		 * the page are on a different CPU.
333 		 */
334 		if (local_drain) {
335 			lru_add_drain_all();
336 			/* We give up here, and let the caller try again */
337 			return -EAGAIN;
338 		}
339 		/*
340 		 * We are here if the page refcount does not match the
341 		 * expected safe value. The main culprits are usually
342 		 * pagevecs. With lru_add_drain() we drain the pagevecs
343 		 * on the local CPU so that hopefully the refcount will
344 		 * reach the expected safe value.
345 		 */
346 		lru_add_drain();
347 		local_drain = true;
348 		/* And now we try again immediately after draining */
349 		goto again;
350 	} else if (rc == -ENXIO) {
351 		if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE))
352 			return -EFAULT;
353 		return -EAGAIN;
354 	}
355 	return rc;
356 }
357 EXPORT_SYMBOL_GPL(gmap_make_secure);
358 
359 int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr)
360 {
361 	struct uv_cb_cts uvcb = {
362 		.header.cmd = UVC_CMD_CONV_TO_SEC_STOR,
363 		.header.len = sizeof(uvcb),
364 		.guest_handle = gmap->guest_handle,
365 		.gaddr = gaddr,
366 	};
367 
368 	return gmap_make_secure(gmap, gaddr, &uvcb);
369 }
370 EXPORT_SYMBOL_GPL(gmap_convert_to_secure);
371 
372 /**
373  * gmap_destroy_page - Destroy a guest page.
374  * @gmap: the gmap of the guest
375  * @gaddr: the guest address to destroy
376  *
377  * An attempt will be made to destroy the given guest page. If the attempt
378  * fails, an attempt is made to export the page. If both attempts fail, an
379  * appropriate error is returned.
380  */
381 int gmap_destroy_page(struct gmap *gmap, unsigned long gaddr)
382 {
383 	struct vm_area_struct *vma;
384 	unsigned long uaddr;
385 	struct page *page;
386 	int rc;
387 
388 	rc = -EFAULT;
389 	mmap_read_lock(gmap->mm);
390 
391 	uaddr = __gmap_translate(gmap, gaddr);
392 	if (IS_ERR_VALUE(uaddr))
393 		goto out;
394 	vma = vma_lookup(gmap->mm, uaddr);
395 	if (!vma)
396 		goto out;
397 	/*
398 	 * Huge pages should not be able to become secure
399 	 */
400 	if (is_vm_hugetlb_page(vma))
401 		goto out;
402 
403 	rc = 0;
404 	/* we take an extra reference here */
405 	page = follow_page(vma, uaddr, FOLL_WRITE | FOLL_GET);
406 	if (IS_ERR_OR_NULL(page))
407 		goto out;
408 	rc = uv_destroy_owned_page(page_to_phys(page));
409 	/*
410 	 * Fault handlers can race; it is possible that two CPUs will fault
411 	 * on the same secure page. One CPU can destroy the page, reboot,
412 	 * re-enter secure mode and import it, while the second CPU was
413 	 * stuck at the beginning of the handler. At some point the second
414 	 * CPU will be able to progress, and it will not be able to destroy
415 	 * the page. In that case we do not want to terminate the process,
416 	 * we instead try to export the page.
417 	 */
418 	if (rc)
419 		rc = uv_convert_owned_from_secure(page_to_phys(page));
420 	put_page(page);
421 out:
422 	mmap_read_unlock(gmap->mm);
423 	return rc;
424 }
425 EXPORT_SYMBOL_GPL(gmap_destroy_page);
426 
427 /*
428  * To be called with the page locked or with an extra reference! This will
429  * prevent gmap_make_secure from touching the page concurrently. Having 2
430  * parallel make_page_accessible is fine, as the UV calls will become a
431  * no-op if the page is already exported.
432  */
433 int arch_make_page_accessible(struct page *page)
434 {
435 	int rc = 0;
436 
437 	/* Hugepage cannot be protected, so nothing to do */
438 	if (PageHuge(page))
439 		return 0;
440 
441 	/*
442 	 * PG_arch_1 is used in 3 places:
443 	 * 1. for kernel page tables during early boot
444 	 * 2. for storage keys of huge pages and KVM
445 	 * 3. As an indication that this page might be secure. This can
446 	 *    overindicate, e.g. we set the bit before calling
447 	 *    convert_to_secure.
448 	 * As secure pages are never huge, all 3 variants can co-exists.
449 	 */
450 	if (!test_bit(PG_arch_1, &page->flags))
451 		return 0;
452 
453 	rc = uv_pin_shared(page_to_phys(page));
454 	if (!rc) {
455 		clear_bit(PG_arch_1, &page->flags);
456 		return 0;
457 	}
458 
459 	rc = uv_convert_from_secure(page_to_phys(page));
460 	if (!rc) {
461 		clear_bit(PG_arch_1, &page->flags);
462 		return 0;
463 	}
464 
465 	return rc;
466 }
467 EXPORT_SYMBOL_GPL(arch_make_page_accessible);
468 
469 #endif
470 
471 #if defined(CONFIG_PROTECTED_VIRTUALIZATION_GUEST) || IS_ENABLED(CONFIG_KVM)
472 static ssize_t uv_query_facilities(struct kobject *kobj,
473 				   struct kobj_attribute *attr, char *page)
474 {
475 	return scnprintf(page, PAGE_SIZE, "%lx\n%lx\n%lx\n%lx\n",
476 			uv_info.inst_calls_list[0],
477 			uv_info.inst_calls_list[1],
478 			uv_info.inst_calls_list[2],
479 			uv_info.inst_calls_list[3]);
480 }
481 
482 static struct kobj_attribute uv_query_facilities_attr =
483 	__ATTR(facilities, 0444, uv_query_facilities, NULL);
484 
485 static ssize_t uv_query_supp_se_hdr_ver(struct kobject *kobj,
486 					struct kobj_attribute *attr, char *buf)
487 {
488 	return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_ver);
489 }
490 
491 static struct kobj_attribute uv_query_supp_se_hdr_ver_attr =
492 	__ATTR(supp_se_hdr_ver, 0444, uv_query_supp_se_hdr_ver, NULL);
493 
494 static ssize_t uv_query_supp_se_hdr_pcf(struct kobject *kobj,
495 					struct kobj_attribute *attr, char *buf)
496 {
497 	return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_pcf);
498 }
499 
500 static struct kobj_attribute uv_query_supp_se_hdr_pcf_attr =
501 	__ATTR(supp_se_hdr_pcf, 0444, uv_query_supp_se_hdr_pcf, NULL);
502 
503 static ssize_t uv_query_dump_cpu_len(struct kobject *kobj,
504 				     struct kobj_attribute *attr, char *page)
505 {
506 	return scnprintf(page, PAGE_SIZE, "%lx\n",
507 			uv_info.guest_cpu_stor_len);
508 }
509 
510 static struct kobj_attribute uv_query_dump_cpu_len_attr =
511 	__ATTR(uv_query_dump_cpu_len, 0444, uv_query_dump_cpu_len, NULL);
512 
513 static ssize_t uv_query_dump_storage_state_len(struct kobject *kobj,
514 					       struct kobj_attribute *attr, char *page)
515 {
516 	return scnprintf(page, PAGE_SIZE, "%lx\n",
517 			uv_info.conf_dump_storage_state_len);
518 }
519 
520 static struct kobj_attribute uv_query_dump_storage_state_len_attr =
521 	__ATTR(dump_storage_state_len, 0444, uv_query_dump_storage_state_len, NULL);
522 
523 static ssize_t uv_query_dump_finalize_len(struct kobject *kobj,
524 					  struct kobj_attribute *attr, char *page)
525 {
526 	return scnprintf(page, PAGE_SIZE, "%lx\n",
527 			uv_info.conf_dump_finalize_len);
528 }
529 
530 static struct kobj_attribute uv_query_dump_finalize_len_attr =
531 	__ATTR(dump_finalize_len, 0444, uv_query_dump_finalize_len, NULL);
532 
533 static ssize_t uv_query_feature_indications(struct kobject *kobj,
534 					    struct kobj_attribute *attr, char *buf)
535 {
536 	return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications);
537 }
538 
539 static struct kobj_attribute uv_query_feature_indications_attr =
540 	__ATTR(feature_indications, 0444, uv_query_feature_indications, NULL);
541 
542 static ssize_t uv_query_max_guest_cpus(struct kobject *kobj,
543 				       struct kobj_attribute *attr, char *page)
544 {
545 	return scnprintf(page, PAGE_SIZE, "%d\n",
546 			uv_info.max_guest_cpu_id + 1);
547 }
548 
549 static struct kobj_attribute uv_query_max_guest_cpus_attr =
550 	__ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL);
551 
552 static ssize_t uv_query_max_guest_vms(struct kobject *kobj,
553 				      struct kobj_attribute *attr, char *page)
554 {
555 	return scnprintf(page, PAGE_SIZE, "%d\n",
556 			uv_info.max_num_sec_conf);
557 }
558 
559 static struct kobj_attribute uv_query_max_guest_vms_attr =
560 	__ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL);
561 
562 static ssize_t uv_query_max_guest_addr(struct kobject *kobj,
563 				       struct kobj_attribute *attr, char *page)
564 {
565 	return scnprintf(page, PAGE_SIZE, "%lx\n",
566 			uv_info.max_sec_stor_addr);
567 }
568 
569 static struct kobj_attribute uv_query_max_guest_addr_attr =
570 	__ATTR(max_address, 0444, uv_query_max_guest_addr, NULL);
571 
572 static ssize_t uv_query_supp_att_req_hdr_ver(struct kobject *kobj,
573 					     struct kobj_attribute *attr, char *page)
574 {
575 	return scnprintf(page, PAGE_SIZE, "%lx\n", uv_info.supp_att_req_hdr_ver);
576 }
577 
578 static struct kobj_attribute uv_query_supp_att_req_hdr_ver_attr =
579 	__ATTR(supp_att_req_hdr_ver, 0444, uv_query_supp_att_req_hdr_ver, NULL);
580 
581 static ssize_t uv_query_supp_att_pflags(struct kobject *kobj,
582 					struct kobj_attribute *attr, char *page)
583 {
584 	return scnprintf(page, PAGE_SIZE, "%lx\n", uv_info.supp_att_pflags);
585 }
586 
587 static struct kobj_attribute uv_query_supp_att_pflags_attr =
588 	__ATTR(supp_att_pflags, 0444, uv_query_supp_att_pflags, NULL);
589 
590 static struct attribute *uv_query_attrs[] = {
591 	&uv_query_facilities_attr.attr,
592 	&uv_query_feature_indications_attr.attr,
593 	&uv_query_max_guest_cpus_attr.attr,
594 	&uv_query_max_guest_vms_attr.attr,
595 	&uv_query_max_guest_addr_attr.attr,
596 	&uv_query_supp_se_hdr_ver_attr.attr,
597 	&uv_query_supp_se_hdr_pcf_attr.attr,
598 	&uv_query_dump_storage_state_len_attr.attr,
599 	&uv_query_dump_finalize_len_attr.attr,
600 	&uv_query_dump_cpu_len_attr.attr,
601 	&uv_query_supp_att_req_hdr_ver_attr.attr,
602 	&uv_query_supp_att_pflags_attr.attr,
603 	NULL,
604 };
605 
606 static struct attribute_group uv_query_attr_group = {
607 	.attrs = uv_query_attrs,
608 };
609 
610 static ssize_t uv_is_prot_virt_guest(struct kobject *kobj,
611 				     struct kobj_attribute *attr, char *page)
612 {
613 	int val = 0;
614 
615 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
616 	val = prot_virt_guest;
617 #endif
618 	return scnprintf(page, PAGE_SIZE, "%d\n", val);
619 }
620 
621 static ssize_t uv_is_prot_virt_host(struct kobject *kobj,
622 				    struct kobj_attribute *attr, char *page)
623 {
624 	int val = 0;
625 
626 #if IS_ENABLED(CONFIG_KVM)
627 	val = prot_virt_host;
628 #endif
629 
630 	return scnprintf(page, PAGE_SIZE, "%d\n", val);
631 }
632 
633 static struct kobj_attribute uv_prot_virt_guest =
634 	__ATTR(prot_virt_guest, 0444, uv_is_prot_virt_guest, NULL);
635 
636 static struct kobj_attribute uv_prot_virt_host =
637 	__ATTR(prot_virt_host, 0444, uv_is_prot_virt_host, NULL);
638 
639 static const struct attribute *uv_prot_virt_attrs[] = {
640 	&uv_prot_virt_guest.attr,
641 	&uv_prot_virt_host.attr,
642 	NULL,
643 };
644 
645 static struct kset *uv_query_kset;
646 static struct kobject *uv_kobj;
647 
648 static int __init uv_info_init(void)
649 {
650 	int rc = -ENOMEM;
651 
652 	if (!test_facility(158))
653 		return 0;
654 
655 	uv_kobj = kobject_create_and_add("uv", firmware_kobj);
656 	if (!uv_kobj)
657 		return -ENOMEM;
658 
659 	rc = sysfs_create_files(uv_kobj, uv_prot_virt_attrs);
660 	if (rc)
661 		goto out_kobj;
662 
663 	uv_query_kset = kset_create_and_add("query", NULL, uv_kobj);
664 	if (!uv_query_kset) {
665 		rc = -ENOMEM;
666 		goto out_ind_files;
667 	}
668 
669 	rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group);
670 	if (!rc)
671 		return 0;
672 
673 	kset_unregister(uv_query_kset);
674 out_ind_files:
675 	sysfs_remove_files(uv_kobj, uv_prot_virt_attrs);
676 out_kobj:
677 	kobject_del(uv_kobj);
678 	kobject_put(uv_kobj);
679 	return rc;
680 }
681 device_initcall(uv_info_init);
682 #endif
683