xref: /openbmc/linux/arch/s390/kernel/uv.c (revision 829c6524)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Ultravisor functions and initialization
4  *
5  * Copyright IBM Corp. 2019, 2020
6  */
7 #define KMSG_COMPONENT "prot_virt"
8 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/sizes.h>
13 #include <linux/bitmap.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <asm/facility.h>
18 #include <asm/sections.h>
19 #include <asm/uv.h>
20 
21 /* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */
22 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
23 int __bootdata_preserved(prot_virt_guest);
24 #endif
25 
26 /*
27  * uv_info contains both host and guest information but it's currently only
28  * expected to be used within modules if it's the KVM module or for
29  * any PV guest module.
30  *
31  * The kernel itself will write these values once in uv_query_info()
32  * and then make some of them readable via a sysfs interface.
33  */
34 struct uv_info __bootdata_preserved(uv_info);
35 EXPORT_SYMBOL(uv_info);
36 
37 #if IS_ENABLED(CONFIG_KVM)
38 int __bootdata_preserved(prot_virt_host);
39 EXPORT_SYMBOL(prot_virt_host);
40 
41 static int __init uv_init(phys_addr_t stor_base, unsigned long stor_len)
42 {
43 	struct uv_cb_init uvcb = {
44 		.header.cmd = UVC_CMD_INIT_UV,
45 		.header.len = sizeof(uvcb),
46 		.stor_origin = stor_base,
47 		.stor_len = stor_len,
48 	};
49 
50 	if (uv_call(0, (uint64_t)&uvcb)) {
51 		pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n",
52 		       uvcb.header.rc, uvcb.header.rrc);
53 		return -1;
54 	}
55 	return 0;
56 }
57 
58 void __init setup_uv(void)
59 {
60 	void *uv_stor_base;
61 
62 	if (!is_prot_virt_host())
63 		return;
64 
65 	uv_stor_base = memblock_alloc_try_nid(
66 		uv_info.uv_base_stor_len, SZ_1M, SZ_2G,
67 		MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
68 	if (!uv_stor_base) {
69 		pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n",
70 			uv_info.uv_base_stor_len);
71 		goto fail;
72 	}
73 
74 	if (uv_init(__pa(uv_stor_base), uv_info.uv_base_stor_len)) {
75 		memblock_free(uv_stor_base, uv_info.uv_base_stor_len);
76 		goto fail;
77 	}
78 
79 	pr_info("Reserving %luMB as ultravisor base storage\n",
80 		uv_info.uv_base_stor_len >> 20);
81 	return;
82 fail:
83 	pr_info("Disabling support for protected virtualization");
84 	prot_virt_host = 0;
85 }
86 
87 /*
88  * Requests the Ultravisor to pin the page in the shared state. This will
89  * cause an intercept when the guest attempts to unshare the pinned page.
90  */
91 static int uv_pin_shared(unsigned long paddr)
92 {
93 	struct uv_cb_cfs uvcb = {
94 		.header.cmd = UVC_CMD_PIN_PAGE_SHARED,
95 		.header.len = sizeof(uvcb),
96 		.paddr = paddr,
97 	};
98 
99 	if (uv_call(0, (u64)&uvcb))
100 		return -EINVAL;
101 	return 0;
102 }
103 
104 /*
105  * Requests the Ultravisor to destroy a guest page and make it
106  * accessible to the host. The destroy clears the page instead of
107  * exporting.
108  *
109  * @paddr: Absolute host address of page to be destroyed
110  */
111 static int uv_destroy_page(unsigned long paddr)
112 {
113 	struct uv_cb_cfs uvcb = {
114 		.header.cmd = UVC_CMD_DESTR_SEC_STOR,
115 		.header.len = sizeof(uvcb),
116 		.paddr = paddr
117 	};
118 
119 	if (uv_call(0, (u64)&uvcb)) {
120 		/*
121 		 * Older firmware uses 107/d as an indication of a non secure
122 		 * page. Let us emulate the newer variant (no-op).
123 		 */
124 		if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd)
125 			return 0;
126 		return -EINVAL;
127 	}
128 	return 0;
129 }
130 
131 /*
132  * The caller must already hold a reference to the page
133  */
134 int uv_destroy_owned_page(unsigned long paddr)
135 {
136 	struct page *page = phys_to_page(paddr);
137 	int rc;
138 
139 	get_page(page);
140 	rc = uv_destroy_page(paddr);
141 	if (!rc)
142 		clear_bit(PG_arch_1, &page->flags);
143 	put_page(page);
144 	return rc;
145 }
146 
147 /*
148  * Requests the Ultravisor to encrypt a guest page and make it
149  * accessible to the host for paging (export).
150  *
151  * @paddr: Absolute host address of page to be exported
152  */
153 int uv_convert_from_secure(unsigned long paddr)
154 {
155 	struct uv_cb_cfs uvcb = {
156 		.header.cmd = UVC_CMD_CONV_FROM_SEC_STOR,
157 		.header.len = sizeof(uvcb),
158 		.paddr = paddr
159 	};
160 
161 	if (uv_call(0, (u64)&uvcb))
162 		return -EINVAL;
163 	return 0;
164 }
165 
166 /*
167  * The caller must already hold a reference to the page
168  */
169 int uv_convert_owned_from_secure(unsigned long paddr)
170 {
171 	struct page *page = phys_to_page(paddr);
172 	int rc;
173 
174 	get_page(page);
175 	rc = uv_convert_from_secure(paddr);
176 	if (!rc)
177 		clear_bit(PG_arch_1, &page->flags);
178 	put_page(page);
179 	return rc;
180 }
181 
182 /*
183  * Calculate the expected ref_count for a page that would otherwise have no
184  * further pins. This was cribbed from similar functions in other places in
185  * the kernel, but with some slight modifications. We know that a secure
186  * page can not be a huge page for example.
187  */
188 static int expected_page_refs(struct page *page)
189 {
190 	int res;
191 
192 	res = page_mapcount(page);
193 	if (PageSwapCache(page)) {
194 		res++;
195 	} else if (page_mapping(page)) {
196 		res++;
197 		if (page_has_private(page))
198 			res++;
199 	}
200 	return res;
201 }
202 
203 static int make_page_secure(struct page *page, struct uv_cb_header *uvcb)
204 {
205 	int expected, cc = 0;
206 
207 	if (PageWriteback(page))
208 		return -EAGAIN;
209 	expected = expected_page_refs(page);
210 	if (!page_ref_freeze(page, expected))
211 		return -EBUSY;
212 	set_bit(PG_arch_1, &page->flags);
213 	/*
214 	 * If the UVC does not succeed or fail immediately, we don't want to
215 	 * loop for long, or we might get stall notifications.
216 	 * On the other hand, this is a complex scenario and we are holding a lot of
217 	 * locks, so we can't easily sleep and reschedule. We try only once,
218 	 * and if the UVC returned busy or partial completion, we return
219 	 * -EAGAIN and we let the callers deal with it.
220 	 */
221 	cc = __uv_call(0, (u64)uvcb);
222 	page_ref_unfreeze(page, expected);
223 	/*
224 	 * Return -ENXIO if the page was not mapped, -EINVAL for other errors.
225 	 * If busy or partially completed, return -EAGAIN.
226 	 */
227 	if (cc == UVC_CC_OK)
228 		return 0;
229 	else if (cc == UVC_CC_BUSY || cc == UVC_CC_PARTIAL)
230 		return -EAGAIN;
231 	return uvcb->rc == 0x10a ? -ENXIO : -EINVAL;
232 }
233 
234 /**
235  * should_export_before_import - Determine whether an export is needed
236  * before an import-like operation
237  * @uvcb: the Ultravisor control block of the UVC to be performed
238  * @mm: the mm of the process
239  *
240  * Returns whether an export is needed before every import-like operation.
241  * This is needed for shared pages, which don't trigger a secure storage
242  * exception when accessed from a different guest.
243  *
244  * Although considered as one, the Unpin Page UVC is not an actual import,
245  * so it is not affected.
246  *
247  * No export is needed also when there is only one protected VM, because the
248  * page cannot belong to the wrong VM in that case (there is no "other VM"
249  * it can belong to).
250  *
251  * Return: true if an export is needed before every import, otherwise false.
252  */
253 static bool should_export_before_import(struct uv_cb_header *uvcb, struct mm_struct *mm)
254 {
255 	/*
256 	 * The misc feature indicates, among other things, that importing a
257 	 * shared page from a different protected VM will automatically also
258 	 * transfer its ownership.
259 	 */
260 	if (test_bit_inv(BIT_UV_FEAT_MISC, &uv_info.uv_feature_indications))
261 		return false;
262 	if (uvcb->cmd == UVC_CMD_UNPIN_PAGE_SHARED)
263 		return false;
264 	return atomic_read(&mm->context.protected_count) > 1;
265 }
266 
267 /*
268  * Requests the Ultravisor to make a page accessible to a guest.
269  * If it's brought in the first time, it will be cleared. If
270  * it has been exported before, it will be decrypted and integrity
271  * checked.
272  */
273 int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb)
274 {
275 	struct vm_area_struct *vma;
276 	bool local_drain = false;
277 	spinlock_t *ptelock;
278 	unsigned long uaddr;
279 	struct page *page;
280 	pte_t *ptep;
281 	int rc;
282 
283 again:
284 	rc = -EFAULT;
285 	mmap_read_lock(gmap->mm);
286 
287 	uaddr = __gmap_translate(gmap, gaddr);
288 	if (IS_ERR_VALUE(uaddr))
289 		goto out;
290 	vma = vma_lookup(gmap->mm, uaddr);
291 	if (!vma)
292 		goto out;
293 	/*
294 	 * Secure pages cannot be huge and userspace should not combine both.
295 	 * In case userspace does it anyway this will result in an -EFAULT for
296 	 * the unpack. The guest is thus never reaching secure mode. If
297 	 * userspace is playing dirty tricky with mapping huge pages later
298 	 * on this will result in a segmentation fault.
299 	 */
300 	if (is_vm_hugetlb_page(vma))
301 		goto out;
302 
303 	rc = -ENXIO;
304 	ptep = get_locked_pte(gmap->mm, uaddr, &ptelock);
305 	if (!ptep)
306 		goto out;
307 	if (pte_present(*ptep) && !(pte_val(*ptep) & _PAGE_INVALID) && pte_write(*ptep)) {
308 		page = pte_page(*ptep);
309 		rc = -EAGAIN;
310 		if (trylock_page(page)) {
311 			if (should_export_before_import(uvcb, gmap->mm))
312 				uv_convert_from_secure(page_to_phys(page));
313 			rc = make_page_secure(page, uvcb);
314 			unlock_page(page);
315 		}
316 	}
317 	pte_unmap_unlock(ptep, ptelock);
318 out:
319 	mmap_read_unlock(gmap->mm);
320 
321 	if (rc == -EAGAIN) {
322 		/*
323 		 * If we are here because the UVC returned busy or partial
324 		 * completion, this is just a useless check, but it is safe.
325 		 */
326 		wait_on_page_writeback(page);
327 	} else if (rc == -EBUSY) {
328 		/*
329 		 * If we have tried a local drain and the page refcount
330 		 * still does not match our expected safe value, try with a
331 		 * system wide drain. This is needed if the pagevecs holding
332 		 * the page are on a different CPU.
333 		 */
334 		if (local_drain) {
335 			lru_add_drain_all();
336 			/* We give up here, and let the caller try again */
337 			return -EAGAIN;
338 		}
339 		/*
340 		 * We are here if the page refcount does not match the
341 		 * expected safe value. The main culprits are usually
342 		 * pagevecs. With lru_add_drain() we drain the pagevecs
343 		 * on the local CPU so that hopefully the refcount will
344 		 * reach the expected safe value.
345 		 */
346 		lru_add_drain();
347 		local_drain = true;
348 		/* And now we try again immediately after draining */
349 		goto again;
350 	} else if (rc == -ENXIO) {
351 		if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE))
352 			return -EFAULT;
353 		return -EAGAIN;
354 	}
355 	return rc;
356 }
357 EXPORT_SYMBOL_GPL(gmap_make_secure);
358 
359 int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr)
360 {
361 	struct uv_cb_cts uvcb = {
362 		.header.cmd = UVC_CMD_CONV_TO_SEC_STOR,
363 		.header.len = sizeof(uvcb),
364 		.guest_handle = gmap->guest_handle,
365 		.gaddr = gaddr,
366 	};
367 
368 	return gmap_make_secure(gmap, gaddr, &uvcb);
369 }
370 EXPORT_SYMBOL_GPL(gmap_convert_to_secure);
371 
372 /**
373  * gmap_destroy_page - Destroy a guest page.
374  * @gmap: the gmap of the guest
375  * @gaddr: the guest address to destroy
376  *
377  * An attempt will be made to destroy the given guest page. If the attempt
378  * fails, an attempt is made to export the page. If both attempts fail, an
379  * appropriate error is returned.
380  */
381 int gmap_destroy_page(struct gmap *gmap, unsigned long gaddr)
382 {
383 	struct vm_area_struct *vma;
384 	unsigned long uaddr;
385 	struct page *page;
386 	int rc;
387 
388 	rc = -EFAULT;
389 	mmap_read_lock(gmap->mm);
390 
391 	uaddr = __gmap_translate(gmap, gaddr);
392 	if (IS_ERR_VALUE(uaddr))
393 		goto out;
394 	vma = vma_lookup(gmap->mm, uaddr);
395 	if (!vma)
396 		goto out;
397 	/*
398 	 * Huge pages should not be able to become secure
399 	 */
400 	if (is_vm_hugetlb_page(vma))
401 		goto out;
402 
403 	rc = 0;
404 	/* we take an extra reference here */
405 	page = follow_page(vma, uaddr, FOLL_WRITE | FOLL_GET);
406 	if (IS_ERR_OR_NULL(page))
407 		goto out;
408 	rc = uv_destroy_owned_page(page_to_phys(page));
409 	/*
410 	 * Fault handlers can race; it is possible that two CPUs will fault
411 	 * on the same secure page. One CPU can destroy the page, reboot,
412 	 * re-enter secure mode and import it, while the second CPU was
413 	 * stuck at the beginning of the handler. At some point the second
414 	 * CPU will be able to progress, and it will not be able to destroy
415 	 * the page. In that case we do not want to terminate the process,
416 	 * we instead try to export the page.
417 	 */
418 	if (rc)
419 		rc = uv_convert_owned_from_secure(page_to_phys(page));
420 	put_page(page);
421 out:
422 	mmap_read_unlock(gmap->mm);
423 	return rc;
424 }
425 EXPORT_SYMBOL_GPL(gmap_destroy_page);
426 
427 /*
428  * To be called with the page locked or with an extra reference! This will
429  * prevent gmap_make_secure from touching the page concurrently. Having 2
430  * parallel make_page_accessible is fine, as the UV calls will become a
431  * no-op if the page is already exported.
432  */
433 int arch_make_page_accessible(struct page *page)
434 {
435 	int rc = 0;
436 
437 	/* Hugepage cannot be protected, so nothing to do */
438 	if (PageHuge(page))
439 		return 0;
440 
441 	/*
442 	 * PG_arch_1 is used in 3 places:
443 	 * 1. for kernel page tables during early boot
444 	 * 2. for storage keys of huge pages and KVM
445 	 * 3. As an indication that this page might be secure. This can
446 	 *    overindicate, e.g. we set the bit before calling
447 	 *    convert_to_secure.
448 	 * As secure pages are never huge, all 3 variants can co-exists.
449 	 */
450 	if (!test_bit(PG_arch_1, &page->flags))
451 		return 0;
452 
453 	rc = uv_pin_shared(page_to_phys(page));
454 	if (!rc) {
455 		clear_bit(PG_arch_1, &page->flags);
456 		return 0;
457 	}
458 
459 	rc = uv_convert_from_secure(page_to_phys(page));
460 	if (!rc) {
461 		clear_bit(PG_arch_1, &page->flags);
462 		return 0;
463 	}
464 
465 	return rc;
466 }
467 EXPORT_SYMBOL_GPL(arch_make_page_accessible);
468 
469 #endif
470 
471 #if defined(CONFIG_PROTECTED_VIRTUALIZATION_GUEST) || IS_ENABLED(CONFIG_KVM)
472 static ssize_t uv_query_facilities(struct kobject *kobj,
473 				   struct kobj_attribute *attr, char *buf)
474 {
475 	return sysfs_emit(buf, "%lx\n%lx\n%lx\n%lx\n",
476 			  uv_info.inst_calls_list[0],
477 			  uv_info.inst_calls_list[1],
478 			  uv_info.inst_calls_list[2],
479 			  uv_info.inst_calls_list[3]);
480 }
481 
482 static struct kobj_attribute uv_query_facilities_attr =
483 	__ATTR(facilities, 0444, uv_query_facilities, NULL);
484 
485 static ssize_t uv_query_supp_se_hdr_ver(struct kobject *kobj,
486 					struct kobj_attribute *attr, char *buf)
487 {
488 	return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_ver);
489 }
490 
491 static struct kobj_attribute uv_query_supp_se_hdr_ver_attr =
492 	__ATTR(supp_se_hdr_ver, 0444, uv_query_supp_se_hdr_ver, NULL);
493 
494 static ssize_t uv_query_supp_se_hdr_pcf(struct kobject *kobj,
495 					struct kobj_attribute *attr, char *buf)
496 {
497 	return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_pcf);
498 }
499 
500 static struct kobj_attribute uv_query_supp_se_hdr_pcf_attr =
501 	__ATTR(supp_se_hdr_pcf, 0444, uv_query_supp_se_hdr_pcf, NULL);
502 
503 static ssize_t uv_query_dump_cpu_len(struct kobject *kobj,
504 				     struct kobj_attribute *attr, char *buf)
505 {
506 	return sysfs_emit(buf, "%lx\n", uv_info.guest_cpu_stor_len);
507 }
508 
509 static struct kobj_attribute uv_query_dump_cpu_len_attr =
510 	__ATTR(uv_query_dump_cpu_len, 0444, uv_query_dump_cpu_len, NULL);
511 
512 static ssize_t uv_query_dump_storage_state_len(struct kobject *kobj,
513 					       struct kobj_attribute *attr, char *buf)
514 {
515 	return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_storage_state_len);
516 }
517 
518 static struct kobj_attribute uv_query_dump_storage_state_len_attr =
519 	__ATTR(dump_storage_state_len, 0444, uv_query_dump_storage_state_len, NULL);
520 
521 static ssize_t uv_query_dump_finalize_len(struct kobject *kobj,
522 					  struct kobj_attribute *attr, char *buf)
523 {
524 	return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_finalize_len);
525 }
526 
527 static struct kobj_attribute uv_query_dump_finalize_len_attr =
528 	__ATTR(dump_finalize_len, 0444, uv_query_dump_finalize_len, NULL);
529 
530 static ssize_t uv_query_feature_indications(struct kobject *kobj,
531 					    struct kobj_attribute *attr, char *buf)
532 {
533 	return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications);
534 }
535 
536 static struct kobj_attribute uv_query_feature_indications_attr =
537 	__ATTR(feature_indications, 0444, uv_query_feature_indications, NULL);
538 
539 static ssize_t uv_query_max_guest_cpus(struct kobject *kobj,
540 				       struct kobj_attribute *attr, char *buf)
541 {
542 	return sysfs_emit(buf, "%d\n", uv_info.max_guest_cpu_id + 1);
543 }
544 
545 static struct kobj_attribute uv_query_max_guest_cpus_attr =
546 	__ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL);
547 
548 static ssize_t uv_query_max_guest_vms(struct kobject *kobj,
549 				      struct kobj_attribute *attr, char *buf)
550 {
551 	return sysfs_emit(buf, "%d\n", uv_info.max_num_sec_conf);
552 }
553 
554 static struct kobj_attribute uv_query_max_guest_vms_attr =
555 	__ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL);
556 
557 static ssize_t uv_query_max_guest_addr(struct kobject *kobj,
558 				       struct kobj_attribute *attr, char *buf)
559 {
560 	return sysfs_emit(buf, "%lx\n", uv_info.max_sec_stor_addr);
561 }
562 
563 static struct kobj_attribute uv_query_max_guest_addr_attr =
564 	__ATTR(max_address, 0444, uv_query_max_guest_addr, NULL);
565 
566 static ssize_t uv_query_supp_att_req_hdr_ver(struct kobject *kobj,
567 					     struct kobj_attribute *attr, char *buf)
568 {
569 	return sysfs_emit(buf, "%lx\n", uv_info.supp_att_req_hdr_ver);
570 }
571 
572 static struct kobj_attribute uv_query_supp_att_req_hdr_ver_attr =
573 	__ATTR(supp_att_req_hdr_ver, 0444, uv_query_supp_att_req_hdr_ver, NULL);
574 
575 static ssize_t uv_query_supp_att_pflags(struct kobject *kobj,
576 					struct kobj_attribute *attr, char *buf)
577 {
578 	return sysfs_emit(buf, "%lx\n", uv_info.supp_att_pflags);
579 }
580 
581 static struct kobj_attribute uv_query_supp_att_pflags_attr =
582 	__ATTR(supp_att_pflags, 0444, uv_query_supp_att_pflags, NULL);
583 
584 static ssize_t uv_query_supp_add_secret_req_ver(struct kobject *kobj,
585 						struct kobj_attribute *attr, char *buf)
586 {
587 	return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_req_ver);
588 }
589 
590 static struct kobj_attribute uv_query_supp_add_secret_req_ver_attr =
591 	__ATTR(supp_add_secret_req_ver, 0444, uv_query_supp_add_secret_req_ver, NULL);
592 
593 static ssize_t uv_query_supp_add_secret_pcf(struct kobject *kobj,
594 					    struct kobj_attribute *attr, char *buf)
595 {
596 	return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_pcf);
597 }
598 
599 static struct kobj_attribute uv_query_supp_add_secret_pcf_attr =
600 	__ATTR(supp_add_secret_pcf, 0444, uv_query_supp_add_secret_pcf, NULL);
601 
602 static ssize_t uv_query_supp_secret_types(struct kobject *kobj,
603 					  struct kobj_attribute *attr, char *buf)
604 {
605 	return sysfs_emit(buf, "%lx\n", uv_info.supp_secret_types);
606 }
607 
608 static struct kobj_attribute uv_query_supp_secret_types_attr =
609 	__ATTR(supp_secret_types, 0444, uv_query_supp_secret_types, NULL);
610 
611 static ssize_t uv_query_max_secrets(struct kobject *kobj,
612 				    struct kobj_attribute *attr, char *buf)
613 {
614 	return sysfs_emit(buf, "%d\n", uv_info.max_secrets);
615 }
616 
617 static struct kobj_attribute uv_query_max_secrets_attr =
618 	__ATTR(max_secrets, 0444, uv_query_max_secrets, NULL);
619 
620 static struct attribute *uv_query_attrs[] = {
621 	&uv_query_facilities_attr.attr,
622 	&uv_query_feature_indications_attr.attr,
623 	&uv_query_max_guest_cpus_attr.attr,
624 	&uv_query_max_guest_vms_attr.attr,
625 	&uv_query_max_guest_addr_attr.attr,
626 	&uv_query_supp_se_hdr_ver_attr.attr,
627 	&uv_query_supp_se_hdr_pcf_attr.attr,
628 	&uv_query_dump_storage_state_len_attr.attr,
629 	&uv_query_dump_finalize_len_attr.attr,
630 	&uv_query_dump_cpu_len_attr.attr,
631 	&uv_query_supp_att_req_hdr_ver_attr.attr,
632 	&uv_query_supp_att_pflags_attr.attr,
633 	&uv_query_supp_add_secret_req_ver_attr.attr,
634 	&uv_query_supp_add_secret_pcf_attr.attr,
635 	&uv_query_supp_secret_types_attr.attr,
636 	&uv_query_max_secrets_attr.attr,
637 	NULL,
638 };
639 
640 static struct attribute_group uv_query_attr_group = {
641 	.attrs = uv_query_attrs,
642 };
643 
644 static ssize_t uv_is_prot_virt_guest(struct kobject *kobj,
645 				     struct kobj_attribute *attr, char *buf)
646 {
647 	int val = 0;
648 
649 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
650 	val = prot_virt_guest;
651 #endif
652 	return sysfs_emit(buf, "%d\n", val);
653 }
654 
655 static ssize_t uv_is_prot_virt_host(struct kobject *kobj,
656 				    struct kobj_attribute *attr, char *buf)
657 {
658 	int val = 0;
659 
660 #if IS_ENABLED(CONFIG_KVM)
661 	val = prot_virt_host;
662 #endif
663 
664 	return sysfs_emit(buf, "%d\n", val);
665 }
666 
667 static struct kobj_attribute uv_prot_virt_guest =
668 	__ATTR(prot_virt_guest, 0444, uv_is_prot_virt_guest, NULL);
669 
670 static struct kobj_attribute uv_prot_virt_host =
671 	__ATTR(prot_virt_host, 0444, uv_is_prot_virt_host, NULL);
672 
673 static const struct attribute *uv_prot_virt_attrs[] = {
674 	&uv_prot_virt_guest.attr,
675 	&uv_prot_virt_host.attr,
676 	NULL,
677 };
678 
679 static struct kset *uv_query_kset;
680 static struct kobject *uv_kobj;
681 
682 static int __init uv_info_init(void)
683 {
684 	int rc = -ENOMEM;
685 
686 	if (!test_facility(158))
687 		return 0;
688 
689 	uv_kobj = kobject_create_and_add("uv", firmware_kobj);
690 	if (!uv_kobj)
691 		return -ENOMEM;
692 
693 	rc = sysfs_create_files(uv_kobj, uv_prot_virt_attrs);
694 	if (rc)
695 		goto out_kobj;
696 
697 	uv_query_kset = kset_create_and_add("query", NULL, uv_kobj);
698 	if (!uv_query_kset) {
699 		rc = -ENOMEM;
700 		goto out_ind_files;
701 	}
702 
703 	rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group);
704 	if (!rc)
705 		return 0;
706 
707 	kset_unregister(uv_query_kset);
708 out_ind_files:
709 	sysfs_remove_files(uv_kobj, uv_prot_virt_attrs);
710 out_kobj:
711 	kobject_del(uv_kobj);
712 	kobject_put(uv_kobj);
713 	return rc;
714 }
715 device_initcall(uv_info_init);
716 #endif
717