1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Time of day based timer functions. 4 * 5 * S390 version 6 * Copyright IBM Corp. 1999, 2008 7 * Author(s): Hartmut Penner (hp@de.ibm.com), 8 * Martin Schwidefsky (schwidefsky@de.ibm.com), 9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 10 * 11 * Derived from "arch/i386/kernel/time.c" 12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 13 */ 14 15 #define KMSG_COMPONENT "time" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/kernel_stat.h> 19 #include <linux/errno.h> 20 #include <linux/export.h> 21 #include <linux/sched.h> 22 #include <linux/sched/clock.h> 23 #include <linux/kernel.h> 24 #include <linux/param.h> 25 #include <linux/string.h> 26 #include <linux/mm.h> 27 #include <linux/interrupt.h> 28 #include <linux/cpu.h> 29 #include <linux/stop_machine.h> 30 #include <linux/time.h> 31 #include <linux/device.h> 32 #include <linux/delay.h> 33 #include <linux/init.h> 34 #include <linux/smp.h> 35 #include <linux/types.h> 36 #include <linux/profile.h> 37 #include <linux/timex.h> 38 #include <linux/notifier.h> 39 #include <linux/timekeeper_internal.h> 40 #include <linux/clockchips.h> 41 #include <linux/gfp.h> 42 #include <linux/kprobes.h> 43 #include <linux/uaccess.h> 44 #include <asm/facility.h> 45 #include <asm/delay.h> 46 #include <asm/div64.h> 47 #include <asm/vdso.h> 48 #include <asm/irq.h> 49 #include <asm/irq_regs.h> 50 #include <asm/vtimer.h> 51 #include <asm/stp.h> 52 #include <asm/cio.h> 53 #include "entry.h" 54 55 unsigned char tod_clock_base[16] __aligned(8) = { 56 /* Force to data section. */ 57 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 58 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 59 }; 60 EXPORT_SYMBOL_GPL(tod_clock_base); 61 62 u64 clock_comparator_max = -1ULL; 63 EXPORT_SYMBOL_GPL(clock_comparator_max); 64 65 static DEFINE_PER_CPU(struct clock_event_device, comparators); 66 67 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); 68 EXPORT_SYMBOL(s390_epoch_delta_notifier); 69 70 unsigned char ptff_function_mask[16]; 71 72 static unsigned long long lpar_offset; 73 static unsigned long long initial_leap_seconds; 74 static unsigned long long tod_steering_end; 75 static long long tod_steering_delta; 76 77 /* 78 * Get time offsets with PTFF 79 */ 80 void __init time_early_init(void) 81 { 82 struct ptff_qto qto; 83 struct ptff_qui qui; 84 85 /* Initialize TOD steering parameters */ 86 tod_steering_end = *(unsigned long long *) &tod_clock_base[1]; 87 vdso_data->ts_end = tod_steering_end; 88 89 if (!test_facility(28)) 90 return; 91 92 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF); 93 94 /* get LPAR offset */ 95 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 96 lpar_offset = qto.tod_epoch_difference; 97 98 /* get initial leap seconds */ 99 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0) 100 initial_leap_seconds = (unsigned long long) 101 ((long) qui.old_leap * 4096000000L); 102 } 103 104 /* 105 * Scheduler clock - returns current time in nanosec units. 106 */ 107 unsigned long long notrace sched_clock(void) 108 { 109 return tod_to_ns(get_tod_clock_monotonic()); 110 } 111 NOKPROBE_SYMBOL(sched_clock); 112 113 static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt) 114 { 115 unsigned long long high, low, rem, sec, nsec; 116 117 /* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */ 118 high = (*(unsigned long long *) clk) >> 4; 119 low = (*(unsigned long long *)&clk[7]) << 4; 120 /* Calculate seconds and nano-seconds */ 121 sec = high; 122 rem = do_div(sec, 1000000); 123 nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32; 124 125 xt->tv_sec = sec; 126 xt->tv_nsec = nsec; 127 } 128 129 void clock_comparator_work(void) 130 { 131 struct clock_event_device *cd; 132 133 S390_lowcore.clock_comparator = clock_comparator_max; 134 cd = this_cpu_ptr(&comparators); 135 cd->event_handler(cd); 136 } 137 138 static int s390_next_event(unsigned long delta, 139 struct clock_event_device *evt) 140 { 141 S390_lowcore.clock_comparator = get_tod_clock() + delta; 142 set_clock_comparator(S390_lowcore.clock_comparator); 143 return 0; 144 } 145 146 /* 147 * Set up lowcore and control register of the current cpu to 148 * enable TOD clock and clock comparator interrupts. 149 */ 150 void init_cpu_timer(void) 151 { 152 struct clock_event_device *cd; 153 int cpu; 154 155 S390_lowcore.clock_comparator = clock_comparator_max; 156 set_clock_comparator(S390_lowcore.clock_comparator); 157 158 cpu = smp_processor_id(); 159 cd = &per_cpu(comparators, cpu); 160 cd->name = "comparator"; 161 cd->features = CLOCK_EVT_FEAT_ONESHOT; 162 cd->mult = 16777; 163 cd->shift = 12; 164 cd->min_delta_ns = 1; 165 cd->min_delta_ticks = 1; 166 cd->max_delta_ns = LONG_MAX; 167 cd->max_delta_ticks = ULONG_MAX; 168 cd->rating = 400; 169 cd->cpumask = cpumask_of(cpu); 170 cd->set_next_event = s390_next_event; 171 172 clockevents_register_device(cd); 173 174 /* Enable clock comparator timer interrupt. */ 175 __ctl_set_bit(0,11); 176 177 /* Always allow the timing alert external interrupt. */ 178 __ctl_set_bit(0, 4); 179 } 180 181 static void clock_comparator_interrupt(struct ext_code ext_code, 182 unsigned int param32, 183 unsigned long param64) 184 { 185 inc_irq_stat(IRQEXT_CLK); 186 if (S390_lowcore.clock_comparator == clock_comparator_max) 187 set_clock_comparator(S390_lowcore.clock_comparator); 188 } 189 190 static void stp_timing_alert(struct stp_irq_parm *); 191 192 static void timing_alert_interrupt(struct ext_code ext_code, 193 unsigned int param32, unsigned long param64) 194 { 195 inc_irq_stat(IRQEXT_TLA); 196 if (param32 & 0x00038000) 197 stp_timing_alert((struct stp_irq_parm *) ¶m32); 198 } 199 200 static void stp_reset(void); 201 202 void read_persistent_clock64(struct timespec64 *ts) 203 { 204 unsigned char clk[STORE_CLOCK_EXT_SIZE]; 205 __u64 delta; 206 207 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 208 get_tod_clock_ext(clk); 209 *(__u64 *) &clk[1] -= delta; 210 if (*(__u64 *) &clk[1] > delta) 211 clk[0]--; 212 ext_to_timespec64(clk, ts); 213 } 214 215 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 216 struct timespec64 *boot_offset) 217 { 218 unsigned char clk[STORE_CLOCK_EXT_SIZE]; 219 struct timespec64 boot_time; 220 __u64 delta; 221 222 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 223 memcpy(clk, tod_clock_base, STORE_CLOCK_EXT_SIZE); 224 *(__u64 *)&clk[1] -= delta; 225 if (*(__u64 *)&clk[1] > delta) 226 clk[0]--; 227 ext_to_timespec64(clk, &boot_time); 228 229 read_persistent_clock64(wall_time); 230 *boot_offset = timespec64_sub(*wall_time, boot_time); 231 } 232 233 static u64 read_tod_clock(struct clocksource *cs) 234 { 235 unsigned long long now, adj; 236 237 preempt_disable(); /* protect from changes to steering parameters */ 238 now = get_tod_clock(); 239 adj = tod_steering_end - now; 240 if (unlikely((s64) adj > 0)) 241 /* 242 * manually steer by 1 cycle every 2^16 cycles. This 243 * corresponds to shifting the tod delta by 15. 1s is 244 * therefore steered in ~9h. The adjust will decrease 245 * over time, until it finally reaches 0. 246 */ 247 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15); 248 preempt_enable(); 249 return now; 250 } 251 252 static struct clocksource clocksource_tod = { 253 .name = "tod", 254 .rating = 400, 255 .read = read_tod_clock, 256 .mask = CLOCKSOURCE_MASK(64), 257 .mult = 1000, 258 .shift = 12, 259 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 260 }; 261 262 struct clocksource * __init clocksource_default_clock(void) 263 { 264 return &clocksource_tod; 265 } 266 267 void update_vsyscall(struct timekeeper *tk) 268 { 269 u64 nsecps; 270 271 if (tk->tkr_mono.clock != &clocksource_tod) 272 return; 273 274 /* Make userspace gettimeofday spin until we're done. */ 275 ++vdso_data->tb_update_count; 276 smp_wmb(); 277 vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last; 278 vdso_data->xtime_clock_sec = tk->xtime_sec; 279 vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec; 280 vdso_data->wtom_clock_sec = 281 tk->xtime_sec + tk->wall_to_monotonic.tv_sec; 282 vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec + 283 + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift); 284 nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift; 285 while (vdso_data->wtom_clock_nsec >= nsecps) { 286 vdso_data->wtom_clock_nsec -= nsecps; 287 vdso_data->wtom_clock_sec++; 288 } 289 290 vdso_data->xtime_coarse_sec = tk->xtime_sec; 291 vdso_data->xtime_coarse_nsec = 292 (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 293 vdso_data->wtom_coarse_sec = 294 vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec; 295 vdso_data->wtom_coarse_nsec = 296 vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec; 297 while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) { 298 vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC; 299 vdso_data->wtom_coarse_sec++; 300 } 301 302 vdso_data->tk_mult = tk->tkr_mono.mult; 303 vdso_data->tk_shift = tk->tkr_mono.shift; 304 vdso_data->hrtimer_res = hrtimer_resolution; 305 smp_wmb(); 306 ++vdso_data->tb_update_count; 307 } 308 309 extern struct timezone sys_tz; 310 311 void update_vsyscall_tz(void) 312 { 313 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 314 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 315 } 316 317 /* 318 * Initialize the TOD clock and the CPU timer of 319 * the boot cpu. 320 */ 321 void __init time_init(void) 322 { 323 /* Reset time synchronization interfaces. */ 324 stp_reset(); 325 326 /* request the clock comparator external interrupt */ 327 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) 328 panic("Couldn't request external interrupt 0x1004"); 329 330 /* request the timing alert external interrupt */ 331 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) 332 panic("Couldn't request external interrupt 0x1406"); 333 334 if (__clocksource_register(&clocksource_tod) != 0) 335 panic("Could not register TOD clock source"); 336 337 /* Enable TOD clock interrupts on the boot cpu. */ 338 init_cpu_timer(); 339 340 /* Enable cpu timer interrupts on the boot cpu. */ 341 vtime_init(); 342 } 343 344 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 345 static DEFINE_MUTEX(clock_sync_mutex); 346 static unsigned long clock_sync_flags; 347 348 #define CLOCK_SYNC_HAS_STP 0 349 #define CLOCK_SYNC_STP 1 350 351 /* 352 * The get_clock function for the physical clock. It will get the current 353 * TOD clock, subtract the LPAR offset and write the result to *clock. 354 * The function returns 0 if the clock is in sync with the external time 355 * source. If the clock mode is local it will return -EOPNOTSUPP and 356 * -EAGAIN if the clock is not in sync with the external reference. 357 */ 358 int get_phys_clock(unsigned long *clock) 359 { 360 atomic_t *sw_ptr; 361 unsigned int sw0, sw1; 362 363 sw_ptr = &get_cpu_var(clock_sync_word); 364 sw0 = atomic_read(sw_ptr); 365 *clock = get_tod_clock() - lpar_offset; 366 sw1 = atomic_read(sw_ptr); 367 put_cpu_var(clock_sync_word); 368 if (sw0 == sw1 && (sw0 & 0x80000000U)) 369 /* Success: time is in sync. */ 370 return 0; 371 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 372 return -EOPNOTSUPP; 373 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 374 return -EACCES; 375 return -EAGAIN; 376 } 377 EXPORT_SYMBOL(get_phys_clock); 378 379 /* 380 * Make get_phys_clock() return -EAGAIN. 381 */ 382 static void disable_sync_clock(void *dummy) 383 { 384 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 385 /* 386 * Clear the in-sync bit 2^31. All get_phys_clock calls will 387 * fail until the sync bit is turned back on. In addition 388 * increase the "sequence" counter to avoid the race of an 389 * stp event and the complete recovery against get_phys_clock. 390 */ 391 atomic_andnot(0x80000000, sw_ptr); 392 atomic_inc(sw_ptr); 393 } 394 395 /* 396 * Make get_phys_clock() return 0 again. 397 * Needs to be called from a context disabled for preemption. 398 */ 399 static void enable_sync_clock(void) 400 { 401 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 402 atomic_or(0x80000000, sw_ptr); 403 } 404 405 /* 406 * Function to check if the clock is in sync. 407 */ 408 static inline int check_sync_clock(void) 409 { 410 atomic_t *sw_ptr; 411 int rc; 412 413 sw_ptr = &get_cpu_var(clock_sync_word); 414 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 415 put_cpu_var(clock_sync_word); 416 return rc; 417 } 418 419 /* 420 * Apply clock delta to the global data structures. 421 * This is called once on the CPU that performed the clock sync. 422 */ 423 static void clock_sync_global(unsigned long long delta) 424 { 425 unsigned long now, adj; 426 struct ptff_qto qto; 427 428 /* Fixup the monotonic sched clock. */ 429 *(unsigned long long *) &tod_clock_base[1] += delta; 430 if (*(unsigned long long *) &tod_clock_base[1] < delta) 431 /* Epoch overflow */ 432 tod_clock_base[0]++; 433 /* Adjust TOD steering parameters. */ 434 vdso_data->tb_update_count++; 435 now = get_tod_clock(); 436 adj = tod_steering_end - now; 437 if (unlikely((s64) adj >= 0)) 438 /* Calculate how much of the old adjustment is left. */ 439 tod_steering_delta = (tod_steering_delta < 0) ? 440 -(adj >> 15) : (adj >> 15); 441 tod_steering_delta += delta; 442 if ((abs(tod_steering_delta) >> 48) != 0) 443 panic("TOD clock sync offset %lli is too large to drift\n", 444 tod_steering_delta); 445 tod_steering_end = now + (abs(tod_steering_delta) << 15); 446 vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1; 447 vdso_data->ts_end = tod_steering_end; 448 vdso_data->tb_update_count++; 449 /* Update LPAR offset. */ 450 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 451 lpar_offset = qto.tod_epoch_difference; 452 /* Call the TOD clock change notifier. */ 453 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta); 454 } 455 456 /* 457 * Apply clock delta to the per-CPU data structures of this CPU. 458 * This is called for each online CPU after the call to clock_sync_global. 459 */ 460 static void clock_sync_local(unsigned long long delta) 461 { 462 /* Add the delta to the clock comparator. */ 463 if (S390_lowcore.clock_comparator != clock_comparator_max) { 464 S390_lowcore.clock_comparator += delta; 465 set_clock_comparator(S390_lowcore.clock_comparator); 466 } 467 /* Adjust the last_update_clock time-stamp. */ 468 S390_lowcore.last_update_clock += delta; 469 } 470 471 /* Single threaded workqueue used for stp sync events */ 472 static struct workqueue_struct *time_sync_wq; 473 474 static void __init time_init_wq(void) 475 { 476 if (time_sync_wq) 477 return; 478 time_sync_wq = create_singlethread_workqueue("timesync"); 479 } 480 481 struct clock_sync_data { 482 atomic_t cpus; 483 int in_sync; 484 unsigned long long clock_delta; 485 }; 486 487 /* 488 * Server Time Protocol (STP) code. 489 */ 490 static bool stp_online; 491 static struct stp_sstpi stp_info; 492 static void *stp_page; 493 494 static void stp_work_fn(struct work_struct *work); 495 static DEFINE_MUTEX(stp_work_mutex); 496 static DECLARE_WORK(stp_work, stp_work_fn); 497 static struct timer_list stp_timer; 498 499 static int __init early_parse_stp(char *p) 500 { 501 return kstrtobool(p, &stp_online); 502 } 503 early_param("stp", early_parse_stp); 504 505 /* 506 * Reset STP attachment. 507 */ 508 static void __init stp_reset(void) 509 { 510 int rc; 511 512 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 513 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 514 if (rc == 0) 515 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 516 else if (stp_online) { 517 pr_warn("The real or virtual hardware system does not provide an STP interface\n"); 518 free_page((unsigned long) stp_page); 519 stp_page = NULL; 520 stp_online = false; 521 } 522 } 523 524 static void stp_timeout(struct timer_list *unused) 525 { 526 queue_work(time_sync_wq, &stp_work); 527 } 528 529 static int __init stp_init(void) 530 { 531 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 532 return 0; 533 timer_setup(&stp_timer, stp_timeout, 0); 534 time_init_wq(); 535 if (!stp_online) 536 return 0; 537 queue_work(time_sync_wq, &stp_work); 538 return 0; 539 } 540 541 arch_initcall(stp_init); 542 543 /* 544 * STP timing alert. There are three causes: 545 * 1) timing status change 546 * 2) link availability change 547 * 3) time control parameter change 548 * In all three cases we are only interested in the clock source state. 549 * If a STP clock source is now available use it. 550 */ 551 static void stp_timing_alert(struct stp_irq_parm *intparm) 552 { 553 if (intparm->tsc || intparm->lac || intparm->tcpc) 554 queue_work(time_sync_wq, &stp_work); 555 } 556 557 /* 558 * STP sync check machine check. This is called when the timing state 559 * changes from the synchronized state to the unsynchronized state. 560 * After a STP sync check the clock is not in sync. The machine check 561 * is broadcasted to all cpus at the same time. 562 */ 563 int stp_sync_check(void) 564 { 565 disable_sync_clock(NULL); 566 return 1; 567 } 568 569 /* 570 * STP island condition machine check. This is called when an attached 571 * server attempts to communicate over an STP link and the servers 572 * have matching CTN ids and have a valid stratum-1 configuration 573 * but the configurations do not match. 574 */ 575 int stp_island_check(void) 576 { 577 disable_sync_clock(NULL); 578 return 1; 579 } 580 581 void stp_queue_work(void) 582 { 583 queue_work(time_sync_wq, &stp_work); 584 } 585 586 static int stp_sync_clock(void *data) 587 { 588 struct clock_sync_data *sync = data; 589 unsigned long long clock_delta; 590 static int first; 591 int rc; 592 593 enable_sync_clock(); 594 if (xchg(&first, 1) == 0) { 595 /* Wait until all other cpus entered the sync function. */ 596 while (atomic_read(&sync->cpus) != 0) 597 cpu_relax(); 598 rc = 0; 599 if (stp_info.todoff[0] || stp_info.todoff[1] || 600 stp_info.todoff[2] || stp_info.todoff[3] || 601 stp_info.tmd != 2) { 602 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, 603 &clock_delta); 604 if (rc == 0) { 605 sync->clock_delta = clock_delta; 606 clock_sync_global(clock_delta); 607 rc = chsc_sstpi(stp_page, &stp_info, 608 sizeof(struct stp_sstpi)); 609 if (rc == 0 && stp_info.tmd != 2) 610 rc = -EAGAIN; 611 } 612 } 613 sync->in_sync = rc ? -EAGAIN : 1; 614 xchg(&first, 0); 615 } else { 616 /* Slave */ 617 atomic_dec(&sync->cpus); 618 /* Wait for in_sync to be set. */ 619 while (READ_ONCE(sync->in_sync) == 0) 620 __udelay(1); 621 } 622 if (sync->in_sync != 1) 623 /* Didn't work. Clear per-cpu in sync bit again. */ 624 disable_sync_clock(NULL); 625 /* Apply clock delta to per-CPU fields of this CPU. */ 626 clock_sync_local(sync->clock_delta); 627 628 return 0; 629 } 630 631 /* 632 * STP work. Check for the STP state and take over the clock 633 * synchronization if the STP clock source is usable. 634 */ 635 static void stp_work_fn(struct work_struct *work) 636 { 637 struct clock_sync_data stp_sync; 638 int rc; 639 640 /* prevent multiple execution. */ 641 mutex_lock(&stp_work_mutex); 642 643 if (!stp_online) { 644 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 645 del_timer_sync(&stp_timer); 646 goto out_unlock; 647 } 648 649 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL); 650 if (rc) 651 goto out_unlock; 652 653 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 654 if (rc || stp_info.c == 0) 655 goto out_unlock; 656 657 /* Skip synchronization if the clock is already in sync. */ 658 if (check_sync_clock()) 659 goto out_unlock; 660 661 memset(&stp_sync, 0, sizeof(stp_sync)); 662 cpus_read_lock(); 663 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 664 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask); 665 cpus_read_unlock(); 666 667 if (!check_sync_clock()) 668 /* 669 * There is a usable clock but the synchonization failed. 670 * Retry after a second. 671 */ 672 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC)); 673 674 out_unlock: 675 mutex_unlock(&stp_work_mutex); 676 } 677 678 /* 679 * STP subsys sysfs interface functions 680 */ 681 static struct bus_type stp_subsys = { 682 .name = "stp", 683 .dev_name = "stp", 684 }; 685 686 static ssize_t ctn_id_show(struct device *dev, 687 struct device_attribute *attr, 688 char *buf) 689 { 690 if (!stp_online) 691 return -ENODATA; 692 return sprintf(buf, "%016llx\n", 693 *(unsigned long long *) stp_info.ctnid); 694 } 695 696 static DEVICE_ATTR_RO(ctn_id); 697 698 static ssize_t ctn_type_show(struct device *dev, 699 struct device_attribute *attr, 700 char *buf) 701 { 702 if (!stp_online) 703 return -ENODATA; 704 return sprintf(buf, "%i\n", stp_info.ctn); 705 } 706 707 static DEVICE_ATTR_RO(ctn_type); 708 709 static ssize_t dst_offset_show(struct device *dev, 710 struct device_attribute *attr, 711 char *buf) 712 { 713 if (!stp_online || !(stp_info.vbits & 0x2000)) 714 return -ENODATA; 715 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); 716 } 717 718 static DEVICE_ATTR_RO(dst_offset); 719 720 static ssize_t leap_seconds_show(struct device *dev, 721 struct device_attribute *attr, 722 char *buf) 723 { 724 if (!stp_online || !(stp_info.vbits & 0x8000)) 725 return -ENODATA; 726 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); 727 } 728 729 static DEVICE_ATTR_RO(leap_seconds); 730 731 static ssize_t stratum_show(struct device *dev, 732 struct device_attribute *attr, 733 char *buf) 734 { 735 if (!stp_online) 736 return -ENODATA; 737 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); 738 } 739 740 static DEVICE_ATTR_RO(stratum); 741 742 static ssize_t time_offset_show(struct device *dev, 743 struct device_attribute *attr, 744 char *buf) 745 { 746 if (!stp_online || !(stp_info.vbits & 0x0800)) 747 return -ENODATA; 748 return sprintf(buf, "%i\n", (int) stp_info.tto); 749 } 750 751 static DEVICE_ATTR_RO(time_offset); 752 753 static ssize_t time_zone_offset_show(struct device *dev, 754 struct device_attribute *attr, 755 char *buf) 756 { 757 if (!stp_online || !(stp_info.vbits & 0x4000)) 758 return -ENODATA; 759 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); 760 } 761 762 static DEVICE_ATTR_RO(time_zone_offset); 763 764 static ssize_t timing_mode_show(struct device *dev, 765 struct device_attribute *attr, 766 char *buf) 767 { 768 if (!stp_online) 769 return -ENODATA; 770 return sprintf(buf, "%i\n", stp_info.tmd); 771 } 772 773 static DEVICE_ATTR_RO(timing_mode); 774 775 static ssize_t timing_state_show(struct device *dev, 776 struct device_attribute *attr, 777 char *buf) 778 { 779 if (!stp_online) 780 return -ENODATA; 781 return sprintf(buf, "%i\n", stp_info.tst); 782 } 783 784 static DEVICE_ATTR_RO(timing_state); 785 786 static ssize_t online_show(struct device *dev, 787 struct device_attribute *attr, 788 char *buf) 789 { 790 return sprintf(buf, "%i\n", stp_online); 791 } 792 793 static ssize_t online_store(struct device *dev, 794 struct device_attribute *attr, 795 const char *buf, size_t count) 796 { 797 unsigned int value; 798 799 value = simple_strtoul(buf, NULL, 0); 800 if (value != 0 && value != 1) 801 return -EINVAL; 802 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 803 return -EOPNOTSUPP; 804 mutex_lock(&clock_sync_mutex); 805 stp_online = value; 806 if (stp_online) 807 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 808 else 809 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 810 queue_work(time_sync_wq, &stp_work); 811 mutex_unlock(&clock_sync_mutex); 812 return count; 813 } 814 815 /* 816 * Can't use DEVICE_ATTR because the attribute should be named 817 * stp/online but dev_attr_online already exists in this file .. 818 */ 819 static DEVICE_ATTR_RW(online); 820 821 static struct device_attribute *stp_attributes[] = { 822 &dev_attr_ctn_id, 823 &dev_attr_ctn_type, 824 &dev_attr_dst_offset, 825 &dev_attr_leap_seconds, 826 &dev_attr_online, 827 &dev_attr_stratum, 828 &dev_attr_time_offset, 829 &dev_attr_time_zone_offset, 830 &dev_attr_timing_mode, 831 &dev_attr_timing_state, 832 NULL 833 }; 834 835 static int __init stp_init_sysfs(void) 836 { 837 struct device_attribute **attr; 838 int rc; 839 840 rc = subsys_system_register(&stp_subsys, NULL); 841 if (rc) 842 goto out; 843 for (attr = stp_attributes; *attr; attr++) { 844 rc = device_create_file(stp_subsys.dev_root, *attr); 845 if (rc) 846 goto out_unreg; 847 } 848 return 0; 849 out_unreg: 850 for (; attr >= stp_attributes; attr--) 851 device_remove_file(stp_subsys.dev_root, *attr); 852 bus_unregister(&stp_subsys); 853 out: 854 return rc; 855 } 856 857 device_initcall(stp_init_sysfs); 858