1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Ultravisor functions and initialization 4 * 5 * Copyright IBM Corp. 2019, 2020 6 */ 7 #define KMSG_COMPONENT "prot_virt" 8 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 9 10 #include <linux/kernel.h> 11 #include <linux/types.h> 12 #include <linux/sizes.h> 13 #include <linux/bitmap.h> 14 #include <linux/memblock.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <asm/facility.h> 18 #include <asm/sections.h> 19 #include <asm/uv.h> 20 21 /* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */ 22 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST 23 int __bootdata_preserved(prot_virt_guest); 24 #endif 25 26 /* 27 * uv_info contains both host and guest information but it's currently only 28 * expected to be used within modules if it's the KVM module or for 29 * any PV guest module. 30 * 31 * The kernel itself will write these values once in uv_query_info() 32 * and then make some of them readable via a sysfs interface. 33 */ 34 struct uv_info __bootdata_preserved(uv_info); 35 EXPORT_SYMBOL(uv_info); 36 37 #if IS_ENABLED(CONFIG_KVM) 38 int __bootdata_preserved(prot_virt_host); 39 EXPORT_SYMBOL(prot_virt_host); 40 41 static int __init uv_init(phys_addr_t stor_base, unsigned long stor_len) 42 { 43 struct uv_cb_init uvcb = { 44 .header.cmd = UVC_CMD_INIT_UV, 45 .header.len = sizeof(uvcb), 46 .stor_origin = stor_base, 47 .stor_len = stor_len, 48 }; 49 50 if (uv_call(0, (uint64_t)&uvcb)) { 51 pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n", 52 uvcb.header.rc, uvcb.header.rrc); 53 return -1; 54 } 55 return 0; 56 } 57 58 void __init setup_uv(void) 59 { 60 void *uv_stor_base; 61 62 if (!is_prot_virt_host()) 63 return; 64 65 uv_stor_base = memblock_alloc_try_nid( 66 uv_info.uv_base_stor_len, SZ_1M, SZ_2G, 67 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE); 68 if (!uv_stor_base) { 69 pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n", 70 uv_info.uv_base_stor_len); 71 goto fail; 72 } 73 74 if (uv_init(__pa(uv_stor_base), uv_info.uv_base_stor_len)) { 75 memblock_free(uv_stor_base, uv_info.uv_base_stor_len); 76 goto fail; 77 } 78 79 pr_info("Reserving %luMB as ultravisor base storage\n", 80 uv_info.uv_base_stor_len >> 20); 81 return; 82 fail: 83 pr_info("Disabling support for protected virtualization"); 84 prot_virt_host = 0; 85 } 86 87 /* 88 * Requests the Ultravisor to pin the page in the shared state. This will 89 * cause an intercept when the guest attempts to unshare the pinned page. 90 */ 91 static int uv_pin_shared(unsigned long paddr) 92 { 93 struct uv_cb_cfs uvcb = { 94 .header.cmd = UVC_CMD_PIN_PAGE_SHARED, 95 .header.len = sizeof(uvcb), 96 .paddr = paddr, 97 }; 98 99 if (uv_call(0, (u64)&uvcb)) 100 return -EINVAL; 101 return 0; 102 } 103 104 /* 105 * Requests the Ultravisor to destroy a guest page and make it 106 * accessible to the host. The destroy clears the page instead of 107 * exporting. 108 * 109 * @paddr: Absolute host address of page to be destroyed 110 */ 111 static int uv_destroy_page(unsigned long paddr) 112 { 113 struct uv_cb_cfs uvcb = { 114 .header.cmd = UVC_CMD_DESTR_SEC_STOR, 115 .header.len = sizeof(uvcb), 116 .paddr = paddr 117 }; 118 119 if (uv_call(0, (u64)&uvcb)) { 120 /* 121 * Older firmware uses 107/d as an indication of a non secure 122 * page. Let us emulate the newer variant (no-op). 123 */ 124 if (uvcb.header.rc == 0x107 && uvcb.header.rrc == 0xd) 125 return 0; 126 return -EINVAL; 127 } 128 return 0; 129 } 130 131 /* 132 * The caller must already hold a reference to the page 133 */ 134 int uv_destroy_owned_page(unsigned long paddr) 135 { 136 struct page *page = phys_to_page(paddr); 137 int rc; 138 139 get_page(page); 140 rc = uv_destroy_page(paddr); 141 if (!rc) 142 clear_bit(PG_arch_1, &page->flags); 143 put_page(page); 144 return rc; 145 } 146 147 /* 148 * Requests the Ultravisor to encrypt a guest page and make it 149 * accessible to the host for paging (export). 150 * 151 * @paddr: Absolute host address of page to be exported 152 */ 153 int uv_convert_from_secure(unsigned long paddr) 154 { 155 struct uv_cb_cfs uvcb = { 156 .header.cmd = UVC_CMD_CONV_FROM_SEC_STOR, 157 .header.len = sizeof(uvcb), 158 .paddr = paddr 159 }; 160 161 if (uv_call(0, (u64)&uvcb)) 162 return -EINVAL; 163 return 0; 164 } 165 166 /* 167 * The caller must already hold a reference to the page 168 */ 169 int uv_convert_owned_from_secure(unsigned long paddr) 170 { 171 struct page *page = phys_to_page(paddr); 172 int rc; 173 174 get_page(page); 175 rc = uv_convert_from_secure(paddr); 176 if (!rc) 177 clear_bit(PG_arch_1, &page->flags); 178 put_page(page); 179 return rc; 180 } 181 182 /* 183 * Calculate the expected ref_count for a page that would otherwise have no 184 * further pins. This was cribbed from similar functions in other places in 185 * the kernel, but with some slight modifications. We know that a secure 186 * page can not be a huge page for example. 187 */ 188 static int expected_page_refs(struct page *page) 189 { 190 int res; 191 192 res = page_mapcount(page); 193 if (PageSwapCache(page)) { 194 res++; 195 } else if (page_mapping(page)) { 196 res++; 197 if (page_has_private(page)) 198 res++; 199 } 200 return res; 201 } 202 203 static int make_page_secure(struct page *page, struct uv_cb_header *uvcb) 204 { 205 int expected, cc = 0; 206 207 if (PageWriteback(page)) 208 return -EAGAIN; 209 expected = expected_page_refs(page); 210 if (!page_ref_freeze(page, expected)) 211 return -EBUSY; 212 set_bit(PG_arch_1, &page->flags); 213 /* 214 * If the UVC does not succeed or fail immediately, we don't want to 215 * loop for long, or we might get stall notifications. 216 * On the other hand, this is a complex scenario and we are holding a lot of 217 * locks, so we can't easily sleep and reschedule. We try only once, 218 * and if the UVC returned busy or partial completion, we return 219 * -EAGAIN and we let the callers deal with it. 220 */ 221 cc = __uv_call(0, (u64)uvcb); 222 page_ref_unfreeze(page, expected); 223 /* 224 * Return -ENXIO if the page was not mapped, -EINVAL for other errors. 225 * If busy or partially completed, return -EAGAIN. 226 */ 227 if (cc == UVC_CC_OK) 228 return 0; 229 else if (cc == UVC_CC_BUSY || cc == UVC_CC_PARTIAL) 230 return -EAGAIN; 231 return uvcb->rc == 0x10a ? -ENXIO : -EINVAL; 232 } 233 234 /** 235 * should_export_before_import - Determine whether an export is needed 236 * before an import-like operation 237 * @uvcb: the Ultravisor control block of the UVC to be performed 238 * @mm: the mm of the process 239 * 240 * Returns whether an export is needed before every import-like operation. 241 * This is needed for shared pages, which don't trigger a secure storage 242 * exception when accessed from a different guest. 243 * 244 * Although considered as one, the Unpin Page UVC is not an actual import, 245 * so it is not affected. 246 * 247 * No export is needed also when there is only one protected VM, because the 248 * page cannot belong to the wrong VM in that case (there is no "other VM" 249 * it can belong to). 250 * 251 * Return: true if an export is needed before every import, otherwise false. 252 */ 253 static bool should_export_before_import(struct uv_cb_header *uvcb, struct mm_struct *mm) 254 { 255 /* 256 * The misc feature indicates, among other things, that importing a 257 * shared page from a different protected VM will automatically also 258 * transfer its ownership. 259 */ 260 if (test_bit_inv(BIT_UV_FEAT_MISC, &uv_info.uv_feature_indications)) 261 return false; 262 if (uvcb->cmd == UVC_CMD_UNPIN_PAGE_SHARED) 263 return false; 264 return atomic_read(&mm->context.protected_count) > 1; 265 } 266 267 /* 268 * Requests the Ultravisor to make a page accessible to a guest. 269 * If it's brought in the first time, it will be cleared. If 270 * it has been exported before, it will be decrypted and integrity 271 * checked. 272 */ 273 int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb) 274 { 275 struct vm_area_struct *vma; 276 bool local_drain = false; 277 spinlock_t *ptelock; 278 unsigned long uaddr; 279 struct page *page; 280 pte_t *ptep; 281 int rc; 282 283 again: 284 rc = -EFAULT; 285 mmap_read_lock(gmap->mm); 286 287 uaddr = __gmap_translate(gmap, gaddr); 288 if (IS_ERR_VALUE(uaddr)) 289 goto out; 290 vma = vma_lookup(gmap->mm, uaddr); 291 if (!vma) 292 goto out; 293 /* 294 * Secure pages cannot be huge and userspace should not combine both. 295 * In case userspace does it anyway this will result in an -EFAULT for 296 * the unpack. The guest is thus never reaching secure mode. If 297 * userspace is playing dirty tricky with mapping huge pages later 298 * on this will result in a segmentation fault. 299 */ 300 if (is_vm_hugetlb_page(vma)) 301 goto out; 302 303 rc = -ENXIO; 304 ptep = get_locked_pte(gmap->mm, uaddr, &ptelock); 305 if (!ptep) 306 goto out; 307 if (pte_present(*ptep) && !(pte_val(*ptep) & _PAGE_INVALID) && pte_write(*ptep)) { 308 page = pte_page(*ptep); 309 rc = -EAGAIN; 310 if (trylock_page(page)) { 311 if (should_export_before_import(uvcb, gmap->mm)) 312 uv_convert_from_secure(page_to_phys(page)); 313 rc = make_page_secure(page, uvcb); 314 unlock_page(page); 315 } 316 } 317 pte_unmap_unlock(ptep, ptelock); 318 out: 319 mmap_read_unlock(gmap->mm); 320 321 if (rc == -EAGAIN) { 322 /* 323 * If we are here because the UVC returned busy or partial 324 * completion, this is just a useless check, but it is safe. 325 */ 326 wait_on_page_writeback(page); 327 } else if (rc == -EBUSY) { 328 /* 329 * If we have tried a local drain and the page refcount 330 * still does not match our expected safe value, try with a 331 * system wide drain. This is needed if the pagevecs holding 332 * the page are on a different CPU. 333 */ 334 if (local_drain) { 335 lru_add_drain_all(); 336 /* We give up here, and let the caller try again */ 337 return -EAGAIN; 338 } 339 /* 340 * We are here if the page refcount does not match the 341 * expected safe value. The main culprits are usually 342 * pagevecs. With lru_add_drain() we drain the pagevecs 343 * on the local CPU so that hopefully the refcount will 344 * reach the expected safe value. 345 */ 346 lru_add_drain(); 347 local_drain = true; 348 /* And now we try again immediately after draining */ 349 goto again; 350 } else if (rc == -ENXIO) { 351 if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE)) 352 return -EFAULT; 353 return -EAGAIN; 354 } 355 return rc; 356 } 357 EXPORT_SYMBOL_GPL(gmap_make_secure); 358 359 int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr) 360 { 361 struct uv_cb_cts uvcb = { 362 .header.cmd = UVC_CMD_CONV_TO_SEC_STOR, 363 .header.len = sizeof(uvcb), 364 .guest_handle = gmap->guest_handle, 365 .gaddr = gaddr, 366 }; 367 368 return gmap_make_secure(gmap, gaddr, &uvcb); 369 } 370 EXPORT_SYMBOL_GPL(gmap_convert_to_secure); 371 372 /** 373 * gmap_destroy_page - Destroy a guest page. 374 * @gmap: the gmap of the guest 375 * @gaddr: the guest address to destroy 376 * 377 * An attempt will be made to destroy the given guest page. If the attempt 378 * fails, an attempt is made to export the page. If both attempts fail, an 379 * appropriate error is returned. 380 */ 381 int gmap_destroy_page(struct gmap *gmap, unsigned long gaddr) 382 { 383 struct vm_area_struct *vma; 384 unsigned long uaddr; 385 struct page *page; 386 int rc; 387 388 rc = -EFAULT; 389 mmap_read_lock(gmap->mm); 390 391 uaddr = __gmap_translate(gmap, gaddr); 392 if (IS_ERR_VALUE(uaddr)) 393 goto out; 394 vma = vma_lookup(gmap->mm, uaddr); 395 if (!vma) 396 goto out; 397 /* 398 * Huge pages should not be able to become secure 399 */ 400 if (is_vm_hugetlb_page(vma)) 401 goto out; 402 403 rc = 0; 404 /* we take an extra reference here */ 405 page = follow_page(vma, uaddr, FOLL_WRITE | FOLL_GET); 406 if (IS_ERR_OR_NULL(page)) 407 goto out; 408 rc = uv_destroy_owned_page(page_to_phys(page)); 409 /* 410 * Fault handlers can race; it is possible that two CPUs will fault 411 * on the same secure page. One CPU can destroy the page, reboot, 412 * re-enter secure mode and import it, while the second CPU was 413 * stuck at the beginning of the handler. At some point the second 414 * CPU will be able to progress, and it will not be able to destroy 415 * the page. In that case we do not want to terminate the process, 416 * we instead try to export the page. 417 */ 418 if (rc) 419 rc = uv_convert_owned_from_secure(page_to_phys(page)); 420 put_page(page); 421 out: 422 mmap_read_unlock(gmap->mm); 423 return rc; 424 } 425 EXPORT_SYMBOL_GPL(gmap_destroy_page); 426 427 /* 428 * To be called with the page locked or with an extra reference! This will 429 * prevent gmap_make_secure from touching the page concurrently. Having 2 430 * parallel make_page_accessible is fine, as the UV calls will become a 431 * no-op if the page is already exported. 432 */ 433 int arch_make_page_accessible(struct page *page) 434 { 435 int rc = 0; 436 437 /* Hugepage cannot be protected, so nothing to do */ 438 if (PageHuge(page)) 439 return 0; 440 441 /* 442 * PG_arch_1 is used in 3 places: 443 * 1. for kernel page tables during early boot 444 * 2. for storage keys of huge pages and KVM 445 * 3. As an indication that this page might be secure. This can 446 * overindicate, e.g. we set the bit before calling 447 * convert_to_secure. 448 * As secure pages are never huge, all 3 variants can co-exists. 449 */ 450 if (!test_bit(PG_arch_1, &page->flags)) 451 return 0; 452 453 rc = uv_pin_shared(page_to_phys(page)); 454 if (!rc) { 455 clear_bit(PG_arch_1, &page->flags); 456 return 0; 457 } 458 459 rc = uv_convert_from_secure(page_to_phys(page)); 460 if (!rc) { 461 clear_bit(PG_arch_1, &page->flags); 462 return 0; 463 } 464 465 return rc; 466 } 467 EXPORT_SYMBOL_GPL(arch_make_page_accessible); 468 469 #endif 470 471 #if defined(CONFIG_PROTECTED_VIRTUALIZATION_GUEST) || IS_ENABLED(CONFIG_KVM) 472 static ssize_t uv_query_facilities(struct kobject *kobj, 473 struct kobj_attribute *attr, char *buf) 474 { 475 return sysfs_emit(buf, "%lx\n%lx\n%lx\n%lx\n", 476 uv_info.inst_calls_list[0], 477 uv_info.inst_calls_list[1], 478 uv_info.inst_calls_list[2], 479 uv_info.inst_calls_list[3]); 480 } 481 482 static struct kobj_attribute uv_query_facilities_attr = 483 __ATTR(facilities, 0444, uv_query_facilities, NULL); 484 485 static ssize_t uv_query_supp_se_hdr_ver(struct kobject *kobj, 486 struct kobj_attribute *attr, char *buf) 487 { 488 return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_ver); 489 } 490 491 static struct kobj_attribute uv_query_supp_se_hdr_ver_attr = 492 __ATTR(supp_se_hdr_ver, 0444, uv_query_supp_se_hdr_ver, NULL); 493 494 static ssize_t uv_query_supp_se_hdr_pcf(struct kobject *kobj, 495 struct kobj_attribute *attr, char *buf) 496 { 497 return sysfs_emit(buf, "%lx\n", uv_info.supp_se_hdr_pcf); 498 } 499 500 static struct kobj_attribute uv_query_supp_se_hdr_pcf_attr = 501 __ATTR(supp_se_hdr_pcf, 0444, uv_query_supp_se_hdr_pcf, NULL); 502 503 static ssize_t uv_query_dump_cpu_len(struct kobject *kobj, 504 struct kobj_attribute *attr, char *buf) 505 { 506 return sysfs_emit(buf, "%lx\n", uv_info.guest_cpu_stor_len); 507 } 508 509 static struct kobj_attribute uv_query_dump_cpu_len_attr = 510 __ATTR(uv_query_dump_cpu_len, 0444, uv_query_dump_cpu_len, NULL); 511 512 static ssize_t uv_query_dump_storage_state_len(struct kobject *kobj, 513 struct kobj_attribute *attr, char *buf) 514 { 515 return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_storage_state_len); 516 } 517 518 static struct kobj_attribute uv_query_dump_storage_state_len_attr = 519 __ATTR(dump_storage_state_len, 0444, uv_query_dump_storage_state_len, NULL); 520 521 static ssize_t uv_query_dump_finalize_len(struct kobject *kobj, 522 struct kobj_attribute *attr, char *buf) 523 { 524 return sysfs_emit(buf, "%lx\n", uv_info.conf_dump_finalize_len); 525 } 526 527 static struct kobj_attribute uv_query_dump_finalize_len_attr = 528 __ATTR(dump_finalize_len, 0444, uv_query_dump_finalize_len, NULL); 529 530 static ssize_t uv_query_feature_indications(struct kobject *kobj, 531 struct kobj_attribute *attr, char *buf) 532 { 533 return sysfs_emit(buf, "%lx\n", uv_info.uv_feature_indications); 534 } 535 536 static struct kobj_attribute uv_query_feature_indications_attr = 537 __ATTR(feature_indications, 0444, uv_query_feature_indications, NULL); 538 539 static ssize_t uv_query_max_guest_cpus(struct kobject *kobj, 540 struct kobj_attribute *attr, char *buf) 541 { 542 return sysfs_emit(buf, "%d\n", uv_info.max_guest_cpu_id + 1); 543 } 544 545 static struct kobj_attribute uv_query_max_guest_cpus_attr = 546 __ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL); 547 548 static ssize_t uv_query_max_guest_vms(struct kobject *kobj, 549 struct kobj_attribute *attr, char *buf) 550 { 551 return sysfs_emit(buf, "%d\n", uv_info.max_num_sec_conf); 552 } 553 554 static struct kobj_attribute uv_query_max_guest_vms_attr = 555 __ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL); 556 557 static ssize_t uv_query_max_guest_addr(struct kobject *kobj, 558 struct kobj_attribute *attr, char *buf) 559 { 560 return sysfs_emit(buf, "%lx\n", uv_info.max_sec_stor_addr); 561 } 562 563 static struct kobj_attribute uv_query_max_guest_addr_attr = 564 __ATTR(max_address, 0444, uv_query_max_guest_addr, NULL); 565 566 static ssize_t uv_query_supp_att_req_hdr_ver(struct kobject *kobj, 567 struct kobj_attribute *attr, char *buf) 568 { 569 return sysfs_emit(buf, "%lx\n", uv_info.supp_att_req_hdr_ver); 570 } 571 572 static struct kobj_attribute uv_query_supp_att_req_hdr_ver_attr = 573 __ATTR(supp_att_req_hdr_ver, 0444, uv_query_supp_att_req_hdr_ver, NULL); 574 575 static ssize_t uv_query_supp_att_pflags(struct kobject *kobj, 576 struct kobj_attribute *attr, char *buf) 577 { 578 return sysfs_emit(buf, "%lx\n", uv_info.supp_att_pflags); 579 } 580 581 static struct kobj_attribute uv_query_supp_att_pflags_attr = 582 __ATTR(supp_att_pflags, 0444, uv_query_supp_att_pflags, NULL); 583 584 static ssize_t uv_query_supp_add_secret_req_ver(struct kobject *kobj, 585 struct kobj_attribute *attr, char *buf) 586 { 587 return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_req_ver); 588 } 589 590 static struct kobj_attribute uv_query_supp_add_secret_req_ver_attr = 591 __ATTR(supp_add_secret_req_ver, 0444, uv_query_supp_add_secret_req_ver, NULL); 592 593 static ssize_t uv_query_supp_add_secret_pcf(struct kobject *kobj, 594 struct kobj_attribute *attr, char *buf) 595 { 596 return sysfs_emit(buf, "%lx\n", uv_info.supp_add_secret_pcf); 597 } 598 599 static struct kobj_attribute uv_query_supp_add_secret_pcf_attr = 600 __ATTR(supp_add_secret_pcf, 0444, uv_query_supp_add_secret_pcf, NULL); 601 602 static ssize_t uv_query_supp_secret_types(struct kobject *kobj, 603 struct kobj_attribute *attr, char *buf) 604 { 605 return sysfs_emit(buf, "%lx\n", uv_info.supp_secret_types); 606 } 607 608 static struct kobj_attribute uv_query_supp_secret_types_attr = 609 __ATTR(supp_secret_types, 0444, uv_query_supp_secret_types, NULL); 610 611 static ssize_t uv_query_max_secrets(struct kobject *kobj, 612 struct kobj_attribute *attr, char *buf) 613 { 614 return sysfs_emit(buf, "%d\n", uv_info.max_secrets); 615 } 616 617 static struct kobj_attribute uv_query_max_secrets_attr = 618 __ATTR(max_secrets, 0444, uv_query_max_secrets, NULL); 619 620 static struct attribute *uv_query_attrs[] = { 621 &uv_query_facilities_attr.attr, 622 &uv_query_feature_indications_attr.attr, 623 &uv_query_max_guest_cpus_attr.attr, 624 &uv_query_max_guest_vms_attr.attr, 625 &uv_query_max_guest_addr_attr.attr, 626 &uv_query_supp_se_hdr_ver_attr.attr, 627 &uv_query_supp_se_hdr_pcf_attr.attr, 628 &uv_query_dump_storage_state_len_attr.attr, 629 &uv_query_dump_finalize_len_attr.attr, 630 &uv_query_dump_cpu_len_attr.attr, 631 &uv_query_supp_att_req_hdr_ver_attr.attr, 632 &uv_query_supp_att_pflags_attr.attr, 633 &uv_query_supp_add_secret_req_ver_attr.attr, 634 &uv_query_supp_add_secret_pcf_attr.attr, 635 &uv_query_supp_secret_types_attr.attr, 636 &uv_query_max_secrets_attr.attr, 637 NULL, 638 }; 639 640 static struct attribute_group uv_query_attr_group = { 641 .attrs = uv_query_attrs, 642 }; 643 644 static ssize_t uv_is_prot_virt_guest(struct kobject *kobj, 645 struct kobj_attribute *attr, char *buf) 646 { 647 int val = 0; 648 649 #ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST 650 val = prot_virt_guest; 651 #endif 652 return sysfs_emit(buf, "%d\n", val); 653 } 654 655 static ssize_t uv_is_prot_virt_host(struct kobject *kobj, 656 struct kobj_attribute *attr, char *buf) 657 { 658 int val = 0; 659 660 #if IS_ENABLED(CONFIG_KVM) 661 val = prot_virt_host; 662 #endif 663 664 return sysfs_emit(buf, "%d\n", val); 665 } 666 667 static struct kobj_attribute uv_prot_virt_guest = 668 __ATTR(prot_virt_guest, 0444, uv_is_prot_virt_guest, NULL); 669 670 static struct kobj_attribute uv_prot_virt_host = 671 __ATTR(prot_virt_host, 0444, uv_is_prot_virt_host, NULL); 672 673 static const struct attribute *uv_prot_virt_attrs[] = { 674 &uv_prot_virt_guest.attr, 675 &uv_prot_virt_host.attr, 676 NULL, 677 }; 678 679 static struct kset *uv_query_kset; 680 static struct kobject *uv_kobj; 681 682 static int __init uv_info_init(void) 683 { 684 int rc = -ENOMEM; 685 686 if (!test_facility(158)) 687 return 0; 688 689 uv_kobj = kobject_create_and_add("uv", firmware_kobj); 690 if (!uv_kobj) 691 return -ENOMEM; 692 693 rc = sysfs_create_files(uv_kobj, uv_prot_virt_attrs); 694 if (rc) 695 goto out_kobj; 696 697 uv_query_kset = kset_create_and_add("query", NULL, uv_kobj); 698 if (!uv_query_kset) { 699 rc = -ENOMEM; 700 goto out_ind_files; 701 } 702 703 rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group); 704 if (!rc) 705 return 0; 706 707 kset_unregister(uv_query_kset); 708 out_ind_files: 709 sysfs_remove_files(uv_kobj, uv_prot_virt_attrs); 710 out_kobj: 711 kobject_del(uv_kobj); 712 kobject_put(uv_kobj); 713 return rc; 714 } 715 device_initcall(uv_info_init); 716 #endif 717