xref: /openbmc/linux/arch/s390/kernel/time.c (revision f9a82c48)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/export.h>
21 #include <linux/sched.h>
22 #include <linux/sched/clock.h>
23 #include <linux/kernel.h>
24 #include <linux/param.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/cpu.h>
29 #include <linux/stop_machine.h>
30 #include <linux/time.h>
31 #include <linux/device.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/smp.h>
35 #include <linux/types.h>
36 #include <linux/profile.h>
37 #include <linux/timex.h>
38 #include <linux/notifier.h>
39 #include <linux/timekeeper_internal.h>
40 #include <linux/clockchips.h>
41 #include <linux/gfp.h>
42 #include <linux/kprobes.h>
43 #include <linux/uaccess.h>
44 #include <asm/facility.h>
45 #include <asm/delay.h>
46 #include <asm/div64.h>
47 #include <asm/vdso.h>
48 #include <asm/irq.h>
49 #include <asm/irq_regs.h>
50 #include <asm/vtimer.h>
51 #include <asm/stp.h>
52 #include <asm/cio.h>
53 #include "entry.h"
54 
55 unsigned char tod_clock_base[16] __aligned(8) = {
56 	/* Force to data section. */
57 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
58 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
59 };
60 EXPORT_SYMBOL_GPL(tod_clock_base);
61 
62 u64 clock_comparator_max = -1ULL;
63 EXPORT_SYMBOL_GPL(clock_comparator_max);
64 
65 static DEFINE_PER_CPU(struct clock_event_device, comparators);
66 
67 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
68 EXPORT_SYMBOL(s390_epoch_delta_notifier);
69 
70 unsigned char ptff_function_mask[16];
71 
72 static unsigned long long lpar_offset;
73 static unsigned long long initial_leap_seconds;
74 static unsigned long long tod_steering_end;
75 static long long tod_steering_delta;
76 
77 /*
78  * Get time offsets with PTFF
79  */
80 void __init time_early_init(void)
81 {
82 	struct ptff_qto qto;
83 	struct ptff_qui qui;
84 
85 	/* Initialize TOD steering parameters */
86 	tod_steering_end = *(unsigned long long *) &tod_clock_base[1];
87 	vdso_data->ts_end = tod_steering_end;
88 
89 	if (!test_facility(28))
90 		return;
91 
92 	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
93 
94 	/* get LPAR offset */
95 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
96 		lpar_offset = qto.tod_epoch_difference;
97 
98 	/* get initial leap seconds */
99 	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
100 		initial_leap_seconds = (unsigned long long)
101 			((long) qui.old_leap * 4096000000L);
102 }
103 
104 /*
105  * Scheduler clock - returns current time in nanosec units.
106  */
107 unsigned long long notrace sched_clock(void)
108 {
109 	return tod_to_ns(get_tod_clock_monotonic());
110 }
111 NOKPROBE_SYMBOL(sched_clock);
112 
113 /*
114  * Monotonic_clock - returns # of nanoseconds passed since time_init()
115  */
116 unsigned long long monotonic_clock(void)
117 {
118 	return sched_clock();
119 }
120 EXPORT_SYMBOL(monotonic_clock);
121 
122 static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt)
123 {
124 	unsigned long long high, low, rem, sec, nsec;
125 
126 	/* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */
127 	high = (*(unsigned long long *) clk) >> 4;
128 	low = (*(unsigned long long *)&clk[7]) << 4;
129 	/* Calculate seconds and nano-seconds */
130 	sec = high;
131 	rem = do_div(sec, 1000000);
132 	nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32;
133 
134 	xt->tv_sec = sec;
135 	xt->tv_nsec = nsec;
136 }
137 
138 void clock_comparator_work(void)
139 {
140 	struct clock_event_device *cd;
141 
142 	S390_lowcore.clock_comparator = clock_comparator_max;
143 	cd = this_cpu_ptr(&comparators);
144 	cd->event_handler(cd);
145 }
146 
147 static int s390_next_event(unsigned long delta,
148 			   struct clock_event_device *evt)
149 {
150 	S390_lowcore.clock_comparator = get_tod_clock() + delta;
151 	set_clock_comparator(S390_lowcore.clock_comparator);
152 	return 0;
153 }
154 
155 /*
156  * Set up lowcore and control register of the current cpu to
157  * enable TOD clock and clock comparator interrupts.
158  */
159 void init_cpu_timer(void)
160 {
161 	struct clock_event_device *cd;
162 	int cpu;
163 
164 	S390_lowcore.clock_comparator = clock_comparator_max;
165 	set_clock_comparator(S390_lowcore.clock_comparator);
166 
167 	cpu = smp_processor_id();
168 	cd = &per_cpu(comparators, cpu);
169 	cd->name		= "comparator";
170 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
171 	cd->mult		= 16777;
172 	cd->shift		= 12;
173 	cd->min_delta_ns	= 1;
174 	cd->min_delta_ticks	= 1;
175 	cd->max_delta_ns	= LONG_MAX;
176 	cd->max_delta_ticks	= ULONG_MAX;
177 	cd->rating		= 400;
178 	cd->cpumask		= cpumask_of(cpu);
179 	cd->set_next_event	= s390_next_event;
180 
181 	clockevents_register_device(cd);
182 
183 	/* Enable clock comparator timer interrupt. */
184 	__ctl_set_bit(0,11);
185 
186 	/* Always allow the timing alert external interrupt. */
187 	__ctl_set_bit(0, 4);
188 }
189 
190 static void clock_comparator_interrupt(struct ext_code ext_code,
191 				       unsigned int param32,
192 				       unsigned long param64)
193 {
194 	inc_irq_stat(IRQEXT_CLK);
195 	if (S390_lowcore.clock_comparator == clock_comparator_max)
196 		set_clock_comparator(S390_lowcore.clock_comparator);
197 }
198 
199 static void stp_timing_alert(struct stp_irq_parm *);
200 
201 static void timing_alert_interrupt(struct ext_code ext_code,
202 				   unsigned int param32, unsigned long param64)
203 {
204 	inc_irq_stat(IRQEXT_TLA);
205 	if (param32 & 0x00038000)
206 		stp_timing_alert((struct stp_irq_parm *) &param32);
207 }
208 
209 static void stp_reset(void);
210 
211 void read_persistent_clock64(struct timespec64 *ts)
212 {
213 	unsigned char clk[STORE_CLOCK_EXT_SIZE];
214 	__u64 delta;
215 
216 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
217 	get_tod_clock_ext(clk);
218 	*(__u64 *) &clk[1] -= delta;
219 	if (*(__u64 *) &clk[1] > delta)
220 		clk[0]--;
221 	ext_to_timespec64(clk, ts);
222 }
223 
224 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
225 						 struct timespec64 *boot_offset)
226 {
227 	unsigned char clk[STORE_CLOCK_EXT_SIZE];
228 	struct timespec64 boot_time;
229 	__u64 delta;
230 
231 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
232 	memcpy(clk, tod_clock_base, STORE_CLOCK_EXT_SIZE);
233 	*(__u64 *)&clk[1] -= delta;
234 	if (*(__u64 *)&clk[1] > delta)
235 		clk[0]--;
236 	ext_to_timespec64(clk, &boot_time);
237 
238 	read_persistent_clock64(wall_time);
239 	*boot_offset = timespec64_sub(*wall_time, boot_time);
240 }
241 
242 static u64 read_tod_clock(struct clocksource *cs)
243 {
244 	unsigned long long now, adj;
245 
246 	preempt_disable(); /* protect from changes to steering parameters */
247 	now = get_tod_clock();
248 	adj = tod_steering_end - now;
249 	if (unlikely((s64) adj >= 0))
250 		/*
251 		 * manually steer by 1 cycle every 2^16 cycles. This
252 		 * corresponds to shifting the tod delta by 15. 1s is
253 		 * therefore steered in ~9h. The adjust will decrease
254 		 * over time, until it finally reaches 0.
255 		 */
256 		now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
257 	preempt_enable();
258 	return now;
259 }
260 
261 static struct clocksource clocksource_tod = {
262 	.name		= "tod",
263 	.rating		= 400,
264 	.read		= read_tod_clock,
265 	.mask		= -1ULL,
266 	.mult		= 1000,
267 	.shift		= 12,
268 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
269 };
270 
271 struct clocksource * __init clocksource_default_clock(void)
272 {
273 	return &clocksource_tod;
274 }
275 
276 void update_vsyscall(struct timekeeper *tk)
277 {
278 	u64 nsecps;
279 
280 	if (tk->tkr_mono.clock != &clocksource_tod)
281 		return;
282 
283 	/* Make userspace gettimeofday spin until we're done. */
284 	++vdso_data->tb_update_count;
285 	smp_wmb();
286 	vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
287 	vdso_data->xtime_clock_sec = tk->xtime_sec;
288 	vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
289 	vdso_data->wtom_clock_sec =
290 		tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
291 	vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
292 		+ ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
293 	nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
294 	while (vdso_data->wtom_clock_nsec >= nsecps) {
295 		vdso_data->wtom_clock_nsec -= nsecps;
296 		vdso_data->wtom_clock_sec++;
297 	}
298 
299 	vdso_data->xtime_coarse_sec = tk->xtime_sec;
300 	vdso_data->xtime_coarse_nsec =
301 		(long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
302 	vdso_data->wtom_coarse_sec =
303 		vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
304 	vdso_data->wtom_coarse_nsec =
305 		vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
306 	while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
307 		vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
308 		vdso_data->wtom_coarse_sec++;
309 	}
310 
311 	vdso_data->tk_mult = tk->tkr_mono.mult;
312 	vdso_data->tk_shift = tk->tkr_mono.shift;
313 	smp_wmb();
314 	++vdso_data->tb_update_count;
315 }
316 
317 extern struct timezone sys_tz;
318 
319 void update_vsyscall_tz(void)
320 {
321 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
322 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
323 }
324 
325 /*
326  * Initialize the TOD clock and the CPU timer of
327  * the boot cpu.
328  */
329 void __init time_init(void)
330 {
331 	/* Reset time synchronization interfaces. */
332 	stp_reset();
333 
334 	/* request the clock comparator external interrupt */
335 	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
336 		panic("Couldn't request external interrupt 0x1004");
337 
338 	/* request the timing alert external interrupt */
339 	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
340 		panic("Couldn't request external interrupt 0x1406");
341 
342 	if (__clocksource_register(&clocksource_tod) != 0)
343 		panic("Could not register TOD clock source");
344 
345 	/* Enable TOD clock interrupts on the boot cpu. */
346 	init_cpu_timer();
347 
348 	/* Enable cpu timer interrupts on the boot cpu. */
349 	vtime_init();
350 }
351 
352 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
353 static DEFINE_MUTEX(clock_sync_mutex);
354 static unsigned long clock_sync_flags;
355 
356 #define CLOCK_SYNC_HAS_STP	0
357 #define CLOCK_SYNC_STP		1
358 
359 /*
360  * The get_clock function for the physical clock. It will get the current
361  * TOD clock, subtract the LPAR offset and write the result to *clock.
362  * The function returns 0 if the clock is in sync with the external time
363  * source. If the clock mode is local it will return -EOPNOTSUPP and
364  * -EAGAIN if the clock is not in sync with the external reference.
365  */
366 int get_phys_clock(unsigned long *clock)
367 {
368 	atomic_t *sw_ptr;
369 	unsigned int sw0, sw1;
370 
371 	sw_ptr = &get_cpu_var(clock_sync_word);
372 	sw0 = atomic_read(sw_ptr);
373 	*clock = get_tod_clock() - lpar_offset;
374 	sw1 = atomic_read(sw_ptr);
375 	put_cpu_var(clock_sync_word);
376 	if (sw0 == sw1 && (sw0 & 0x80000000U))
377 		/* Success: time is in sync. */
378 		return 0;
379 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
380 		return -EOPNOTSUPP;
381 	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
382 		return -EACCES;
383 	return -EAGAIN;
384 }
385 EXPORT_SYMBOL(get_phys_clock);
386 
387 /*
388  * Make get_phys_clock() return -EAGAIN.
389  */
390 static void disable_sync_clock(void *dummy)
391 {
392 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
393 	/*
394 	 * Clear the in-sync bit 2^31. All get_phys_clock calls will
395 	 * fail until the sync bit is turned back on. In addition
396 	 * increase the "sequence" counter to avoid the race of an
397 	 * stp event and the complete recovery against get_phys_clock.
398 	 */
399 	atomic_andnot(0x80000000, sw_ptr);
400 	atomic_inc(sw_ptr);
401 }
402 
403 /*
404  * Make get_phys_clock() return 0 again.
405  * Needs to be called from a context disabled for preemption.
406  */
407 static void enable_sync_clock(void)
408 {
409 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
410 	atomic_or(0x80000000, sw_ptr);
411 }
412 
413 /*
414  * Function to check if the clock is in sync.
415  */
416 static inline int check_sync_clock(void)
417 {
418 	atomic_t *sw_ptr;
419 	int rc;
420 
421 	sw_ptr = &get_cpu_var(clock_sync_word);
422 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
423 	put_cpu_var(clock_sync_word);
424 	return rc;
425 }
426 
427 /*
428  * Apply clock delta to the global data structures.
429  * This is called once on the CPU that performed the clock sync.
430  */
431 static void clock_sync_global(unsigned long long delta)
432 {
433 	unsigned long now, adj;
434 	struct ptff_qto qto;
435 
436 	/* Fixup the monotonic sched clock. */
437 	*(unsigned long long *) &tod_clock_base[1] += delta;
438 	if (*(unsigned long long *) &tod_clock_base[1] < delta)
439 		/* Epoch overflow */
440 		tod_clock_base[0]++;
441 	/* Adjust TOD steering parameters. */
442 	vdso_data->tb_update_count++;
443 	now = get_tod_clock();
444 	adj = tod_steering_end - now;
445 	if (unlikely((s64) adj >= 0))
446 		/* Calculate how much of the old adjustment is left. */
447 		tod_steering_delta = (tod_steering_delta < 0) ?
448 			-(adj >> 15) : (adj >> 15);
449 	tod_steering_delta += delta;
450 	if ((abs(tod_steering_delta) >> 48) != 0)
451 		panic("TOD clock sync offset %lli is too large to drift\n",
452 		      tod_steering_delta);
453 	tod_steering_end = now + (abs(tod_steering_delta) << 15);
454 	vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1;
455 	vdso_data->ts_end = tod_steering_end;
456 	vdso_data->tb_update_count++;
457 	/* Update LPAR offset. */
458 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
459 		lpar_offset = qto.tod_epoch_difference;
460 	/* Call the TOD clock change notifier. */
461 	atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
462 }
463 
464 /*
465  * Apply clock delta to the per-CPU data structures of this CPU.
466  * This is called for each online CPU after the call to clock_sync_global.
467  */
468 static void clock_sync_local(unsigned long long delta)
469 {
470 	/* Add the delta to the clock comparator. */
471 	if (S390_lowcore.clock_comparator != clock_comparator_max) {
472 		S390_lowcore.clock_comparator += delta;
473 		set_clock_comparator(S390_lowcore.clock_comparator);
474 	}
475 	/* Adjust the last_update_clock time-stamp. */
476 	S390_lowcore.last_update_clock += delta;
477 }
478 
479 /* Single threaded workqueue used for stp sync events */
480 static struct workqueue_struct *time_sync_wq;
481 
482 static void __init time_init_wq(void)
483 {
484 	if (time_sync_wq)
485 		return;
486 	time_sync_wq = create_singlethread_workqueue("timesync");
487 }
488 
489 struct clock_sync_data {
490 	atomic_t cpus;
491 	int in_sync;
492 	unsigned long long clock_delta;
493 };
494 
495 /*
496  * Server Time Protocol (STP) code.
497  */
498 static bool stp_online;
499 static struct stp_sstpi stp_info;
500 static void *stp_page;
501 
502 static void stp_work_fn(struct work_struct *work);
503 static DEFINE_MUTEX(stp_work_mutex);
504 static DECLARE_WORK(stp_work, stp_work_fn);
505 static struct timer_list stp_timer;
506 
507 static int __init early_parse_stp(char *p)
508 {
509 	return kstrtobool(p, &stp_online);
510 }
511 early_param("stp", early_parse_stp);
512 
513 /*
514  * Reset STP attachment.
515  */
516 static void __init stp_reset(void)
517 {
518 	int rc;
519 
520 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
521 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
522 	if (rc == 0)
523 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
524 	else if (stp_online) {
525 		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
526 		free_page((unsigned long) stp_page);
527 		stp_page = NULL;
528 		stp_online = false;
529 	}
530 }
531 
532 static void stp_timeout(struct timer_list *unused)
533 {
534 	queue_work(time_sync_wq, &stp_work);
535 }
536 
537 static int __init stp_init(void)
538 {
539 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
540 		return 0;
541 	timer_setup(&stp_timer, stp_timeout, 0);
542 	time_init_wq();
543 	if (!stp_online)
544 		return 0;
545 	queue_work(time_sync_wq, &stp_work);
546 	return 0;
547 }
548 
549 arch_initcall(stp_init);
550 
551 /*
552  * STP timing alert. There are three causes:
553  * 1) timing status change
554  * 2) link availability change
555  * 3) time control parameter change
556  * In all three cases we are only interested in the clock source state.
557  * If a STP clock source is now available use it.
558  */
559 static void stp_timing_alert(struct stp_irq_parm *intparm)
560 {
561 	if (intparm->tsc || intparm->lac || intparm->tcpc)
562 		queue_work(time_sync_wq, &stp_work);
563 }
564 
565 /*
566  * STP sync check machine check. This is called when the timing state
567  * changes from the synchronized state to the unsynchronized state.
568  * After a STP sync check the clock is not in sync. The machine check
569  * is broadcasted to all cpus at the same time.
570  */
571 int stp_sync_check(void)
572 {
573 	disable_sync_clock(NULL);
574 	return 1;
575 }
576 
577 /*
578  * STP island condition machine check. This is called when an attached
579  * server  attempts to communicate over an STP link and the servers
580  * have matching CTN ids and have a valid stratum-1 configuration
581  * but the configurations do not match.
582  */
583 int stp_island_check(void)
584 {
585 	disable_sync_clock(NULL);
586 	return 1;
587 }
588 
589 void stp_queue_work(void)
590 {
591 	queue_work(time_sync_wq, &stp_work);
592 }
593 
594 static int stp_sync_clock(void *data)
595 {
596 	struct clock_sync_data *sync = data;
597 	unsigned long long clock_delta;
598 	static int first;
599 	int rc;
600 
601 	enable_sync_clock();
602 	if (xchg(&first, 1) == 0) {
603 		/* Wait until all other cpus entered the sync function. */
604 		while (atomic_read(&sync->cpus) != 0)
605 			cpu_relax();
606 		rc = 0;
607 		if (stp_info.todoff[0] || stp_info.todoff[1] ||
608 		    stp_info.todoff[2] || stp_info.todoff[3] ||
609 		    stp_info.tmd != 2) {
610 			rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
611 					&clock_delta);
612 			if (rc == 0) {
613 				sync->clock_delta = clock_delta;
614 				clock_sync_global(clock_delta);
615 				rc = chsc_sstpi(stp_page, &stp_info,
616 						sizeof(struct stp_sstpi));
617 				if (rc == 0 && stp_info.tmd != 2)
618 					rc = -EAGAIN;
619 			}
620 		}
621 		sync->in_sync = rc ? -EAGAIN : 1;
622 		xchg(&first, 0);
623 	} else {
624 		/* Slave */
625 		atomic_dec(&sync->cpus);
626 		/* Wait for in_sync to be set. */
627 		while (READ_ONCE(sync->in_sync) == 0)
628 			__udelay(1);
629 	}
630 	if (sync->in_sync != 1)
631 		/* Didn't work. Clear per-cpu in sync bit again. */
632 		disable_sync_clock(NULL);
633 	/* Apply clock delta to per-CPU fields of this CPU. */
634 	clock_sync_local(sync->clock_delta);
635 
636 	return 0;
637 }
638 
639 /*
640  * STP work. Check for the STP state and take over the clock
641  * synchronization if the STP clock source is usable.
642  */
643 static void stp_work_fn(struct work_struct *work)
644 {
645 	struct clock_sync_data stp_sync;
646 	int rc;
647 
648 	/* prevent multiple execution. */
649 	mutex_lock(&stp_work_mutex);
650 
651 	if (!stp_online) {
652 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
653 		del_timer_sync(&stp_timer);
654 		goto out_unlock;
655 	}
656 
657 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL);
658 	if (rc)
659 		goto out_unlock;
660 
661 	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
662 	if (rc || stp_info.c == 0)
663 		goto out_unlock;
664 
665 	/* Skip synchronization if the clock is already in sync. */
666 	if (check_sync_clock())
667 		goto out_unlock;
668 
669 	memset(&stp_sync, 0, sizeof(stp_sync));
670 	cpus_read_lock();
671 	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
672 	stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
673 	cpus_read_unlock();
674 
675 	if (!check_sync_clock())
676 		/*
677 		 * There is a usable clock but the synchonization failed.
678 		 * Retry after a second.
679 		 */
680 		mod_timer(&stp_timer, jiffies + HZ);
681 
682 out_unlock:
683 	mutex_unlock(&stp_work_mutex);
684 }
685 
686 /*
687  * STP subsys sysfs interface functions
688  */
689 static struct bus_type stp_subsys = {
690 	.name		= "stp",
691 	.dev_name	= "stp",
692 };
693 
694 static ssize_t stp_ctn_id_show(struct device *dev,
695 				struct device_attribute *attr,
696 				char *buf)
697 {
698 	if (!stp_online)
699 		return -ENODATA;
700 	return sprintf(buf, "%016llx\n",
701 		       *(unsigned long long *) stp_info.ctnid);
702 }
703 
704 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
705 
706 static ssize_t stp_ctn_type_show(struct device *dev,
707 				struct device_attribute *attr,
708 				char *buf)
709 {
710 	if (!stp_online)
711 		return -ENODATA;
712 	return sprintf(buf, "%i\n", stp_info.ctn);
713 }
714 
715 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
716 
717 static ssize_t stp_dst_offset_show(struct device *dev,
718 				   struct device_attribute *attr,
719 				   char *buf)
720 {
721 	if (!stp_online || !(stp_info.vbits & 0x2000))
722 		return -ENODATA;
723 	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
724 }
725 
726 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
727 
728 static ssize_t stp_leap_seconds_show(struct device *dev,
729 					struct device_attribute *attr,
730 					char *buf)
731 {
732 	if (!stp_online || !(stp_info.vbits & 0x8000))
733 		return -ENODATA;
734 	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
735 }
736 
737 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
738 
739 static ssize_t stp_stratum_show(struct device *dev,
740 				struct device_attribute *attr,
741 				char *buf)
742 {
743 	if (!stp_online)
744 		return -ENODATA;
745 	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
746 }
747 
748 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
749 
750 static ssize_t stp_time_offset_show(struct device *dev,
751 				struct device_attribute *attr,
752 				char *buf)
753 {
754 	if (!stp_online || !(stp_info.vbits & 0x0800))
755 		return -ENODATA;
756 	return sprintf(buf, "%i\n", (int) stp_info.tto);
757 }
758 
759 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
760 
761 static ssize_t stp_time_zone_offset_show(struct device *dev,
762 				struct device_attribute *attr,
763 				char *buf)
764 {
765 	if (!stp_online || !(stp_info.vbits & 0x4000))
766 		return -ENODATA;
767 	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
768 }
769 
770 static DEVICE_ATTR(time_zone_offset, 0400,
771 			 stp_time_zone_offset_show, NULL);
772 
773 static ssize_t stp_timing_mode_show(struct device *dev,
774 				struct device_attribute *attr,
775 				char *buf)
776 {
777 	if (!stp_online)
778 		return -ENODATA;
779 	return sprintf(buf, "%i\n", stp_info.tmd);
780 }
781 
782 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
783 
784 static ssize_t stp_timing_state_show(struct device *dev,
785 				struct device_attribute *attr,
786 				char *buf)
787 {
788 	if (!stp_online)
789 		return -ENODATA;
790 	return sprintf(buf, "%i\n", stp_info.tst);
791 }
792 
793 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
794 
795 static ssize_t stp_online_show(struct device *dev,
796 				struct device_attribute *attr,
797 				char *buf)
798 {
799 	return sprintf(buf, "%i\n", stp_online);
800 }
801 
802 static ssize_t stp_online_store(struct device *dev,
803 				struct device_attribute *attr,
804 				const char *buf, size_t count)
805 {
806 	unsigned int value;
807 
808 	value = simple_strtoul(buf, NULL, 0);
809 	if (value != 0 && value != 1)
810 		return -EINVAL;
811 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
812 		return -EOPNOTSUPP;
813 	mutex_lock(&clock_sync_mutex);
814 	stp_online = value;
815 	if (stp_online)
816 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
817 	else
818 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
819 	queue_work(time_sync_wq, &stp_work);
820 	mutex_unlock(&clock_sync_mutex);
821 	return count;
822 }
823 
824 /*
825  * Can't use DEVICE_ATTR because the attribute should be named
826  * stp/online but dev_attr_online already exists in this file ..
827  */
828 static struct device_attribute dev_attr_stp_online = {
829 	.attr = { .name = "online", .mode = 0600 },
830 	.show	= stp_online_show,
831 	.store	= stp_online_store,
832 };
833 
834 static struct device_attribute *stp_attributes[] = {
835 	&dev_attr_ctn_id,
836 	&dev_attr_ctn_type,
837 	&dev_attr_dst_offset,
838 	&dev_attr_leap_seconds,
839 	&dev_attr_stp_online,
840 	&dev_attr_stratum,
841 	&dev_attr_time_offset,
842 	&dev_attr_time_zone_offset,
843 	&dev_attr_timing_mode,
844 	&dev_attr_timing_state,
845 	NULL
846 };
847 
848 static int __init stp_init_sysfs(void)
849 {
850 	struct device_attribute **attr;
851 	int rc;
852 
853 	rc = subsys_system_register(&stp_subsys, NULL);
854 	if (rc)
855 		goto out;
856 	for (attr = stp_attributes; *attr; attr++) {
857 		rc = device_create_file(stp_subsys.dev_root, *attr);
858 		if (rc)
859 			goto out_unreg;
860 	}
861 	return 0;
862 out_unreg:
863 	for (; attr >= stp_attributes; attr--)
864 		device_remove_file(stp_subsys.dev_root, *attr);
865 	bus_unregister(&stp_subsys);
866 out:
867 	return rc;
868 }
869 
870 device_initcall(stp_init_sysfs);
871