1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Time of day based timer functions. 4 * 5 * S390 version 6 * Copyright IBM Corp. 1999, 2008 7 * Author(s): Hartmut Penner (hp@de.ibm.com), 8 * Martin Schwidefsky (schwidefsky@de.ibm.com), 9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 10 * 11 * Derived from "arch/i386/kernel/time.c" 12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 13 */ 14 15 #define KMSG_COMPONENT "time" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/kernel_stat.h> 19 #include <linux/errno.h> 20 #include <linux/export.h> 21 #include <linux/sched.h> 22 #include <linux/sched/clock.h> 23 #include <linux/kernel.h> 24 #include <linux/param.h> 25 #include <linux/string.h> 26 #include <linux/mm.h> 27 #include <linux/interrupt.h> 28 #include <linux/cpu.h> 29 #include <linux/stop_machine.h> 30 #include <linux/time.h> 31 #include <linux/device.h> 32 #include <linux/delay.h> 33 #include <linux/init.h> 34 #include <linux/smp.h> 35 #include <linux/types.h> 36 #include <linux/profile.h> 37 #include <linux/timex.h> 38 #include <linux/notifier.h> 39 #include <linux/timekeeper_internal.h> 40 #include <linux/clockchips.h> 41 #include <linux/gfp.h> 42 #include <linux/kprobes.h> 43 #include <linux/uaccess.h> 44 #include <asm/facility.h> 45 #include <asm/delay.h> 46 #include <asm/div64.h> 47 #include <asm/vdso.h> 48 #include <asm/irq.h> 49 #include <asm/irq_regs.h> 50 #include <asm/vtimer.h> 51 #include <asm/stp.h> 52 #include <asm/cio.h> 53 #include "entry.h" 54 55 unsigned char tod_clock_base[16] __aligned(8) = { 56 /* Force to data section. */ 57 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 58 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 59 }; 60 EXPORT_SYMBOL_GPL(tod_clock_base); 61 62 u64 clock_comparator_max = -1ULL; 63 EXPORT_SYMBOL_GPL(clock_comparator_max); 64 65 static DEFINE_PER_CPU(struct clock_event_device, comparators); 66 67 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); 68 EXPORT_SYMBOL(s390_epoch_delta_notifier); 69 70 unsigned char ptff_function_mask[16]; 71 72 static unsigned long long lpar_offset; 73 static unsigned long long initial_leap_seconds; 74 static unsigned long long tod_steering_end; 75 static long long tod_steering_delta; 76 77 /* 78 * Get time offsets with PTFF 79 */ 80 void __init time_early_init(void) 81 { 82 struct ptff_qto qto; 83 struct ptff_qui qui; 84 85 /* Initialize TOD steering parameters */ 86 tod_steering_end = *(unsigned long long *) &tod_clock_base[1]; 87 vdso_data->ts_end = tod_steering_end; 88 89 if (!test_facility(28)) 90 return; 91 92 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF); 93 94 /* get LPAR offset */ 95 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 96 lpar_offset = qto.tod_epoch_difference; 97 98 /* get initial leap seconds */ 99 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0) 100 initial_leap_seconds = (unsigned long long) 101 ((long) qui.old_leap * 4096000000L); 102 } 103 104 /* 105 * Scheduler clock - returns current time in nanosec units. 106 */ 107 unsigned long long notrace sched_clock(void) 108 { 109 return tod_to_ns(get_tod_clock_monotonic()); 110 } 111 NOKPROBE_SYMBOL(sched_clock); 112 113 /* 114 * Monotonic_clock - returns # of nanoseconds passed since time_init() 115 */ 116 unsigned long long monotonic_clock(void) 117 { 118 return sched_clock(); 119 } 120 EXPORT_SYMBOL(monotonic_clock); 121 122 static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt) 123 { 124 unsigned long long high, low, rem, sec, nsec; 125 126 /* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */ 127 high = (*(unsigned long long *) clk) >> 4; 128 low = (*(unsigned long long *)&clk[7]) << 4; 129 /* Calculate seconds and nano-seconds */ 130 sec = high; 131 rem = do_div(sec, 1000000); 132 nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32; 133 134 xt->tv_sec = sec; 135 xt->tv_nsec = nsec; 136 } 137 138 void clock_comparator_work(void) 139 { 140 struct clock_event_device *cd; 141 142 S390_lowcore.clock_comparator = clock_comparator_max; 143 cd = this_cpu_ptr(&comparators); 144 cd->event_handler(cd); 145 } 146 147 static int s390_next_event(unsigned long delta, 148 struct clock_event_device *evt) 149 { 150 S390_lowcore.clock_comparator = get_tod_clock() + delta; 151 set_clock_comparator(S390_lowcore.clock_comparator); 152 return 0; 153 } 154 155 /* 156 * Set up lowcore and control register of the current cpu to 157 * enable TOD clock and clock comparator interrupts. 158 */ 159 void init_cpu_timer(void) 160 { 161 struct clock_event_device *cd; 162 int cpu; 163 164 S390_lowcore.clock_comparator = clock_comparator_max; 165 set_clock_comparator(S390_lowcore.clock_comparator); 166 167 cpu = smp_processor_id(); 168 cd = &per_cpu(comparators, cpu); 169 cd->name = "comparator"; 170 cd->features = CLOCK_EVT_FEAT_ONESHOT; 171 cd->mult = 16777; 172 cd->shift = 12; 173 cd->min_delta_ns = 1; 174 cd->min_delta_ticks = 1; 175 cd->max_delta_ns = LONG_MAX; 176 cd->max_delta_ticks = ULONG_MAX; 177 cd->rating = 400; 178 cd->cpumask = cpumask_of(cpu); 179 cd->set_next_event = s390_next_event; 180 181 clockevents_register_device(cd); 182 183 /* Enable clock comparator timer interrupt. */ 184 __ctl_set_bit(0,11); 185 186 /* Always allow the timing alert external interrupt. */ 187 __ctl_set_bit(0, 4); 188 } 189 190 static void clock_comparator_interrupt(struct ext_code ext_code, 191 unsigned int param32, 192 unsigned long param64) 193 { 194 inc_irq_stat(IRQEXT_CLK); 195 if (S390_lowcore.clock_comparator == clock_comparator_max) 196 set_clock_comparator(S390_lowcore.clock_comparator); 197 } 198 199 static void stp_timing_alert(struct stp_irq_parm *); 200 201 static void timing_alert_interrupt(struct ext_code ext_code, 202 unsigned int param32, unsigned long param64) 203 { 204 inc_irq_stat(IRQEXT_TLA); 205 if (param32 & 0x00038000) 206 stp_timing_alert((struct stp_irq_parm *) ¶m32); 207 } 208 209 static void stp_reset(void); 210 211 void read_persistent_clock64(struct timespec64 *ts) 212 { 213 unsigned char clk[STORE_CLOCK_EXT_SIZE]; 214 __u64 delta; 215 216 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 217 get_tod_clock_ext(clk); 218 *(__u64 *) &clk[1] -= delta; 219 if (*(__u64 *) &clk[1] > delta) 220 clk[0]--; 221 ext_to_timespec64(clk, ts); 222 } 223 224 void read_boot_clock64(struct timespec64 *ts) 225 { 226 unsigned char clk[STORE_CLOCK_EXT_SIZE]; 227 __u64 delta; 228 229 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 230 memcpy(clk, tod_clock_base, 16); 231 *(__u64 *) &clk[1] -= delta; 232 if (*(__u64 *) &clk[1] > delta) 233 clk[0]--; 234 ext_to_timespec64(clk, ts); 235 } 236 237 static u64 read_tod_clock(struct clocksource *cs) 238 { 239 unsigned long long now, adj; 240 241 preempt_disable(); /* protect from changes to steering parameters */ 242 now = get_tod_clock(); 243 adj = tod_steering_end - now; 244 if (unlikely((s64) adj >= 0)) 245 /* 246 * manually steer by 1 cycle every 2^16 cycles. This 247 * corresponds to shifting the tod delta by 15. 1s is 248 * therefore steered in ~9h. The adjust will decrease 249 * over time, until it finally reaches 0. 250 */ 251 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15); 252 preempt_enable(); 253 return now; 254 } 255 256 static struct clocksource clocksource_tod = { 257 .name = "tod", 258 .rating = 400, 259 .read = read_tod_clock, 260 .mask = -1ULL, 261 .mult = 1000, 262 .shift = 12, 263 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 264 }; 265 266 struct clocksource * __init clocksource_default_clock(void) 267 { 268 return &clocksource_tod; 269 } 270 271 void update_vsyscall(struct timekeeper *tk) 272 { 273 u64 nsecps; 274 275 if (tk->tkr_mono.clock != &clocksource_tod) 276 return; 277 278 /* Make userspace gettimeofday spin until we're done. */ 279 ++vdso_data->tb_update_count; 280 smp_wmb(); 281 vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last; 282 vdso_data->xtime_clock_sec = tk->xtime_sec; 283 vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec; 284 vdso_data->wtom_clock_sec = 285 tk->xtime_sec + tk->wall_to_monotonic.tv_sec; 286 vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec + 287 + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift); 288 nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift; 289 while (vdso_data->wtom_clock_nsec >= nsecps) { 290 vdso_data->wtom_clock_nsec -= nsecps; 291 vdso_data->wtom_clock_sec++; 292 } 293 294 vdso_data->xtime_coarse_sec = tk->xtime_sec; 295 vdso_data->xtime_coarse_nsec = 296 (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 297 vdso_data->wtom_coarse_sec = 298 vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec; 299 vdso_data->wtom_coarse_nsec = 300 vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec; 301 while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) { 302 vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC; 303 vdso_data->wtom_coarse_sec++; 304 } 305 306 vdso_data->tk_mult = tk->tkr_mono.mult; 307 vdso_data->tk_shift = tk->tkr_mono.shift; 308 smp_wmb(); 309 ++vdso_data->tb_update_count; 310 } 311 312 extern struct timezone sys_tz; 313 314 void update_vsyscall_tz(void) 315 { 316 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 317 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 318 } 319 320 /* 321 * Initialize the TOD clock and the CPU timer of 322 * the boot cpu. 323 */ 324 void __init time_init(void) 325 { 326 /* Reset time synchronization interfaces. */ 327 stp_reset(); 328 329 /* request the clock comparator external interrupt */ 330 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) 331 panic("Couldn't request external interrupt 0x1004"); 332 333 /* request the timing alert external interrupt */ 334 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) 335 panic("Couldn't request external interrupt 0x1406"); 336 337 if (__clocksource_register(&clocksource_tod) != 0) 338 panic("Could not register TOD clock source"); 339 340 /* Enable TOD clock interrupts on the boot cpu. */ 341 init_cpu_timer(); 342 343 /* Enable cpu timer interrupts on the boot cpu. */ 344 vtime_init(); 345 } 346 347 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 348 static DEFINE_MUTEX(clock_sync_mutex); 349 static unsigned long clock_sync_flags; 350 351 #define CLOCK_SYNC_HAS_STP 0 352 #define CLOCK_SYNC_STP 1 353 354 /* 355 * The get_clock function for the physical clock. It will get the current 356 * TOD clock, subtract the LPAR offset and write the result to *clock. 357 * The function returns 0 if the clock is in sync with the external time 358 * source. If the clock mode is local it will return -EOPNOTSUPP and 359 * -EAGAIN if the clock is not in sync with the external reference. 360 */ 361 int get_phys_clock(unsigned long *clock) 362 { 363 atomic_t *sw_ptr; 364 unsigned int sw0, sw1; 365 366 sw_ptr = &get_cpu_var(clock_sync_word); 367 sw0 = atomic_read(sw_ptr); 368 *clock = get_tod_clock() - lpar_offset; 369 sw1 = atomic_read(sw_ptr); 370 put_cpu_var(clock_sync_word); 371 if (sw0 == sw1 && (sw0 & 0x80000000U)) 372 /* Success: time is in sync. */ 373 return 0; 374 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 375 return -EOPNOTSUPP; 376 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 377 return -EACCES; 378 return -EAGAIN; 379 } 380 EXPORT_SYMBOL(get_phys_clock); 381 382 /* 383 * Make get_phys_clock() return -EAGAIN. 384 */ 385 static void disable_sync_clock(void *dummy) 386 { 387 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 388 /* 389 * Clear the in-sync bit 2^31. All get_phys_clock calls will 390 * fail until the sync bit is turned back on. In addition 391 * increase the "sequence" counter to avoid the race of an 392 * stp event and the complete recovery against get_phys_clock. 393 */ 394 atomic_andnot(0x80000000, sw_ptr); 395 atomic_inc(sw_ptr); 396 } 397 398 /* 399 * Make get_phys_clock() return 0 again. 400 * Needs to be called from a context disabled for preemption. 401 */ 402 static void enable_sync_clock(void) 403 { 404 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 405 atomic_or(0x80000000, sw_ptr); 406 } 407 408 /* 409 * Function to check if the clock is in sync. 410 */ 411 static inline int check_sync_clock(void) 412 { 413 atomic_t *sw_ptr; 414 int rc; 415 416 sw_ptr = &get_cpu_var(clock_sync_word); 417 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 418 put_cpu_var(clock_sync_word); 419 return rc; 420 } 421 422 /* 423 * Apply clock delta to the global data structures. 424 * This is called once on the CPU that performed the clock sync. 425 */ 426 static void clock_sync_global(unsigned long long delta) 427 { 428 unsigned long now, adj; 429 struct ptff_qto qto; 430 431 /* Fixup the monotonic sched clock. */ 432 *(unsigned long long *) &tod_clock_base[1] += delta; 433 if (*(unsigned long long *) &tod_clock_base[1] < delta) 434 /* Epoch overflow */ 435 tod_clock_base[0]++; 436 /* Adjust TOD steering parameters. */ 437 vdso_data->tb_update_count++; 438 now = get_tod_clock(); 439 adj = tod_steering_end - now; 440 if (unlikely((s64) adj >= 0)) 441 /* Calculate how much of the old adjustment is left. */ 442 tod_steering_delta = (tod_steering_delta < 0) ? 443 -(adj >> 15) : (adj >> 15); 444 tod_steering_delta += delta; 445 if ((abs(tod_steering_delta) >> 48) != 0) 446 panic("TOD clock sync offset %lli is too large to drift\n", 447 tod_steering_delta); 448 tod_steering_end = now + (abs(tod_steering_delta) << 15); 449 vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1; 450 vdso_data->ts_end = tod_steering_end; 451 vdso_data->tb_update_count++; 452 /* Update LPAR offset. */ 453 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 454 lpar_offset = qto.tod_epoch_difference; 455 /* Call the TOD clock change notifier. */ 456 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta); 457 } 458 459 /* 460 * Apply clock delta to the per-CPU data structures of this CPU. 461 * This is called for each online CPU after the call to clock_sync_global. 462 */ 463 static void clock_sync_local(unsigned long long delta) 464 { 465 /* Add the delta to the clock comparator. */ 466 if (S390_lowcore.clock_comparator != clock_comparator_max) { 467 S390_lowcore.clock_comparator += delta; 468 set_clock_comparator(S390_lowcore.clock_comparator); 469 } 470 /* Adjust the last_update_clock time-stamp. */ 471 S390_lowcore.last_update_clock += delta; 472 } 473 474 /* Single threaded workqueue used for stp sync events */ 475 static struct workqueue_struct *time_sync_wq; 476 477 static void __init time_init_wq(void) 478 { 479 if (time_sync_wq) 480 return; 481 time_sync_wq = create_singlethread_workqueue("timesync"); 482 } 483 484 struct clock_sync_data { 485 atomic_t cpus; 486 int in_sync; 487 unsigned long long clock_delta; 488 }; 489 490 /* 491 * Server Time Protocol (STP) code. 492 */ 493 static bool stp_online; 494 static struct stp_sstpi stp_info; 495 static void *stp_page; 496 497 static void stp_work_fn(struct work_struct *work); 498 static DEFINE_MUTEX(stp_work_mutex); 499 static DECLARE_WORK(stp_work, stp_work_fn); 500 static struct timer_list stp_timer; 501 502 static int __init early_parse_stp(char *p) 503 { 504 return kstrtobool(p, &stp_online); 505 } 506 early_param("stp", early_parse_stp); 507 508 /* 509 * Reset STP attachment. 510 */ 511 static void __init stp_reset(void) 512 { 513 int rc; 514 515 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 516 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 517 if (rc == 0) 518 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 519 else if (stp_online) { 520 pr_warn("The real or virtual hardware system does not provide an STP interface\n"); 521 free_page((unsigned long) stp_page); 522 stp_page = NULL; 523 stp_online = false; 524 } 525 } 526 527 static void stp_timeout(struct timer_list *unused) 528 { 529 queue_work(time_sync_wq, &stp_work); 530 } 531 532 static int __init stp_init(void) 533 { 534 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 535 return 0; 536 timer_setup(&stp_timer, stp_timeout, 0); 537 time_init_wq(); 538 if (!stp_online) 539 return 0; 540 queue_work(time_sync_wq, &stp_work); 541 return 0; 542 } 543 544 arch_initcall(stp_init); 545 546 /* 547 * STP timing alert. There are three causes: 548 * 1) timing status change 549 * 2) link availability change 550 * 3) time control parameter change 551 * In all three cases we are only interested in the clock source state. 552 * If a STP clock source is now available use it. 553 */ 554 static void stp_timing_alert(struct stp_irq_parm *intparm) 555 { 556 if (intparm->tsc || intparm->lac || intparm->tcpc) 557 queue_work(time_sync_wq, &stp_work); 558 } 559 560 /* 561 * STP sync check machine check. This is called when the timing state 562 * changes from the synchronized state to the unsynchronized state. 563 * After a STP sync check the clock is not in sync. The machine check 564 * is broadcasted to all cpus at the same time. 565 */ 566 int stp_sync_check(void) 567 { 568 disable_sync_clock(NULL); 569 return 1; 570 } 571 572 /* 573 * STP island condition machine check. This is called when an attached 574 * server attempts to communicate over an STP link and the servers 575 * have matching CTN ids and have a valid stratum-1 configuration 576 * but the configurations do not match. 577 */ 578 int stp_island_check(void) 579 { 580 disable_sync_clock(NULL); 581 return 1; 582 } 583 584 void stp_queue_work(void) 585 { 586 queue_work(time_sync_wq, &stp_work); 587 } 588 589 static int stp_sync_clock(void *data) 590 { 591 struct clock_sync_data *sync = data; 592 unsigned long long clock_delta; 593 static int first; 594 int rc; 595 596 enable_sync_clock(); 597 if (xchg(&first, 1) == 0) { 598 /* Wait until all other cpus entered the sync function. */ 599 while (atomic_read(&sync->cpus) != 0) 600 cpu_relax(); 601 rc = 0; 602 if (stp_info.todoff[0] || stp_info.todoff[1] || 603 stp_info.todoff[2] || stp_info.todoff[3] || 604 stp_info.tmd != 2) { 605 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, 606 &clock_delta); 607 if (rc == 0) { 608 sync->clock_delta = clock_delta; 609 clock_sync_global(clock_delta); 610 rc = chsc_sstpi(stp_page, &stp_info, 611 sizeof(struct stp_sstpi)); 612 if (rc == 0 && stp_info.tmd != 2) 613 rc = -EAGAIN; 614 } 615 } 616 sync->in_sync = rc ? -EAGAIN : 1; 617 xchg(&first, 0); 618 } else { 619 /* Slave */ 620 atomic_dec(&sync->cpus); 621 /* Wait for in_sync to be set. */ 622 while (READ_ONCE(sync->in_sync) == 0) 623 __udelay(1); 624 } 625 if (sync->in_sync != 1) 626 /* Didn't work. Clear per-cpu in sync bit again. */ 627 disable_sync_clock(NULL); 628 /* Apply clock delta to per-CPU fields of this CPU. */ 629 clock_sync_local(sync->clock_delta); 630 631 return 0; 632 } 633 634 /* 635 * STP work. Check for the STP state and take over the clock 636 * synchronization if the STP clock source is usable. 637 */ 638 static void stp_work_fn(struct work_struct *work) 639 { 640 struct clock_sync_data stp_sync; 641 int rc; 642 643 /* prevent multiple execution. */ 644 mutex_lock(&stp_work_mutex); 645 646 if (!stp_online) { 647 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 648 del_timer_sync(&stp_timer); 649 goto out_unlock; 650 } 651 652 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL); 653 if (rc) 654 goto out_unlock; 655 656 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 657 if (rc || stp_info.c == 0) 658 goto out_unlock; 659 660 /* Skip synchronization if the clock is already in sync. */ 661 if (check_sync_clock()) 662 goto out_unlock; 663 664 memset(&stp_sync, 0, sizeof(stp_sync)); 665 cpus_read_lock(); 666 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 667 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask); 668 cpus_read_unlock(); 669 670 if (!check_sync_clock()) 671 /* 672 * There is a usable clock but the synchonization failed. 673 * Retry after a second. 674 */ 675 mod_timer(&stp_timer, jiffies + HZ); 676 677 out_unlock: 678 mutex_unlock(&stp_work_mutex); 679 } 680 681 /* 682 * STP subsys sysfs interface functions 683 */ 684 static struct bus_type stp_subsys = { 685 .name = "stp", 686 .dev_name = "stp", 687 }; 688 689 static ssize_t stp_ctn_id_show(struct device *dev, 690 struct device_attribute *attr, 691 char *buf) 692 { 693 if (!stp_online) 694 return -ENODATA; 695 return sprintf(buf, "%016llx\n", 696 *(unsigned long long *) stp_info.ctnid); 697 } 698 699 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL); 700 701 static ssize_t stp_ctn_type_show(struct device *dev, 702 struct device_attribute *attr, 703 char *buf) 704 { 705 if (!stp_online) 706 return -ENODATA; 707 return sprintf(buf, "%i\n", stp_info.ctn); 708 } 709 710 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL); 711 712 static ssize_t stp_dst_offset_show(struct device *dev, 713 struct device_attribute *attr, 714 char *buf) 715 { 716 if (!stp_online || !(stp_info.vbits & 0x2000)) 717 return -ENODATA; 718 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); 719 } 720 721 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL); 722 723 static ssize_t stp_leap_seconds_show(struct device *dev, 724 struct device_attribute *attr, 725 char *buf) 726 { 727 if (!stp_online || !(stp_info.vbits & 0x8000)) 728 return -ENODATA; 729 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); 730 } 731 732 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL); 733 734 static ssize_t stp_stratum_show(struct device *dev, 735 struct device_attribute *attr, 736 char *buf) 737 { 738 if (!stp_online) 739 return -ENODATA; 740 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); 741 } 742 743 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL); 744 745 static ssize_t stp_time_offset_show(struct device *dev, 746 struct device_attribute *attr, 747 char *buf) 748 { 749 if (!stp_online || !(stp_info.vbits & 0x0800)) 750 return -ENODATA; 751 return sprintf(buf, "%i\n", (int) stp_info.tto); 752 } 753 754 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL); 755 756 static ssize_t stp_time_zone_offset_show(struct device *dev, 757 struct device_attribute *attr, 758 char *buf) 759 { 760 if (!stp_online || !(stp_info.vbits & 0x4000)) 761 return -ENODATA; 762 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); 763 } 764 765 static DEVICE_ATTR(time_zone_offset, 0400, 766 stp_time_zone_offset_show, NULL); 767 768 static ssize_t stp_timing_mode_show(struct device *dev, 769 struct device_attribute *attr, 770 char *buf) 771 { 772 if (!stp_online) 773 return -ENODATA; 774 return sprintf(buf, "%i\n", stp_info.tmd); 775 } 776 777 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL); 778 779 static ssize_t stp_timing_state_show(struct device *dev, 780 struct device_attribute *attr, 781 char *buf) 782 { 783 if (!stp_online) 784 return -ENODATA; 785 return sprintf(buf, "%i\n", stp_info.tst); 786 } 787 788 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL); 789 790 static ssize_t stp_online_show(struct device *dev, 791 struct device_attribute *attr, 792 char *buf) 793 { 794 return sprintf(buf, "%i\n", stp_online); 795 } 796 797 static ssize_t stp_online_store(struct device *dev, 798 struct device_attribute *attr, 799 const char *buf, size_t count) 800 { 801 unsigned int value; 802 803 value = simple_strtoul(buf, NULL, 0); 804 if (value != 0 && value != 1) 805 return -EINVAL; 806 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 807 return -EOPNOTSUPP; 808 mutex_lock(&clock_sync_mutex); 809 stp_online = value; 810 if (stp_online) 811 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 812 else 813 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 814 queue_work(time_sync_wq, &stp_work); 815 mutex_unlock(&clock_sync_mutex); 816 return count; 817 } 818 819 /* 820 * Can't use DEVICE_ATTR because the attribute should be named 821 * stp/online but dev_attr_online already exists in this file .. 822 */ 823 static struct device_attribute dev_attr_stp_online = { 824 .attr = { .name = "online", .mode = 0600 }, 825 .show = stp_online_show, 826 .store = stp_online_store, 827 }; 828 829 static struct device_attribute *stp_attributes[] = { 830 &dev_attr_ctn_id, 831 &dev_attr_ctn_type, 832 &dev_attr_dst_offset, 833 &dev_attr_leap_seconds, 834 &dev_attr_stp_online, 835 &dev_attr_stratum, 836 &dev_attr_time_offset, 837 &dev_attr_time_zone_offset, 838 &dev_attr_timing_mode, 839 &dev_attr_timing_state, 840 NULL 841 }; 842 843 static int __init stp_init_sysfs(void) 844 { 845 struct device_attribute **attr; 846 int rc; 847 848 rc = subsys_system_register(&stp_subsys, NULL); 849 if (rc) 850 goto out; 851 for (attr = stp_attributes; *attr; attr++) { 852 rc = device_create_file(stp_subsys.dev_root, *attr); 853 if (rc) 854 goto out_unreg; 855 } 856 return 0; 857 out_unreg: 858 for (; attr >= stp_attributes; attr--) 859 device_remove_file(stp_subsys.dev_root, *attr); 860 bus_unregister(&stp_subsys); 861 out: 862 return rc; 863 } 864 865 device_initcall(stp_init_sysfs); 866