xref: /openbmc/linux/arch/s390/kernel/time.c (revision 7bcae826)
1 /*
2  *    Time of day based timer functions.
3  *
4  *  S390 version
5  *    Copyright IBM Corp. 1999, 2008
6  *    Author(s): Hartmut Penner (hp@de.ibm.com),
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
8  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
9  *
10  *  Derived from "arch/i386/kernel/time.c"
11  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
12  */
13 
14 #define KMSG_COMPONENT "time"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16 
17 #include <linux/kernel_stat.h>
18 #include <linux/errno.h>
19 #include <linux/export.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/cpu.h>
27 #include <linux/stop_machine.h>
28 #include <linux/time.h>
29 #include <linux/device.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/smp.h>
33 #include <linux/types.h>
34 #include <linux/profile.h>
35 #include <linux/timex.h>
36 #include <linux/notifier.h>
37 #include <linux/timekeeper_internal.h>
38 #include <linux/clockchips.h>
39 #include <linux/gfp.h>
40 #include <linux/kprobes.h>
41 #include <linux/uaccess.h>
42 #include <asm/facility.h>
43 #include <asm/delay.h>
44 #include <asm/div64.h>
45 #include <asm/vdso.h>
46 #include <asm/irq.h>
47 #include <asm/irq_regs.h>
48 #include <asm/vtimer.h>
49 #include <asm/stp.h>
50 #include <asm/cio.h>
51 #include "entry.h"
52 
53 u64 sched_clock_base_cc = -1;	/* Force to data section. */
54 EXPORT_SYMBOL_GPL(sched_clock_base_cc);
55 
56 static DEFINE_PER_CPU(struct clock_event_device, comparators);
57 
58 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
59 EXPORT_SYMBOL(s390_epoch_delta_notifier);
60 
61 unsigned char ptff_function_mask[16];
62 
63 static unsigned long long lpar_offset;
64 static unsigned long long initial_leap_seconds;
65 static unsigned long long tod_steering_end;
66 static long long tod_steering_delta;
67 
68 /*
69  * Get time offsets with PTFF
70  */
71 void __init time_early_init(void)
72 {
73 	struct ptff_qto qto;
74 	struct ptff_qui qui;
75 
76 	/* Initialize TOD steering parameters */
77 	tod_steering_end = sched_clock_base_cc;
78 	vdso_data->ts_end = tod_steering_end;
79 
80 	if (!test_facility(28))
81 		return;
82 
83 	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
84 
85 	/* get LPAR offset */
86 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
87 		lpar_offset = qto.tod_epoch_difference;
88 
89 	/* get initial leap seconds */
90 	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
91 		initial_leap_seconds = (unsigned long long)
92 			((long) qui.old_leap * 4096000000L);
93 }
94 
95 /*
96  * Scheduler clock - returns current time in nanosec units.
97  */
98 unsigned long long notrace sched_clock(void)
99 {
100 	return tod_to_ns(get_tod_clock_monotonic());
101 }
102 NOKPROBE_SYMBOL(sched_clock);
103 
104 /*
105  * Monotonic_clock - returns # of nanoseconds passed since time_init()
106  */
107 unsigned long long monotonic_clock(void)
108 {
109 	return sched_clock();
110 }
111 EXPORT_SYMBOL(monotonic_clock);
112 
113 static void tod_to_timeval(__u64 todval, struct timespec64 *xt)
114 {
115 	unsigned long long sec;
116 
117 	sec = todval >> 12;
118 	do_div(sec, 1000000);
119 	xt->tv_sec = sec;
120 	todval -= (sec * 1000000) << 12;
121 	xt->tv_nsec = ((todval * 1000) >> 12);
122 }
123 
124 void clock_comparator_work(void)
125 {
126 	struct clock_event_device *cd;
127 
128 	S390_lowcore.clock_comparator = -1ULL;
129 	cd = this_cpu_ptr(&comparators);
130 	cd->event_handler(cd);
131 }
132 
133 static int s390_next_event(unsigned long delta,
134 			   struct clock_event_device *evt)
135 {
136 	S390_lowcore.clock_comparator = get_tod_clock() + delta;
137 	set_clock_comparator(S390_lowcore.clock_comparator);
138 	return 0;
139 }
140 
141 /*
142  * Set up lowcore and control register of the current cpu to
143  * enable TOD clock and clock comparator interrupts.
144  */
145 void init_cpu_timer(void)
146 {
147 	struct clock_event_device *cd;
148 	int cpu;
149 
150 	S390_lowcore.clock_comparator = -1ULL;
151 	set_clock_comparator(S390_lowcore.clock_comparator);
152 
153 	cpu = smp_processor_id();
154 	cd = &per_cpu(comparators, cpu);
155 	cd->name		= "comparator";
156 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
157 	cd->mult		= 16777;
158 	cd->shift		= 12;
159 	cd->min_delta_ns	= 1;
160 	cd->max_delta_ns	= LONG_MAX;
161 	cd->rating		= 400;
162 	cd->cpumask		= cpumask_of(cpu);
163 	cd->set_next_event	= s390_next_event;
164 
165 	clockevents_register_device(cd);
166 
167 	/* Enable clock comparator timer interrupt. */
168 	__ctl_set_bit(0,11);
169 
170 	/* Always allow the timing alert external interrupt. */
171 	__ctl_set_bit(0, 4);
172 }
173 
174 static void clock_comparator_interrupt(struct ext_code ext_code,
175 				       unsigned int param32,
176 				       unsigned long param64)
177 {
178 	inc_irq_stat(IRQEXT_CLK);
179 	if (S390_lowcore.clock_comparator == -1ULL)
180 		set_clock_comparator(S390_lowcore.clock_comparator);
181 }
182 
183 static void stp_timing_alert(struct stp_irq_parm *);
184 
185 static void timing_alert_interrupt(struct ext_code ext_code,
186 				   unsigned int param32, unsigned long param64)
187 {
188 	inc_irq_stat(IRQEXT_TLA);
189 	if (param32 & 0x00038000)
190 		stp_timing_alert((struct stp_irq_parm *) &param32);
191 }
192 
193 static void stp_reset(void);
194 
195 void read_persistent_clock64(struct timespec64 *ts)
196 {
197 	__u64 clock;
198 
199 	clock = get_tod_clock() - initial_leap_seconds;
200 	tod_to_timeval(clock - TOD_UNIX_EPOCH, ts);
201 }
202 
203 void read_boot_clock64(struct timespec64 *ts)
204 {
205 	__u64 clock;
206 
207 	clock = sched_clock_base_cc - initial_leap_seconds;
208 	tod_to_timeval(clock - TOD_UNIX_EPOCH, ts);
209 }
210 
211 static u64 read_tod_clock(struct clocksource *cs)
212 {
213 	unsigned long long now, adj;
214 
215 	preempt_disable(); /* protect from changes to steering parameters */
216 	now = get_tod_clock();
217 	adj = tod_steering_end - now;
218 	if (unlikely((s64) adj >= 0))
219 		/*
220 		 * manually steer by 1 cycle every 2^16 cycles. This
221 		 * corresponds to shifting the tod delta by 15. 1s is
222 		 * therefore steered in ~9h. The adjust will decrease
223 		 * over time, until it finally reaches 0.
224 		 */
225 		now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
226 	preempt_enable();
227 	return now;
228 }
229 
230 static struct clocksource clocksource_tod = {
231 	.name		= "tod",
232 	.rating		= 400,
233 	.read		= read_tod_clock,
234 	.mask		= -1ULL,
235 	.mult		= 1000,
236 	.shift		= 12,
237 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
238 };
239 
240 struct clocksource * __init clocksource_default_clock(void)
241 {
242 	return &clocksource_tod;
243 }
244 
245 void update_vsyscall(struct timekeeper *tk)
246 {
247 	u64 nsecps;
248 
249 	if (tk->tkr_mono.clock != &clocksource_tod)
250 		return;
251 
252 	/* Make userspace gettimeofday spin until we're done. */
253 	++vdso_data->tb_update_count;
254 	smp_wmb();
255 	vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
256 	vdso_data->xtime_clock_sec = tk->xtime_sec;
257 	vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
258 	vdso_data->wtom_clock_sec =
259 		tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
260 	vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
261 		+ ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
262 	nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
263 	while (vdso_data->wtom_clock_nsec >= nsecps) {
264 		vdso_data->wtom_clock_nsec -= nsecps;
265 		vdso_data->wtom_clock_sec++;
266 	}
267 
268 	vdso_data->xtime_coarse_sec = tk->xtime_sec;
269 	vdso_data->xtime_coarse_nsec =
270 		(long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
271 	vdso_data->wtom_coarse_sec =
272 		vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
273 	vdso_data->wtom_coarse_nsec =
274 		vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
275 	while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
276 		vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
277 		vdso_data->wtom_coarse_sec++;
278 	}
279 
280 	vdso_data->tk_mult = tk->tkr_mono.mult;
281 	vdso_data->tk_shift = tk->tkr_mono.shift;
282 	smp_wmb();
283 	++vdso_data->tb_update_count;
284 }
285 
286 extern struct timezone sys_tz;
287 
288 void update_vsyscall_tz(void)
289 {
290 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
291 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
292 }
293 
294 /*
295  * Initialize the TOD clock and the CPU timer of
296  * the boot cpu.
297  */
298 void __init time_init(void)
299 {
300 	/* Reset time synchronization interfaces. */
301 	stp_reset();
302 
303 	/* request the clock comparator external interrupt */
304 	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
305 		panic("Couldn't request external interrupt 0x1004");
306 
307 	/* request the timing alert external interrupt */
308 	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
309 		panic("Couldn't request external interrupt 0x1406");
310 
311 	if (__clocksource_register(&clocksource_tod) != 0)
312 		panic("Could not register TOD clock source");
313 
314 	/* Enable TOD clock interrupts on the boot cpu. */
315 	init_cpu_timer();
316 
317 	/* Enable cpu timer interrupts on the boot cpu. */
318 	vtime_init();
319 }
320 
321 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
322 static DEFINE_MUTEX(clock_sync_mutex);
323 static unsigned long clock_sync_flags;
324 
325 #define CLOCK_SYNC_HAS_STP	0
326 #define CLOCK_SYNC_STP		1
327 
328 /*
329  * The get_clock function for the physical clock. It will get the current
330  * TOD clock, subtract the LPAR offset and write the result to *clock.
331  * The function returns 0 if the clock is in sync with the external time
332  * source. If the clock mode is local it will return -EOPNOTSUPP and
333  * -EAGAIN if the clock is not in sync with the external reference.
334  */
335 int get_phys_clock(unsigned long long *clock)
336 {
337 	atomic_t *sw_ptr;
338 	unsigned int sw0, sw1;
339 
340 	sw_ptr = &get_cpu_var(clock_sync_word);
341 	sw0 = atomic_read(sw_ptr);
342 	*clock = get_tod_clock() - lpar_offset;
343 	sw1 = atomic_read(sw_ptr);
344 	put_cpu_var(clock_sync_word);
345 	if (sw0 == sw1 && (sw0 & 0x80000000U))
346 		/* Success: time is in sync. */
347 		return 0;
348 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
349 		return -EOPNOTSUPP;
350 	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
351 		return -EACCES;
352 	return -EAGAIN;
353 }
354 EXPORT_SYMBOL(get_phys_clock);
355 
356 /*
357  * Make get_phys_clock() return -EAGAIN.
358  */
359 static void disable_sync_clock(void *dummy)
360 {
361 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
362 	/*
363 	 * Clear the in-sync bit 2^31. All get_phys_clock calls will
364 	 * fail until the sync bit is turned back on. In addition
365 	 * increase the "sequence" counter to avoid the race of an
366 	 * stp event and the complete recovery against get_phys_clock.
367 	 */
368 	atomic_andnot(0x80000000, sw_ptr);
369 	atomic_inc(sw_ptr);
370 }
371 
372 /*
373  * Make get_phys_clock() return 0 again.
374  * Needs to be called from a context disabled for preemption.
375  */
376 static void enable_sync_clock(void)
377 {
378 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
379 	atomic_or(0x80000000, sw_ptr);
380 }
381 
382 /*
383  * Function to check if the clock is in sync.
384  */
385 static inline int check_sync_clock(void)
386 {
387 	atomic_t *sw_ptr;
388 	int rc;
389 
390 	sw_ptr = &get_cpu_var(clock_sync_word);
391 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
392 	put_cpu_var(clock_sync_word);
393 	return rc;
394 }
395 
396 /*
397  * Apply clock delta to the global data structures.
398  * This is called once on the CPU that performed the clock sync.
399  */
400 static void clock_sync_global(unsigned long long delta)
401 {
402 	unsigned long now, adj;
403 	struct ptff_qto qto;
404 
405 	/* Fixup the monotonic sched clock. */
406 	sched_clock_base_cc += delta;
407 	/* Adjust TOD steering parameters. */
408 	vdso_data->tb_update_count++;
409 	now = get_tod_clock();
410 	adj = tod_steering_end - now;
411 	if (unlikely((s64) adj >= 0))
412 		/* Calculate how much of the old adjustment is left. */
413 		tod_steering_delta = (tod_steering_delta < 0) ?
414 			-(adj >> 15) : (adj >> 15);
415 	tod_steering_delta += delta;
416 	if ((abs(tod_steering_delta) >> 48) != 0)
417 		panic("TOD clock sync offset %lli is too large to drift\n",
418 		      tod_steering_delta);
419 	tod_steering_end = now + (abs(tod_steering_delta) << 15);
420 	vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1;
421 	vdso_data->ts_end = tod_steering_end;
422 	vdso_data->tb_update_count++;
423 	/* Update LPAR offset. */
424 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
425 		lpar_offset = qto.tod_epoch_difference;
426 	/* Call the TOD clock change notifier. */
427 	atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
428 }
429 
430 /*
431  * Apply clock delta to the per-CPU data structures of this CPU.
432  * This is called for each online CPU after the call to clock_sync_global.
433  */
434 static void clock_sync_local(unsigned long long delta)
435 {
436 	/* Add the delta to the clock comparator. */
437 	if (S390_lowcore.clock_comparator != -1ULL) {
438 		S390_lowcore.clock_comparator += delta;
439 		set_clock_comparator(S390_lowcore.clock_comparator);
440 	}
441 	/* Adjust the last_update_clock time-stamp. */
442 	S390_lowcore.last_update_clock += delta;
443 }
444 
445 /* Single threaded workqueue used for stp sync events */
446 static struct workqueue_struct *time_sync_wq;
447 
448 static void __init time_init_wq(void)
449 {
450 	if (time_sync_wq)
451 		return;
452 	time_sync_wq = create_singlethread_workqueue("timesync");
453 }
454 
455 struct clock_sync_data {
456 	atomic_t cpus;
457 	int in_sync;
458 	unsigned long long clock_delta;
459 };
460 
461 /*
462  * Server Time Protocol (STP) code.
463  */
464 static bool stp_online;
465 static struct stp_sstpi stp_info;
466 static void *stp_page;
467 
468 static void stp_work_fn(struct work_struct *work);
469 static DEFINE_MUTEX(stp_work_mutex);
470 static DECLARE_WORK(stp_work, stp_work_fn);
471 static struct timer_list stp_timer;
472 
473 static int __init early_parse_stp(char *p)
474 {
475 	return kstrtobool(p, &stp_online);
476 }
477 early_param("stp", early_parse_stp);
478 
479 /*
480  * Reset STP attachment.
481  */
482 static void __init stp_reset(void)
483 {
484 	int rc;
485 
486 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
487 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
488 	if (rc == 0)
489 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
490 	else if (stp_online) {
491 		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
492 		free_page((unsigned long) stp_page);
493 		stp_page = NULL;
494 		stp_online = false;
495 	}
496 }
497 
498 static void stp_timeout(unsigned long dummy)
499 {
500 	queue_work(time_sync_wq, &stp_work);
501 }
502 
503 static int __init stp_init(void)
504 {
505 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
506 		return 0;
507 	setup_timer(&stp_timer, stp_timeout, 0UL);
508 	time_init_wq();
509 	if (!stp_online)
510 		return 0;
511 	queue_work(time_sync_wq, &stp_work);
512 	return 0;
513 }
514 
515 arch_initcall(stp_init);
516 
517 /*
518  * STP timing alert. There are three causes:
519  * 1) timing status change
520  * 2) link availability change
521  * 3) time control parameter change
522  * In all three cases we are only interested in the clock source state.
523  * If a STP clock source is now available use it.
524  */
525 static void stp_timing_alert(struct stp_irq_parm *intparm)
526 {
527 	if (intparm->tsc || intparm->lac || intparm->tcpc)
528 		queue_work(time_sync_wq, &stp_work);
529 }
530 
531 /*
532  * STP sync check machine check. This is called when the timing state
533  * changes from the synchronized state to the unsynchronized state.
534  * After a STP sync check the clock is not in sync. The machine check
535  * is broadcasted to all cpus at the same time.
536  */
537 int stp_sync_check(void)
538 {
539 	disable_sync_clock(NULL);
540 	return 1;
541 }
542 
543 /*
544  * STP island condition machine check. This is called when an attached
545  * server  attempts to communicate over an STP link and the servers
546  * have matching CTN ids and have a valid stratum-1 configuration
547  * but the configurations do not match.
548  */
549 int stp_island_check(void)
550 {
551 	disable_sync_clock(NULL);
552 	return 1;
553 }
554 
555 void stp_queue_work(void)
556 {
557 	queue_work(time_sync_wq, &stp_work);
558 }
559 
560 static int stp_sync_clock(void *data)
561 {
562 	struct clock_sync_data *sync = data;
563 	unsigned long long clock_delta;
564 	static int first;
565 	int rc;
566 
567 	enable_sync_clock();
568 	if (xchg(&first, 1) == 0) {
569 		/* Wait until all other cpus entered the sync function. */
570 		while (atomic_read(&sync->cpus) != 0)
571 			cpu_relax();
572 		rc = 0;
573 		if (stp_info.todoff[0] || stp_info.todoff[1] ||
574 		    stp_info.todoff[2] || stp_info.todoff[3] ||
575 		    stp_info.tmd != 2) {
576 			rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
577 					&clock_delta);
578 			if (rc == 0) {
579 				sync->clock_delta = clock_delta;
580 				clock_sync_global(clock_delta);
581 				rc = chsc_sstpi(stp_page, &stp_info,
582 						sizeof(struct stp_sstpi));
583 				if (rc == 0 && stp_info.tmd != 2)
584 					rc = -EAGAIN;
585 			}
586 		}
587 		sync->in_sync = rc ? -EAGAIN : 1;
588 		xchg(&first, 0);
589 	} else {
590 		/* Slave */
591 		atomic_dec(&sync->cpus);
592 		/* Wait for in_sync to be set. */
593 		while (READ_ONCE(sync->in_sync) == 0)
594 			__udelay(1);
595 	}
596 	if (sync->in_sync != 1)
597 		/* Didn't work. Clear per-cpu in sync bit again. */
598 		disable_sync_clock(NULL);
599 	/* Apply clock delta to per-CPU fields of this CPU. */
600 	clock_sync_local(sync->clock_delta);
601 
602 	return 0;
603 }
604 
605 /*
606  * STP work. Check for the STP state and take over the clock
607  * synchronization if the STP clock source is usable.
608  */
609 static void stp_work_fn(struct work_struct *work)
610 {
611 	struct clock_sync_data stp_sync;
612 	int rc;
613 
614 	/* prevent multiple execution. */
615 	mutex_lock(&stp_work_mutex);
616 
617 	if (!stp_online) {
618 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
619 		del_timer_sync(&stp_timer);
620 		goto out_unlock;
621 	}
622 
623 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL);
624 	if (rc)
625 		goto out_unlock;
626 
627 	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
628 	if (rc || stp_info.c == 0)
629 		goto out_unlock;
630 
631 	/* Skip synchronization if the clock is already in sync. */
632 	if (check_sync_clock())
633 		goto out_unlock;
634 
635 	memset(&stp_sync, 0, sizeof(stp_sync));
636 	get_online_cpus();
637 	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
638 	stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
639 	put_online_cpus();
640 
641 	if (!check_sync_clock())
642 		/*
643 		 * There is a usable clock but the synchonization failed.
644 		 * Retry after a second.
645 		 */
646 		mod_timer(&stp_timer, jiffies + HZ);
647 
648 out_unlock:
649 	mutex_unlock(&stp_work_mutex);
650 }
651 
652 /*
653  * STP subsys sysfs interface functions
654  */
655 static struct bus_type stp_subsys = {
656 	.name		= "stp",
657 	.dev_name	= "stp",
658 };
659 
660 static ssize_t stp_ctn_id_show(struct device *dev,
661 				struct device_attribute *attr,
662 				char *buf)
663 {
664 	if (!stp_online)
665 		return -ENODATA;
666 	return sprintf(buf, "%016llx\n",
667 		       *(unsigned long long *) stp_info.ctnid);
668 }
669 
670 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
671 
672 static ssize_t stp_ctn_type_show(struct device *dev,
673 				struct device_attribute *attr,
674 				char *buf)
675 {
676 	if (!stp_online)
677 		return -ENODATA;
678 	return sprintf(buf, "%i\n", stp_info.ctn);
679 }
680 
681 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
682 
683 static ssize_t stp_dst_offset_show(struct device *dev,
684 				   struct device_attribute *attr,
685 				   char *buf)
686 {
687 	if (!stp_online || !(stp_info.vbits & 0x2000))
688 		return -ENODATA;
689 	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
690 }
691 
692 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
693 
694 static ssize_t stp_leap_seconds_show(struct device *dev,
695 					struct device_attribute *attr,
696 					char *buf)
697 {
698 	if (!stp_online || !(stp_info.vbits & 0x8000))
699 		return -ENODATA;
700 	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
701 }
702 
703 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
704 
705 static ssize_t stp_stratum_show(struct device *dev,
706 				struct device_attribute *attr,
707 				char *buf)
708 {
709 	if (!stp_online)
710 		return -ENODATA;
711 	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
712 }
713 
714 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
715 
716 static ssize_t stp_time_offset_show(struct device *dev,
717 				struct device_attribute *attr,
718 				char *buf)
719 {
720 	if (!stp_online || !(stp_info.vbits & 0x0800))
721 		return -ENODATA;
722 	return sprintf(buf, "%i\n", (int) stp_info.tto);
723 }
724 
725 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
726 
727 static ssize_t stp_time_zone_offset_show(struct device *dev,
728 				struct device_attribute *attr,
729 				char *buf)
730 {
731 	if (!stp_online || !(stp_info.vbits & 0x4000))
732 		return -ENODATA;
733 	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
734 }
735 
736 static DEVICE_ATTR(time_zone_offset, 0400,
737 			 stp_time_zone_offset_show, NULL);
738 
739 static ssize_t stp_timing_mode_show(struct device *dev,
740 				struct device_attribute *attr,
741 				char *buf)
742 {
743 	if (!stp_online)
744 		return -ENODATA;
745 	return sprintf(buf, "%i\n", stp_info.tmd);
746 }
747 
748 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
749 
750 static ssize_t stp_timing_state_show(struct device *dev,
751 				struct device_attribute *attr,
752 				char *buf)
753 {
754 	if (!stp_online)
755 		return -ENODATA;
756 	return sprintf(buf, "%i\n", stp_info.tst);
757 }
758 
759 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
760 
761 static ssize_t stp_online_show(struct device *dev,
762 				struct device_attribute *attr,
763 				char *buf)
764 {
765 	return sprintf(buf, "%i\n", stp_online);
766 }
767 
768 static ssize_t stp_online_store(struct device *dev,
769 				struct device_attribute *attr,
770 				const char *buf, size_t count)
771 {
772 	unsigned int value;
773 
774 	value = simple_strtoul(buf, NULL, 0);
775 	if (value != 0 && value != 1)
776 		return -EINVAL;
777 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
778 		return -EOPNOTSUPP;
779 	mutex_lock(&clock_sync_mutex);
780 	stp_online = value;
781 	if (stp_online)
782 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
783 	else
784 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
785 	queue_work(time_sync_wq, &stp_work);
786 	mutex_unlock(&clock_sync_mutex);
787 	return count;
788 }
789 
790 /*
791  * Can't use DEVICE_ATTR because the attribute should be named
792  * stp/online but dev_attr_online already exists in this file ..
793  */
794 static struct device_attribute dev_attr_stp_online = {
795 	.attr = { .name = "online", .mode = 0600 },
796 	.show	= stp_online_show,
797 	.store	= stp_online_store,
798 };
799 
800 static struct device_attribute *stp_attributes[] = {
801 	&dev_attr_ctn_id,
802 	&dev_attr_ctn_type,
803 	&dev_attr_dst_offset,
804 	&dev_attr_leap_seconds,
805 	&dev_attr_stp_online,
806 	&dev_attr_stratum,
807 	&dev_attr_time_offset,
808 	&dev_attr_time_zone_offset,
809 	&dev_attr_timing_mode,
810 	&dev_attr_timing_state,
811 	NULL
812 };
813 
814 static int __init stp_init_sysfs(void)
815 {
816 	struct device_attribute **attr;
817 	int rc;
818 
819 	rc = subsys_system_register(&stp_subsys, NULL);
820 	if (rc)
821 		goto out;
822 	for (attr = stp_attributes; *attr; attr++) {
823 		rc = device_create_file(stp_subsys.dev_root, *attr);
824 		if (rc)
825 			goto out_unreg;
826 	}
827 	return 0;
828 out_unreg:
829 	for (; attr >= stp_attributes; attr--)
830 		device_remove_file(stp_subsys.dev_root, *attr);
831 	bus_unregister(&stp_subsys);
832 out:
833 	return rc;
834 }
835 
836 device_initcall(stp_init_sysfs);
837