1 /* 2 * Time of day based timer functions. 3 * 4 * S390 version 5 * Copyright IBM Corp. 1999, 2008 6 * Author(s): Hartmut Penner (hp@de.ibm.com), 7 * Martin Schwidefsky (schwidefsky@de.ibm.com), 8 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 9 * 10 * Derived from "arch/i386/kernel/time.c" 11 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 12 */ 13 14 #define KMSG_COMPONENT "time" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/kernel_stat.h> 18 #include <linux/errno.h> 19 #include <linux/module.h> 20 #include <linux/sched.h> 21 #include <linux/kernel.h> 22 #include <linux/param.h> 23 #include <linux/string.h> 24 #include <linux/mm.h> 25 #include <linux/interrupt.h> 26 #include <linux/cpu.h> 27 #include <linux/stop_machine.h> 28 #include <linux/time.h> 29 #include <linux/device.h> 30 #include <linux/delay.h> 31 #include <linux/init.h> 32 #include <linux/smp.h> 33 #include <linux/types.h> 34 #include <linux/profile.h> 35 #include <linux/timex.h> 36 #include <linux/notifier.h> 37 #include <linux/timekeeper_internal.h> 38 #include <linux/clockchips.h> 39 #include <linux/gfp.h> 40 #include <linux/kprobes.h> 41 #include <asm/uaccess.h> 42 #include <asm/delay.h> 43 #include <asm/div64.h> 44 #include <asm/vdso.h> 45 #include <asm/irq.h> 46 #include <asm/irq_regs.h> 47 #include <asm/vtimer.h> 48 #include <asm/etr.h> 49 #include <asm/cio.h> 50 #include "entry.h" 51 52 /* change this if you have some constant time drift */ 53 #define USECS_PER_JIFFY ((unsigned long) 1000000/HZ) 54 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12) 55 56 u64 sched_clock_base_cc = -1; /* Force to data section. */ 57 EXPORT_SYMBOL_GPL(sched_clock_base_cc); 58 59 static DEFINE_PER_CPU(struct clock_event_device, comparators); 60 61 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); 62 EXPORT_SYMBOL(s390_epoch_delta_notifier); 63 64 /* 65 * Scheduler clock - returns current time in nanosec units. 66 */ 67 unsigned long long notrace sched_clock(void) 68 { 69 return tod_to_ns(get_tod_clock_monotonic()); 70 } 71 NOKPROBE_SYMBOL(sched_clock); 72 73 /* 74 * Monotonic_clock - returns # of nanoseconds passed since time_init() 75 */ 76 unsigned long long monotonic_clock(void) 77 { 78 return sched_clock(); 79 } 80 EXPORT_SYMBOL(monotonic_clock); 81 82 void tod_to_timeval(__u64 todval, struct timespec64 *xt) 83 { 84 unsigned long long sec; 85 86 sec = todval >> 12; 87 do_div(sec, 1000000); 88 xt->tv_sec = sec; 89 todval -= (sec * 1000000) << 12; 90 xt->tv_nsec = ((todval * 1000) >> 12); 91 } 92 EXPORT_SYMBOL(tod_to_timeval); 93 94 void clock_comparator_work(void) 95 { 96 struct clock_event_device *cd; 97 98 S390_lowcore.clock_comparator = -1ULL; 99 cd = this_cpu_ptr(&comparators); 100 cd->event_handler(cd); 101 } 102 103 /* 104 * Fixup the clock comparator. 105 */ 106 static void fixup_clock_comparator(unsigned long long delta) 107 { 108 /* If nobody is waiting there's nothing to fix. */ 109 if (S390_lowcore.clock_comparator == -1ULL) 110 return; 111 S390_lowcore.clock_comparator += delta; 112 set_clock_comparator(S390_lowcore.clock_comparator); 113 } 114 115 static int s390_next_event(unsigned long delta, 116 struct clock_event_device *evt) 117 { 118 S390_lowcore.clock_comparator = get_tod_clock() + delta; 119 set_clock_comparator(S390_lowcore.clock_comparator); 120 return 0; 121 } 122 123 /* 124 * Set up lowcore and control register of the current cpu to 125 * enable TOD clock and clock comparator interrupts. 126 */ 127 void init_cpu_timer(void) 128 { 129 struct clock_event_device *cd; 130 int cpu; 131 132 S390_lowcore.clock_comparator = -1ULL; 133 set_clock_comparator(S390_lowcore.clock_comparator); 134 135 cpu = smp_processor_id(); 136 cd = &per_cpu(comparators, cpu); 137 cd->name = "comparator"; 138 cd->features = CLOCK_EVT_FEAT_ONESHOT; 139 cd->mult = 16777; 140 cd->shift = 12; 141 cd->min_delta_ns = 1; 142 cd->max_delta_ns = LONG_MAX; 143 cd->rating = 400; 144 cd->cpumask = cpumask_of(cpu); 145 cd->set_next_event = s390_next_event; 146 147 clockevents_register_device(cd); 148 149 /* Enable clock comparator timer interrupt. */ 150 __ctl_set_bit(0,11); 151 152 /* Always allow the timing alert external interrupt. */ 153 __ctl_set_bit(0, 4); 154 } 155 156 static void clock_comparator_interrupt(struct ext_code ext_code, 157 unsigned int param32, 158 unsigned long param64) 159 { 160 inc_irq_stat(IRQEXT_CLK); 161 if (S390_lowcore.clock_comparator == -1ULL) 162 set_clock_comparator(S390_lowcore.clock_comparator); 163 } 164 165 static void etr_timing_alert(struct etr_irq_parm *); 166 static void stp_timing_alert(struct stp_irq_parm *); 167 168 static void timing_alert_interrupt(struct ext_code ext_code, 169 unsigned int param32, unsigned long param64) 170 { 171 inc_irq_stat(IRQEXT_TLA); 172 if (param32 & 0x00c40000) 173 etr_timing_alert((struct etr_irq_parm *) ¶m32); 174 if (param32 & 0x00038000) 175 stp_timing_alert((struct stp_irq_parm *) ¶m32); 176 } 177 178 static void etr_reset(void); 179 static void stp_reset(void); 180 181 void read_persistent_clock64(struct timespec64 *ts) 182 { 183 tod_to_timeval(get_tod_clock() - TOD_UNIX_EPOCH, ts); 184 } 185 186 void read_boot_clock64(struct timespec64 *ts) 187 { 188 tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts); 189 } 190 191 static cycle_t read_tod_clock(struct clocksource *cs) 192 { 193 return get_tod_clock(); 194 } 195 196 static struct clocksource clocksource_tod = { 197 .name = "tod", 198 .rating = 400, 199 .read = read_tod_clock, 200 .mask = -1ULL, 201 .mult = 1000, 202 .shift = 12, 203 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 204 }; 205 206 struct clocksource * __init clocksource_default_clock(void) 207 { 208 return &clocksource_tod; 209 } 210 211 void update_vsyscall(struct timekeeper *tk) 212 { 213 u64 nsecps; 214 215 if (tk->tkr_mono.clock != &clocksource_tod) 216 return; 217 218 /* Make userspace gettimeofday spin until we're done. */ 219 ++vdso_data->tb_update_count; 220 smp_wmb(); 221 vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last; 222 vdso_data->xtime_clock_sec = tk->xtime_sec; 223 vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec; 224 vdso_data->wtom_clock_sec = 225 tk->xtime_sec + tk->wall_to_monotonic.tv_sec; 226 vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec + 227 + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift); 228 nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift; 229 while (vdso_data->wtom_clock_nsec >= nsecps) { 230 vdso_data->wtom_clock_nsec -= nsecps; 231 vdso_data->wtom_clock_sec++; 232 } 233 234 vdso_data->xtime_coarse_sec = tk->xtime_sec; 235 vdso_data->xtime_coarse_nsec = 236 (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 237 vdso_data->wtom_coarse_sec = 238 vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec; 239 vdso_data->wtom_coarse_nsec = 240 vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec; 241 while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) { 242 vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC; 243 vdso_data->wtom_coarse_sec++; 244 } 245 246 vdso_data->tk_mult = tk->tkr_mono.mult; 247 vdso_data->tk_shift = tk->tkr_mono.shift; 248 smp_wmb(); 249 ++vdso_data->tb_update_count; 250 } 251 252 extern struct timezone sys_tz; 253 254 void update_vsyscall_tz(void) 255 { 256 /* Make userspace gettimeofday spin until we're done. */ 257 ++vdso_data->tb_update_count; 258 smp_wmb(); 259 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 260 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 261 smp_wmb(); 262 ++vdso_data->tb_update_count; 263 } 264 265 /* 266 * Initialize the TOD clock and the CPU timer of 267 * the boot cpu. 268 */ 269 void __init time_init(void) 270 { 271 /* Reset time synchronization interfaces. */ 272 etr_reset(); 273 stp_reset(); 274 275 /* request the clock comparator external interrupt */ 276 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) 277 panic("Couldn't request external interrupt 0x1004"); 278 279 /* request the timing alert external interrupt */ 280 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) 281 panic("Couldn't request external interrupt 0x1406"); 282 283 if (__clocksource_register(&clocksource_tod) != 0) 284 panic("Could not register TOD clock source"); 285 286 /* Enable TOD clock interrupts on the boot cpu. */ 287 init_cpu_timer(); 288 289 /* Enable cpu timer interrupts on the boot cpu. */ 290 vtime_init(); 291 } 292 293 /* 294 * The time is "clock". old is what we think the time is. 295 * Adjust the value by a multiple of jiffies and add the delta to ntp. 296 * "delay" is an approximation how long the synchronization took. If 297 * the time correction is positive, then "delay" is subtracted from 298 * the time difference and only the remaining part is passed to ntp. 299 */ 300 static unsigned long long adjust_time(unsigned long long old, 301 unsigned long long clock, 302 unsigned long long delay) 303 { 304 unsigned long long delta, ticks; 305 struct timex adjust; 306 307 if (clock > old) { 308 /* It is later than we thought. */ 309 delta = ticks = clock - old; 310 delta = ticks = (delta < delay) ? 0 : delta - delay; 311 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY); 312 adjust.offset = ticks * (1000000 / HZ); 313 } else { 314 /* It is earlier than we thought. */ 315 delta = ticks = old - clock; 316 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY); 317 delta = -delta; 318 adjust.offset = -ticks * (1000000 / HZ); 319 } 320 sched_clock_base_cc += delta; 321 if (adjust.offset != 0) { 322 pr_notice("The ETR interface has adjusted the clock " 323 "by %li microseconds\n", adjust.offset); 324 adjust.modes = ADJ_OFFSET_SINGLESHOT; 325 do_adjtimex(&adjust); 326 } 327 return delta; 328 } 329 330 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 331 static DEFINE_MUTEX(clock_sync_mutex); 332 static unsigned long clock_sync_flags; 333 334 #define CLOCK_SYNC_HAS_ETR 0 335 #define CLOCK_SYNC_HAS_STP 1 336 #define CLOCK_SYNC_ETR 2 337 #define CLOCK_SYNC_STP 3 338 339 /* 340 * The synchronous get_clock function. It will write the current clock 341 * value to the clock pointer and return 0 if the clock is in sync with 342 * the external time source. If the clock mode is local it will return 343 * -EOPNOTSUPP and -EAGAIN if the clock is not in sync with the external 344 * reference. 345 */ 346 int get_sync_clock(unsigned long long *clock) 347 { 348 atomic_t *sw_ptr; 349 unsigned int sw0, sw1; 350 351 sw_ptr = &get_cpu_var(clock_sync_word); 352 sw0 = atomic_read(sw_ptr); 353 *clock = get_tod_clock(); 354 sw1 = atomic_read(sw_ptr); 355 put_cpu_var(clock_sync_word); 356 if (sw0 == sw1 && (sw0 & 0x80000000U)) 357 /* Success: time is in sync. */ 358 return 0; 359 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) && 360 !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 361 return -EOPNOTSUPP; 362 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) && 363 !test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 364 return -EACCES; 365 return -EAGAIN; 366 } 367 EXPORT_SYMBOL(get_sync_clock); 368 369 /* 370 * Make get_sync_clock return -EAGAIN. 371 */ 372 static void disable_sync_clock(void *dummy) 373 { 374 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 375 /* 376 * Clear the in-sync bit 2^31. All get_sync_clock calls will 377 * fail until the sync bit is turned back on. In addition 378 * increase the "sequence" counter to avoid the race of an 379 * etr event and the complete recovery against get_sync_clock. 380 */ 381 atomic_andnot(0x80000000, sw_ptr); 382 atomic_inc(sw_ptr); 383 } 384 385 /* 386 * Make get_sync_clock return 0 again. 387 * Needs to be called from a context disabled for preemption. 388 */ 389 static void enable_sync_clock(void) 390 { 391 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 392 atomic_or(0x80000000, sw_ptr); 393 } 394 395 /* 396 * Function to check if the clock is in sync. 397 */ 398 static inline int check_sync_clock(void) 399 { 400 atomic_t *sw_ptr; 401 int rc; 402 403 sw_ptr = &get_cpu_var(clock_sync_word); 404 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 405 put_cpu_var(clock_sync_word); 406 return rc; 407 } 408 409 /* Single threaded workqueue used for etr and stp sync events */ 410 static struct workqueue_struct *time_sync_wq; 411 412 static void __init time_init_wq(void) 413 { 414 if (time_sync_wq) 415 return; 416 time_sync_wq = create_singlethread_workqueue("timesync"); 417 } 418 419 /* 420 * External Time Reference (ETR) code. 421 */ 422 static int etr_port0_online; 423 static int etr_port1_online; 424 static int etr_steai_available; 425 426 static int __init early_parse_etr(char *p) 427 { 428 if (strncmp(p, "off", 3) == 0) 429 etr_port0_online = etr_port1_online = 0; 430 else if (strncmp(p, "port0", 5) == 0) 431 etr_port0_online = 1; 432 else if (strncmp(p, "port1", 5) == 0) 433 etr_port1_online = 1; 434 else if (strncmp(p, "on", 2) == 0) 435 etr_port0_online = etr_port1_online = 1; 436 return 0; 437 } 438 early_param("etr", early_parse_etr); 439 440 enum etr_event { 441 ETR_EVENT_PORT0_CHANGE, 442 ETR_EVENT_PORT1_CHANGE, 443 ETR_EVENT_PORT_ALERT, 444 ETR_EVENT_SYNC_CHECK, 445 ETR_EVENT_SWITCH_LOCAL, 446 ETR_EVENT_UPDATE, 447 }; 448 449 /* 450 * Valid bit combinations of the eacr register are (x = don't care): 451 * e0 e1 dp p0 p1 ea es sl 452 * 0 0 x 0 0 0 0 0 initial, disabled state 453 * 0 0 x 0 1 1 0 0 port 1 online 454 * 0 0 x 1 0 1 0 0 port 0 online 455 * 0 0 x 1 1 1 0 0 both ports online 456 * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode 457 * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode 458 * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync 459 * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync 460 * 0 1 x 1 1 1 0 0 both ports online, port 1 usable 461 * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync 462 * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync 463 * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode 464 * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode 465 * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync 466 * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync 467 * 1 0 x 1 1 1 0 0 both ports online, port 0 usable 468 * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync 469 * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync 470 * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync 471 * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync 472 */ 473 static struct etr_eacr etr_eacr; 474 static u64 etr_tolec; /* time of last eacr update */ 475 static struct etr_aib etr_port0; 476 static int etr_port0_uptodate; 477 static struct etr_aib etr_port1; 478 static int etr_port1_uptodate; 479 static unsigned long etr_events; 480 static struct timer_list etr_timer; 481 482 static void etr_timeout(unsigned long dummy); 483 static void etr_work_fn(struct work_struct *work); 484 static DEFINE_MUTEX(etr_work_mutex); 485 static DECLARE_WORK(etr_work, etr_work_fn); 486 487 /* 488 * Reset ETR attachment. 489 */ 490 static void etr_reset(void) 491 { 492 etr_eacr = (struct etr_eacr) { 493 .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0, 494 .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0, 495 .es = 0, .sl = 0 }; 496 if (etr_setr(&etr_eacr) == 0) { 497 etr_tolec = get_tod_clock(); 498 set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags); 499 if (etr_port0_online && etr_port1_online) 500 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 501 } else if (etr_port0_online || etr_port1_online) { 502 pr_warning("The real or virtual hardware system does " 503 "not provide an ETR interface\n"); 504 etr_port0_online = etr_port1_online = 0; 505 } 506 } 507 508 static int __init etr_init(void) 509 { 510 struct etr_aib aib; 511 512 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags)) 513 return 0; 514 time_init_wq(); 515 /* Check if this machine has the steai instruction. */ 516 if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0) 517 etr_steai_available = 1; 518 setup_timer(&etr_timer, etr_timeout, 0UL); 519 if (etr_port0_online) { 520 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 521 queue_work(time_sync_wq, &etr_work); 522 } 523 if (etr_port1_online) { 524 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 525 queue_work(time_sync_wq, &etr_work); 526 } 527 return 0; 528 } 529 530 arch_initcall(etr_init); 531 532 /* 533 * Two sorts of ETR machine checks. The architecture reads: 534 * "When a machine-check niterruption occurs and if a switch-to-local or 535 * ETR-sync-check interrupt request is pending but disabled, this pending 536 * disabled interruption request is indicated and is cleared". 537 * Which means that we can get etr_switch_to_local events from the machine 538 * check handler although the interruption condition is disabled. Lovely.. 539 */ 540 541 /* 542 * Switch to local machine check. This is called when the last usable 543 * ETR port goes inactive. After switch to local the clock is not in sync. 544 */ 545 int etr_switch_to_local(void) 546 { 547 if (!etr_eacr.sl) 548 return 0; 549 disable_sync_clock(NULL); 550 if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) { 551 etr_eacr.es = etr_eacr.sl = 0; 552 etr_setr(&etr_eacr); 553 return 1; 554 } 555 return 0; 556 } 557 558 /* 559 * ETR sync check machine check. This is called when the ETR OTE and the 560 * local clock OTE are farther apart than the ETR sync check tolerance. 561 * After a ETR sync check the clock is not in sync. The machine check 562 * is broadcasted to all cpus at the same time. 563 */ 564 int etr_sync_check(void) 565 { 566 if (!etr_eacr.es) 567 return 0; 568 disable_sync_clock(NULL); 569 if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) { 570 etr_eacr.es = 0; 571 etr_setr(&etr_eacr); 572 return 1; 573 } 574 return 0; 575 } 576 577 void etr_queue_work(void) 578 { 579 queue_work(time_sync_wq, &etr_work); 580 } 581 582 /* 583 * ETR timing alert. There are two causes: 584 * 1) port state change, check the usability of the port 585 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the 586 * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3) 587 * or ETR-data word 4 (edf4) has changed. 588 */ 589 static void etr_timing_alert(struct etr_irq_parm *intparm) 590 { 591 if (intparm->pc0) 592 /* ETR port 0 state change. */ 593 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 594 if (intparm->pc1) 595 /* ETR port 1 state change. */ 596 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 597 if (intparm->eai) 598 /* 599 * ETR port alert on either port 0, 1 or both. 600 * Both ports are not up-to-date now. 601 */ 602 set_bit(ETR_EVENT_PORT_ALERT, &etr_events); 603 queue_work(time_sync_wq, &etr_work); 604 } 605 606 static void etr_timeout(unsigned long dummy) 607 { 608 set_bit(ETR_EVENT_UPDATE, &etr_events); 609 queue_work(time_sync_wq, &etr_work); 610 } 611 612 /* 613 * Check if the etr mode is pss. 614 */ 615 static inline int etr_mode_is_pps(struct etr_eacr eacr) 616 { 617 return eacr.es && !eacr.sl; 618 } 619 620 /* 621 * Check if the etr mode is etr. 622 */ 623 static inline int etr_mode_is_etr(struct etr_eacr eacr) 624 { 625 return eacr.es && eacr.sl; 626 } 627 628 /* 629 * Check if the port can be used for TOD synchronization. 630 * For PPS mode the port has to receive OTEs. For ETR mode 631 * the port has to receive OTEs, the ETR stepping bit has to 632 * be zero and the validity bits for data frame 1, 2, and 3 633 * have to be 1. 634 */ 635 static int etr_port_valid(struct etr_aib *aib, int port) 636 { 637 unsigned int psc; 638 639 /* Check that this port is receiving OTEs. */ 640 if (aib->tsp == 0) 641 return 0; 642 643 psc = port ? aib->esw.psc1 : aib->esw.psc0; 644 if (psc == etr_lpsc_pps_mode) 645 return 1; 646 if (psc == etr_lpsc_operational_step) 647 return !aib->esw.y && aib->slsw.v1 && 648 aib->slsw.v2 && aib->slsw.v3; 649 return 0; 650 } 651 652 /* 653 * Check if two ports are on the same network. 654 */ 655 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2) 656 { 657 // FIXME: any other fields we have to compare? 658 return aib1->edf1.net_id == aib2->edf1.net_id; 659 } 660 661 /* 662 * Wrapper for etr_stei that converts physical port states 663 * to logical port states to be consistent with the output 664 * of stetr (see etr_psc vs. etr_lpsc). 665 */ 666 static void etr_steai_cv(struct etr_aib *aib, unsigned int func) 667 { 668 BUG_ON(etr_steai(aib, func) != 0); 669 /* Convert port state to logical port state. */ 670 if (aib->esw.psc0 == 1) 671 aib->esw.psc0 = 2; 672 else if (aib->esw.psc0 == 0 && aib->esw.p == 0) 673 aib->esw.psc0 = 1; 674 if (aib->esw.psc1 == 1) 675 aib->esw.psc1 = 2; 676 else if (aib->esw.psc1 == 0 && aib->esw.p == 1) 677 aib->esw.psc1 = 1; 678 } 679 680 /* 681 * Check if the aib a2 is still connected to the same attachment as 682 * aib a1, the etv values differ by one and a2 is valid. 683 */ 684 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p) 685 { 686 int state_a1, state_a2; 687 688 /* Paranoia check: e0/e1 should better be the same. */ 689 if (a1->esw.eacr.e0 != a2->esw.eacr.e0 || 690 a1->esw.eacr.e1 != a2->esw.eacr.e1) 691 return 0; 692 693 /* Still connected to the same etr ? */ 694 state_a1 = p ? a1->esw.psc1 : a1->esw.psc0; 695 state_a2 = p ? a2->esw.psc1 : a2->esw.psc0; 696 if (state_a1 == etr_lpsc_operational_step) { 697 if (state_a2 != etr_lpsc_operational_step || 698 a1->edf1.net_id != a2->edf1.net_id || 699 a1->edf1.etr_id != a2->edf1.etr_id || 700 a1->edf1.etr_pn != a2->edf1.etr_pn) 701 return 0; 702 } else if (state_a2 != etr_lpsc_pps_mode) 703 return 0; 704 705 /* The ETV value of a2 needs to be ETV of a1 + 1. */ 706 if (a1->edf2.etv + 1 != a2->edf2.etv) 707 return 0; 708 709 if (!etr_port_valid(a2, p)) 710 return 0; 711 712 return 1; 713 } 714 715 struct clock_sync_data { 716 atomic_t cpus; 717 int in_sync; 718 unsigned long long fixup_cc; 719 int etr_port; 720 struct etr_aib *etr_aib; 721 }; 722 723 static void clock_sync_cpu(struct clock_sync_data *sync) 724 { 725 atomic_dec(&sync->cpus); 726 enable_sync_clock(); 727 /* 728 * This looks like a busy wait loop but it isn't. etr_sync_cpus 729 * is called on all other cpus while the TOD clocks is stopped. 730 * __udelay will stop the cpu on an enabled wait psw until the 731 * TOD is running again. 732 */ 733 while (sync->in_sync == 0) { 734 __udelay(1); 735 /* 736 * A different cpu changes *in_sync. Therefore use 737 * barrier() to force memory access. 738 */ 739 barrier(); 740 } 741 if (sync->in_sync != 1) 742 /* Didn't work. Clear per-cpu in sync bit again. */ 743 disable_sync_clock(NULL); 744 /* 745 * This round of TOD syncing is done. Set the clock comparator 746 * to the next tick and let the processor continue. 747 */ 748 fixup_clock_comparator(sync->fixup_cc); 749 } 750 751 /* 752 * Sync the TOD clock using the port referred to by aibp. This port 753 * has to be enabled and the other port has to be disabled. The 754 * last eacr update has to be more than 1.6 seconds in the past. 755 */ 756 static int etr_sync_clock(void *data) 757 { 758 static int first; 759 unsigned long long clock, old_clock, clock_delta, delay, delta; 760 struct clock_sync_data *etr_sync; 761 struct etr_aib *sync_port, *aib; 762 int port; 763 int rc; 764 765 etr_sync = data; 766 767 if (xchg(&first, 1) == 1) { 768 /* Slave */ 769 clock_sync_cpu(etr_sync); 770 return 0; 771 } 772 773 /* Wait until all other cpus entered the sync function. */ 774 while (atomic_read(&etr_sync->cpus) != 0) 775 cpu_relax(); 776 777 port = etr_sync->etr_port; 778 aib = etr_sync->etr_aib; 779 sync_port = (port == 0) ? &etr_port0 : &etr_port1; 780 enable_sync_clock(); 781 782 /* Set clock to next OTE. */ 783 __ctl_set_bit(14, 21); 784 __ctl_set_bit(0, 29); 785 clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32; 786 old_clock = get_tod_clock(); 787 if (set_tod_clock(clock) == 0) { 788 __udelay(1); /* Wait for the clock to start. */ 789 __ctl_clear_bit(0, 29); 790 __ctl_clear_bit(14, 21); 791 etr_stetr(aib); 792 /* Adjust Linux timing variables. */ 793 delay = (unsigned long long) 794 (aib->edf2.etv - sync_port->edf2.etv) << 32; 795 delta = adjust_time(old_clock, clock, delay); 796 clock_delta = clock - old_clock; 797 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, 798 &clock_delta); 799 etr_sync->fixup_cc = delta; 800 fixup_clock_comparator(delta); 801 /* Verify that the clock is properly set. */ 802 if (!etr_aib_follows(sync_port, aib, port)) { 803 /* Didn't work. */ 804 disable_sync_clock(NULL); 805 etr_sync->in_sync = -EAGAIN; 806 rc = -EAGAIN; 807 } else { 808 etr_sync->in_sync = 1; 809 rc = 0; 810 } 811 } else { 812 /* Could not set the clock ?!? */ 813 __ctl_clear_bit(0, 29); 814 __ctl_clear_bit(14, 21); 815 disable_sync_clock(NULL); 816 etr_sync->in_sync = -EAGAIN; 817 rc = -EAGAIN; 818 } 819 xchg(&first, 0); 820 return rc; 821 } 822 823 static int etr_sync_clock_stop(struct etr_aib *aib, int port) 824 { 825 struct clock_sync_data etr_sync; 826 struct etr_aib *sync_port; 827 int follows; 828 int rc; 829 830 /* Check if the current aib is adjacent to the sync port aib. */ 831 sync_port = (port == 0) ? &etr_port0 : &etr_port1; 832 follows = etr_aib_follows(sync_port, aib, port); 833 memcpy(sync_port, aib, sizeof(*aib)); 834 if (!follows) 835 return -EAGAIN; 836 memset(&etr_sync, 0, sizeof(etr_sync)); 837 etr_sync.etr_aib = aib; 838 etr_sync.etr_port = port; 839 get_online_cpus(); 840 atomic_set(&etr_sync.cpus, num_online_cpus() - 1); 841 rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask); 842 put_online_cpus(); 843 return rc; 844 } 845 846 /* 847 * Handle the immediate effects of the different events. 848 * The port change event is used for online/offline changes. 849 */ 850 static struct etr_eacr etr_handle_events(struct etr_eacr eacr) 851 { 852 if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) 853 eacr.es = 0; 854 if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) 855 eacr.es = eacr.sl = 0; 856 if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events)) 857 etr_port0_uptodate = etr_port1_uptodate = 0; 858 859 if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) { 860 if (eacr.e0) 861 /* 862 * Port change of an enabled port. We have to 863 * assume that this can have caused an stepping 864 * port switch. 865 */ 866 etr_tolec = get_tod_clock(); 867 eacr.p0 = etr_port0_online; 868 if (!eacr.p0) 869 eacr.e0 = 0; 870 etr_port0_uptodate = 0; 871 } 872 if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) { 873 if (eacr.e1) 874 /* 875 * Port change of an enabled port. We have to 876 * assume that this can have caused an stepping 877 * port switch. 878 */ 879 etr_tolec = get_tod_clock(); 880 eacr.p1 = etr_port1_online; 881 if (!eacr.p1) 882 eacr.e1 = 0; 883 etr_port1_uptodate = 0; 884 } 885 clear_bit(ETR_EVENT_UPDATE, &etr_events); 886 return eacr; 887 } 888 889 /* 890 * Set up a timer that expires after the etr_tolec + 1.6 seconds if 891 * one of the ports needs an update. 892 */ 893 static void etr_set_tolec_timeout(unsigned long long now) 894 { 895 unsigned long micros; 896 897 if ((!etr_eacr.p0 || etr_port0_uptodate) && 898 (!etr_eacr.p1 || etr_port1_uptodate)) 899 return; 900 micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0; 901 micros = (micros > 1600000) ? 0 : 1600000 - micros; 902 mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1); 903 } 904 905 /* 906 * Set up a time that expires after 1/2 second. 907 */ 908 static void etr_set_sync_timeout(void) 909 { 910 mod_timer(&etr_timer, jiffies + HZ/2); 911 } 912 913 /* 914 * Update the aib information for one or both ports. 915 */ 916 static struct etr_eacr etr_handle_update(struct etr_aib *aib, 917 struct etr_eacr eacr) 918 { 919 /* With both ports disabled the aib information is useless. */ 920 if (!eacr.e0 && !eacr.e1) 921 return eacr; 922 923 /* Update port0 or port1 with aib stored in etr_work_fn. */ 924 if (aib->esw.q == 0) { 925 /* Information for port 0 stored. */ 926 if (eacr.p0 && !etr_port0_uptodate) { 927 etr_port0 = *aib; 928 if (etr_port0_online) 929 etr_port0_uptodate = 1; 930 } 931 } else { 932 /* Information for port 1 stored. */ 933 if (eacr.p1 && !etr_port1_uptodate) { 934 etr_port1 = *aib; 935 if (etr_port0_online) 936 etr_port1_uptodate = 1; 937 } 938 } 939 940 /* 941 * Do not try to get the alternate port aib if the clock 942 * is not in sync yet. 943 */ 944 if (!eacr.es || !check_sync_clock()) 945 return eacr; 946 947 /* 948 * If steai is available we can get the information about 949 * the other port immediately. If only stetr is available the 950 * data-port bit toggle has to be used. 951 */ 952 if (etr_steai_available) { 953 if (eacr.p0 && !etr_port0_uptodate) { 954 etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0); 955 etr_port0_uptodate = 1; 956 } 957 if (eacr.p1 && !etr_port1_uptodate) { 958 etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1); 959 etr_port1_uptodate = 1; 960 } 961 } else { 962 /* 963 * One port was updated above, if the other 964 * port is not uptodate toggle dp bit. 965 */ 966 if ((eacr.p0 && !etr_port0_uptodate) || 967 (eacr.p1 && !etr_port1_uptodate)) 968 eacr.dp ^= 1; 969 else 970 eacr.dp = 0; 971 } 972 return eacr; 973 } 974 975 /* 976 * Write new etr control register if it differs from the current one. 977 * Return 1 if etr_tolec has been updated as well. 978 */ 979 static void etr_update_eacr(struct etr_eacr eacr) 980 { 981 int dp_changed; 982 983 if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0) 984 /* No change, return. */ 985 return; 986 /* 987 * The disable of an active port of the change of the data port 988 * bit can/will cause a change in the data port. 989 */ 990 dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 || 991 (etr_eacr.dp ^ eacr.dp) != 0; 992 etr_eacr = eacr; 993 etr_setr(&etr_eacr); 994 if (dp_changed) 995 etr_tolec = get_tod_clock(); 996 } 997 998 /* 999 * ETR work. In this function you'll find the main logic. In 1000 * particular this is the only function that calls etr_update_eacr(), 1001 * it "controls" the etr control register. 1002 */ 1003 static void etr_work_fn(struct work_struct *work) 1004 { 1005 unsigned long long now; 1006 struct etr_eacr eacr; 1007 struct etr_aib aib; 1008 int sync_port; 1009 1010 /* prevent multiple execution. */ 1011 mutex_lock(&etr_work_mutex); 1012 1013 /* Create working copy of etr_eacr. */ 1014 eacr = etr_eacr; 1015 1016 /* Check for the different events and their immediate effects. */ 1017 eacr = etr_handle_events(eacr); 1018 1019 /* Check if ETR is supposed to be active. */ 1020 eacr.ea = eacr.p0 || eacr.p1; 1021 if (!eacr.ea) { 1022 /* Both ports offline. Reset everything. */ 1023 eacr.dp = eacr.es = eacr.sl = 0; 1024 on_each_cpu(disable_sync_clock, NULL, 1); 1025 del_timer_sync(&etr_timer); 1026 etr_update_eacr(eacr); 1027 goto out_unlock; 1028 } 1029 1030 /* Store aib to get the current ETR status word. */ 1031 BUG_ON(etr_stetr(&aib) != 0); 1032 etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */ 1033 now = get_tod_clock(); 1034 1035 /* 1036 * Update the port information if the last stepping port change 1037 * or data port change is older than 1.6 seconds. 1038 */ 1039 if (now >= etr_tolec + (1600000 << 12)) 1040 eacr = etr_handle_update(&aib, eacr); 1041 1042 /* 1043 * Select ports to enable. The preferred synchronization mode is PPS. 1044 * If a port can be enabled depends on a number of things: 1045 * 1) The port needs to be online and uptodate. A port is not 1046 * disabled just because it is not uptodate, but it is only 1047 * enabled if it is uptodate. 1048 * 2) The port needs to have the same mode (pps / etr). 1049 * 3) The port needs to be usable -> etr_port_valid() == 1 1050 * 4) To enable the second port the clock needs to be in sync. 1051 * 5) If both ports are useable and are ETR ports, the network id 1052 * has to be the same. 1053 * The eacr.sl bit is used to indicate etr mode vs. pps mode. 1054 */ 1055 if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) { 1056 eacr.sl = 0; 1057 eacr.e0 = 1; 1058 if (!etr_mode_is_pps(etr_eacr)) 1059 eacr.es = 0; 1060 if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode) 1061 eacr.e1 = 0; 1062 // FIXME: uptodate checks ? 1063 else if (etr_port0_uptodate && etr_port1_uptodate) 1064 eacr.e1 = 1; 1065 sync_port = (etr_port0_uptodate && 1066 etr_port_valid(&etr_port0, 0)) ? 0 : -1; 1067 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) { 1068 eacr.sl = 0; 1069 eacr.e0 = 0; 1070 eacr.e1 = 1; 1071 if (!etr_mode_is_pps(etr_eacr)) 1072 eacr.es = 0; 1073 sync_port = (etr_port1_uptodate && 1074 etr_port_valid(&etr_port1, 1)) ? 1 : -1; 1075 } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) { 1076 eacr.sl = 1; 1077 eacr.e0 = 1; 1078 if (!etr_mode_is_etr(etr_eacr)) 1079 eacr.es = 0; 1080 if (!eacr.es || !eacr.p1 || 1081 aib.esw.psc1 != etr_lpsc_operational_alt) 1082 eacr.e1 = 0; 1083 else if (etr_port0_uptodate && etr_port1_uptodate && 1084 etr_compare_network(&etr_port0, &etr_port1)) 1085 eacr.e1 = 1; 1086 sync_port = (etr_port0_uptodate && 1087 etr_port_valid(&etr_port0, 0)) ? 0 : -1; 1088 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) { 1089 eacr.sl = 1; 1090 eacr.e0 = 0; 1091 eacr.e1 = 1; 1092 if (!etr_mode_is_etr(etr_eacr)) 1093 eacr.es = 0; 1094 sync_port = (etr_port1_uptodate && 1095 etr_port_valid(&etr_port1, 1)) ? 1 : -1; 1096 } else { 1097 /* Both ports not usable. */ 1098 eacr.es = eacr.sl = 0; 1099 sync_port = -1; 1100 } 1101 1102 /* 1103 * If the clock is in sync just update the eacr and return. 1104 * If there is no valid sync port wait for a port update. 1105 */ 1106 if ((eacr.es && check_sync_clock()) || sync_port < 0) { 1107 etr_update_eacr(eacr); 1108 etr_set_tolec_timeout(now); 1109 goto out_unlock; 1110 } 1111 1112 /* 1113 * Prepare control register for clock syncing 1114 * (reset data port bit, set sync check control. 1115 */ 1116 eacr.dp = 0; 1117 eacr.es = 1; 1118 1119 /* 1120 * Update eacr and try to synchronize the clock. If the update 1121 * of eacr caused a stepping port switch (or if we have to 1122 * assume that a stepping port switch has occurred) or the 1123 * clock syncing failed, reset the sync check control bit 1124 * and set up a timer to try again after 0.5 seconds 1125 */ 1126 etr_update_eacr(eacr); 1127 if (now < etr_tolec + (1600000 << 12) || 1128 etr_sync_clock_stop(&aib, sync_port) != 0) { 1129 /* Sync failed. Try again in 1/2 second. */ 1130 eacr.es = 0; 1131 etr_update_eacr(eacr); 1132 etr_set_sync_timeout(); 1133 } else 1134 etr_set_tolec_timeout(now); 1135 out_unlock: 1136 mutex_unlock(&etr_work_mutex); 1137 } 1138 1139 /* 1140 * Sysfs interface functions 1141 */ 1142 static struct bus_type etr_subsys = { 1143 .name = "etr", 1144 .dev_name = "etr", 1145 }; 1146 1147 static struct device etr_port0_dev = { 1148 .id = 0, 1149 .bus = &etr_subsys, 1150 }; 1151 1152 static struct device etr_port1_dev = { 1153 .id = 1, 1154 .bus = &etr_subsys, 1155 }; 1156 1157 /* 1158 * ETR subsys attributes 1159 */ 1160 static ssize_t etr_stepping_port_show(struct device *dev, 1161 struct device_attribute *attr, 1162 char *buf) 1163 { 1164 return sprintf(buf, "%i\n", etr_port0.esw.p); 1165 } 1166 1167 static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL); 1168 1169 static ssize_t etr_stepping_mode_show(struct device *dev, 1170 struct device_attribute *attr, 1171 char *buf) 1172 { 1173 char *mode_str; 1174 1175 if (etr_mode_is_pps(etr_eacr)) 1176 mode_str = "pps"; 1177 else if (etr_mode_is_etr(etr_eacr)) 1178 mode_str = "etr"; 1179 else 1180 mode_str = "local"; 1181 return sprintf(buf, "%s\n", mode_str); 1182 } 1183 1184 static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL); 1185 1186 /* 1187 * ETR port attributes 1188 */ 1189 static inline struct etr_aib *etr_aib_from_dev(struct device *dev) 1190 { 1191 if (dev == &etr_port0_dev) 1192 return etr_port0_online ? &etr_port0 : NULL; 1193 else 1194 return etr_port1_online ? &etr_port1 : NULL; 1195 } 1196 1197 static ssize_t etr_online_show(struct device *dev, 1198 struct device_attribute *attr, 1199 char *buf) 1200 { 1201 unsigned int online; 1202 1203 online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online; 1204 return sprintf(buf, "%i\n", online); 1205 } 1206 1207 static ssize_t etr_online_store(struct device *dev, 1208 struct device_attribute *attr, 1209 const char *buf, size_t count) 1210 { 1211 unsigned int value; 1212 1213 value = simple_strtoul(buf, NULL, 0); 1214 if (value != 0 && value != 1) 1215 return -EINVAL; 1216 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags)) 1217 return -EOPNOTSUPP; 1218 mutex_lock(&clock_sync_mutex); 1219 if (dev == &etr_port0_dev) { 1220 if (etr_port0_online == value) 1221 goto out; /* Nothing to do. */ 1222 etr_port0_online = value; 1223 if (etr_port0_online && etr_port1_online) 1224 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1225 else 1226 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1227 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 1228 queue_work(time_sync_wq, &etr_work); 1229 } else { 1230 if (etr_port1_online == value) 1231 goto out; /* Nothing to do. */ 1232 etr_port1_online = value; 1233 if (etr_port0_online && etr_port1_online) 1234 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1235 else 1236 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1237 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 1238 queue_work(time_sync_wq, &etr_work); 1239 } 1240 out: 1241 mutex_unlock(&clock_sync_mutex); 1242 return count; 1243 } 1244 1245 static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store); 1246 1247 static ssize_t etr_stepping_control_show(struct device *dev, 1248 struct device_attribute *attr, 1249 char *buf) 1250 { 1251 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ? 1252 etr_eacr.e0 : etr_eacr.e1); 1253 } 1254 1255 static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL); 1256 1257 static ssize_t etr_mode_code_show(struct device *dev, 1258 struct device_attribute *attr, char *buf) 1259 { 1260 if (!etr_port0_online && !etr_port1_online) 1261 /* Status word is not uptodate if both ports are offline. */ 1262 return -ENODATA; 1263 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ? 1264 etr_port0.esw.psc0 : etr_port0.esw.psc1); 1265 } 1266 1267 static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL); 1268 1269 static ssize_t etr_untuned_show(struct device *dev, 1270 struct device_attribute *attr, char *buf) 1271 { 1272 struct etr_aib *aib = etr_aib_from_dev(dev); 1273 1274 if (!aib || !aib->slsw.v1) 1275 return -ENODATA; 1276 return sprintf(buf, "%i\n", aib->edf1.u); 1277 } 1278 1279 static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL); 1280 1281 static ssize_t etr_network_id_show(struct device *dev, 1282 struct device_attribute *attr, char *buf) 1283 { 1284 struct etr_aib *aib = etr_aib_from_dev(dev); 1285 1286 if (!aib || !aib->slsw.v1) 1287 return -ENODATA; 1288 return sprintf(buf, "%i\n", aib->edf1.net_id); 1289 } 1290 1291 static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL); 1292 1293 static ssize_t etr_id_show(struct device *dev, 1294 struct device_attribute *attr, char *buf) 1295 { 1296 struct etr_aib *aib = etr_aib_from_dev(dev); 1297 1298 if (!aib || !aib->slsw.v1) 1299 return -ENODATA; 1300 return sprintf(buf, "%i\n", aib->edf1.etr_id); 1301 } 1302 1303 static DEVICE_ATTR(id, 0400, etr_id_show, NULL); 1304 1305 static ssize_t etr_port_number_show(struct device *dev, 1306 struct device_attribute *attr, char *buf) 1307 { 1308 struct etr_aib *aib = etr_aib_from_dev(dev); 1309 1310 if (!aib || !aib->slsw.v1) 1311 return -ENODATA; 1312 return sprintf(buf, "%i\n", aib->edf1.etr_pn); 1313 } 1314 1315 static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL); 1316 1317 static ssize_t etr_coupled_show(struct device *dev, 1318 struct device_attribute *attr, char *buf) 1319 { 1320 struct etr_aib *aib = etr_aib_from_dev(dev); 1321 1322 if (!aib || !aib->slsw.v3) 1323 return -ENODATA; 1324 return sprintf(buf, "%i\n", aib->edf3.c); 1325 } 1326 1327 static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL); 1328 1329 static ssize_t etr_local_time_show(struct device *dev, 1330 struct device_attribute *attr, char *buf) 1331 { 1332 struct etr_aib *aib = etr_aib_from_dev(dev); 1333 1334 if (!aib || !aib->slsw.v3) 1335 return -ENODATA; 1336 return sprintf(buf, "%i\n", aib->edf3.blto); 1337 } 1338 1339 static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL); 1340 1341 static ssize_t etr_utc_offset_show(struct device *dev, 1342 struct device_attribute *attr, char *buf) 1343 { 1344 struct etr_aib *aib = etr_aib_from_dev(dev); 1345 1346 if (!aib || !aib->slsw.v3) 1347 return -ENODATA; 1348 return sprintf(buf, "%i\n", aib->edf3.buo); 1349 } 1350 1351 static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL); 1352 1353 static struct device_attribute *etr_port_attributes[] = { 1354 &dev_attr_online, 1355 &dev_attr_stepping_control, 1356 &dev_attr_state_code, 1357 &dev_attr_untuned, 1358 &dev_attr_network, 1359 &dev_attr_id, 1360 &dev_attr_port, 1361 &dev_attr_coupled, 1362 &dev_attr_local_time, 1363 &dev_attr_utc_offset, 1364 NULL 1365 }; 1366 1367 static int __init etr_register_port(struct device *dev) 1368 { 1369 struct device_attribute **attr; 1370 int rc; 1371 1372 rc = device_register(dev); 1373 if (rc) 1374 goto out; 1375 for (attr = etr_port_attributes; *attr; attr++) { 1376 rc = device_create_file(dev, *attr); 1377 if (rc) 1378 goto out_unreg; 1379 } 1380 return 0; 1381 out_unreg: 1382 for (; attr >= etr_port_attributes; attr--) 1383 device_remove_file(dev, *attr); 1384 device_unregister(dev); 1385 out: 1386 return rc; 1387 } 1388 1389 static void __init etr_unregister_port(struct device *dev) 1390 { 1391 struct device_attribute **attr; 1392 1393 for (attr = etr_port_attributes; *attr; attr++) 1394 device_remove_file(dev, *attr); 1395 device_unregister(dev); 1396 } 1397 1398 static int __init etr_init_sysfs(void) 1399 { 1400 int rc; 1401 1402 rc = subsys_system_register(&etr_subsys, NULL); 1403 if (rc) 1404 goto out; 1405 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port); 1406 if (rc) 1407 goto out_unreg_subsys; 1408 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode); 1409 if (rc) 1410 goto out_remove_stepping_port; 1411 rc = etr_register_port(&etr_port0_dev); 1412 if (rc) 1413 goto out_remove_stepping_mode; 1414 rc = etr_register_port(&etr_port1_dev); 1415 if (rc) 1416 goto out_remove_port0; 1417 return 0; 1418 1419 out_remove_port0: 1420 etr_unregister_port(&etr_port0_dev); 1421 out_remove_stepping_mode: 1422 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode); 1423 out_remove_stepping_port: 1424 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port); 1425 out_unreg_subsys: 1426 bus_unregister(&etr_subsys); 1427 out: 1428 return rc; 1429 } 1430 1431 device_initcall(etr_init_sysfs); 1432 1433 /* 1434 * Server Time Protocol (STP) code. 1435 */ 1436 static int stp_online; 1437 static struct stp_sstpi stp_info; 1438 static void *stp_page; 1439 1440 static void stp_work_fn(struct work_struct *work); 1441 static DEFINE_MUTEX(stp_work_mutex); 1442 static DECLARE_WORK(stp_work, stp_work_fn); 1443 static struct timer_list stp_timer; 1444 1445 static int __init early_parse_stp(char *p) 1446 { 1447 if (strncmp(p, "off", 3) == 0) 1448 stp_online = 0; 1449 else if (strncmp(p, "on", 2) == 0) 1450 stp_online = 1; 1451 return 0; 1452 } 1453 early_param("stp", early_parse_stp); 1454 1455 /* 1456 * Reset STP attachment. 1457 */ 1458 static void __init stp_reset(void) 1459 { 1460 int rc; 1461 1462 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 1463 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000); 1464 if (rc == 0) 1465 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 1466 else if (stp_online) { 1467 pr_warning("The real or virtual hardware system does " 1468 "not provide an STP interface\n"); 1469 free_page((unsigned long) stp_page); 1470 stp_page = NULL; 1471 stp_online = 0; 1472 } 1473 } 1474 1475 static void stp_timeout(unsigned long dummy) 1476 { 1477 queue_work(time_sync_wq, &stp_work); 1478 } 1479 1480 static int __init stp_init(void) 1481 { 1482 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 1483 return 0; 1484 setup_timer(&stp_timer, stp_timeout, 0UL); 1485 time_init_wq(); 1486 if (!stp_online) 1487 return 0; 1488 queue_work(time_sync_wq, &stp_work); 1489 return 0; 1490 } 1491 1492 arch_initcall(stp_init); 1493 1494 /* 1495 * STP timing alert. There are three causes: 1496 * 1) timing status change 1497 * 2) link availability change 1498 * 3) time control parameter change 1499 * In all three cases we are only interested in the clock source state. 1500 * If a STP clock source is now available use it. 1501 */ 1502 static void stp_timing_alert(struct stp_irq_parm *intparm) 1503 { 1504 if (intparm->tsc || intparm->lac || intparm->tcpc) 1505 queue_work(time_sync_wq, &stp_work); 1506 } 1507 1508 /* 1509 * STP sync check machine check. This is called when the timing state 1510 * changes from the synchronized state to the unsynchronized state. 1511 * After a STP sync check the clock is not in sync. The machine check 1512 * is broadcasted to all cpus at the same time. 1513 */ 1514 int stp_sync_check(void) 1515 { 1516 disable_sync_clock(NULL); 1517 return 1; 1518 } 1519 1520 /* 1521 * STP island condition machine check. This is called when an attached 1522 * server attempts to communicate over an STP link and the servers 1523 * have matching CTN ids and have a valid stratum-1 configuration 1524 * but the configurations do not match. 1525 */ 1526 int stp_island_check(void) 1527 { 1528 disable_sync_clock(NULL); 1529 return 1; 1530 } 1531 1532 void stp_queue_work(void) 1533 { 1534 queue_work(time_sync_wq, &stp_work); 1535 } 1536 1537 static int stp_sync_clock(void *data) 1538 { 1539 static int first; 1540 unsigned long long old_clock, delta, new_clock, clock_delta; 1541 struct clock_sync_data *stp_sync; 1542 int rc; 1543 1544 stp_sync = data; 1545 1546 if (xchg(&first, 1) == 1) { 1547 /* Slave */ 1548 clock_sync_cpu(stp_sync); 1549 return 0; 1550 } 1551 1552 /* Wait until all other cpus entered the sync function. */ 1553 while (atomic_read(&stp_sync->cpus) != 0) 1554 cpu_relax(); 1555 1556 enable_sync_clock(); 1557 1558 rc = 0; 1559 if (stp_info.todoff[0] || stp_info.todoff[1] || 1560 stp_info.todoff[2] || stp_info.todoff[3] || 1561 stp_info.tmd != 2) { 1562 old_clock = get_tod_clock(); 1563 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0); 1564 if (rc == 0) { 1565 new_clock = get_tod_clock(); 1566 delta = adjust_time(old_clock, new_clock, 0); 1567 clock_delta = new_clock - old_clock; 1568 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 1569 0, &clock_delta); 1570 fixup_clock_comparator(delta); 1571 rc = chsc_sstpi(stp_page, &stp_info, 1572 sizeof(struct stp_sstpi)); 1573 if (rc == 0 && stp_info.tmd != 2) 1574 rc = -EAGAIN; 1575 } 1576 } 1577 if (rc) { 1578 disable_sync_clock(NULL); 1579 stp_sync->in_sync = -EAGAIN; 1580 } else 1581 stp_sync->in_sync = 1; 1582 xchg(&first, 0); 1583 return 0; 1584 } 1585 1586 /* 1587 * STP work. Check for the STP state and take over the clock 1588 * synchronization if the STP clock source is usable. 1589 */ 1590 static void stp_work_fn(struct work_struct *work) 1591 { 1592 struct clock_sync_data stp_sync; 1593 int rc; 1594 1595 /* prevent multiple execution. */ 1596 mutex_lock(&stp_work_mutex); 1597 1598 if (!stp_online) { 1599 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000); 1600 del_timer_sync(&stp_timer); 1601 goto out_unlock; 1602 } 1603 1604 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0); 1605 if (rc) 1606 goto out_unlock; 1607 1608 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 1609 if (rc || stp_info.c == 0) 1610 goto out_unlock; 1611 1612 /* Skip synchronization if the clock is already in sync. */ 1613 if (check_sync_clock()) 1614 goto out_unlock; 1615 1616 memset(&stp_sync, 0, sizeof(stp_sync)); 1617 get_online_cpus(); 1618 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 1619 stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask); 1620 put_online_cpus(); 1621 1622 if (!check_sync_clock()) 1623 /* 1624 * There is a usable clock but the synchonization failed. 1625 * Retry after a second. 1626 */ 1627 mod_timer(&stp_timer, jiffies + HZ); 1628 1629 out_unlock: 1630 mutex_unlock(&stp_work_mutex); 1631 } 1632 1633 /* 1634 * STP subsys sysfs interface functions 1635 */ 1636 static struct bus_type stp_subsys = { 1637 .name = "stp", 1638 .dev_name = "stp", 1639 }; 1640 1641 static ssize_t stp_ctn_id_show(struct device *dev, 1642 struct device_attribute *attr, 1643 char *buf) 1644 { 1645 if (!stp_online) 1646 return -ENODATA; 1647 return sprintf(buf, "%016llx\n", 1648 *(unsigned long long *) stp_info.ctnid); 1649 } 1650 1651 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL); 1652 1653 static ssize_t stp_ctn_type_show(struct device *dev, 1654 struct device_attribute *attr, 1655 char *buf) 1656 { 1657 if (!stp_online) 1658 return -ENODATA; 1659 return sprintf(buf, "%i\n", stp_info.ctn); 1660 } 1661 1662 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL); 1663 1664 static ssize_t stp_dst_offset_show(struct device *dev, 1665 struct device_attribute *attr, 1666 char *buf) 1667 { 1668 if (!stp_online || !(stp_info.vbits & 0x2000)) 1669 return -ENODATA; 1670 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); 1671 } 1672 1673 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL); 1674 1675 static ssize_t stp_leap_seconds_show(struct device *dev, 1676 struct device_attribute *attr, 1677 char *buf) 1678 { 1679 if (!stp_online || !(stp_info.vbits & 0x8000)) 1680 return -ENODATA; 1681 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); 1682 } 1683 1684 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL); 1685 1686 static ssize_t stp_stratum_show(struct device *dev, 1687 struct device_attribute *attr, 1688 char *buf) 1689 { 1690 if (!stp_online) 1691 return -ENODATA; 1692 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); 1693 } 1694 1695 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL); 1696 1697 static ssize_t stp_time_offset_show(struct device *dev, 1698 struct device_attribute *attr, 1699 char *buf) 1700 { 1701 if (!stp_online || !(stp_info.vbits & 0x0800)) 1702 return -ENODATA; 1703 return sprintf(buf, "%i\n", (int) stp_info.tto); 1704 } 1705 1706 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL); 1707 1708 static ssize_t stp_time_zone_offset_show(struct device *dev, 1709 struct device_attribute *attr, 1710 char *buf) 1711 { 1712 if (!stp_online || !(stp_info.vbits & 0x4000)) 1713 return -ENODATA; 1714 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); 1715 } 1716 1717 static DEVICE_ATTR(time_zone_offset, 0400, 1718 stp_time_zone_offset_show, NULL); 1719 1720 static ssize_t stp_timing_mode_show(struct device *dev, 1721 struct device_attribute *attr, 1722 char *buf) 1723 { 1724 if (!stp_online) 1725 return -ENODATA; 1726 return sprintf(buf, "%i\n", stp_info.tmd); 1727 } 1728 1729 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL); 1730 1731 static ssize_t stp_timing_state_show(struct device *dev, 1732 struct device_attribute *attr, 1733 char *buf) 1734 { 1735 if (!stp_online) 1736 return -ENODATA; 1737 return sprintf(buf, "%i\n", stp_info.tst); 1738 } 1739 1740 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL); 1741 1742 static ssize_t stp_online_show(struct device *dev, 1743 struct device_attribute *attr, 1744 char *buf) 1745 { 1746 return sprintf(buf, "%i\n", stp_online); 1747 } 1748 1749 static ssize_t stp_online_store(struct device *dev, 1750 struct device_attribute *attr, 1751 const char *buf, size_t count) 1752 { 1753 unsigned int value; 1754 1755 value = simple_strtoul(buf, NULL, 0); 1756 if (value != 0 && value != 1) 1757 return -EINVAL; 1758 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 1759 return -EOPNOTSUPP; 1760 mutex_lock(&clock_sync_mutex); 1761 stp_online = value; 1762 if (stp_online) 1763 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 1764 else 1765 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 1766 queue_work(time_sync_wq, &stp_work); 1767 mutex_unlock(&clock_sync_mutex); 1768 return count; 1769 } 1770 1771 /* 1772 * Can't use DEVICE_ATTR because the attribute should be named 1773 * stp/online but dev_attr_online already exists in this file .. 1774 */ 1775 static struct device_attribute dev_attr_stp_online = { 1776 .attr = { .name = "online", .mode = 0600 }, 1777 .show = stp_online_show, 1778 .store = stp_online_store, 1779 }; 1780 1781 static struct device_attribute *stp_attributes[] = { 1782 &dev_attr_ctn_id, 1783 &dev_attr_ctn_type, 1784 &dev_attr_dst_offset, 1785 &dev_attr_leap_seconds, 1786 &dev_attr_stp_online, 1787 &dev_attr_stratum, 1788 &dev_attr_time_offset, 1789 &dev_attr_time_zone_offset, 1790 &dev_attr_timing_mode, 1791 &dev_attr_timing_state, 1792 NULL 1793 }; 1794 1795 static int __init stp_init_sysfs(void) 1796 { 1797 struct device_attribute **attr; 1798 int rc; 1799 1800 rc = subsys_system_register(&stp_subsys, NULL); 1801 if (rc) 1802 goto out; 1803 for (attr = stp_attributes; *attr; attr++) { 1804 rc = device_create_file(stp_subsys.dev_root, *attr); 1805 if (rc) 1806 goto out_unreg; 1807 } 1808 return 0; 1809 out_unreg: 1810 for (; attr >= stp_attributes; attr--) 1811 device_remove_file(stp_subsys.dev_root, *attr); 1812 bus_unregister(&stp_subsys); 1813 out: 1814 return rc; 1815 } 1816 1817 device_initcall(stp_init_sysfs); 1818