1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Ultravisor functions and initialization 4 * 5 * Copyright IBM Corp. 2019, 2020 6 */ 7 #define KMSG_COMPONENT "prot_virt" 8 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 9 10 #include <linux/kernel.h> 11 #include <linux/types.h> 12 #include <linux/sizes.h> 13 #include <linux/bitmap.h> 14 #include <linux/memblock.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <asm/facility.h> 18 #include <asm/sections.h> 19 #include <asm/uv.h> 20 21 /* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */ 22 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST 23 int __bootdata_preserved(prot_virt_guest); 24 #endif 25 26 struct uv_info __bootdata_preserved(uv_info); 27 28 #if IS_ENABLED(CONFIG_KVM) 29 int __bootdata_preserved(prot_virt_host); 30 EXPORT_SYMBOL(prot_virt_host); 31 EXPORT_SYMBOL(uv_info); 32 33 static int __init uv_init(unsigned long stor_base, unsigned long stor_len) 34 { 35 struct uv_cb_init uvcb = { 36 .header.cmd = UVC_CMD_INIT_UV, 37 .header.len = sizeof(uvcb), 38 .stor_origin = stor_base, 39 .stor_len = stor_len, 40 }; 41 42 if (uv_call(0, (uint64_t)&uvcb)) { 43 pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n", 44 uvcb.header.rc, uvcb.header.rrc); 45 return -1; 46 } 47 return 0; 48 } 49 50 void __init setup_uv(void) 51 { 52 unsigned long uv_stor_base; 53 54 if (!is_prot_virt_host()) 55 return; 56 57 uv_stor_base = (unsigned long)memblock_alloc_try_nid( 58 uv_info.uv_base_stor_len, SZ_1M, SZ_2G, 59 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE); 60 if (!uv_stor_base) { 61 pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n", 62 uv_info.uv_base_stor_len); 63 goto fail; 64 } 65 66 if (uv_init(uv_stor_base, uv_info.uv_base_stor_len)) { 67 memblock_phys_free(uv_stor_base, uv_info.uv_base_stor_len); 68 goto fail; 69 } 70 71 pr_info("Reserving %luMB as ultravisor base storage\n", 72 uv_info.uv_base_stor_len >> 20); 73 return; 74 fail: 75 pr_info("Disabling support for protected virtualization"); 76 prot_virt_host = 0; 77 } 78 79 /* 80 * Requests the Ultravisor to pin the page in the shared state. This will 81 * cause an intercept when the guest attempts to unshare the pinned page. 82 */ 83 static int uv_pin_shared(unsigned long paddr) 84 { 85 struct uv_cb_cfs uvcb = { 86 .header.cmd = UVC_CMD_PIN_PAGE_SHARED, 87 .header.len = sizeof(uvcb), 88 .paddr = paddr, 89 }; 90 91 if (uv_call(0, (u64)&uvcb)) 92 return -EINVAL; 93 return 0; 94 } 95 96 /* 97 * Requests the Ultravisor to destroy a guest page and make it 98 * accessible to the host. The destroy clears the page instead of 99 * exporting. 100 * 101 * @paddr: Absolute host address of page to be destroyed 102 */ 103 static int uv_destroy_page(unsigned long paddr) 104 { 105 struct uv_cb_cfs uvcb = { 106 .header.cmd = UVC_CMD_DESTR_SEC_STOR, 107 .header.len = sizeof(uvcb), 108 .paddr = paddr 109 }; 110 111 if (uv_call(0, (u64)&uvcb)) { 112 /* 113 * Older firmware uses 107/d as an indication of a non secure 114 * page. Let us emulate the newer variant (no-op). 115 */ 116 if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd) 117 return 0; 118 return -EINVAL; 119 } 120 return 0; 121 } 122 123 /* 124 * The caller must already hold a reference to the page 125 */ 126 int uv_destroy_owned_page(unsigned long paddr) 127 { 128 struct page *page = phys_to_page(paddr); 129 int rc; 130 131 get_page(page); 132 rc = uv_destroy_page(paddr); 133 if (!rc) 134 clear_bit(PG_arch_1, &page->flags); 135 put_page(page); 136 return rc; 137 } 138 139 /* 140 * Requests the Ultravisor to encrypt a guest page and make it 141 * accessible to the host for paging (export). 142 * 143 * @paddr: Absolute host address of page to be exported 144 */ 145 int uv_convert_from_secure(unsigned long paddr) 146 { 147 struct uv_cb_cfs uvcb = { 148 .header.cmd = UVC_CMD_CONV_FROM_SEC_STOR, 149 .header.len = sizeof(uvcb), 150 .paddr = paddr 151 }; 152 153 if (uv_call(0, (u64)&uvcb)) 154 return -EINVAL; 155 return 0; 156 } 157 158 /* 159 * The caller must already hold a reference to the page 160 */ 161 int uv_convert_owned_from_secure(unsigned long paddr) 162 { 163 struct page *page = phys_to_page(paddr); 164 int rc; 165 166 get_page(page); 167 rc = uv_convert_from_secure(paddr); 168 if (!rc) 169 clear_bit(PG_arch_1, &page->flags); 170 put_page(page); 171 return rc; 172 } 173 174 /* 175 * Calculate the expected ref_count for a page that would otherwise have no 176 * further pins. This was cribbed from similar functions in other places in 177 * the kernel, but with some slight modifications. We know that a secure 178 * page can not be a huge page for example. 179 */ 180 static int expected_page_refs(struct page *page) 181 { 182 int res; 183 184 res = page_mapcount(page); 185 if (PageSwapCache(page)) { 186 res++; 187 } else if (page_mapping(page)) { 188 res++; 189 if (page_has_private(page)) 190 res++; 191 } 192 return res; 193 } 194 195 static int make_secure_pte(pte_t *ptep, unsigned long addr, 196 struct page *exp_page, struct uv_cb_header *uvcb) 197 { 198 pte_t entry = READ_ONCE(*ptep); 199 struct page *page; 200 int expected, cc = 0; 201 202 if (!pte_present(entry)) 203 return -ENXIO; 204 if (pte_val(entry) & _PAGE_INVALID) 205 return -ENXIO; 206 207 page = pte_page(entry); 208 if (page != exp_page) 209 return -ENXIO; 210 if (PageWriteback(page)) 211 return -EAGAIN; 212 expected = expected_page_refs(page); 213 if (!page_ref_freeze(page, expected)) 214 return -EBUSY; 215 set_bit(PG_arch_1, &page->flags); 216 /* 217 * If the UVC does not succeed or fail immediately, we don't want to 218 * loop for long, or we might get stall notifications. 219 * On the other hand, this is a complex scenario and we are holding a lot of 220 * locks, so we can't easily sleep and reschedule. We try only once, 221 * and if the UVC returned busy or partial completion, we return 222 * -EAGAIN and we let the callers deal with it. 223 */ 224 cc = __uv_call(0, (u64)uvcb); 225 page_ref_unfreeze(page, expected); 226 /* 227 * Return -ENXIO if the page was not mapped, -EINVAL for other errors. 228 * If busy or partially completed, return -EAGAIN. 229 */ 230 if (cc == UVC_CC_OK) 231 return 0; 232 else if (cc == UVC_CC_BUSY || cc == UVC_CC_PARTIAL) 233 return -EAGAIN; 234 return uvcb->rc == 0x10a ? -ENXIO : -EINVAL; 235 } 236 237 /* 238 * Requests the Ultravisor to make a page accessible to a guest. 239 * If it's brought in the first time, it will be cleared. If 240 * it has been exported before, it will be decrypted and integrity 241 * checked. 242 */ 243 int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb) 244 { 245 struct vm_area_struct *vma; 246 bool local_drain = false; 247 spinlock_t *ptelock; 248 unsigned long uaddr; 249 struct page *page; 250 pte_t *ptep; 251 int rc; 252 253 again: 254 rc = -EFAULT; 255 mmap_read_lock(gmap->mm); 256 257 uaddr = __gmap_translate(gmap, gaddr); 258 if (IS_ERR_VALUE(uaddr)) 259 goto out; 260 vma = vma_lookup(gmap->mm, uaddr); 261 if (!vma) 262 goto out; 263 /* 264 * Secure pages cannot be huge and userspace should not combine both. 265 * In case userspace does it anyway this will result in an -EFAULT for 266 * the unpack. The guest is thus never reaching secure mode. If 267 * userspace is playing dirty tricky with mapping huge pages later 268 * on this will result in a segmentation fault. 269 */ 270 if (is_vm_hugetlb_page(vma)) 271 goto out; 272 273 rc = -ENXIO; 274 page = follow_page(vma, uaddr, FOLL_WRITE); 275 if (IS_ERR_OR_NULL(page)) 276 goto out; 277 278 lock_page(page); 279 ptep = get_locked_pte(gmap->mm, uaddr, &ptelock); 280 rc = make_secure_pte(ptep, uaddr, page, uvcb); 281 pte_unmap_unlock(ptep, ptelock); 282 unlock_page(page); 283 out: 284 mmap_read_unlock(gmap->mm); 285 286 if (rc == -EAGAIN) { 287 /* 288 * If we are here because the UVC returned busy or partial 289 * completion, this is just a useless check, but it is safe. 290 */ 291 wait_on_page_writeback(page); 292 } else if (rc == -EBUSY) { 293 /* 294 * If we have tried a local drain and the page refcount 295 * still does not match our expected safe value, try with a 296 * system wide drain. This is needed if the pagevecs holding 297 * the page are on a different CPU. 298 */ 299 if (local_drain) { 300 lru_add_drain_all(); 301 /* We give up here, and let the caller try again */ 302 return -EAGAIN; 303 } 304 /* 305 * We are here if the page refcount does not match the 306 * expected safe value. The main culprits are usually 307 * pagevecs. With lru_add_drain() we drain the pagevecs 308 * on the local CPU so that hopefully the refcount will 309 * reach the expected safe value. 310 */ 311 lru_add_drain(); 312 local_drain = true; 313 /* And now we try again immediately after draining */ 314 goto again; 315 } else if (rc == -ENXIO) { 316 if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE)) 317 return -EFAULT; 318 return -EAGAIN; 319 } 320 return rc; 321 } 322 EXPORT_SYMBOL_GPL(gmap_make_secure); 323 324 int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr) 325 { 326 struct uv_cb_cts uvcb = { 327 .header.cmd = UVC_CMD_CONV_TO_SEC_STOR, 328 .header.len = sizeof(uvcb), 329 .guest_handle = gmap->guest_handle, 330 .gaddr = gaddr, 331 }; 332 333 return gmap_make_secure(gmap, gaddr, &uvcb); 334 } 335 EXPORT_SYMBOL_GPL(gmap_convert_to_secure); 336 337 /* 338 * To be called with the page locked or with an extra reference! This will 339 * prevent gmap_make_secure from touching the page concurrently. Having 2 340 * parallel make_page_accessible is fine, as the UV calls will become a 341 * no-op if the page is already exported. 342 */ 343 int arch_make_page_accessible(struct page *page) 344 { 345 int rc = 0; 346 347 /* Hugepage cannot be protected, so nothing to do */ 348 if (PageHuge(page)) 349 return 0; 350 351 /* 352 * PG_arch_1 is used in 3 places: 353 * 1. for kernel page tables during early boot 354 * 2. for storage keys of huge pages and KVM 355 * 3. As an indication that this page might be secure. This can 356 * overindicate, e.g. we set the bit before calling 357 * convert_to_secure. 358 * As secure pages are never huge, all 3 variants can co-exists. 359 */ 360 if (!test_bit(PG_arch_1, &page->flags)) 361 return 0; 362 363 rc = uv_pin_shared(page_to_phys(page)); 364 if (!rc) { 365 clear_bit(PG_arch_1, &page->flags); 366 return 0; 367 } 368 369 rc = uv_convert_from_secure(page_to_phys(page)); 370 if (!rc) { 371 clear_bit(PG_arch_1, &page->flags); 372 return 0; 373 } 374 375 return rc; 376 } 377 EXPORT_SYMBOL_GPL(arch_make_page_accessible); 378 379 #endif 380 381 #if defined(CONFIG_PROTECTED_VIRTUALIZATION_GUEST) || IS_ENABLED(CONFIG_KVM) 382 static ssize_t uv_query_facilities(struct kobject *kobj, 383 struct kobj_attribute *attr, char *page) 384 { 385 return scnprintf(page, PAGE_SIZE, "%lx\n%lx\n%lx\n%lx\n", 386 uv_info.inst_calls_list[0], 387 uv_info.inst_calls_list[1], 388 uv_info.inst_calls_list[2], 389 uv_info.inst_calls_list[3]); 390 } 391 392 static struct kobj_attribute uv_query_facilities_attr = 393 __ATTR(facilities, 0444, uv_query_facilities, NULL); 394 395 static ssize_t uv_query_feature_indications(struct kobject *kobj, 396 struct kobj_attribute *attr, char *buf) 397 { 398 return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications); 399 } 400 401 static struct kobj_attribute uv_query_feature_indications_attr = 402 __ATTR(feature_indications, 0444, uv_query_feature_indications, NULL); 403 404 static ssize_t uv_query_max_guest_cpus(struct kobject *kobj, 405 struct kobj_attribute *attr, char *page) 406 { 407 return scnprintf(page, PAGE_SIZE, "%d\n", 408 uv_info.max_guest_cpu_id + 1); 409 } 410 411 static struct kobj_attribute uv_query_max_guest_cpus_attr = 412 __ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL); 413 414 static ssize_t uv_query_max_guest_vms(struct kobject *kobj, 415 struct kobj_attribute *attr, char *page) 416 { 417 return scnprintf(page, PAGE_SIZE, "%d\n", 418 uv_info.max_num_sec_conf); 419 } 420 421 static struct kobj_attribute uv_query_max_guest_vms_attr = 422 __ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL); 423 424 static ssize_t uv_query_max_guest_addr(struct kobject *kobj, 425 struct kobj_attribute *attr, char *page) 426 { 427 return scnprintf(page, PAGE_SIZE, "%lx\n", 428 uv_info.max_sec_stor_addr); 429 } 430 431 static struct kobj_attribute uv_query_max_guest_addr_attr = 432 __ATTR(max_address, 0444, uv_query_max_guest_addr, NULL); 433 434 static struct attribute *uv_query_attrs[] = { 435 &uv_query_facilities_attr.attr, 436 &uv_query_feature_indications_attr.attr, 437 &uv_query_max_guest_cpus_attr.attr, 438 &uv_query_max_guest_vms_attr.attr, 439 &uv_query_max_guest_addr_attr.attr, 440 NULL, 441 }; 442 443 static struct attribute_group uv_query_attr_group = { 444 .attrs = uv_query_attrs, 445 }; 446 447 static ssize_t uv_is_prot_virt_guest(struct kobject *kobj, 448 struct kobj_attribute *attr, char *page) 449 { 450 int val = 0; 451 452 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST 453 val = prot_virt_guest; 454 #endif 455 return scnprintf(page, PAGE_SIZE, "%d\n", val); 456 } 457 458 static ssize_t uv_is_prot_virt_host(struct kobject *kobj, 459 struct kobj_attribute *attr, char *page) 460 { 461 int val = 0; 462 463 #if IS_ENABLED(CONFIG_KVM) 464 val = prot_virt_host; 465 #endif 466 467 return scnprintf(page, PAGE_SIZE, "%d\n", val); 468 } 469 470 static struct kobj_attribute uv_prot_virt_guest = 471 __ATTR(prot_virt_guest, 0444, uv_is_prot_virt_guest, NULL); 472 473 static struct kobj_attribute uv_prot_virt_host = 474 __ATTR(prot_virt_host, 0444, uv_is_prot_virt_host, NULL); 475 476 static const struct attribute *uv_prot_virt_attrs[] = { 477 &uv_prot_virt_guest.attr, 478 &uv_prot_virt_host.attr, 479 NULL, 480 }; 481 482 static struct kset *uv_query_kset; 483 static struct kobject *uv_kobj; 484 485 static int __init uv_info_init(void) 486 { 487 int rc = -ENOMEM; 488 489 if (!test_facility(158)) 490 return 0; 491 492 uv_kobj = kobject_create_and_add("uv", firmware_kobj); 493 if (!uv_kobj) 494 return -ENOMEM; 495 496 rc = sysfs_create_files(uv_kobj, uv_prot_virt_attrs); 497 if (rc) 498 goto out_kobj; 499 500 uv_query_kset = kset_create_and_add("query", NULL, uv_kobj); 501 if (!uv_query_kset) { 502 rc = -ENOMEM; 503 goto out_ind_files; 504 } 505 506 rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group); 507 if (!rc) 508 return 0; 509 510 kset_unregister(uv_query_kset); 511 out_ind_files: 512 sysfs_remove_files(uv_kobj, uv_prot_virt_attrs); 513 out_kobj: 514 kobject_del(uv_kobj); 515 kobject_put(uv_kobj); 516 return rc; 517 } 518 device_initcall(uv_info_init); 519 #endif 520