xref: /openbmc/linux/arch/s390/kernel/time.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/export.h>
21 #include <linux/sched.h>
22 #include <linux/sched/clock.h>
23 #include <linux/kernel.h>
24 #include <linux/param.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/cpu.h>
29 #include <linux/stop_machine.h>
30 #include <linux/time.h>
31 #include <linux/device.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/smp.h>
35 #include <linux/types.h>
36 #include <linux/profile.h>
37 #include <linux/timex.h>
38 #include <linux/notifier.h>
39 #include <linux/timekeeper_internal.h>
40 #include <linux/clockchips.h>
41 #include <linux/gfp.h>
42 #include <linux/kprobes.h>
43 #include <linux/uaccess.h>
44 #include <asm/facility.h>
45 #include <asm/delay.h>
46 #include <asm/div64.h>
47 #include <asm/vdso.h>
48 #include <asm/irq.h>
49 #include <asm/irq_regs.h>
50 #include <asm/vtimer.h>
51 #include <asm/stp.h>
52 #include <asm/cio.h>
53 #include "entry.h"
54 
55 unsigned char tod_clock_base[16] __aligned(8) = {
56 	/* Force to data section. */
57 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
58 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
59 };
60 EXPORT_SYMBOL_GPL(tod_clock_base);
61 
62 u64 clock_comparator_max = -1ULL;
63 EXPORT_SYMBOL_GPL(clock_comparator_max);
64 
65 static DEFINE_PER_CPU(struct clock_event_device, comparators);
66 
67 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
68 EXPORT_SYMBOL(s390_epoch_delta_notifier);
69 
70 unsigned char ptff_function_mask[16];
71 
72 static unsigned long long lpar_offset;
73 static unsigned long long initial_leap_seconds;
74 static unsigned long long tod_steering_end;
75 static long long tod_steering_delta;
76 
77 /*
78  * Get time offsets with PTFF
79  */
80 void __init time_early_init(void)
81 {
82 	struct ptff_qto qto;
83 	struct ptff_qui qui;
84 
85 	/* Initialize TOD steering parameters */
86 	tod_steering_end = *(unsigned long long *) &tod_clock_base[1];
87 	vdso_data->ts_end = tod_steering_end;
88 
89 	if (!test_facility(28))
90 		return;
91 
92 	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
93 
94 	/* get LPAR offset */
95 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
96 		lpar_offset = qto.tod_epoch_difference;
97 
98 	/* get initial leap seconds */
99 	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
100 		initial_leap_seconds = (unsigned long long)
101 			((long) qui.old_leap * 4096000000L);
102 }
103 
104 /*
105  * Scheduler clock - returns current time in nanosec units.
106  */
107 unsigned long long notrace sched_clock(void)
108 {
109 	return tod_to_ns(get_tod_clock_monotonic());
110 }
111 NOKPROBE_SYMBOL(sched_clock);
112 
113 /*
114  * Monotonic_clock - returns # of nanoseconds passed since time_init()
115  */
116 unsigned long long monotonic_clock(void)
117 {
118 	return sched_clock();
119 }
120 EXPORT_SYMBOL(monotonic_clock);
121 
122 static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt)
123 {
124 	unsigned long long high, low, rem, sec, nsec;
125 
126 	/* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */
127 	high = (*(unsigned long long *) clk) >> 4;
128 	low = (*(unsigned long long *)&clk[7]) << 4;
129 	/* Calculate seconds and nano-seconds */
130 	sec = high;
131 	rem = do_div(sec, 1000000);
132 	nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32;
133 
134 	xt->tv_sec = sec;
135 	xt->tv_nsec = nsec;
136 }
137 
138 void clock_comparator_work(void)
139 {
140 	struct clock_event_device *cd;
141 
142 	S390_lowcore.clock_comparator = clock_comparator_max;
143 	cd = this_cpu_ptr(&comparators);
144 	cd->event_handler(cd);
145 }
146 
147 static int s390_next_event(unsigned long delta,
148 			   struct clock_event_device *evt)
149 {
150 	S390_lowcore.clock_comparator = get_tod_clock() + delta;
151 	set_clock_comparator(S390_lowcore.clock_comparator);
152 	return 0;
153 }
154 
155 /*
156  * Set up lowcore and control register of the current cpu to
157  * enable TOD clock and clock comparator interrupts.
158  */
159 void init_cpu_timer(void)
160 {
161 	struct clock_event_device *cd;
162 	int cpu;
163 
164 	S390_lowcore.clock_comparator = clock_comparator_max;
165 	set_clock_comparator(S390_lowcore.clock_comparator);
166 
167 	cpu = smp_processor_id();
168 	cd = &per_cpu(comparators, cpu);
169 	cd->name		= "comparator";
170 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
171 	cd->mult		= 16777;
172 	cd->shift		= 12;
173 	cd->min_delta_ns	= 1;
174 	cd->min_delta_ticks	= 1;
175 	cd->max_delta_ns	= LONG_MAX;
176 	cd->max_delta_ticks	= ULONG_MAX;
177 	cd->rating		= 400;
178 	cd->cpumask		= cpumask_of(cpu);
179 	cd->set_next_event	= s390_next_event;
180 
181 	clockevents_register_device(cd);
182 
183 	/* Enable clock comparator timer interrupt. */
184 	__ctl_set_bit(0,11);
185 
186 	/* Always allow the timing alert external interrupt. */
187 	__ctl_set_bit(0, 4);
188 }
189 
190 static void clock_comparator_interrupt(struct ext_code ext_code,
191 				       unsigned int param32,
192 				       unsigned long param64)
193 {
194 	inc_irq_stat(IRQEXT_CLK);
195 	if (S390_lowcore.clock_comparator == clock_comparator_max)
196 		set_clock_comparator(S390_lowcore.clock_comparator);
197 }
198 
199 static void stp_timing_alert(struct stp_irq_parm *);
200 
201 static void timing_alert_interrupt(struct ext_code ext_code,
202 				   unsigned int param32, unsigned long param64)
203 {
204 	inc_irq_stat(IRQEXT_TLA);
205 	if (param32 & 0x00038000)
206 		stp_timing_alert((struct stp_irq_parm *) &param32);
207 }
208 
209 static void stp_reset(void);
210 
211 void read_persistent_clock64(struct timespec64 *ts)
212 {
213 	unsigned char clk[STORE_CLOCK_EXT_SIZE];
214 	__u64 delta;
215 
216 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
217 	get_tod_clock_ext(clk);
218 	*(__u64 *) &clk[1] -= delta;
219 	if (*(__u64 *) &clk[1] > delta)
220 		clk[0]--;
221 	ext_to_timespec64(clk, ts);
222 }
223 
224 void read_boot_clock64(struct timespec64 *ts)
225 {
226 	unsigned char clk[STORE_CLOCK_EXT_SIZE];
227 	__u64 delta;
228 
229 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
230 	memcpy(clk, tod_clock_base, 16);
231 	*(__u64 *) &clk[1] -= delta;
232 	if (*(__u64 *) &clk[1] > delta)
233 		clk[0]--;
234 	ext_to_timespec64(clk, ts);
235 }
236 
237 static u64 read_tod_clock(struct clocksource *cs)
238 {
239 	unsigned long long now, adj;
240 
241 	preempt_disable(); /* protect from changes to steering parameters */
242 	now = get_tod_clock();
243 	adj = tod_steering_end - now;
244 	if (unlikely((s64) adj >= 0))
245 		/*
246 		 * manually steer by 1 cycle every 2^16 cycles. This
247 		 * corresponds to shifting the tod delta by 15. 1s is
248 		 * therefore steered in ~9h. The adjust will decrease
249 		 * over time, until it finally reaches 0.
250 		 */
251 		now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
252 	preempt_enable();
253 	return now;
254 }
255 
256 static struct clocksource clocksource_tod = {
257 	.name		= "tod",
258 	.rating		= 400,
259 	.read		= read_tod_clock,
260 	.mask		= -1ULL,
261 	.mult		= 1000,
262 	.shift		= 12,
263 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
264 };
265 
266 struct clocksource * __init clocksource_default_clock(void)
267 {
268 	return &clocksource_tod;
269 }
270 
271 void update_vsyscall(struct timekeeper *tk)
272 {
273 	u64 nsecps;
274 
275 	if (tk->tkr_mono.clock != &clocksource_tod)
276 		return;
277 
278 	/* Make userspace gettimeofday spin until we're done. */
279 	++vdso_data->tb_update_count;
280 	smp_wmb();
281 	vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
282 	vdso_data->xtime_clock_sec = tk->xtime_sec;
283 	vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
284 	vdso_data->wtom_clock_sec =
285 		tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
286 	vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
287 		+ ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
288 	nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
289 	while (vdso_data->wtom_clock_nsec >= nsecps) {
290 		vdso_data->wtom_clock_nsec -= nsecps;
291 		vdso_data->wtom_clock_sec++;
292 	}
293 
294 	vdso_data->xtime_coarse_sec = tk->xtime_sec;
295 	vdso_data->xtime_coarse_nsec =
296 		(long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
297 	vdso_data->wtom_coarse_sec =
298 		vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
299 	vdso_data->wtom_coarse_nsec =
300 		vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
301 	while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
302 		vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
303 		vdso_data->wtom_coarse_sec++;
304 	}
305 
306 	vdso_data->tk_mult = tk->tkr_mono.mult;
307 	vdso_data->tk_shift = tk->tkr_mono.shift;
308 	smp_wmb();
309 	++vdso_data->tb_update_count;
310 }
311 
312 extern struct timezone sys_tz;
313 
314 void update_vsyscall_tz(void)
315 {
316 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
317 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
318 }
319 
320 /*
321  * Initialize the TOD clock and the CPU timer of
322  * the boot cpu.
323  */
324 void __init time_init(void)
325 {
326 	/* Reset time synchronization interfaces. */
327 	stp_reset();
328 
329 	/* request the clock comparator external interrupt */
330 	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
331 		panic("Couldn't request external interrupt 0x1004");
332 
333 	/* request the timing alert external interrupt */
334 	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
335 		panic("Couldn't request external interrupt 0x1406");
336 
337 	if (__clocksource_register(&clocksource_tod) != 0)
338 		panic("Could not register TOD clock source");
339 
340 	/* Enable TOD clock interrupts on the boot cpu. */
341 	init_cpu_timer();
342 
343 	/* Enable cpu timer interrupts on the boot cpu. */
344 	vtime_init();
345 }
346 
347 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
348 static DEFINE_MUTEX(clock_sync_mutex);
349 static unsigned long clock_sync_flags;
350 
351 #define CLOCK_SYNC_HAS_STP	0
352 #define CLOCK_SYNC_STP		1
353 
354 /*
355  * The get_clock function for the physical clock. It will get the current
356  * TOD clock, subtract the LPAR offset and write the result to *clock.
357  * The function returns 0 if the clock is in sync with the external time
358  * source. If the clock mode is local it will return -EOPNOTSUPP and
359  * -EAGAIN if the clock is not in sync with the external reference.
360  */
361 int get_phys_clock(unsigned long *clock)
362 {
363 	atomic_t *sw_ptr;
364 	unsigned int sw0, sw1;
365 
366 	sw_ptr = &get_cpu_var(clock_sync_word);
367 	sw0 = atomic_read(sw_ptr);
368 	*clock = get_tod_clock() - lpar_offset;
369 	sw1 = atomic_read(sw_ptr);
370 	put_cpu_var(clock_sync_word);
371 	if (sw0 == sw1 && (sw0 & 0x80000000U))
372 		/* Success: time is in sync. */
373 		return 0;
374 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
375 		return -EOPNOTSUPP;
376 	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
377 		return -EACCES;
378 	return -EAGAIN;
379 }
380 EXPORT_SYMBOL(get_phys_clock);
381 
382 /*
383  * Make get_phys_clock() return -EAGAIN.
384  */
385 static void disable_sync_clock(void *dummy)
386 {
387 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
388 	/*
389 	 * Clear the in-sync bit 2^31. All get_phys_clock calls will
390 	 * fail until the sync bit is turned back on. In addition
391 	 * increase the "sequence" counter to avoid the race of an
392 	 * stp event and the complete recovery against get_phys_clock.
393 	 */
394 	atomic_andnot(0x80000000, sw_ptr);
395 	atomic_inc(sw_ptr);
396 }
397 
398 /*
399  * Make get_phys_clock() return 0 again.
400  * Needs to be called from a context disabled for preemption.
401  */
402 static void enable_sync_clock(void)
403 {
404 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
405 	atomic_or(0x80000000, sw_ptr);
406 }
407 
408 /*
409  * Function to check if the clock is in sync.
410  */
411 static inline int check_sync_clock(void)
412 {
413 	atomic_t *sw_ptr;
414 	int rc;
415 
416 	sw_ptr = &get_cpu_var(clock_sync_word);
417 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
418 	put_cpu_var(clock_sync_word);
419 	return rc;
420 }
421 
422 /*
423  * Apply clock delta to the global data structures.
424  * This is called once on the CPU that performed the clock sync.
425  */
426 static void clock_sync_global(unsigned long long delta)
427 {
428 	unsigned long now, adj;
429 	struct ptff_qto qto;
430 
431 	/* Fixup the monotonic sched clock. */
432 	*(unsigned long long *) &tod_clock_base[1] += delta;
433 	if (*(unsigned long long *) &tod_clock_base[1] < delta)
434 		/* Epoch overflow */
435 		tod_clock_base[0]++;
436 	/* Adjust TOD steering parameters. */
437 	vdso_data->tb_update_count++;
438 	now = get_tod_clock();
439 	adj = tod_steering_end - now;
440 	if (unlikely((s64) adj >= 0))
441 		/* Calculate how much of the old adjustment is left. */
442 		tod_steering_delta = (tod_steering_delta < 0) ?
443 			-(adj >> 15) : (adj >> 15);
444 	tod_steering_delta += delta;
445 	if ((abs(tod_steering_delta) >> 48) != 0)
446 		panic("TOD clock sync offset %lli is too large to drift\n",
447 		      tod_steering_delta);
448 	tod_steering_end = now + (abs(tod_steering_delta) << 15);
449 	vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1;
450 	vdso_data->ts_end = tod_steering_end;
451 	vdso_data->tb_update_count++;
452 	/* Update LPAR offset. */
453 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
454 		lpar_offset = qto.tod_epoch_difference;
455 	/* Call the TOD clock change notifier. */
456 	atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
457 }
458 
459 /*
460  * Apply clock delta to the per-CPU data structures of this CPU.
461  * This is called for each online CPU after the call to clock_sync_global.
462  */
463 static void clock_sync_local(unsigned long long delta)
464 {
465 	/* Add the delta to the clock comparator. */
466 	if (S390_lowcore.clock_comparator != clock_comparator_max) {
467 		S390_lowcore.clock_comparator += delta;
468 		set_clock_comparator(S390_lowcore.clock_comparator);
469 	}
470 	/* Adjust the last_update_clock time-stamp. */
471 	S390_lowcore.last_update_clock += delta;
472 }
473 
474 /* Single threaded workqueue used for stp sync events */
475 static struct workqueue_struct *time_sync_wq;
476 
477 static void __init time_init_wq(void)
478 {
479 	if (time_sync_wq)
480 		return;
481 	time_sync_wq = create_singlethread_workqueue("timesync");
482 }
483 
484 struct clock_sync_data {
485 	atomic_t cpus;
486 	int in_sync;
487 	unsigned long long clock_delta;
488 };
489 
490 /*
491  * Server Time Protocol (STP) code.
492  */
493 static bool stp_online;
494 static struct stp_sstpi stp_info;
495 static void *stp_page;
496 
497 static void stp_work_fn(struct work_struct *work);
498 static DEFINE_MUTEX(stp_work_mutex);
499 static DECLARE_WORK(stp_work, stp_work_fn);
500 static struct timer_list stp_timer;
501 
502 static int __init early_parse_stp(char *p)
503 {
504 	return kstrtobool(p, &stp_online);
505 }
506 early_param("stp", early_parse_stp);
507 
508 /*
509  * Reset STP attachment.
510  */
511 static void __init stp_reset(void)
512 {
513 	int rc;
514 
515 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
516 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
517 	if (rc == 0)
518 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
519 	else if (stp_online) {
520 		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
521 		free_page((unsigned long) stp_page);
522 		stp_page = NULL;
523 		stp_online = false;
524 	}
525 }
526 
527 static void stp_timeout(struct timer_list *unused)
528 {
529 	queue_work(time_sync_wq, &stp_work);
530 }
531 
532 static int __init stp_init(void)
533 {
534 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
535 		return 0;
536 	timer_setup(&stp_timer, stp_timeout, 0);
537 	time_init_wq();
538 	if (!stp_online)
539 		return 0;
540 	queue_work(time_sync_wq, &stp_work);
541 	return 0;
542 }
543 
544 arch_initcall(stp_init);
545 
546 /*
547  * STP timing alert. There are three causes:
548  * 1) timing status change
549  * 2) link availability change
550  * 3) time control parameter change
551  * In all three cases we are only interested in the clock source state.
552  * If a STP clock source is now available use it.
553  */
554 static void stp_timing_alert(struct stp_irq_parm *intparm)
555 {
556 	if (intparm->tsc || intparm->lac || intparm->tcpc)
557 		queue_work(time_sync_wq, &stp_work);
558 }
559 
560 /*
561  * STP sync check machine check. This is called when the timing state
562  * changes from the synchronized state to the unsynchronized state.
563  * After a STP sync check the clock is not in sync. The machine check
564  * is broadcasted to all cpus at the same time.
565  */
566 int stp_sync_check(void)
567 {
568 	disable_sync_clock(NULL);
569 	return 1;
570 }
571 
572 /*
573  * STP island condition machine check. This is called when an attached
574  * server  attempts to communicate over an STP link and the servers
575  * have matching CTN ids and have a valid stratum-1 configuration
576  * but the configurations do not match.
577  */
578 int stp_island_check(void)
579 {
580 	disable_sync_clock(NULL);
581 	return 1;
582 }
583 
584 void stp_queue_work(void)
585 {
586 	queue_work(time_sync_wq, &stp_work);
587 }
588 
589 static int stp_sync_clock(void *data)
590 {
591 	struct clock_sync_data *sync = data;
592 	unsigned long long clock_delta;
593 	static int first;
594 	int rc;
595 
596 	enable_sync_clock();
597 	if (xchg(&first, 1) == 0) {
598 		/* Wait until all other cpus entered the sync function. */
599 		while (atomic_read(&sync->cpus) != 0)
600 			cpu_relax();
601 		rc = 0;
602 		if (stp_info.todoff[0] || stp_info.todoff[1] ||
603 		    stp_info.todoff[2] || stp_info.todoff[3] ||
604 		    stp_info.tmd != 2) {
605 			rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
606 					&clock_delta);
607 			if (rc == 0) {
608 				sync->clock_delta = clock_delta;
609 				clock_sync_global(clock_delta);
610 				rc = chsc_sstpi(stp_page, &stp_info,
611 						sizeof(struct stp_sstpi));
612 				if (rc == 0 && stp_info.tmd != 2)
613 					rc = -EAGAIN;
614 			}
615 		}
616 		sync->in_sync = rc ? -EAGAIN : 1;
617 		xchg(&first, 0);
618 	} else {
619 		/* Slave */
620 		atomic_dec(&sync->cpus);
621 		/* Wait for in_sync to be set. */
622 		while (READ_ONCE(sync->in_sync) == 0)
623 			__udelay(1);
624 	}
625 	if (sync->in_sync != 1)
626 		/* Didn't work. Clear per-cpu in sync bit again. */
627 		disable_sync_clock(NULL);
628 	/* Apply clock delta to per-CPU fields of this CPU. */
629 	clock_sync_local(sync->clock_delta);
630 
631 	return 0;
632 }
633 
634 /*
635  * STP work. Check for the STP state and take over the clock
636  * synchronization if the STP clock source is usable.
637  */
638 static void stp_work_fn(struct work_struct *work)
639 {
640 	struct clock_sync_data stp_sync;
641 	int rc;
642 
643 	/* prevent multiple execution. */
644 	mutex_lock(&stp_work_mutex);
645 
646 	if (!stp_online) {
647 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
648 		del_timer_sync(&stp_timer);
649 		goto out_unlock;
650 	}
651 
652 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL);
653 	if (rc)
654 		goto out_unlock;
655 
656 	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
657 	if (rc || stp_info.c == 0)
658 		goto out_unlock;
659 
660 	/* Skip synchronization if the clock is already in sync. */
661 	if (check_sync_clock())
662 		goto out_unlock;
663 
664 	memset(&stp_sync, 0, sizeof(stp_sync));
665 	cpus_read_lock();
666 	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
667 	stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
668 	cpus_read_unlock();
669 
670 	if (!check_sync_clock())
671 		/*
672 		 * There is a usable clock but the synchonization failed.
673 		 * Retry after a second.
674 		 */
675 		mod_timer(&stp_timer, jiffies + HZ);
676 
677 out_unlock:
678 	mutex_unlock(&stp_work_mutex);
679 }
680 
681 /*
682  * STP subsys sysfs interface functions
683  */
684 static struct bus_type stp_subsys = {
685 	.name		= "stp",
686 	.dev_name	= "stp",
687 };
688 
689 static ssize_t stp_ctn_id_show(struct device *dev,
690 				struct device_attribute *attr,
691 				char *buf)
692 {
693 	if (!stp_online)
694 		return -ENODATA;
695 	return sprintf(buf, "%016llx\n",
696 		       *(unsigned long long *) stp_info.ctnid);
697 }
698 
699 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
700 
701 static ssize_t stp_ctn_type_show(struct device *dev,
702 				struct device_attribute *attr,
703 				char *buf)
704 {
705 	if (!stp_online)
706 		return -ENODATA;
707 	return sprintf(buf, "%i\n", stp_info.ctn);
708 }
709 
710 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
711 
712 static ssize_t stp_dst_offset_show(struct device *dev,
713 				   struct device_attribute *attr,
714 				   char *buf)
715 {
716 	if (!stp_online || !(stp_info.vbits & 0x2000))
717 		return -ENODATA;
718 	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
719 }
720 
721 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
722 
723 static ssize_t stp_leap_seconds_show(struct device *dev,
724 					struct device_attribute *attr,
725 					char *buf)
726 {
727 	if (!stp_online || !(stp_info.vbits & 0x8000))
728 		return -ENODATA;
729 	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
730 }
731 
732 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
733 
734 static ssize_t stp_stratum_show(struct device *dev,
735 				struct device_attribute *attr,
736 				char *buf)
737 {
738 	if (!stp_online)
739 		return -ENODATA;
740 	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
741 }
742 
743 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
744 
745 static ssize_t stp_time_offset_show(struct device *dev,
746 				struct device_attribute *attr,
747 				char *buf)
748 {
749 	if (!stp_online || !(stp_info.vbits & 0x0800))
750 		return -ENODATA;
751 	return sprintf(buf, "%i\n", (int) stp_info.tto);
752 }
753 
754 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
755 
756 static ssize_t stp_time_zone_offset_show(struct device *dev,
757 				struct device_attribute *attr,
758 				char *buf)
759 {
760 	if (!stp_online || !(stp_info.vbits & 0x4000))
761 		return -ENODATA;
762 	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
763 }
764 
765 static DEVICE_ATTR(time_zone_offset, 0400,
766 			 stp_time_zone_offset_show, NULL);
767 
768 static ssize_t stp_timing_mode_show(struct device *dev,
769 				struct device_attribute *attr,
770 				char *buf)
771 {
772 	if (!stp_online)
773 		return -ENODATA;
774 	return sprintf(buf, "%i\n", stp_info.tmd);
775 }
776 
777 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
778 
779 static ssize_t stp_timing_state_show(struct device *dev,
780 				struct device_attribute *attr,
781 				char *buf)
782 {
783 	if (!stp_online)
784 		return -ENODATA;
785 	return sprintf(buf, "%i\n", stp_info.tst);
786 }
787 
788 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
789 
790 static ssize_t stp_online_show(struct device *dev,
791 				struct device_attribute *attr,
792 				char *buf)
793 {
794 	return sprintf(buf, "%i\n", stp_online);
795 }
796 
797 static ssize_t stp_online_store(struct device *dev,
798 				struct device_attribute *attr,
799 				const char *buf, size_t count)
800 {
801 	unsigned int value;
802 
803 	value = simple_strtoul(buf, NULL, 0);
804 	if (value != 0 && value != 1)
805 		return -EINVAL;
806 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
807 		return -EOPNOTSUPP;
808 	mutex_lock(&clock_sync_mutex);
809 	stp_online = value;
810 	if (stp_online)
811 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
812 	else
813 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
814 	queue_work(time_sync_wq, &stp_work);
815 	mutex_unlock(&clock_sync_mutex);
816 	return count;
817 }
818 
819 /*
820  * Can't use DEVICE_ATTR because the attribute should be named
821  * stp/online but dev_attr_online already exists in this file ..
822  */
823 static struct device_attribute dev_attr_stp_online = {
824 	.attr = { .name = "online", .mode = 0600 },
825 	.show	= stp_online_show,
826 	.store	= stp_online_store,
827 };
828 
829 static struct device_attribute *stp_attributes[] = {
830 	&dev_attr_ctn_id,
831 	&dev_attr_ctn_type,
832 	&dev_attr_dst_offset,
833 	&dev_attr_leap_seconds,
834 	&dev_attr_stp_online,
835 	&dev_attr_stratum,
836 	&dev_attr_time_offset,
837 	&dev_attr_time_zone_offset,
838 	&dev_attr_timing_mode,
839 	&dev_attr_timing_state,
840 	NULL
841 };
842 
843 static int __init stp_init_sysfs(void)
844 {
845 	struct device_attribute **attr;
846 	int rc;
847 
848 	rc = subsys_system_register(&stp_subsys, NULL);
849 	if (rc)
850 		goto out;
851 	for (attr = stp_attributes; *attr; attr++) {
852 		rc = device_create_file(stp_subsys.dev_root, *attr);
853 		if (rc)
854 			goto out_unreg;
855 	}
856 	return 0;
857 out_unreg:
858 	for (; attr >= stp_attributes; attr--)
859 		device_remove_file(stp_subsys.dev_root, *attr);
860 	bus_unregister(&stp_subsys);
861 out:
862 	return rc;
863 }
864 
865 device_initcall(stp_init_sysfs);
866