1 /* 2 * Time of day based timer functions. 3 * 4 * S390 version 5 * Copyright IBM Corp. 1999, 2008 6 * Author(s): Hartmut Penner (hp@de.ibm.com), 7 * Martin Schwidefsky (schwidefsky@de.ibm.com), 8 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 9 * 10 * Derived from "arch/i386/kernel/time.c" 11 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 12 */ 13 14 #define KMSG_COMPONENT "time" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/kernel_stat.h> 18 #include <linux/errno.h> 19 #include <linux/export.h> 20 #include <linux/sched.h> 21 #include <linux/kernel.h> 22 #include <linux/param.h> 23 #include <linux/string.h> 24 #include <linux/mm.h> 25 #include <linux/interrupt.h> 26 #include <linux/cpu.h> 27 #include <linux/stop_machine.h> 28 #include <linux/time.h> 29 #include <linux/device.h> 30 #include <linux/delay.h> 31 #include <linux/init.h> 32 #include <linux/smp.h> 33 #include <linux/types.h> 34 #include <linux/profile.h> 35 #include <linux/timex.h> 36 #include <linux/notifier.h> 37 #include <linux/timekeeper_internal.h> 38 #include <linux/clockchips.h> 39 #include <linux/gfp.h> 40 #include <linux/kprobes.h> 41 #include <linux/uaccess.h> 42 #include <asm/facility.h> 43 #include <asm/delay.h> 44 #include <asm/div64.h> 45 #include <asm/vdso.h> 46 #include <asm/irq.h> 47 #include <asm/irq_regs.h> 48 #include <asm/vtimer.h> 49 #include <asm/stp.h> 50 #include <asm/cio.h> 51 #include "entry.h" 52 53 u64 sched_clock_base_cc = -1; /* Force to data section. */ 54 EXPORT_SYMBOL_GPL(sched_clock_base_cc); 55 56 static DEFINE_PER_CPU(struct clock_event_device, comparators); 57 58 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); 59 EXPORT_SYMBOL(s390_epoch_delta_notifier); 60 61 unsigned char ptff_function_mask[16]; 62 63 static unsigned long long lpar_offset; 64 static unsigned long long initial_leap_seconds; 65 static unsigned long long tod_steering_end; 66 static long long tod_steering_delta; 67 68 /* 69 * Get time offsets with PTFF 70 */ 71 void __init time_early_init(void) 72 { 73 struct ptff_qto qto; 74 struct ptff_qui qui; 75 76 /* Initialize TOD steering parameters */ 77 tod_steering_end = sched_clock_base_cc; 78 vdso_data->ts_end = tod_steering_end; 79 80 if (!test_facility(28)) 81 return; 82 83 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF); 84 85 /* get LPAR offset */ 86 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 87 lpar_offset = qto.tod_epoch_difference; 88 89 /* get initial leap seconds */ 90 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0) 91 initial_leap_seconds = (unsigned long long) 92 ((long) qui.old_leap * 4096000000L); 93 } 94 95 /* 96 * Scheduler clock - returns current time in nanosec units. 97 */ 98 unsigned long long notrace sched_clock(void) 99 { 100 return tod_to_ns(get_tod_clock_monotonic()); 101 } 102 NOKPROBE_SYMBOL(sched_clock); 103 104 /* 105 * Monotonic_clock - returns # of nanoseconds passed since time_init() 106 */ 107 unsigned long long monotonic_clock(void) 108 { 109 return sched_clock(); 110 } 111 EXPORT_SYMBOL(monotonic_clock); 112 113 static void tod_to_timeval(__u64 todval, struct timespec64 *xt) 114 { 115 unsigned long long sec; 116 117 sec = todval >> 12; 118 do_div(sec, 1000000); 119 xt->tv_sec = sec; 120 todval -= (sec * 1000000) << 12; 121 xt->tv_nsec = ((todval * 1000) >> 12); 122 } 123 124 void clock_comparator_work(void) 125 { 126 struct clock_event_device *cd; 127 128 S390_lowcore.clock_comparator = -1ULL; 129 cd = this_cpu_ptr(&comparators); 130 cd->event_handler(cd); 131 } 132 133 static int s390_next_event(unsigned long delta, 134 struct clock_event_device *evt) 135 { 136 S390_lowcore.clock_comparator = get_tod_clock() + delta; 137 set_clock_comparator(S390_lowcore.clock_comparator); 138 return 0; 139 } 140 141 /* 142 * Set up lowcore and control register of the current cpu to 143 * enable TOD clock and clock comparator interrupts. 144 */ 145 void init_cpu_timer(void) 146 { 147 struct clock_event_device *cd; 148 int cpu; 149 150 S390_lowcore.clock_comparator = -1ULL; 151 set_clock_comparator(S390_lowcore.clock_comparator); 152 153 cpu = smp_processor_id(); 154 cd = &per_cpu(comparators, cpu); 155 cd->name = "comparator"; 156 cd->features = CLOCK_EVT_FEAT_ONESHOT; 157 cd->mult = 16777; 158 cd->shift = 12; 159 cd->min_delta_ns = 1; 160 cd->max_delta_ns = LONG_MAX; 161 cd->rating = 400; 162 cd->cpumask = cpumask_of(cpu); 163 cd->set_next_event = s390_next_event; 164 165 clockevents_register_device(cd); 166 167 /* Enable clock comparator timer interrupt. */ 168 __ctl_set_bit(0,11); 169 170 /* Always allow the timing alert external interrupt. */ 171 __ctl_set_bit(0, 4); 172 } 173 174 static void clock_comparator_interrupt(struct ext_code ext_code, 175 unsigned int param32, 176 unsigned long param64) 177 { 178 inc_irq_stat(IRQEXT_CLK); 179 if (S390_lowcore.clock_comparator == -1ULL) 180 set_clock_comparator(S390_lowcore.clock_comparator); 181 } 182 183 static void stp_timing_alert(struct stp_irq_parm *); 184 185 static void timing_alert_interrupt(struct ext_code ext_code, 186 unsigned int param32, unsigned long param64) 187 { 188 inc_irq_stat(IRQEXT_TLA); 189 if (param32 & 0x00038000) 190 stp_timing_alert((struct stp_irq_parm *) ¶m32); 191 } 192 193 static void stp_reset(void); 194 195 void read_persistent_clock64(struct timespec64 *ts) 196 { 197 __u64 clock; 198 199 clock = get_tod_clock() - initial_leap_seconds; 200 tod_to_timeval(clock - TOD_UNIX_EPOCH, ts); 201 } 202 203 void read_boot_clock64(struct timespec64 *ts) 204 { 205 __u64 clock; 206 207 clock = sched_clock_base_cc - initial_leap_seconds; 208 tod_to_timeval(clock - TOD_UNIX_EPOCH, ts); 209 } 210 211 static u64 read_tod_clock(struct clocksource *cs) 212 { 213 unsigned long long now, adj; 214 215 preempt_disable(); /* protect from changes to steering parameters */ 216 now = get_tod_clock(); 217 adj = tod_steering_end - now; 218 if (unlikely((s64) adj >= 0)) 219 /* 220 * manually steer by 1 cycle every 2^16 cycles. This 221 * corresponds to shifting the tod delta by 15. 1s is 222 * therefore steered in ~9h. The adjust will decrease 223 * over time, until it finally reaches 0. 224 */ 225 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15); 226 preempt_enable(); 227 return now; 228 } 229 230 static struct clocksource clocksource_tod = { 231 .name = "tod", 232 .rating = 400, 233 .read = read_tod_clock, 234 .mask = -1ULL, 235 .mult = 1000, 236 .shift = 12, 237 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 238 }; 239 240 struct clocksource * __init clocksource_default_clock(void) 241 { 242 return &clocksource_tod; 243 } 244 245 void update_vsyscall(struct timekeeper *tk) 246 { 247 u64 nsecps; 248 249 if (tk->tkr_mono.clock != &clocksource_tod) 250 return; 251 252 /* Make userspace gettimeofday spin until we're done. */ 253 ++vdso_data->tb_update_count; 254 smp_wmb(); 255 vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last; 256 vdso_data->xtime_clock_sec = tk->xtime_sec; 257 vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec; 258 vdso_data->wtom_clock_sec = 259 tk->xtime_sec + tk->wall_to_monotonic.tv_sec; 260 vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec + 261 + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift); 262 nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift; 263 while (vdso_data->wtom_clock_nsec >= nsecps) { 264 vdso_data->wtom_clock_nsec -= nsecps; 265 vdso_data->wtom_clock_sec++; 266 } 267 268 vdso_data->xtime_coarse_sec = tk->xtime_sec; 269 vdso_data->xtime_coarse_nsec = 270 (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 271 vdso_data->wtom_coarse_sec = 272 vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec; 273 vdso_data->wtom_coarse_nsec = 274 vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec; 275 while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) { 276 vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC; 277 vdso_data->wtom_coarse_sec++; 278 } 279 280 vdso_data->tk_mult = tk->tkr_mono.mult; 281 vdso_data->tk_shift = tk->tkr_mono.shift; 282 smp_wmb(); 283 ++vdso_data->tb_update_count; 284 } 285 286 extern struct timezone sys_tz; 287 288 void update_vsyscall_tz(void) 289 { 290 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 291 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 292 } 293 294 /* 295 * Initialize the TOD clock and the CPU timer of 296 * the boot cpu. 297 */ 298 void __init time_init(void) 299 { 300 /* Reset time synchronization interfaces. */ 301 stp_reset(); 302 303 /* request the clock comparator external interrupt */ 304 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) 305 panic("Couldn't request external interrupt 0x1004"); 306 307 /* request the timing alert external interrupt */ 308 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) 309 panic("Couldn't request external interrupt 0x1406"); 310 311 if (__clocksource_register(&clocksource_tod) != 0) 312 panic("Could not register TOD clock source"); 313 314 /* Enable TOD clock interrupts on the boot cpu. */ 315 init_cpu_timer(); 316 317 /* Enable cpu timer interrupts on the boot cpu. */ 318 vtime_init(); 319 } 320 321 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 322 static DEFINE_MUTEX(clock_sync_mutex); 323 static unsigned long clock_sync_flags; 324 325 #define CLOCK_SYNC_HAS_STP 0 326 #define CLOCK_SYNC_STP 1 327 328 /* 329 * The get_clock function for the physical clock. It will get the current 330 * TOD clock, subtract the LPAR offset and write the result to *clock. 331 * The function returns 0 if the clock is in sync with the external time 332 * source. If the clock mode is local it will return -EOPNOTSUPP and 333 * -EAGAIN if the clock is not in sync with the external reference. 334 */ 335 int get_phys_clock(unsigned long long *clock) 336 { 337 atomic_t *sw_ptr; 338 unsigned int sw0, sw1; 339 340 sw_ptr = &get_cpu_var(clock_sync_word); 341 sw0 = atomic_read(sw_ptr); 342 *clock = get_tod_clock() - lpar_offset; 343 sw1 = atomic_read(sw_ptr); 344 put_cpu_var(clock_sync_word); 345 if (sw0 == sw1 && (sw0 & 0x80000000U)) 346 /* Success: time is in sync. */ 347 return 0; 348 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 349 return -EOPNOTSUPP; 350 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 351 return -EACCES; 352 return -EAGAIN; 353 } 354 EXPORT_SYMBOL(get_phys_clock); 355 356 /* 357 * Make get_phys_clock() return -EAGAIN. 358 */ 359 static void disable_sync_clock(void *dummy) 360 { 361 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 362 /* 363 * Clear the in-sync bit 2^31. All get_phys_clock calls will 364 * fail until the sync bit is turned back on. In addition 365 * increase the "sequence" counter to avoid the race of an 366 * stp event and the complete recovery against get_phys_clock. 367 */ 368 atomic_andnot(0x80000000, sw_ptr); 369 atomic_inc(sw_ptr); 370 } 371 372 /* 373 * Make get_phys_clock() return 0 again. 374 * Needs to be called from a context disabled for preemption. 375 */ 376 static void enable_sync_clock(void) 377 { 378 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 379 atomic_or(0x80000000, sw_ptr); 380 } 381 382 /* 383 * Function to check if the clock is in sync. 384 */ 385 static inline int check_sync_clock(void) 386 { 387 atomic_t *sw_ptr; 388 int rc; 389 390 sw_ptr = &get_cpu_var(clock_sync_word); 391 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 392 put_cpu_var(clock_sync_word); 393 return rc; 394 } 395 396 /* 397 * Apply clock delta to the global data structures. 398 * This is called once on the CPU that performed the clock sync. 399 */ 400 static void clock_sync_global(unsigned long long delta) 401 { 402 unsigned long now, adj; 403 struct ptff_qto qto; 404 405 /* Fixup the monotonic sched clock. */ 406 sched_clock_base_cc += delta; 407 /* Adjust TOD steering parameters. */ 408 vdso_data->tb_update_count++; 409 now = get_tod_clock(); 410 adj = tod_steering_end - now; 411 if (unlikely((s64) adj >= 0)) 412 /* Calculate how much of the old adjustment is left. */ 413 tod_steering_delta = (tod_steering_delta < 0) ? 414 -(adj >> 15) : (adj >> 15); 415 tod_steering_delta += delta; 416 if ((abs(tod_steering_delta) >> 48) != 0) 417 panic("TOD clock sync offset %lli is too large to drift\n", 418 tod_steering_delta); 419 tod_steering_end = now + (abs(tod_steering_delta) << 15); 420 vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1; 421 vdso_data->ts_end = tod_steering_end; 422 vdso_data->tb_update_count++; 423 /* Update LPAR offset. */ 424 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 425 lpar_offset = qto.tod_epoch_difference; 426 /* Call the TOD clock change notifier. */ 427 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta); 428 } 429 430 /* 431 * Apply clock delta to the per-CPU data structures of this CPU. 432 * This is called for each online CPU after the call to clock_sync_global. 433 */ 434 static void clock_sync_local(unsigned long long delta) 435 { 436 /* Add the delta to the clock comparator. */ 437 if (S390_lowcore.clock_comparator != -1ULL) { 438 S390_lowcore.clock_comparator += delta; 439 set_clock_comparator(S390_lowcore.clock_comparator); 440 } 441 /* Adjust the last_update_clock time-stamp. */ 442 S390_lowcore.last_update_clock += delta; 443 } 444 445 /* Single threaded workqueue used for stp sync events */ 446 static struct workqueue_struct *time_sync_wq; 447 448 static void __init time_init_wq(void) 449 { 450 if (time_sync_wq) 451 return; 452 time_sync_wq = create_singlethread_workqueue("timesync"); 453 } 454 455 struct clock_sync_data { 456 atomic_t cpus; 457 int in_sync; 458 unsigned long long clock_delta; 459 }; 460 461 /* 462 * Server Time Protocol (STP) code. 463 */ 464 static bool stp_online; 465 static struct stp_sstpi stp_info; 466 static void *stp_page; 467 468 static void stp_work_fn(struct work_struct *work); 469 static DEFINE_MUTEX(stp_work_mutex); 470 static DECLARE_WORK(stp_work, stp_work_fn); 471 static struct timer_list stp_timer; 472 473 static int __init early_parse_stp(char *p) 474 { 475 return kstrtobool(p, &stp_online); 476 } 477 early_param("stp", early_parse_stp); 478 479 /* 480 * Reset STP attachment. 481 */ 482 static void __init stp_reset(void) 483 { 484 int rc; 485 486 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 487 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 488 if (rc == 0) 489 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 490 else if (stp_online) { 491 pr_warn("The real or virtual hardware system does not provide an STP interface\n"); 492 free_page((unsigned long) stp_page); 493 stp_page = NULL; 494 stp_online = false; 495 } 496 } 497 498 static void stp_timeout(unsigned long dummy) 499 { 500 queue_work(time_sync_wq, &stp_work); 501 } 502 503 static int __init stp_init(void) 504 { 505 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 506 return 0; 507 setup_timer(&stp_timer, stp_timeout, 0UL); 508 time_init_wq(); 509 if (!stp_online) 510 return 0; 511 queue_work(time_sync_wq, &stp_work); 512 return 0; 513 } 514 515 arch_initcall(stp_init); 516 517 /* 518 * STP timing alert. There are three causes: 519 * 1) timing status change 520 * 2) link availability change 521 * 3) time control parameter change 522 * In all three cases we are only interested in the clock source state. 523 * If a STP clock source is now available use it. 524 */ 525 static void stp_timing_alert(struct stp_irq_parm *intparm) 526 { 527 if (intparm->tsc || intparm->lac || intparm->tcpc) 528 queue_work(time_sync_wq, &stp_work); 529 } 530 531 /* 532 * STP sync check machine check. This is called when the timing state 533 * changes from the synchronized state to the unsynchronized state. 534 * After a STP sync check the clock is not in sync. The machine check 535 * is broadcasted to all cpus at the same time. 536 */ 537 int stp_sync_check(void) 538 { 539 disable_sync_clock(NULL); 540 return 1; 541 } 542 543 /* 544 * STP island condition machine check. This is called when an attached 545 * server attempts to communicate over an STP link and the servers 546 * have matching CTN ids and have a valid stratum-1 configuration 547 * but the configurations do not match. 548 */ 549 int stp_island_check(void) 550 { 551 disable_sync_clock(NULL); 552 return 1; 553 } 554 555 void stp_queue_work(void) 556 { 557 queue_work(time_sync_wq, &stp_work); 558 } 559 560 static int stp_sync_clock(void *data) 561 { 562 struct clock_sync_data *sync = data; 563 unsigned long long clock_delta; 564 static int first; 565 int rc; 566 567 enable_sync_clock(); 568 if (xchg(&first, 1) == 0) { 569 /* Wait until all other cpus entered the sync function. */ 570 while (atomic_read(&sync->cpus) != 0) 571 cpu_relax(); 572 rc = 0; 573 if (stp_info.todoff[0] || stp_info.todoff[1] || 574 stp_info.todoff[2] || stp_info.todoff[3] || 575 stp_info.tmd != 2) { 576 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, 577 &clock_delta); 578 if (rc == 0) { 579 sync->clock_delta = clock_delta; 580 clock_sync_global(clock_delta); 581 rc = chsc_sstpi(stp_page, &stp_info, 582 sizeof(struct stp_sstpi)); 583 if (rc == 0 && stp_info.tmd != 2) 584 rc = -EAGAIN; 585 } 586 } 587 sync->in_sync = rc ? -EAGAIN : 1; 588 xchg(&first, 0); 589 } else { 590 /* Slave */ 591 atomic_dec(&sync->cpus); 592 /* Wait for in_sync to be set. */ 593 while (READ_ONCE(sync->in_sync) == 0) 594 __udelay(1); 595 } 596 if (sync->in_sync != 1) 597 /* Didn't work. Clear per-cpu in sync bit again. */ 598 disable_sync_clock(NULL); 599 /* Apply clock delta to per-CPU fields of this CPU. */ 600 clock_sync_local(sync->clock_delta); 601 602 return 0; 603 } 604 605 /* 606 * STP work. Check for the STP state and take over the clock 607 * synchronization if the STP clock source is usable. 608 */ 609 static void stp_work_fn(struct work_struct *work) 610 { 611 struct clock_sync_data stp_sync; 612 int rc; 613 614 /* prevent multiple execution. */ 615 mutex_lock(&stp_work_mutex); 616 617 if (!stp_online) { 618 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 619 del_timer_sync(&stp_timer); 620 goto out_unlock; 621 } 622 623 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL); 624 if (rc) 625 goto out_unlock; 626 627 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 628 if (rc || stp_info.c == 0) 629 goto out_unlock; 630 631 /* Skip synchronization if the clock is already in sync. */ 632 if (check_sync_clock()) 633 goto out_unlock; 634 635 memset(&stp_sync, 0, sizeof(stp_sync)); 636 get_online_cpus(); 637 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 638 stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask); 639 put_online_cpus(); 640 641 if (!check_sync_clock()) 642 /* 643 * There is a usable clock but the synchonization failed. 644 * Retry after a second. 645 */ 646 mod_timer(&stp_timer, jiffies + HZ); 647 648 out_unlock: 649 mutex_unlock(&stp_work_mutex); 650 } 651 652 /* 653 * STP subsys sysfs interface functions 654 */ 655 static struct bus_type stp_subsys = { 656 .name = "stp", 657 .dev_name = "stp", 658 }; 659 660 static ssize_t stp_ctn_id_show(struct device *dev, 661 struct device_attribute *attr, 662 char *buf) 663 { 664 if (!stp_online) 665 return -ENODATA; 666 return sprintf(buf, "%016llx\n", 667 *(unsigned long long *) stp_info.ctnid); 668 } 669 670 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL); 671 672 static ssize_t stp_ctn_type_show(struct device *dev, 673 struct device_attribute *attr, 674 char *buf) 675 { 676 if (!stp_online) 677 return -ENODATA; 678 return sprintf(buf, "%i\n", stp_info.ctn); 679 } 680 681 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL); 682 683 static ssize_t stp_dst_offset_show(struct device *dev, 684 struct device_attribute *attr, 685 char *buf) 686 { 687 if (!stp_online || !(stp_info.vbits & 0x2000)) 688 return -ENODATA; 689 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); 690 } 691 692 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL); 693 694 static ssize_t stp_leap_seconds_show(struct device *dev, 695 struct device_attribute *attr, 696 char *buf) 697 { 698 if (!stp_online || !(stp_info.vbits & 0x8000)) 699 return -ENODATA; 700 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); 701 } 702 703 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL); 704 705 static ssize_t stp_stratum_show(struct device *dev, 706 struct device_attribute *attr, 707 char *buf) 708 { 709 if (!stp_online) 710 return -ENODATA; 711 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); 712 } 713 714 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL); 715 716 static ssize_t stp_time_offset_show(struct device *dev, 717 struct device_attribute *attr, 718 char *buf) 719 { 720 if (!stp_online || !(stp_info.vbits & 0x0800)) 721 return -ENODATA; 722 return sprintf(buf, "%i\n", (int) stp_info.tto); 723 } 724 725 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL); 726 727 static ssize_t stp_time_zone_offset_show(struct device *dev, 728 struct device_attribute *attr, 729 char *buf) 730 { 731 if (!stp_online || !(stp_info.vbits & 0x4000)) 732 return -ENODATA; 733 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); 734 } 735 736 static DEVICE_ATTR(time_zone_offset, 0400, 737 stp_time_zone_offset_show, NULL); 738 739 static ssize_t stp_timing_mode_show(struct device *dev, 740 struct device_attribute *attr, 741 char *buf) 742 { 743 if (!stp_online) 744 return -ENODATA; 745 return sprintf(buf, "%i\n", stp_info.tmd); 746 } 747 748 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL); 749 750 static ssize_t stp_timing_state_show(struct device *dev, 751 struct device_attribute *attr, 752 char *buf) 753 { 754 if (!stp_online) 755 return -ENODATA; 756 return sprintf(buf, "%i\n", stp_info.tst); 757 } 758 759 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL); 760 761 static ssize_t stp_online_show(struct device *dev, 762 struct device_attribute *attr, 763 char *buf) 764 { 765 return sprintf(buf, "%i\n", stp_online); 766 } 767 768 static ssize_t stp_online_store(struct device *dev, 769 struct device_attribute *attr, 770 const char *buf, size_t count) 771 { 772 unsigned int value; 773 774 value = simple_strtoul(buf, NULL, 0); 775 if (value != 0 && value != 1) 776 return -EINVAL; 777 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 778 return -EOPNOTSUPP; 779 mutex_lock(&clock_sync_mutex); 780 stp_online = value; 781 if (stp_online) 782 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 783 else 784 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 785 queue_work(time_sync_wq, &stp_work); 786 mutex_unlock(&clock_sync_mutex); 787 return count; 788 } 789 790 /* 791 * Can't use DEVICE_ATTR because the attribute should be named 792 * stp/online but dev_attr_online already exists in this file .. 793 */ 794 static struct device_attribute dev_attr_stp_online = { 795 .attr = { .name = "online", .mode = 0600 }, 796 .show = stp_online_show, 797 .store = stp_online_store, 798 }; 799 800 static struct device_attribute *stp_attributes[] = { 801 &dev_attr_ctn_id, 802 &dev_attr_ctn_type, 803 &dev_attr_dst_offset, 804 &dev_attr_leap_seconds, 805 &dev_attr_stp_online, 806 &dev_attr_stratum, 807 &dev_attr_time_offset, 808 &dev_attr_time_zone_offset, 809 &dev_attr_timing_mode, 810 &dev_attr_timing_state, 811 NULL 812 }; 813 814 static int __init stp_init_sysfs(void) 815 { 816 struct device_attribute **attr; 817 int rc; 818 819 rc = subsys_system_register(&stp_subsys, NULL); 820 if (rc) 821 goto out; 822 for (attr = stp_attributes; *attr; attr++) { 823 rc = device_create_file(stp_subsys.dev_root, *attr); 824 if (rc) 825 goto out_unreg; 826 } 827 return 0; 828 out_unreg: 829 for (; attr >= stp_attributes; attr--) 830 device_remove_file(stp_subsys.dev_root, *attr); 831 bus_unregister(&stp_subsys); 832 out: 833 return rc; 834 } 835 836 device_initcall(stp_init_sysfs); 837