1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Time of day based timer functions. 4 * 5 * S390 version 6 * Copyright IBM Corp. 1999, 2008 7 * Author(s): Hartmut Penner (hp@de.ibm.com), 8 * Martin Schwidefsky (schwidefsky@de.ibm.com), 9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 10 * 11 * Derived from "arch/i386/kernel/time.c" 12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 13 */ 14 15 #define KMSG_COMPONENT "time" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/kernel_stat.h> 19 #include <linux/errno.h> 20 #include <linux/export.h> 21 #include <linux/sched.h> 22 #include <linux/sched/clock.h> 23 #include <linux/kernel.h> 24 #include <linux/param.h> 25 #include <linux/string.h> 26 #include <linux/mm.h> 27 #include <linux/interrupt.h> 28 #include <linux/cpu.h> 29 #include <linux/stop_machine.h> 30 #include <linux/time.h> 31 #include <linux/device.h> 32 #include <linux/delay.h> 33 #include <linux/init.h> 34 #include <linux/smp.h> 35 #include <linux/types.h> 36 #include <linux/profile.h> 37 #include <linux/timex.h> 38 #include <linux/notifier.h> 39 #include <linux/timekeeper_internal.h> 40 #include <linux/clockchips.h> 41 #include <linux/gfp.h> 42 #include <linux/kprobes.h> 43 #include <linux/uaccess.h> 44 #include <vdso/vsyscall.h> 45 #include <vdso/clocksource.h> 46 #include <vdso/helpers.h> 47 #include <asm/facility.h> 48 #include <asm/delay.h> 49 #include <asm/div64.h> 50 #include <asm/vdso.h> 51 #include <asm/irq.h> 52 #include <asm/irq_regs.h> 53 #include <asm/vtimer.h> 54 #include <asm/stp.h> 55 #include <asm/cio.h> 56 #include "entry.h" 57 58 unsigned char tod_clock_base[16] __aligned(8) = { 59 /* Force to data section. */ 60 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 61 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff 62 }; 63 EXPORT_SYMBOL_GPL(tod_clock_base); 64 65 u64 clock_comparator_max = -1ULL; 66 EXPORT_SYMBOL_GPL(clock_comparator_max); 67 68 static DEFINE_PER_CPU(struct clock_event_device, comparators); 69 70 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); 71 EXPORT_SYMBOL(s390_epoch_delta_notifier); 72 73 unsigned char ptff_function_mask[16]; 74 75 static unsigned long long lpar_offset; 76 static unsigned long long initial_leap_seconds; 77 static unsigned long long tod_steering_end; 78 static long long tod_steering_delta; 79 80 /* 81 * Get time offsets with PTFF 82 */ 83 void __init time_early_init(void) 84 { 85 struct ptff_qto qto; 86 struct ptff_qui qui; 87 88 /* Initialize TOD steering parameters */ 89 tod_steering_end = *(unsigned long long *) &tod_clock_base[1]; 90 vdso_data->arch_data.tod_steering_end = tod_steering_end; 91 92 if (!test_facility(28)) 93 return; 94 95 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF); 96 97 /* get LPAR offset */ 98 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 99 lpar_offset = qto.tod_epoch_difference; 100 101 /* get initial leap seconds */ 102 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0) 103 initial_leap_seconds = (unsigned long long) 104 ((long) qui.old_leap * 4096000000L); 105 } 106 107 /* 108 * Scheduler clock - returns current time in nanosec units. 109 */ 110 unsigned long long notrace sched_clock(void) 111 { 112 return tod_to_ns(get_tod_clock_monotonic()); 113 } 114 NOKPROBE_SYMBOL(sched_clock); 115 116 static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt) 117 { 118 unsigned long long high, low, rem, sec, nsec; 119 120 /* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */ 121 high = (*(unsigned long long *) clk) >> 4; 122 low = (*(unsigned long long *)&clk[7]) << 4; 123 /* Calculate seconds and nano-seconds */ 124 sec = high; 125 rem = do_div(sec, 1000000); 126 nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32; 127 128 xt->tv_sec = sec; 129 xt->tv_nsec = nsec; 130 } 131 132 void clock_comparator_work(void) 133 { 134 struct clock_event_device *cd; 135 136 S390_lowcore.clock_comparator = clock_comparator_max; 137 cd = this_cpu_ptr(&comparators); 138 cd->event_handler(cd); 139 } 140 141 static int s390_next_event(unsigned long delta, 142 struct clock_event_device *evt) 143 { 144 S390_lowcore.clock_comparator = get_tod_clock() + delta; 145 set_clock_comparator(S390_lowcore.clock_comparator); 146 return 0; 147 } 148 149 /* 150 * Set up lowcore and control register of the current cpu to 151 * enable TOD clock and clock comparator interrupts. 152 */ 153 void init_cpu_timer(void) 154 { 155 struct clock_event_device *cd; 156 int cpu; 157 158 S390_lowcore.clock_comparator = clock_comparator_max; 159 set_clock_comparator(S390_lowcore.clock_comparator); 160 161 cpu = smp_processor_id(); 162 cd = &per_cpu(comparators, cpu); 163 cd->name = "comparator"; 164 cd->features = CLOCK_EVT_FEAT_ONESHOT; 165 cd->mult = 16777; 166 cd->shift = 12; 167 cd->min_delta_ns = 1; 168 cd->min_delta_ticks = 1; 169 cd->max_delta_ns = LONG_MAX; 170 cd->max_delta_ticks = ULONG_MAX; 171 cd->rating = 400; 172 cd->cpumask = cpumask_of(cpu); 173 cd->set_next_event = s390_next_event; 174 175 clockevents_register_device(cd); 176 177 /* Enable clock comparator timer interrupt. */ 178 __ctl_set_bit(0,11); 179 180 /* Always allow the timing alert external interrupt. */ 181 __ctl_set_bit(0, 4); 182 } 183 184 static void clock_comparator_interrupt(struct ext_code ext_code, 185 unsigned int param32, 186 unsigned long param64) 187 { 188 inc_irq_stat(IRQEXT_CLK); 189 if (S390_lowcore.clock_comparator == clock_comparator_max) 190 set_clock_comparator(S390_lowcore.clock_comparator); 191 } 192 193 static void stp_timing_alert(struct stp_irq_parm *); 194 195 static void timing_alert_interrupt(struct ext_code ext_code, 196 unsigned int param32, unsigned long param64) 197 { 198 inc_irq_stat(IRQEXT_TLA); 199 if (param32 & 0x00038000) 200 stp_timing_alert((struct stp_irq_parm *) ¶m32); 201 } 202 203 static void stp_reset(void); 204 205 void read_persistent_clock64(struct timespec64 *ts) 206 { 207 unsigned char clk[STORE_CLOCK_EXT_SIZE]; 208 __u64 delta; 209 210 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 211 get_tod_clock_ext(clk); 212 *(__u64 *) &clk[1] -= delta; 213 if (*(__u64 *) &clk[1] > delta) 214 clk[0]--; 215 ext_to_timespec64(clk, ts); 216 } 217 218 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 219 struct timespec64 *boot_offset) 220 { 221 unsigned char clk[STORE_CLOCK_EXT_SIZE]; 222 struct timespec64 boot_time; 223 __u64 delta; 224 225 delta = initial_leap_seconds + TOD_UNIX_EPOCH; 226 memcpy(clk, tod_clock_base, STORE_CLOCK_EXT_SIZE); 227 *(__u64 *)&clk[1] -= delta; 228 if (*(__u64 *)&clk[1] > delta) 229 clk[0]--; 230 ext_to_timespec64(clk, &boot_time); 231 232 read_persistent_clock64(wall_time); 233 *boot_offset = timespec64_sub(*wall_time, boot_time); 234 } 235 236 static u64 read_tod_clock(struct clocksource *cs) 237 { 238 unsigned long long now, adj; 239 240 preempt_disable(); /* protect from changes to steering parameters */ 241 now = get_tod_clock(); 242 adj = tod_steering_end - now; 243 if (unlikely((s64) adj > 0)) 244 /* 245 * manually steer by 1 cycle every 2^16 cycles. This 246 * corresponds to shifting the tod delta by 15. 1s is 247 * therefore steered in ~9h. The adjust will decrease 248 * over time, until it finally reaches 0. 249 */ 250 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15); 251 preempt_enable(); 252 return now; 253 } 254 255 static struct clocksource clocksource_tod = { 256 .name = "tod", 257 .rating = 400, 258 .read = read_tod_clock, 259 .mask = CLOCKSOURCE_MASK(64), 260 .mult = 1000, 261 .shift = 12, 262 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 263 .vdso_clock_mode = VDSO_CLOCKMODE_TOD, 264 }; 265 266 struct clocksource * __init clocksource_default_clock(void) 267 { 268 return &clocksource_tod; 269 } 270 271 /* 272 * Initialize the TOD clock and the CPU timer of 273 * the boot cpu. 274 */ 275 void __init time_init(void) 276 { 277 /* Reset time synchronization interfaces. */ 278 stp_reset(); 279 280 /* request the clock comparator external interrupt */ 281 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) 282 panic("Couldn't request external interrupt 0x1004"); 283 284 /* request the timing alert external interrupt */ 285 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) 286 panic("Couldn't request external interrupt 0x1406"); 287 288 if (__clocksource_register(&clocksource_tod) != 0) 289 panic("Could not register TOD clock source"); 290 291 /* Enable TOD clock interrupts on the boot cpu. */ 292 init_cpu_timer(); 293 294 /* Enable cpu timer interrupts on the boot cpu. */ 295 vtime_init(); 296 } 297 298 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 299 static DEFINE_MUTEX(stp_mutex); 300 static unsigned long clock_sync_flags; 301 302 #define CLOCK_SYNC_HAS_STP 0 303 #define CLOCK_SYNC_STP 1 304 #define CLOCK_SYNC_STPINFO_VALID 2 305 306 /* 307 * The get_clock function for the physical clock. It will get the current 308 * TOD clock, subtract the LPAR offset and write the result to *clock. 309 * The function returns 0 if the clock is in sync with the external time 310 * source. If the clock mode is local it will return -EOPNOTSUPP and 311 * -EAGAIN if the clock is not in sync with the external reference. 312 */ 313 int get_phys_clock(unsigned long *clock) 314 { 315 atomic_t *sw_ptr; 316 unsigned int sw0, sw1; 317 318 sw_ptr = &get_cpu_var(clock_sync_word); 319 sw0 = atomic_read(sw_ptr); 320 *clock = get_tod_clock() - lpar_offset; 321 sw1 = atomic_read(sw_ptr); 322 put_cpu_var(clock_sync_word); 323 if (sw0 == sw1 && (sw0 & 0x80000000U)) 324 /* Success: time is in sync. */ 325 return 0; 326 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 327 return -EOPNOTSUPP; 328 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 329 return -EACCES; 330 return -EAGAIN; 331 } 332 EXPORT_SYMBOL(get_phys_clock); 333 334 /* 335 * Make get_phys_clock() return -EAGAIN. 336 */ 337 static void disable_sync_clock(void *dummy) 338 { 339 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 340 /* 341 * Clear the in-sync bit 2^31. All get_phys_clock calls will 342 * fail until the sync bit is turned back on. In addition 343 * increase the "sequence" counter to avoid the race of an 344 * stp event and the complete recovery against get_phys_clock. 345 */ 346 atomic_andnot(0x80000000, sw_ptr); 347 atomic_inc(sw_ptr); 348 } 349 350 /* 351 * Make get_phys_clock() return 0 again. 352 * Needs to be called from a context disabled for preemption. 353 */ 354 static void enable_sync_clock(void) 355 { 356 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 357 atomic_or(0x80000000, sw_ptr); 358 } 359 360 /* 361 * Function to check if the clock is in sync. 362 */ 363 static inline int check_sync_clock(void) 364 { 365 atomic_t *sw_ptr; 366 int rc; 367 368 sw_ptr = &get_cpu_var(clock_sync_word); 369 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 370 put_cpu_var(clock_sync_word); 371 return rc; 372 } 373 374 /* 375 * Apply clock delta to the global data structures. 376 * This is called once on the CPU that performed the clock sync. 377 */ 378 static void clock_sync_global(unsigned long long delta) 379 { 380 unsigned long now, adj; 381 struct ptff_qto qto; 382 383 /* Fixup the monotonic sched clock. */ 384 *(unsigned long long *) &tod_clock_base[1] += delta; 385 if (*(unsigned long long *) &tod_clock_base[1] < delta) 386 /* Epoch overflow */ 387 tod_clock_base[0]++; 388 /* Adjust TOD steering parameters. */ 389 now = get_tod_clock(); 390 adj = tod_steering_end - now; 391 if (unlikely((s64) adj >= 0)) 392 /* Calculate how much of the old adjustment is left. */ 393 tod_steering_delta = (tod_steering_delta < 0) ? 394 -(adj >> 15) : (adj >> 15); 395 tod_steering_delta += delta; 396 if ((abs(tod_steering_delta) >> 48) != 0) 397 panic("TOD clock sync offset %lli is too large to drift\n", 398 tod_steering_delta); 399 tod_steering_end = now + (abs(tod_steering_delta) << 15); 400 vdso_data->arch_data.tod_steering_end = tod_steering_end; 401 402 /* Update LPAR offset. */ 403 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 404 lpar_offset = qto.tod_epoch_difference; 405 /* Call the TOD clock change notifier. */ 406 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta); 407 } 408 409 /* 410 * Apply clock delta to the per-CPU data structures of this CPU. 411 * This is called for each online CPU after the call to clock_sync_global. 412 */ 413 static void clock_sync_local(unsigned long long delta) 414 { 415 /* Add the delta to the clock comparator. */ 416 if (S390_lowcore.clock_comparator != clock_comparator_max) { 417 S390_lowcore.clock_comparator += delta; 418 set_clock_comparator(S390_lowcore.clock_comparator); 419 } 420 /* Adjust the last_update_clock time-stamp. */ 421 S390_lowcore.last_update_clock += delta; 422 } 423 424 /* Single threaded workqueue used for stp sync events */ 425 static struct workqueue_struct *time_sync_wq; 426 427 static void __init time_init_wq(void) 428 { 429 if (time_sync_wq) 430 return; 431 time_sync_wq = create_singlethread_workqueue("timesync"); 432 } 433 434 struct clock_sync_data { 435 atomic_t cpus; 436 int in_sync; 437 unsigned long long clock_delta; 438 }; 439 440 /* 441 * Server Time Protocol (STP) code. 442 */ 443 static bool stp_online; 444 static struct stp_sstpi stp_info; 445 static void *stp_page; 446 447 static void stp_work_fn(struct work_struct *work); 448 static DECLARE_WORK(stp_work, stp_work_fn); 449 static struct timer_list stp_timer; 450 451 static int __init early_parse_stp(char *p) 452 { 453 return kstrtobool(p, &stp_online); 454 } 455 early_param("stp", early_parse_stp); 456 457 /* 458 * Reset STP attachment. 459 */ 460 static void __init stp_reset(void) 461 { 462 int rc; 463 464 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 465 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 466 if (rc == 0) 467 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 468 else if (stp_online) { 469 pr_warn("The real or virtual hardware system does not provide an STP interface\n"); 470 free_page((unsigned long) stp_page); 471 stp_page = NULL; 472 stp_online = false; 473 } 474 } 475 476 static void stp_timeout(struct timer_list *unused) 477 { 478 queue_work(time_sync_wq, &stp_work); 479 } 480 481 static int __init stp_init(void) 482 { 483 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 484 return 0; 485 timer_setup(&stp_timer, stp_timeout, 0); 486 time_init_wq(); 487 if (!stp_online) 488 return 0; 489 queue_work(time_sync_wq, &stp_work); 490 return 0; 491 } 492 493 arch_initcall(stp_init); 494 495 /* 496 * STP timing alert. There are three causes: 497 * 1) timing status change 498 * 2) link availability change 499 * 3) time control parameter change 500 * In all three cases we are only interested in the clock source state. 501 * If a STP clock source is now available use it. 502 */ 503 static void stp_timing_alert(struct stp_irq_parm *intparm) 504 { 505 if (intparm->tsc || intparm->lac || intparm->tcpc) 506 queue_work(time_sync_wq, &stp_work); 507 } 508 509 /* 510 * STP sync check machine check. This is called when the timing state 511 * changes from the synchronized state to the unsynchronized state. 512 * After a STP sync check the clock is not in sync. The machine check 513 * is broadcasted to all cpus at the same time. 514 */ 515 int stp_sync_check(void) 516 { 517 disable_sync_clock(NULL); 518 return 1; 519 } 520 521 /* 522 * STP island condition machine check. This is called when an attached 523 * server attempts to communicate over an STP link and the servers 524 * have matching CTN ids and have a valid stratum-1 configuration 525 * but the configurations do not match. 526 */ 527 int stp_island_check(void) 528 { 529 disable_sync_clock(NULL); 530 return 1; 531 } 532 533 void stp_queue_work(void) 534 { 535 queue_work(time_sync_wq, &stp_work); 536 } 537 538 static int __store_stpinfo(void) 539 { 540 int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 541 542 if (rc) 543 clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 544 else 545 set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 546 return rc; 547 } 548 549 static int stpinfo_valid(void) 550 { 551 return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags); 552 } 553 554 static int stp_sync_clock(void *data) 555 { 556 struct clock_sync_data *sync = data; 557 unsigned long long clock_delta, flags; 558 static int first; 559 int rc; 560 561 enable_sync_clock(); 562 if (xchg(&first, 1) == 0) { 563 /* Wait until all other cpus entered the sync function. */ 564 while (atomic_read(&sync->cpus) != 0) 565 cpu_relax(); 566 rc = 0; 567 if (stp_info.todoff[0] || stp_info.todoff[1] || 568 stp_info.todoff[2] || stp_info.todoff[3] || 569 stp_info.tmd != 2) { 570 flags = vdso_update_begin(); 571 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, 572 &clock_delta); 573 if (rc == 0) { 574 sync->clock_delta = clock_delta; 575 clock_sync_global(clock_delta); 576 rc = __store_stpinfo(); 577 if (rc == 0 && stp_info.tmd != 2) 578 rc = -EAGAIN; 579 } 580 vdso_update_end(flags); 581 } 582 sync->in_sync = rc ? -EAGAIN : 1; 583 xchg(&first, 0); 584 } else { 585 /* Slave */ 586 atomic_dec(&sync->cpus); 587 /* Wait for in_sync to be set. */ 588 while (READ_ONCE(sync->in_sync) == 0) 589 __udelay(1); 590 } 591 if (sync->in_sync != 1) 592 /* Didn't work. Clear per-cpu in sync bit again. */ 593 disable_sync_clock(NULL); 594 /* Apply clock delta to per-CPU fields of this CPU. */ 595 clock_sync_local(sync->clock_delta); 596 597 return 0; 598 } 599 600 static int stp_clear_leap(void) 601 { 602 struct __kernel_timex txc; 603 int ret; 604 605 memset(&txc, 0, sizeof(txc)); 606 607 ret = do_adjtimex(&txc); 608 if (ret < 0) 609 return ret; 610 611 txc.modes = ADJ_STATUS; 612 txc.status &= ~(STA_INS|STA_DEL); 613 return do_adjtimex(&txc); 614 } 615 616 static void stp_check_leap(void) 617 { 618 struct stp_stzi stzi; 619 struct stp_lsoib *lsoib = &stzi.lsoib; 620 struct __kernel_timex txc; 621 int64_t timediff; 622 int leapdiff, ret; 623 624 if (!stp_info.lu || !check_sync_clock()) { 625 /* 626 * Either a scheduled leap second was removed by the operator, 627 * or STP is out of sync. In both cases, clear the leap second 628 * kernel flags. 629 */ 630 if (stp_clear_leap() < 0) 631 pr_err("failed to clear leap second flags\n"); 632 return; 633 } 634 635 if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) { 636 pr_err("stzi failed\n"); 637 return; 638 } 639 640 timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC; 641 leapdiff = lsoib->nlso - lsoib->also; 642 643 if (leapdiff != 1 && leapdiff != -1) { 644 pr_err("Cannot schedule %d leap seconds\n", leapdiff); 645 return; 646 } 647 648 if (timediff < 0) { 649 if (stp_clear_leap() < 0) 650 pr_err("failed to clear leap second flags\n"); 651 } else if (timediff < 7200) { 652 memset(&txc, 0, sizeof(txc)); 653 ret = do_adjtimex(&txc); 654 if (ret < 0) 655 return; 656 657 txc.modes = ADJ_STATUS; 658 if (leapdiff > 0) 659 txc.status |= STA_INS; 660 else 661 txc.status |= STA_DEL; 662 ret = do_adjtimex(&txc); 663 if (ret < 0) 664 pr_err("failed to set leap second flags\n"); 665 /* arm Timer to clear leap second flags */ 666 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC)); 667 } else { 668 /* The day the leap second is scheduled for hasn't been reached. Retry 669 * in one hour. 670 */ 671 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC)); 672 } 673 } 674 675 /* 676 * STP work. Check for the STP state and take over the clock 677 * synchronization if the STP clock source is usable. 678 */ 679 static void stp_work_fn(struct work_struct *work) 680 { 681 struct clock_sync_data stp_sync; 682 int rc; 683 684 /* prevent multiple execution. */ 685 mutex_lock(&stp_mutex); 686 687 if (!stp_online) { 688 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 689 del_timer_sync(&stp_timer); 690 goto out_unlock; 691 } 692 693 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL); 694 if (rc) 695 goto out_unlock; 696 697 rc = __store_stpinfo(); 698 if (rc || stp_info.c == 0) 699 goto out_unlock; 700 701 /* Skip synchronization if the clock is already in sync. */ 702 if (!check_sync_clock()) { 703 memset(&stp_sync, 0, sizeof(stp_sync)); 704 cpus_read_lock(); 705 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 706 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask); 707 cpus_read_unlock(); 708 } 709 710 if (!check_sync_clock()) 711 /* 712 * There is a usable clock but the synchonization failed. 713 * Retry after a second. 714 */ 715 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC)); 716 else if (stp_info.lu) 717 stp_check_leap(); 718 719 out_unlock: 720 mutex_unlock(&stp_mutex); 721 } 722 723 /* 724 * STP subsys sysfs interface functions 725 */ 726 static struct bus_type stp_subsys = { 727 .name = "stp", 728 .dev_name = "stp", 729 }; 730 731 static ssize_t ctn_id_show(struct device *dev, 732 struct device_attribute *attr, 733 char *buf) 734 { 735 ssize_t ret = -ENODATA; 736 737 mutex_lock(&stp_mutex); 738 if (stpinfo_valid()) 739 ret = sprintf(buf, "%016llx\n", 740 *(unsigned long long *) stp_info.ctnid); 741 mutex_unlock(&stp_mutex); 742 return ret; 743 } 744 745 static DEVICE_ATTR_RO(ctn_id); 746 747 static ssize_t ctn_type_show(struct device *dev, 748 struct device_attribute *attr, 749 char *buf) 750 { 751 ssize_t ret = -ENODATA; 752 753 mutex_lock(&stp_mutex); 754 if (stpinfo_valid()) 755 ret = sprintf(buf, "%i\n", stp_info.ctn); 756 mutex_unlock(&stp_mutex); 757 return ret; 758 } 759 760 static DEVICE_ATTR_RO(ctn_type); 761 762 static ssize_t dst_offset_show(struct device *dev, 763 struct device_attribute *attr, 764 char *buf) 765 { 766 ssize_t ret = -ENODATA; 767 768 mutex_lock(&stp_mutex); 769 if (stpinfo_valid() && (stp_info.vbits & 0x2000)) 770 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); 771 mutex_unlock(&stp_mutex); 772 return ret; 773 } 774 775 static DEVICE_ATTR_RO(dst_offset); 776 777 static ssize_t leap_seconds_show(struct device *dev, 778 struct device_attribute *attr, 779 char *buf) 780 { 781 ssize_t ret = -ENODATA; 782 783 mutex_lock(&stp_mutex); 784 if (stpinfo_valid() && (stp_info.vbits & 0x8000)) 785 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); 786 mutex_unlock(&stp_mutex); 787 return ret; 788 } 789 790 static DEVICE_ATTR_RO(leap_seconds); 791 792 static ssize_t leap_seconds_scheduled_show(struct device *dev, 793 struct device_attribute *attr, 794 char *buf) 795 { 796 struct stp_stzi stzi; 797 ssize_t ret; 798 799 mutex_lock(&stp_mutex); 800 if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) { 801 mutex_unlock(&stp_mutex); 802 return -ENODATA; 803 } 804 805 ret = chsc_stzi(stp_page, &stzi, sizeof(stzi)); 806 mutex_unlock(&stp_mutex); 807 if (ret < 0) 808 return ret; 809 810 if (!stzi.lsoib.p) 811 return sprintf(buf, "0,0\n"); 812 813 return sprintf(buf, "%llu,%d\n", 814 tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC, 815 stzi.lsoib.nlso - stzi.lsoib.also); 816 } 817 818 static DEVICE_ATTR_RO(leap_seconds_scheduled); 819 820 static ssize_t stratum_show(struct device *dev, 821 struct device_attribute *attr, 822 char *buf) 823 { 824 ssize_t ret = -ENODATA; 825 826 mutex_lock(&stp_mutex); 827 if (stpinfo_valid()) 828 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); 829 mutex_unlock(&stp_mutex); 830 return ret; 831 } 832 833 static DEVICE_ATTR_RO(stratum); 834 835 static ssize_t time_offset_show(struct device *dev, 836 struct device_attribute *attr, 837 char *buf) 838 { 839 ssize_t ret = -ENODATA; 840 841 mutex_lock(&stp_mutex); 842 if (stpinfo_valid() && (stp_info.vbits & 0x0800)) 843 ret = sprintf(buf, "%i\n", (int) stp_info.tto); 844 mutex_unlock(&stp_mutex); 845 return ret; 846 } 847 848 static DEVICE_ATTR_RO(time_offset); 849 850 static ssize_t time_zone_offset_show(struct device *dev, 851 struct device_attribute *attr, 852 char *buf) 853 { 854 ssize_t ret = -ENODATA; 855 856 mutex_lock(&stp_mutex); 857 if (stpinfo_valid() && (stp_info.vbits & 0x4000)) 858 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); 859 mutex_unlock(&stp_mutex); 860 return ret; 861 } 862 863 static DEVICE_ATTR_RO(time_zone_offset); 864 865 static ssize_t timing_mode_show(struct device *dev, 866 struct device_attribute *attr, 867 char *buf) 868 { 869 ssize_t ret = -ENODATA; 870 871 mutex_lock(&stp_mutex); 872 if (stpinfo_valid()) 873 ret = sprintf(buf, "%i\n", stp_info.tmd); 874 mutex_unlock(&stp_mutex); 875 return ret; 876 } 877 878 static DEVICE_ATTR_RO(timing_mode); 879 880 static ssize_t timing_state_show(struct device *dev, 881 struct device_attribute *attr, 882 char *buf) 883 { 884 ssize_t ret = -ENODATA; 885 886 mutex_lock(&stp_mutex); 887 if (stpinfo_valid()) 888 ret = sprintf(buf, "%i\n", stp_info.tst); 889 mutex_unlock(&stp_mutex); 890 return ret; 891 } 892 893 static DEVICE_ATTR_RO(timing_state); 894 895 static ssize_t online_show(struct device *dev, 896 struct device_attribute *attr, 897 char *buf) 898 { 899 return sprintf(buf, "%i\n", stp_online); 900 } 901 902 static ssize_t online_store(struct device *dev, 903 struct device_attribute *attr, 904 const char *buf, size_t count) 905 { 906 unsigned int value; 907 908 value = simple_strtoul(buf, NULL, 0); 909 if (value != 0 && value != 1) 910 return -EINVAL; 911 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 912 return -EOPNOTSUPP; 913 mutex_lock(&stp_mutex); 914 stp_online = value; 915 if (stp_online) 916 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 917 else 918 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 919 queue_work(time_sync_wq, &stp_work); 920 mutex_unlock(&stp_mutex); 921 return count; 922 } 923 924 /* 925 * Can't use DEVICE_ATTR because the attribute should be named 926 * stp/online but dev_attr_online already exists in this file .. 927 */ 928 static DEVICE_ATTR_RW(online); 929 930 static struct attribute *stp_dev_attrs[] = { 931 &dev_attr_ctn_id.attr, 932 &dev_attr_ctn_type.attr, 933 &dev_attr_dst_offset.attr, 934 &dev_attr_leap_seconds.attr, 935 &dev_attr_online.attr, 936 &dev_attr_leap_seconds_scheduled.attr, 937 &dev_attr_stratum.attr, 938 &dev_attr_time_offset.attr, 939 &dev_attr_time_zone_offset.attr, 940 &dev_attr_timing_mode.attr, 941 &dev_attr_timing_state.attr, 942 NULL 943 }; 944 ATTRIBUTE_GROUPS(stp_dev); 945 946 static int __init stp_init_sysfs(void) 947 { 948 return subsys_system_register(&stp_subsys, stp_dev_groups); 949 } 950 951 device_initcall(stp_init_sysfs); 952