xref: /openbmc/linux/arch/s390/kernel/time.c (revision 81d67439)
1 /*
2  *  arch/s390/kernel/time.c
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/module.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/param.h>
24 #include <linux/string.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/cpu.h>
28 #include <linux/stop_machine.h>
29 #include <linux/time.h>
30 #include <linux/sysdev.h>
31 #include <linux/delay.h>
32 #include <linux/init.h>
33 #include <linux/smp.h>
34 #include <linux/types.h>
35 #include <linux/profile.h>
36 #include <linux/timex.h>
37 #include <linux/notifier.h>
38 #include <linux/clocksource.h>
39 #include <linux/clockchips.h>
40 #include <linux/gfp.h>
41 #include <linux/kprobes.h>
42 #include <asm/uaccess.h>
43 #include <asm/delay.h>
44 #include <asm/div64.h>
45 #include <asm/vdso.h>
46 #include <asm/irq.h>
47 #include <asm/irq_regs.h>
48 #include <asm/timer.h>
49 #include <asm/etr.h>
50 #include <asm/cio.h>
51 
52 /* change this if you have some constant time drift */
53 #define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
54 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
55 
56 u64 sched_clock_base_cc = -1;	/* Force to data section. */
57 EXPORT_SYMBOL_GPL(sched_clock_base_cc);
58 
59 static DEFINE_PER_CPU(struct clock_event_device, comparators);
60 
61 /*
62  * Scheduler clock - returns current time in nanosec units.
63  */
64 unsigned long long notrace __kprobes sched_clock(void)
65 {
66 	return (get_clock_monotonic() * 125) >> 9;
67 }
68 
69 /*
70  * Monotonic_clock - returns # of nanoseconds passed since time_init()
71  */
72 unsigned long long monotonic_clock(void)
73 {
74 	return sched_clock();
75 }
76 EXPORT_SYMBOL(monotonic_clock);
77 
78 void tod_to_timeval(__u64 todval, struct timespec *xt)
79 {
80 	unsigned long long sec;
81 
82 	sec = todval >> 12;
83 	do_div(sec, 1000000);
84 	xt->tv_sec = sec;
85 	todval -= (sec * 1000000) << 12;
86 	xt->tv_nsec = ((todval * 1000) >> 12);
87 }
88 EXPORT_SYMBOL(tod_to_timeval);
89 
90 void clock_comparator_work(void)
91 {
92 	struct clock_event_device *cd;
93 
94 	S390_lowcore.clock_comparator = -1ULL;
95 	set_clock_comparator(S390_lowcore.clock_comparator);
96 	cd = &__get_cpu_var(comparators);
97 	cd->event_handler(cd);
98 }
99 
100 /*
101  * Fixup the clock comparator.
102  */
103 static void fixup_clock_comparator(unsigned long long delta)
104 {
105 	/* If nobody is waiting there's nothing to fix. */
106 	if (S390_lowcore.clock_comparator == -1ULL)
107 		return;
108 	S390_lowcore.clock_comparator += delta;
109 	set_clock_comparator(S390_lowcore.clock_comparator);
110 }
111 
112 static int s390_next_event(unsigned long delta,
113 			   struct clock_event_device *evt)
114 {
115 	S390_lowcore.clock_comparator = get_clock() + delta;
116 	set_clock_comparator(S390_lowcore.clock_comparator);
117 	return 0;
118 }
119 
120 static void s390_set_mode(enum clock_event_mode mode,
121 			  struct clock_event_device *evt)
122 {
123 }
124 
125 /*
126  * Set up lowcore and control register of the current cpu to
127  * enable TOD clock and clock comparator interrupts.
128  */
129 void init_cpu_timer(void)
130 {
131 	struct clock_event_device *cd;
132 	int cpu;
133 
134 	S390_lowcore.clock_comparator = -1ULL;
135 	set_clock_comparator(S390_lowcore.clock_comparator);
136 
137 	cpu = smp_processor_id();
138 	cd = &per_cpu(comparators, cpu);
139 	cd->name		= "comparator";
140 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
141 	cd->mult		= 16777;
142 	cd->shift		= 12;
143 	cd->min_delta_ns	= 1;
144 	cd->max_delta_ns	= LONG_MAX;
145 	cd->rating		= 400;
146 	cd->cpumask		= cpumask_of(cpu);
147 	cd->set_next_event	= s390_next_event;
148 	cd->set_mode		= s390_set_mode;
149 
150 	clockevents_register_device(cd);
151 
152 	/* Enable clock comparator timer interrupt. */
153 	__ctl_set_bit(0,11);
154 
155 	/* Always allow the timing alert external interrupt. */
156 	__ctl_set_bit(0, 4);
157 }
158 
159 static void clock_comparator_interrupt(unsigned int ext_int_code,
160 				       unsigned int param32,
161 				       unsigned long param64)
162 {
163 	kstat_cpu(smp_processor_id()).irqs[EXTINT_CLK]++;
164 	if (S390_lowcore.clock_comparator == -1ULL)
165 		set_clock_comparator(S390_lowcore.clock_comparator);
166 }
167 
168 static void etr_timing_alert(struct etr_irq_parm *);
169 static void stp_timing_alert(struct stp_irq_parm *);
170 
171 static void timing_alert_interrupt(unsigned int ext_int_code,
172 				   unsigned int param32, unsigned long param64)
173 {
174 	kstat_cpu(smp_processor_id()).irqs[EXTINT_TLA]++;
175 	if (param32 & 0x00c40000)
176 		etr_timing_alert((struct etr_irq_parm *) &param32);
177 	if (param32 & 0x00038000)
178 		stp_timing_alert((struct stp_irq_parm *) &param32);
179 }
180 
181 static void etr_reset(void);
182 static void stp_reset(void);
183 
184 void read_persistent_clock(struct timespec *ts)
185 {
186 	tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, ts);
187 }
188 
189 void read_boot_clock(struct timespec *ts)
190 {
191 	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
192 }
193 
194 static cycle_t read_tod_clock(struct clocksource *cs)
195 {
196 	return get_clock();
197 }
198 
199 static struct clocksource clocksource_tod = {
200 	.name		= "tod",
201 	.rating		= 400,
202 	.read		= read_tod_clock,
203 	.mask		= -1ULL,
204 	.mult		= 1000,
205 	.shift		= 12,
206 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
207 };
208 
209 struct clocksource * __init clocksource_default_clock(void)
210 {
211 	return &clocksource_tod;
212 }
213 
214 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
215 			struct clocksource *clock, u32 mult)
216 {
217 	if (clock != &clocksource_tod)
218 		return;
219 
220 	/* Make userspace gettimeofday spin until we're done. */
221 	++vdso_data->tb_update_count;
222 	smp_wmb();
223 	vdso_data->xtime_tod_stamp = clock->cycle_last;
224 	vdso_data->xtime_clock_sec = wall_time->tv_sec;
225 	vdso_data->xtime_clock_nsec = wall_time->tv_nsec;
226 	vdso_data->wtom_clock_sec = wtm->tv_sec;
227 	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
228 	vdso_data->ntp_mult = mult;
229 	smp_wmb();
230 	++vdso_data->tb_update_count;
231 }
232 
233 extern struct timezone sys_tz;
234 
235 void update_vsyscall_tz(void)
236 {
237 	/* Make userspace gettimeofday spin until we're done. */
238 	++vdso_data->tb_update_count;
239 	smp_wmb();
240 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
241 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
242 	smp_wmb();
243 	++vdso_data->tb_update_count;
244 }
245 
246 /*
247  * Initialize the TOD clock and the CPU timer of
248  * the boot cpu.
249  */
250 void __init time_init(void)
251 {
252 	/* Reset time synchronization interfaces. */
253 	etr_reset();
254 	stp_reset();
255 
256 	/* request the clock comparator external interrupt */
257 	if (register_external_interrupt(0x1004, clock_comparator_interrupt))
258                 panic("Couldn't request external interrupt 0x1004");
259 
260 	/* request the timing alert external interrupt */
261 	if (register_external_interrupt(0x1406, timing_alert_interrupt))
262 		panic("Couldn't request external interrupt 0x1406");
263 
264 	if (clocksource_register(&clocksource_tod) != 0)
265 		panic("Could not register TOD clock source");
266 
267 	/* Enable TOD clock interrupts on the boot cpu. */
268 	init_cpu_timer();
269 
270 	/* Enable cpu timer interrupts on the boot cpu. */
271 	vtime_init();
272 }
273 
274 /*
275  * The time is "clock". old is what we think the time is.
276  * Adjust the value by a multiple of jiffies and add the delta to ntp.
277  * "delay" is an approximation how long the synchronization took. If
278  * the time correction is positive, then "delay" is subtracted from
279  * the time difference and only the remaining part is passed to ntp.
280  */
281 static unsigned long long adjust_time(unsigned long long old,
282 				      unsigned long long clock,
283 				      unsigned long long delay)
284 {
285 	unsigned long long delta, ticks;
286 	struct timex adjust;
287 
288 	if (clock > old) {
289 		/* It is later than we thought. */
290 		delta = ticks = clock - old;
291 		delta = ticks = (delta < delay) ? 0 : delta - delay;
292 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
293 		adjust.offset = ticks * (1000000 / HZ);
294 	} else {
295 		/* It is earlier than we thought. */
296 		delta = ticks = old - clock;
297 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
298 		delta = -delta;
299 		adjust.offset = -ticks * (1000000 / HZ);
300 	}
301 	sched_clock_base_cc += delta;
302 	if (adjust.offset != 0) {
303 		pr_notice("The ETR interface has adjusted the clock "
304 			  "by %li microseconds\n", adjust.offset);
305 		adjust.modes = ADJ_OFFSET_SINGLESHOT;
306 		do_adjtimex(&adjust);
307 	}
308 	return delta;
309 }
310 
311 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
312 static DEFINE_MUTEX(clock_sync_mutex);
313 static unsigned long clock_sync_flags;
314 
315 #define CLOCK_SYNC_HAS_ETR	0
316 #define CLOCK_SYNC_HAS_STP	1
317 #define CLOCK_SYNC_ETR		2
318 #define CLOCK_SYNC_STP		3
319 
320 /*
321  * The synchronous get_clock function. It will write the current clock
322  * value to the clock pointer and return 0 if the clock is in sync with
323  * the external time source. If the clock mode is local it will return
324  * -ENOSYS and -EAGAIN if the clock is not in sync with the external
325  * reference.
326  */
327 int get_sync_clock(unsigned long long *clock)
328 {
329 	atomic_t *sw_ptr;
330 	unsigned int sw0, sw1;
331 
332 	sw_ptr = &get_cpu_var(clock_sync_word);
333 	sw0 = atomic_read(sw_ptr);
334 	*clock = get_clock();
335 	sw1 = atomic_read(sw_ptr);
336 	put_cpu_var(clock_sync_word);
337 	if (sw0 == sw1 && (sw0 & 0x80000000U))
338 		/* Success: time is in sync. */
339 		return 0;
340 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
341 	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
342 		return -ENOSYS;
343 	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
344 	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
345 		return -EACCES;
346 	return -EAGAIN;
347 }
348 EXPORT_SYMBOL(get_sync_clock);
349 
350 /*
351  * Make get_sync_clock return -EAGAIN.
352  */
353 static void disable_sync_clock(void *dummy)
354 {
355 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
356 	/*
357 	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
358 	 * fail until the sync bit is turned back on. In addition
359 	 * increase the "sequence" counter to avoid the race of an
360 	 * etr event and the complete recovery against get_sync_clock.
361 	 */
362 	atomic_clear_mask(0x80000000, sw_ptr);
363 	atomic_inc(sw_ptr);
364 }
365 
366 /*
367  * Make get_sync_clock return 0 again.
368  * Needs to be called from a context disabled for preemption.
369  */
370 static void enable_sync_clock(void)
371 {
372 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
373 	atomic_set_mask(0x80000000, sw_ptr);
374 }
375 
376 /*
377  * Function to check if the clock is in sync.
378  */
379 static inline int check_sync_clock(void)
380 {
381 	atomic_t *sw_ptr;
382 	int rc;
383 
384 	sw_ptr = &get_cpu_var(clock_sync_word);
385 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
386 	put_cpu_var(clock_sync_word);
387 	return rc;
388 }
389 
390 /* Single threaded workqueue used for etr and stp sync events */
391 static struct workqueue_struct *time_sync_wq;
392 
393 static void __init time_init_wq(void)
394 {
395 	if (time_sync_wq)
396 		return;
397 	time_sync_wq = create_singlethread_workqueue("timesync");
398 }
399 
400 /*
401  * External Time Reference (ETR) code.
402  */
403 static int etr_port0_online;
404 static int etr_port1_online;
405 static int etr_steai_available;
406 
407 static int __init early_parse_etr(char *p)
408 {
409 	if (strncmp(p, "off", 3) == 0)
410 		etr_port0_online = etr_port1_online = 0;
411 	else if (strncmp(p, "port0", 5) == 0)
412 		etr_port0_online = 1;
413 	else if (strncmp(p, "port1", 5) == 0)
414 		etr_port1_online = 1;
415 	else if (strncmp(p, "on", 2) == 0)
416 		etr_port0_online = etr_port1_online = 1;
417 	return 0;
418 }
419 early_param("etr", early_parse_etr);
420 
421 enum etr_event {
422 	ETR_EVENT_PORT0_CHANGE,
423 	ETR_EVENT_PORT1_CHANGE,
424 	ETR_EVENT_PORT_ALERT,
425 	ETR_EVENT_SYNC_CHECK,
426 	ETR_EVENT_SWITCH_LOCAL,
427 	ETR_EVENT_UPDATE,
428 };
429 
430 /*
431  * Valid bit combinations of the eacr register are (x = don't care):
432  * e0 e1 dp p0 p1 ea es sl
433  *  0  0  x  0	0  0  0  0  initial, disabled state
434  *  0  0  x  0	1  1  0  0  port 1 online
435  *  0  0  x  1	0  1  0  0  port 0 online
436  *  0  0  x  1	1  1  0  0  both ports online
437  *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
438  *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
439  *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
440  *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
441  *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
442  *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
443  *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
444  *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
445  *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
446  *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
447  *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
448  *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
449  *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
450  *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
451  *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
452  *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
453  */
454 static struct etr_eacr etr_eacr;
455 static u64 etr_tolec;			/* time of last eacr update */
456 static struct etr_aib etr_port0;
457 static int etr_port0_uptodate;
458 static struct etr_aib etr_port1;
459 static int etr_port1_uptodate;
460 static unsigned long etr_events;
461 static struct timer_list etr_timer;
462 
463 static void etr_timeout(unsigned long dummy);
464 static void etr_work_fn(struct work_struct *work);
465 static DEFINE_MUTEX(etr_work_mutex);
466 static DECLARE_WORK(etr_work, etr_work_fn);
467 
468 /*
469  * Reset ETR attachment.
470  */
471 static void etr_reset(void)
472 {
473 	etr_eacr =  (struct etr_eacr) {
474 		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
475 		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
476 		.es = 0, .sl = 0 };
477 	if (etr_setr(&etr_eacr) == 0) {
478 		etr_tolec = get_clock();
479 		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
480 		if (etr_port0_online && etr_port1_online)
481 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
482 	} else if (etr_port0_online || etr_port1_online) {
483 		pr_warning("The real or virtual hardware system does "
484 			   "not provide an ETR interface\n");
485 		etr_port0_online = etr_port1_online = 0;
486 	}
487 }
488 
489 static int __init etr_init(void)
490 {
491 	struct etr_aib aib;
492 
493 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
494 		return 0;
495 	time_init_wq();
496 	/* Check if this machine has the steai instruction. */
497 	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
498 		etr_steai_available = 1;
499 	setup_timer(&etr_timer, etr_timeout, 0UL);
500 	if (etr_port0_online) {
501 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
502 		queue_work(time_sync_wq, &etr_work);
503 	}
504 	if (etr_port1_online) {
505 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
506 		queue_work(time_sync_wq, &etr_work);
507 	}
508 	return 0;
509 }
510 
511 arch_initcall(etr_init);
512 
513 /*
514  * Two sorts of ETR machine checks. The architecture reads:
515  * "When a machine-check niterruption occurs and if a switch-to-local or
516  *  ETR-sync-check interrupt request is pending but disabled, this pending
517  *  disabled interruption request is indicated and is cleared".
518  * Which means that we can get etr_switch_to_local events from the machine
519  * check handler although the interruption condition is disabled. Lovely..
520  */
521 
522 /*
523  * Switch to local machine check. This is called when the last usable
524  * ETR port goes inactive. After switch to local the clock is not in sync.
525  */
526 void etr_switch_to_local(void)
527 {
528 	if (!etr_eacr.sl)
529 		return;
530 	disable_sync_clock(NULL);
531 	if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
532 		etr_eacr.es = etr_eacr.sl = 0;
533 		etr_setr(&etr_eacr);
534 		queue_work(time_sync_wq, &etr_work);
535 	}
536 }
537 
538 /*
539  * ETR sync check machine check. This is called when the ETR OTE and the
540  * local clock OTE are farther apart than the ETR sync check tolerance.
541  * After a ETR sync check the clock is not in sync. The machine check
542  * is broadcasted to all cpus at the same time.
543  */
544 void etr_sync_check(void)
545 {
546 	if (!etr_eacr.es)
547 		return;
548 	disable_sync_clock(NULL);
549 	if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
550 		etr_eacr.es = 0;
551 		etr_setr(&etr_eacr);
552 		queue_work(time_sync_wq, &etr_work);
553 	}
554 }
555 
556 /*
557  * ETR timing alert. There are two causes:
558  * 1) port state change, check the usability of the port
559  * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
560  *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
561  *    or ETR-data word 4 (edf4) has changed.
562  */
563 static void etr_timing_alert(struct etr_irq_parm *intparm)
564 {
565 	if (intparm->pc0)
566 		/* ETR port 0 state change. */
567 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
568 	if (intparm->pc1)
569 		/* ETR port 1 state change. */
570 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
571 	if (intparm->eai)
572 		/*
573 		 * ETR port alert on either port 0, 1 or both.
574 		 * Both ports are not up-to-date now.
575 		 */
576 		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
577 	queue_work(time_sync_wq, &etr_work);
578 }
579 
580 static void etr_timeout(unsigned long dummy)
581 {
582 	set_bit(ETR_EVENT_UPDATE, &etr_events);
583 	queue_work(time_sync_wq, &etr_work);
584 }
585 
586 /*
587  * Check if the etr mode is pss.
588  */
589 static inline int etr_mode_is_pps(struct etr_eacr eacr)
590 {
591 	return eacr.es && !eacr.sl;
592 }
593 
594 /*
595  * Check if the etr mode is etr.
596  */
597 static inline int etr_mode_is_etr(struct etr_eacr eacr)
598 {
599 	return eacr.es && eacr.sl;
600 }
601 
602 /*
603  * Check if the port can be used for TOD synchronization.
604  * For PPS mode the port has to receive OTEs. For ETR mode
605  * the port has to receive OTEs, the ETR stepping bit has to
606  * be zero and the validity bits for data frame 1, 2, and 3
607  * have to be 1.
608  */
609 static int etr_port_valid(struct etr_aib *aib, int port)
610 {
611 	unsigned int psc;
612 
613 	/* Check that this port is receiving OTEs. */
614 	if (aib->tsp == 0)
615 		return 0;
616 
617 	psc = port ? aib->esw.psc1 : aib->esw.psc0;
618 	if (psc == etr_lpsc_pps_mode)
619 		return 1;
620 	if (psc == etr_lpsc_operational_step)
621 		return !aib->esw.y && aib->slsw.v1 &&
622 			aib->slsw.v2 && aib->slsw.v3;
623 	return 0;
624 }
625 
626 /*
627  * Check if two ports are on the same network.
628  */
629 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
630 {
631 	// FIXME: any other fields we have to compare?
632 	return aib1->edf1.net_id == aib2->edf1.net_id;
633 }
634 
635 /*
636  * Wrapper for etr_stei that converts physical port states
637  * to logical port states to be consistent with the output
638  * of stetr (see etr_psc vs. etr_lpsc).
639  */
640 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
641 {
642 	BUG_ON(etr_steai(aib, func) != 0);
643 	/* Convert port state to logical port state. */
644 	if (aib->esw.psc0 == 1)
645 		aib->esw.psc0 = 2;
646 	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
647 		aib->esw.psc0 = 1;
648 	if (aib->esw.psc1 == 1)
649 		aib->esw.psc1 = 2;
650 	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
651 		aib->esw.psc1 = 1;
652 }
653 
654 /*
655  * Check if the aib a2 is still connected to the same attachment as
656  * aib a1, the etv values differ by one and a2 is valid.
657  */
658 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
659 {
660 	int state_a1, state_a2;
661 
662 	/* Paranoia check: e0/e1 should better be the same. */
663 	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
664 	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
665 		return 0;
666 
667 	/* Still connected to the same etr ? */
668 	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
669 	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
670 	if (state_a1 == etr_lpsc_operational_step) {
671 		if (state_a2 != etr_lpsc_operational_step ||
672 		    a1->edf1.net_id != a2->edf1.net_id ||
673 		    a1->edf1.etr_id != a2->edf1.etr_id ||
674 		    a1->edf1.etr_pn != a2->edf1.etr_pn)
675 			return 0;
676 	} else if (state_a2 != etr_lpsc_pps_mode)
677 		return 0;
678 
679 	/* The ETV value of a2 needs to be ETV of a1 + 1. */
680 	if (a1->edf2.etv + 1 != a2->edf2.etv)
681 		return 0;
682 
683 	if (!etr_port_valid(a2, p))
684 		return 0;
685 
686 	return 1;
687 }
688 
689 struct clock_sync_data {
690 	atomic_t cpus;
691 	int in_sync;
692 	unsigned long long fixup_cc;
693 	int etr_port;
694 	struct etr_aib *etr_aib;
695 };
696 
697 static void clock_sync_cpu(struct clock_sync_data *sync)
698 {
699 	atomic_dec(&sync->cpus);
700 	enable_sync_clock();
701 	/*
702 	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
703 	 * is called on all other cpus while the TOD clocks is stopped.
704 	 * __udelay will stop the cpu on an enabled wait psw until the
705 	 * TOD is running again.
706 	 */
707 	while (sync->in_sync == 0) {
708 		__udelay(1);
709 		/*
710 		 * A different cpu changes *in_sync. Therefore use
711 		 * barrier() to force memory access.
712 		 */
713 		barrier();
714 	}
715 	if (sync->in_sync != 1)
716 		/* Didn't work. Clear per-cpu in sync bit again. */
717 		disable_sync_clock(NULL);
718 	/*
719 	 * This round of TOD syncing is done. Set the clock comparator
720 	 * to the next tick and let the processor continue.
721 	 */
722 	fixup_clock_comparator(sync->fixup_cc);
723 }
724 
725 /*
726  * Sync the TOD clock using the port referred to by aibp. This port
727  * has to be enabled and the other port has to be disabled. The
728  * last eacr update has to be more than 1.6 seconds in the past.
729  */
730 static int etr_sync_clock(void *data)
731 {
732 	static int first;
733 	unsigned long long clock, old_clock, delay, delta;
734 	struct clock_sync_data *etr_sync;
735 	struct etr_aib *sync_port, *aib;
736 	int port;
737 	int rc;
738 
739 	etr_sync = data;
740 
741 	if (xchg(&first, 1) == 1) {
742 		/* Slave */
743 		clock_sync_cpu(etr_sync);
744 		return 0;
745 	}
746 
747 	/* Wait until all other cpus entered the sync function. */
748 	while (atomic_read(&etr_sync->cpus) != 0)
749 		cpu_relax();
750 
751 	port = etr_sync->etr_port;
752 	aib = etr_sync->etr_aib;
753 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
754 	enable_sync_clock();
755 
756 	/* Set clock to next OTE. */
757 	__ctl_set_bit(14, 21);
758 	__ctl_set_bit(0, 29);
759 	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
760 	old_clock = get_clock();
761 	if (set_clock(clock) == 0) {
762 		__udelay(1);	/* Wait for the clock to start. */
763 		__ctl_clear_bit(0, 29);
764 		__ctl_clear_bit(14, 21);
765 		etr_stetr(aib);
766 		/* Adjust Linux timing variables. */
767 		delay = (unsigned long long)
768 			(aib->edf2.etv - sync_port->edf2.etv) << 32;
769 		delta = adjust_time(old_clock, clock, delay);
770 		etr_sync->fixup_cc = delta;
771 		fixup_clock_comparator(delta);
772 		/* Verify that the clock is properly set. */
773 		if (!etr_aib_follows(sync_port, aib, port)) {
774 			/* Didn't work. */
775 			disable_sync_clock(NULL);
776 			etr_sync->in_sync = -EAGAIN;
777 			rc = -EAGAIN;
778 		} else {
779 			etr_sync->in_sync = 1;
780 			rc = 0;
781 		}
782 	} else {
783 		/* Could not set the clock ?!? */
784 		__ctl_clear_bit(0, 29);
785 		__ctl_clear_bit(14, 21);
786 		disable_sync_clock(NULL);
787 		etr_sync->in_sync = -EAGAIN;
788 		rc = -EAGAIN;
789 	}
790 	xchg(&first, 0);
791 	return rc;
792 }
793 
794 static int etr_sync_clock_stop(struct etr_aib *aib, int port)
795 {
796 	struct clock_sync_data etr_sync;
797 	struct etr_aib *sync_port;
798 	int follows;
799 	int rc;
800 
801 	/* Check if the current aib is adjacent to the sync port aib. */
802 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
803 	follows = etr_aib_follows(sync_port, aib, port);
804 	memcpy(sync_port, aib, sizeof(*aib));
805 	if (!follows)
806 		return -EAGAIN;
807 	memset(&etr_sync, 0, sizeof(etr_sync));
808 	etr_sync.etr_aib = aib;
809 	etr_sync.etr_port = port;
810 	get_online_cpus();
811 	atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
812 	rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
813 	put_online_cpus();
814 	return rc;
815 }
816 
817 /*
818  * Handle the immediate effects of the different events.
819  * The port change event is used for online/offline changes.
820  */
821 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
822 {
823 	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
824 		eacr.es = 0;
825 	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
826 		eacr.es = eacr.sl = 0;
827 	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
828 		etr_port0_uptodate = etr_port1_uptodate = 0;
829 
830 	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
831 		if (eacr.e0)
832 			/*
833 			 * Port change of an enabled port. We have to
834 			 * assume that this can have caused an stepping
835 			 * port switch.
836 			 */
837 			etr_tolec = get_clock();
838 		eacr.p0 = etr_port0_online;
839 		if (!eacr.p0)
840 			eacr.e0 = 0;
841 		etr_port0_uptodate = 0;
842 	}
843 	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
844 		if (eacr.e1)
845 			/*
846 			 * Port change of an enabled port. We have to
847 			 * assume that this can have caused an stepping
848 			 * port switch.
849 			 */
850 			etr_tolec = get_clock();
851 		eacr.p1 = etr_port1_online;
852 		if (!eacr.p1)
853 			eacr.e1 = 0;
854 		etr_port1_uptodate = 0;
855 	}
856 	clear_bit(ETR_EVENT_UPDATE, &etr_events);
857 	return eacr;
858 }
859 
860 /*
861  * Set up a timer that expires after the etr_tolec + 1.6 seconds if
862  * one of the ports needs an update.
863  */
864 static void etr_set_tolec_timeout(unsigned long long now)
865 {
866 	unsigned long micros;
867 
868 	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
869 	    (!etr_eacr.p1 || etr_port1_uptodate))
870 		return;
871 	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
872 	micros = (micros > 1600000) ? 0 : 1600000 - micros;
873 	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
874 }
875 
876 /*
877  * Set up a time that expires after 1/2 second.
878  */
879 static void etr_set_sync_timeout(void)
880 {
881 	mod_timer(&etr_timer, jiffies + HZ/2);
882 }
883 
884 /*
885  * Update the aib information for one or both ports.
886  */
887 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
888 					 struct etr_eacr eacr)
889 {
890 	/* With both ports disabled the aib information is useless. */
891 	if (!eacr.e0 && !eacr.e1)
892 		return eacr;
893 
894 	/* Update port0 or port1 with aib stored in etr_work_fn. */
895 	if (aib->esw.q == 0) {
896 		/* Information for port 0 stored. */
897 		if (eacr.p0 && !etr_port0_uptodate) {
898 			etr_port0 = *aib;
899 			if (etr_port0_online)
900 				etr_port0_uptodate = 1;
901 		}
902 	} else {
903 		/* Information for port 1 stored. */
904 		if (eacr.p1 && !etr_port1_uptodate) {
905 			etr_port1 = *aib;
906 			if (etr_port0_online)
907 				etr_port1_uptodate = 1;
908 		}
909 	}
910 
911 	/*
912 	 * Do not try to get the alternate port aib if the clock
913 	 * is not in sync yet.
914 	 */
915 	if (!eacr.es || !check_sync_clock())
916 		return eacr;
917 
918 	/*
919 	 * If steai is available we can get the information about
920 	 * the other port immediately. If only stetr is available the
921 	 * data-port bit toggle has to be used.
922 	 */
923 	if (etr_steai_available) {
924 		if (eacr.p0 && !etr_port0_uptodate) {
925 			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
926 			etr_port0_uptodate = 1;
927 		}
928 		if (eacr.p1 && !etr_port1_uptodate) {
929 			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
930 			etr_port1_uptodate = 1;
931 		}
932 	} else {
933 		/*
934 		 * One port was updated above, if the other
935 		 * port is not uptodate toggle dp bit.
936 		 */
937 		if ((eacr.p0 && !etr_port0_uptodate) ||
938 		    (eacr.p1 && !etr_port1_uptodate))
939 			eacr.dp ^= 1;
940 		else
941 			eacr.dp = 0;
942 	}
943 	return eacr;
944 }
945 
946 /*
947  * Write new etr control register if it differs from the current one.
948  * Return 1 if etr_tolec has been updated as well.
949  */
950 static void etr_update_eacr(struct etr_eacr eacr)
951 {
952 	int dp_changed;
953 
954 	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
955 		/* No change, return. */
956 		return;
957 	/*
958 	 * The disable of an active port of the change of the data port
959 	 * bit can/will cause a change in the data port.
960 	 */
961 	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
962 		(etr_eacr.dp ^ eacr.dp) != 0;
963 	etr_eacr = eacr;
964 	etr_setr(&etr_eacr);
965 	if (dp_changed)
966 		etr_tolec = get_clock();
967 }
968 
969 /*
970  * ETR work. In this function you'll find the main logic. In
971  * particular this is the only function that calls etr_update_eacr(),
972  * it "controls" the etr control register.
973  */
974 static void etr_work_fn(struct work_struct *work)
975 {
976 	unsigned long long now;
977 	struct etr_eacr eacr;
978 	struct etr_aib aib;
979 	int sync_port;
980 
981 	/* prevent multiple execution. */
982 	mutex_lock(&etr_work_mutex);
983 
984 	/* Create working copy of etr_eacr. */
985 	eacr = etr_eacr;
986 
987 	/* Check for the different events and their immediate effects. */
988 	eacr = etr_handle_events(eacr);
989 
990 	/* Check if ETR is supposed to be active. */
991 	eacr.ea = eacr.p0 || eacr.p1;
992 	if (!eacr.ea) {
993 		/* Both ports offline. Reset everything. */
994 		eacr.dp = eacr.es = eacr.sl = 0;
995 		on_each_cpu(disable_sync_clock, NULL, 1);
996 		del_timer_sync(&etr_timer);
997 		etr_update_eacr(eacr);
998 		goto out_unlock;
999 	}
1000 
1001 	/* Store aib to get the current ETR status word. */
1002 	BUG_ON(etr_stetr(&aib) != 0);
1003 	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
1004 	now = get_clock();
1005 
1006 	/*
1007 	 * Update the port information if the last stepping port change
1008 	 * or data port change is older than 1.6 seconds.
1009 	 */
1010 	if (now >= etr_tolec + (1600000 << 12))
1011 		eacr = etr_handle_update(&aib, eacr);
1012 
1013 	/*
1014 	 * Select ports to enable. The preferred synchronization mode is PPS.
1015 	 * If a port can be enabled depends on a number of things:
1016 	 * 1) The port needs to be online and uptodate. A port is not
1017 	 *    disabled just because it is not uptodate, but it is only
1018 	 *    enabled if it is uptodate.
1019 	 * 2) The port needs to have the same mode (pps / etr).
1020 	 * 3) The port needs to be usable -> etr_port_valid() == 1
1021 	 * 4) To enable the second port the clock needs to be in sync.
1022 	 * 5) If both ports are useable and are ETR ports, the network id
1023 	 *    has to be the same.
1024 	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1025 	 */
1026 	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1027 		eacr.sl = 0;
1028 		eacr.e0 = 1;
1029 		if (!etr_mode_is_pps(etr_eacr))
1030 			eacr.es = 0;
1031 		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1032 			eacr.e1 = 0;
1033 		// FIXME: uptodate checks ?
1034 		else if (etr_port0_uptodate && etr_port1_uptodate)
1035 			eacr.e1 = 1;
1036 		sync_port = (etr_port0_uptodate &&
1037 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1038 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1039 		eacr.sl = 0;
1040 		eacr.e0 = 0;
1041 		eacr.e1 = 1;
1042 		if (!etr_mode_is_pps(etr_eacr))
1043 			eacr.es = 0;
1044 		sync_port = (etr_port1_uptodate &&
1045 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1046 	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1047 		eacr.sl = 1;
1048 		eacr.e0 = 1;
1049 		if (!etr_mode_is_etr(etr_eacr))
1050 			eacr.es = 0;
1051 		if (!eacr.es || !eacr.p1 ||
1052 		    aib.esw.psc1 != etr_lpsc_operational_alt)
1053 			eacr.e1 = 0;
1054 		else if (etr_port0_uptodate && etr_port1_uptodate &&
1055 			 etr_compare_network(&etr_port0, &etr_port1))
1056 			eacr.e1 = 1;
1057 		sync_port = (etr_port0_uptodate &&
1058 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1059 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1060 		eacr.sl = 1;
1061 		eacr.e0 = 0;
1062 		eacr.e1 = 1;
1063 		if (!etr_mode_is_etr(etr_eacr))
1064 			eacr.es = 0;
1065 		sync_port = (etr_port1_uptodate &&
1066 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1067 	} else {
1068 		/* Both ports not usable. */
1069 		eacr.es = eacr.sl = 0;
1070 		sync_port = -1;
1071 	}
1072 
1073 	/*
1074 	 * If the clock is in sync just update the eacr and return.
1075 	 * If there is no valid sync port wait for a port update.
1076 	 */
1077 	if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1078 		etr_update_eacr(eacr);
1079 		etr_set_tolec_timeout(now);
1080 		goto out_unlock;
1081 	}
1082 
1083 	/*
1084 	 * Prepare control register for clock syncing
1085 	 * (reset data port bit, set sync check control.
1086 	 */
1087 	eacr.dp = 0;
1088 	eacr.es = 1;
1089 
1090 	/*
1091 	 * Update eacr and try to synchronize the clock. If the update
1092 	 * of eacr caused a stepping port switch (or if we have to
1093 	 * assume that a stepping port switch has occurred) or the
1094 	 * clock syncing failed, reset the sync check control bit
1095 	 * and set up a timer to try again after 0.5 seconds
1096 	 */
1097 	etr_update_eacr(eacr);
1098 	if (now < etr_tolec + (1600000 << 12) ||
1099 	    etr_sync_clock_stop(&aib, sync_port) != 0) {
1100 		/* Sync failed. Try again in 1/2 second. */
1101 		eacr.es = 0;
1102 		etr_update_eacr(eacr);
1103 		etr_set_sync_timeout();
1104 	} else
1105 		etr_set_tolec_timeout(now);
1106 out_unlock:
1107 	mutex_unlock(&etr_work_mutex);
1108 }
1109 
1110 /*
1111  * Sysfs interface functions
1112  */
1113 static struct sysdev_class etr_sysclass = {
1114 	.name	= "etr",
1115 };
1116 
1117 static struct sys_device etr_port0_dev = {
1118 	.id	= 0,
1119 	.cls	= &etr_sysclass,
1120 };
1121 
1122 static struct sys_device etr_port1_dev = {
1123 	.id	= 1,
1124 	.cls	= &etr_sysclass,
1125 };
1126 
1127 /*
1128  * ETR class attributes
1129  */
1130 static ssize_t etr_stepping_port_show(struct sysdev_class *class,
1131 					struct sysdev_class_attribute *attr,
1132 					char *buf)
1133 {
1134 	return sprintf(buf, "%i\n", etr_port0.esw.p);
1135 }
1136 
1137 static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1138 
1139 static ssize_t etr_stepping_mode_show(struct sysdev_class *class,
1140 				      	struct sysdev_class_attribute *attr,
1141 					char *buf)
1142 {
1143 	char *mode_str;
1144 
1145 	if (etr_mode_is_pps(etr_eacr))
1146 		mode_str = "pps";
1147 	else if (etr_mode_is_etr(etr_eacr))
1148 		mode_str = "etr";
1149 	else
1150 		mode_str = "local";
1151 	return sprintf(buf, "%s\n", mode_str);
1152 }
1153 
1154 static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1155 
1156 /*
1157  * ETR port attributes
1158  */
1159 static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev)
1160 {
1161 	if (dev == &etr_port0_dev)
1162 		return etr_port0_online ? &etr_port0 : NULL;
1163 	else
1164 		return etr_port1_online ? &etr_port1 : NULL;
1165 }
1166 
1167 static ssize_t etr_online_show(struct sys_device *dev,
1168 				struct sysdev_attribute *attr,
1169 				char *buf)
1170 {
1171 	unsigned int online;
1172 
1173 	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1174 	return sprintf(buf, "%i\n", online);
1175 }
1176 
1177 static ssize_t etr_online_store(struct sys_device *dev,
1178 				struct sysdev_attribute *attr,
1179 				const char *buf, size_t count)
1180 {
1181 	unsigned int value;
1182 
1183 	value = simple_strtoul(buf, NULL, 0);
1184 	if (value != 0 && value != 1)
1185 		return -EINVAL;
1186 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1187 		return -EOPNOTSUPP;
1188 	mutex_lock(&clock_sync_mutex);
1189 	if (dev == &etr_port0_dev) {
1190 		if (etr_port0_online == value)
1191 			goto out;	/* Nothing to do. */
1192 		etr_port0_online = value;
1193 		if (etr_port0_online && etr_port1_online)
1194 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1195 		else
1196 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1197 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1198 		queue_work(time_sync_wq, &etr_work);
1199 	} else {
1200 		if (etr_port1_online == value)
1201 			goto out;	/* Nothing to do. */
1202 		etr_port1_online = value;
1203 		if (etr_port0_online && etr_port1_online)
1204 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1205 		else
1206 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1207 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1208 		queue_work(time_sync_wq, &etr_work);
1209 	}
1210 out:
1211 	mutex_unlock(&clock_sync_mutex);
1212 	return count;
1213 }
1214 
1215 static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store);
1216 
1217 static ssize_t etr_stepping_control_show(struct sys_device *dev,
1218 					struct sysdev_attribute *attr,
1219 					char *buf)
1220 {
1221 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1222 		       etr_eacr.e0 : etr_eacr.e1);
1223 }
1224 
1225 static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1226 
1227 static ssize_t etr_mode_code_show(struct sys_device *dev,
1228 				struct sysdev_attribute *attr, char *buf)
1229 {
1230 	if (!etr_port0_online && !etr_port1_online)
1231 		/* Status word is not uptodate if both ports are offline. */
1232 		return -ENODATA;
1233 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1234 		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1235 }
1236 
1237 static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1238 
1239 static ssize_t etr_untuned_show(struct sys_device *dev,
1240 				struct sysdev_attribute *attr, char *buf)
1241 {
1242 	struct etr_aib *aib = etr_aib_from_dev(dev);
1243 
1244 	if (!aib || !aib->slsw.v1)
1245 		return -ENODATA;
1246 	return sprintf(buf, "%i\n", aib->edf1.u);
1247 }
1248 
1249 static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL);
1250 
1251 static ssize_t etr_network_id_show(struct sys_device *dev,
1252 				struct sysdev_attribute *attr, char *buf)
1253 {
1254 	struct etr_aib *aib = etr_aib_from_dev(dev);
1255 
1256 	if (!aib || !aib->slsw.v1)
1257 		return -ENODATA;
1258 	return sprintf(buf, "%i\n", aib->edf1.net_id);
1259 }
1260 
1261 static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL);
1262 
1263 static ssize_t etr_id_show(struct sys_device *dev,
1264 			struct sysdev_attribute *attr, char *buf)
1265 {
1266 	struct etr_aib *aib = etr_aib_from_dev(dev);
1267 
1268 	if (!aib || !aib->slsw.v1)
1269 		return -ENODATA;
1270 	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1271 }
1272 
1273 static SYSDEV_ATTR(id, 0400, etr_id_show, NULL);
1274 
1275 static ssize_t etr_port_number_show(struct sys_device *dev,
1276 			struct sysdev_attribute *attr, char *buf)
1277 {
1278 	struct etr_aib *aib = etr_aib_from_dev(dev);
1279 
1280 	if (!aib || !aib->slsw.v1)
1281 		return -ENODATA;
1282 	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1283 }
1284 
1285 static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL);
1286 
1287 static ssize_t etr_coupled_show(struct sys_device *dev,
1288 			struct sysdev_attribute *attr, char *buf)
1289 {
1290 	struct etr_aib *aib = etr_aib_from_dev(dev);
1291 
1292 	if (!aib || !aib->slsw.v3)
1293 		return -ENODATA;
1294 	return sprintf(buf, "%i\n", aib->edf3.c);
1295 }
1296 
1297 static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL);
1298 
1299 static ssize_t etr_local_time_show(struct sys_device *dev,
1300 			struct sysdev_attribute *attr, char *buf)
1301 {
1302 	struct etr_aib *aib = etr_aib_from_dev(dev);
1303 
1304 	if (!aib || !aib->slsw.v3)
1305 		return -ENODATA;
1306 	return sprintf(buf, "%i\n", aib->edf3.blto);
1307 }
1308 
1309 static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL);
1310 
1311 static ssize_t etr_utc_offset_show(struct sys_device *dev,
1312 			struct sysdev_attribute *attr, char *buf)
1313 {
1314 	struct etr_aib *aib = etr_aib_from_dev(dev);
1315 
1316 	if (!aib || !aib->slsw.v3)
1317 		return -ENODATA;
1318 	return sprintf(buf, "%i\n", aib->edf3.buo);
1319 }
1320 
1321 static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1322 
1323 static struct sysdev_attribute *etr_port_attributes[] = {
1324 	&attr_online,
1325 	&attr_stepping_control,
1326 	&attr_state_code,
1327 	&attr_untuned,
1328 	&attr_network,
1329 	&attr_id,
1330 	&attr_port,
1331 	&attr_coupled,
1332 	&attr_local_time,
1333 	&attr_utc_offset,
1334 	NULL
1335 };
1336 
1337 static int __init etr_register_port(struct sys_device *dev)
1338 {
1339 	struct sysdev_attribute **attr;
1340 	int rc;
1341 
1342 	rc = sysdev_register(dev);
1343 	if (rc)
1344 		goto out;
1345 	for (attr = etr_port_attributes; *attr; attr++) {
1346 		rc = sysdev_create_file(dev, *attr);
1347 		if (rc)
1348 			goto out_unreg;
1349 	}
1350 	return 0;
1351 out_unreg:
1352 	for (; attr >= etr_port_attributes; attr--)
1353 		sysdev_remove_file(dev, *attr);
1354 	sysdev_unregister(dev);
1355 out:
1356 	return rc;
1357 }
1358 
1359 static void __init etr_unregister_port(struct sys_device *dev)
1360 {
1361 	struct sysdev_attribute **attr;
1362 
1363 	for (attr = etr_port_attributes; *attr; attr++)
1364 		sysdev_remove_file(dev, *attr);
1365 	sysdev_unregister(dev);
1366 }
1367 
1368 static int __init etr_init_sysfs(void)
1369 {
1370 	int rc;
1371 
1372 	rc = sysdev_class_register(&etr_sysclass);
1373 	if (rc)
1374 		goto out;
1375 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port);
1376 	if (rc)
1377 		goto out_unreg_class;
1378 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode);
1379 	if (rc)
1380 		goto out_remove_stepping_port;
1381 	rc = etr_register_port(&etr_port0_dev);
1382 	if (rc)
1383 		goto out_remove_stepping_mode;
1384 	rc = etr_register_port(&etr_port1_dev);
1385 	if (rc)
1386 		goto out_remove_port0;
1387 	return 0;
1388 
1389 out_remove_port0:
1390 	etr_unregister_port(&etr_port0_dev);
1391 out_remove_stepping_mode:
1392 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode);
1393 out_remove_stepping_port:
1394 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port);
1395 out_unreg_class:
1396 	sysdev_class_unregister(&etr_sysclass);
1397 out:
1398 	return rc;
1399 }
1400 
1401 device_initcall(etr_init_sysfs);
1402 
1403 /*
1404  * Server Time Protocol (STP) code.
1405  */
1406 static int stp_online;
1407 static struct stp_sstpi stp_info;
1408 static void *stp_page;
1409 
1410 static void stp_work_fn(struct work_struct *work);
1411 static DEFINE_MUTEX(stp_work_mutex);
1412 static DECLARE_WORK(stp_work, stp_work_fn);
1413 static struct timer_list stp_timer;
1414 
1415 static int __init early_parse_stp(char *p)
1416 {
1417 	if (strncmp(p, "off", 3) == 0)
1418 		stp_online = 0;
1419 	else if (strncmp(p, "on", 2) == 0)
1420 		stp_online = 1;
1421 	return 0;
1422 }
1423 early_param("stp", early_parse_stp);
1424 
1425 /*
1426  * Reset STP attachment.
1427  */
1428 static void __init stp_reset(void)
1429 {
1430 	int rc;
1431 
1432 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1433 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1434 	if (rc == 0)
1435 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1436 	else if (stp_online) {
1437 		pr_warning("The real or virtual hardware system does "
1438 			   "not provide an STP interface\n");
1439 		free_page((unsigned long) stp_page);
1440 		stp_page = NULL;
1441 		stp_online = 0;
1442 	}
1443 }
1444 
1445 static void stp_timeout(unsigned long dummy)
1446 {
1447 	queue_work(time_sync_wq, &stp_work);
1448 }
1449 
1450 static int __init stp_init(void)
1451 {
1452 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1453 		return 0;
1454 	setup_timer(&stp_timer, stp_timeout, 0UL);
1455 	time_init_wq();
1456 	if (!stp_online)
1457 		return 0;
1458 	queue_work(time_sync_wq, &stp_work);
1459 	return 0;
1460 }
1461 
1462 arch_initcall(stp_init);
1463 
1464 /*
1465  * STP timing alert. There are three causes:
1466  * 1) timing status change
1467  * 2) link availability change
1468  * 3) time control parameter change
1469  * In all three cases we are only interested in the clock source state.
1470  * If a STP clock source is now available use it.
1471  */
1472 static void stp_timing_alert(struct stp_irq_parm *intparm)
1473 {
1474 	if (intparm->tsc || intparm->lac || intparm->tcpc)
1475 		queue_work(time_sync_wq, &stp_work);
1476 }
1477 
1478 /*
1479  * STP sync check machine check. This is called when the timing state
1480  * changes from the synchronized state to the unsynchronized state.
1481  * After a STP sync check the clock is not in sync. The machine check
1482  * is broadcasted to all cpus at the same time.
1483  */
1484 void stp_sync_check(void)
1485 {
1486 	disable_sync_clock(NULL);
1487 	queue_work(time_sync_wq, &stp_work);
1488 }
1489 
1490 /*
1491  * STP island condition machine check. This is called when an attached
1492  * server  attempts to communicate over an STP link and the servers
1493  * have matching CTN ids and have a valid stratum-1 configuration
1494  * but the configurations do not match.
1495  */
1496 void stp_island_check(void)
1497 {
1498 	disable_sync_clock(NULL);
1499 	queue_work(time_sync_wq, &stp_work);
1500 }
1501 
1502 
1503 static int stp_sync_clock(void *data)
1504 {
1505 	static int first;
1506 	unsigned long long old_clock, delta;
1507 	struct clock_sync_data *stp_sync;
1508 	int rc;
1509 
1510 	stp_sync = data;
1511 
1512 	if (xchg(&first, 1) == 1) {
1513 		/* Slave */
1514 		clock_sync_cpu(stp_sync);
1515 		return 0;
1516 	}
1517 
1518 	/* Wait until all other cpus entered the sync function. */
1519 	while (atomic_read(&stp_sync->cpus) != 0)
1520 		cpu_relax();
1521 
1522 	enable_sync_clock();
1523 
1524 	rc = 0;
1525 	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1526 	    stp_info.todoff[2] || stp_info.todoff[3] ||
1527 	    stp_info.tmd != 2) {
1528 		old_clock = get_clock();
1529 		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1530 		if (rc == 0) {
1531 			delta = adjust_time(old_clock, get_clock(), 0);
1532 			fixup_clock_comparator(delta);
1533 			rc = chsc_sstpi(stp_page, &stp_info,
1534 					sizeof(struct stp_sstpi));
1535 			if (rc == 0 && stp_info.tmd != 2)
1536 				rc = -EAGAIN;
1537 		}
1538 	}
1539 	if (rc) {
1540 		disable_sync_clock(NULL);
1541 		stp_sync->in_sync = -EAGAIN;
1542 	} else
1543 		stp_sync->in_sync = 1;
1544 	xchg(&first, 0);
1545 	return 0;
1546 }
1547 
1548 /*
1549  * STP work. Check for the STP state and take over the clock
1550  * synchronization if the STP clock source is usable.
1551  */
1552 static void stp_work_fn(struct work_struct *work)
1553 {
1554 	struct clock_sync_data stp_sync;
1555 	int rc;
1556 
1557 	/* prevent multiple execution. */
1558 	mutex_lock(&stp_work_mutex);
1559 
1560 	if (!stp_online) {
1561 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1562 		del_timer_sync(&stp_timer);
1563 		goto out_unlock;
1564 	}
1565 
1566 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1567 	if (rc)
1568 		goto out_unlock;
1569 
1570 	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1571 	if (rc || stp_info.c == 0)
1572 		goto out_unlock;
1573 
1574 	/* Skip synchronization if the clock is already in sync. */
1575 	if (check_sync_clock())
1576 		goto out_unlock;
1577 
1578 	memset(&stp_sync, 0, sizeof(stp_sync));
1579 	get_online_cpus();
1580 	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1581 	stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1582 	put_online_cpus();
1583 
1584 	if (!check_sync_clock())
1585 		/*
1586 		 * There is a usable clock but the synchonization failed.
1587 		 * Retry after a second.
1588 		 */
1589 		mod_timer(&stp_timer, jiffies + HZ);
1590 
1591 out_unlock:
1592 	mutex_unlock(&stp_work_mutex);
1593 }
1594 
1595 /*
1596  * STP class sysfs interface functions
1597  */
1598 static struct sysdev_class stp_sysclass = {
1599 	.name	= "stp",
1600 };
1601 
1602 static ssize_t stp_ctn_id_show(struct sysdev_class *class,
1603 				struct sysdev_class_attribute *attr,
1604 				char *buf)
1605 {
1606 	if (!stp_online)
1607 		return -ENODATA;
1608 	return sprintf(buf, "%016llx\n",
1609 		       *(unsigned long long *) stp_info.ctnid);
1610 }
1611 
1612 static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1613 
1614 static ssize_t stp_ctn_type_show(struct sysdev_class *class,
1615 				struct sysdev_class_attribute *attr,
1616 				char *buf)
1617 {
1618 	if (!stp_online)
1619 		return -ENODATA;
1620 	return sprintf(buf, "%i\n", stp_info.ctn);
1621 }
1622 
1623 static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1624 
1625 static ssize_t stp_dst_offset_show(struct sysdev_class *class,
1626 				   struct sysdev_class_attribute *attr,
1627 				   char *buf)
1628 {
1629 	if (!stp_online || !(stp_info.vbits & 0x2000))
1630 		return -ENODATA;
1631 	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1632 }
1633 
1634 static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1635 
1636 static ssize_t stp_leap_seconds_show(struct sysdev_class *class,
1637 					struct sysdev_class_attribute *attr,
1638 					char *buf)
1639 {
1640 	if (!stp_online || !(stp_info.vbits & 0x8000))
1641 		return -ENODATA;
1642 	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1643 }
1644 
1645 static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1646 
1647 static ssize_t stp_stratum_show(struct sysdev_class *class,
1648 				struct sysdev_class_attribute *attr,
1649 				char *buf)
1650 {
1651 	if (!stp_online)
1652 		return -ENODATA;
1653 	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1654 }
1655 
1656 static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL);
1657 
1658 static ssize_t stp_time_offset_show(struct sysdev_class *class,
1659 				struct sysdev_class_attribute *attr,
1660 				char *buf)
1661 {
1662 	if (!stp_online || !(stp_info.vbits & 0x0800))
1663 		return -ENODATA;
1664 	return sprintf(buf, "%i\n", (int) stp_info.tto);
1665 }
1666 
1667 static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1668 
1669 static ssize_t stp_time_zone_offset_show(struct sysdev_class *class,
1670 				struct sysdev_class_attribute *attr,
1671 				char *buf)
1672 {
1673 	if (!stp_online || !(stp_info.vbits & 0x4000))
1674 		return -ENODATA;
1675 	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1676 }
1677 
1678 static SYSDEV_CLASS_ATTR(time_zone_offset, 0400,
1679 			 stp_time_zone_offset_show, NULL);
1680 
1681 static ssize_t stp_timing_mode_show(struct sysdev_class *class,
1682 				struct sysdev_class_attribute *attr,
1683 				char *buf)
1684 {
1685 	if (!stp_online)
1686 		return -ENODATA;
1687 	return sprintf(buf, "%i\n", stp_info.tmd);
1688 }
1689 
1690 static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1691 
1692 static ssize_t stp_timing_state_show(struct sysdev_class *class,
1693 				struct sysdev_class_attribute *attr,
1694 				char *buf)
1695 {
1696 	if (!stp_online)
1697 		return -ENODATA;
1698 	return sprintf(buf, "%i\n", stp_info.tst);
1699 }
1700 
1701 static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1702 
1703 static ssize_t stp_online_show(struct sysdev_class *class,
1704 				struct sysdev_class_attribute *attr,
1705 				char *buf)
1706 {
1707 	return sprintf(buf, "%i\n", stp_online);
1708 }
1709 
1710 static ssize_t stp_online_store(struct sysdev_class *class,
1711 				struct sysdev_class_attribute *attr,
1712 				const char *buf, size_t count)
1713 {
1714 	unsigned int value;
1715 
1716 	value = simple_strtoul(buf, NULL, 0);
1717 	if (value != 0 && value != 1)
1718 		return -EINVAL;
1719 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1720 		return -EOPNOTSUPP;
1721 	mutex_lock(&clock_sync_mutex);
1722 	stp_online = value;
1723 	if (stp_online)
1724 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1725 	else
1726 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1727 	queue_work(time_sync_wq, &stp_work);
1728 	mutex_unlock(&clock_sync_mutex);
1729 	return count;
1730 }
1731 
1732 /*
1733  * Can't use SYSDEV_CLASS_ATTR because the attribute should be named
1734  * stp/online but attr_online already exists in this file ..
1735  */
1736 static struct sysdev_class_attribute attr_stp_online = {
1737 	.attr = { .name = "online", .mode = 0600 },
1738 	.show	= stp_online_show,
1739 	.store	= stp_online_store,
1740 };
1741 
1742 static struct sysdev_class_attribute *stp_attributes[] = {
1743 	&attr_ctn_id,
1744 	&attr_ctn_type,
1745 	&attr_dst_offset,
1746 	&attr_leap_seconds,
1747 	&attr_stp_online,
1748 	&attr_stratum,
1749 	&attr_time_offset,
1750 	&attr_time_zone_offset,
1751 	&attr_timing_mode,
1752 	&attr_timing_state,
1753 	NULL
1754 };
1755 
1756 static int __init stp_init_sysfs(void)
1757 {
1758 	struct sysdev_class_attribute **attr;
1759 	int rc;
1760 
1761 	rc = sysdev_class_register(&stp_sysclass);
1762 	if (rc)
1763 		goto out;
1764 	for (attr = stp_attributes; *attr; attr++) {
1765 		rc = sysdev_class_create_file(&stp_sysclass, *attr);
1766 		if (rc)
1767 			goto out_unreg;
1768 	}
1769 	return 0;
1770 out_unreg:
1771 	for (; attr >= stp_attributes; attr--)
1772 		sysdev_class_remove_file(&stp_sysclass, *attr);
1773 	sysdev_class_unregister(&stp_sysclass);
1774 out:
1775 	return rc;
1776 }
1777 
1778 device_initcall(stp_init_sysfs);
1779