xref: /openbmc/linux/arch/s390/kernel/time.c (revision 78c99ba1)
1 /*
2  *  arch/s390/kernel/time.c
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/cpu.h>
27 #include <linux/stop_machine.h>
28 #include <linux/time.h>
29 #include <linux/sysdev.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/smp.h>
33 #include <linux/types.h>
34 #include <linux/profile.h>
35 #include <linux/timex.h>
36 #include <linux/notifier.h>
37 #include <linux/clocksource.h>
38 #include <linux/clockchips.h>
39 #include <linux/bootmem.h>
40 #include <asm/uaccess.h>
41 #include <asm/delay.h>
42 #include <asm/s390_ext.h>
43 #include <asm/div64.h>
44 #include <asm/vdso.h>
45 #include <asm/irq.h>
46 #include <asm/irq_regs.h>
47 #include <asm/timer.h>
48 #include <asm/etr.h>
49 #include <asm/cio.h>
50 
51 /* change this if you have some constant time drift */
52 #define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
53 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
54 
55 /*
56  * Create a small time difference between the timer interrupts
57  * on the different cpus to avoid lock contention.
58  */
59 #define CPU_DEVIATION       (smp_processor_id() << 12)
60 
61 #define TICK_SIZE tick
62 
63 u64 sched_clock_base_cc = -1;	/* Force to data section. */
64 
65 static ext_int_info_t ext_int_info_cc;
66 static ext_int_info_t ext_int_etr_cc;
67 
68 static DEFINE_PER_CPU(struct clock_event_device, comparators);
69 
70 /*
71  * Scheduler clock - returns current time in nanosec units.
72  */
73 unsigned long long sched_clock(void)
74 {
75 	return ((get_clock_xt() - sched_clock_base_cc) * 125) >> 9;
76 }
77 
78 /*
79  * Monotonic_clock - returns # of nanoseconds passed since time_init()
80  */
81 unsigned long long monotonic_clock(void)
82 {
83 	return sched_clock();
84 }
85 EXPORT_SYMBOL(monotonic_clock);
86 
87 void tod_to_timeval(__u64 todval, struct timespec *xtime)
88 {
89 	unsigned long long sec;
90 
91 	sec = todval >> 12;
92 	do_div(sec, 1000000);
93 	xtime->tv_sec = sec;
94 	todval -= (sec * 1000000) << 12;
95 	xtime->tv_nsec = ((todval * 1000) >> 12);
96 }
97 
98 #ifdef CONFIG_PROFILING
99 #define s390_do_profile()	profile_tick(CPU_PROFILING)
100 #else
101 #define s390_do_profile()	do { ; } while(0)
102 #endif /* CONFIG_PROFILING */
103 
104 void clock_comparator_work(void)
105 {
106 	struct clock_event_device *cd;
107 
108 	S390_lowcore.clock_comparator = -1ULL;
109 	set_clock_comparator(S390_lowcore.clock_comparator);
110 	cd = &__get_cpu_var(comparators);
111 	cd->event_handler(cd);
112 	s390_do_profile();
113 }
114 
115 /*
116  * Fixup the clock comparator.
117  */
118 static void fixup_clock_comparator(unsigned long long delta)
119 {
120 	/* If nobody is waiting there's nothing to fix. */
121 	if (S390_lowcore.clock_comparator == -1ULL)
122 		return;
123 	S390_lowcore.clock_comparator += delta;
124 	set_clock_comparator(S390_lowcore.clock_comparator);
125 }
126 
127 static int s390_next_event(unsigned long delta,
128 			   struct clock_event_device *evt)
129 {
130 	S390_lowcore.clock_comparator = get_clock() + delta;
131 	set_clock_comparator(S390_lowcore.clock_comparator);
132 	return 0;
133 }
134 
135 static void s390_set_mode(enum clock_event_mode mode,
136 			  struct clock_event_device *evt)
137 {
138 }
139 
140 /*
141  * Set up lowcore and control register of the current cpu to
142  * enable TOD clock and clock comparator interrupts.
143  */
144 void init_cpu_timer(void)
145 {
146 	struct clock_event_device *cd;
147 	int cpu;
148 
149 	S390_lowcore.clock_comparator = -1ULL;
150 	set_clock_comparator(S390_lowcore.clock_comparator);
151 
152 	cpu = smp_processor_id();
153 	cd = &per_cpu(comparators, cpu);
154 	cd->name		= "comparator";
155 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
156 	cd->mult		= 16777;
157 	cd->shift		= 12;
158 	cd->min_delta_ns	= 1;
159 	cd->max_delta_ns	= LONG_MAX;
160 	cd->rating		= 400;
161 	cd->cpumask		= cpumask_of(cpu);
162 	cd->set_next_event	= s390_next_event;
163 	cd->set_mode		= s390_set_mode;
164 
165 	clockevents_register_device(cd);
166 
167 	/* Enable clock comparator timer interrupt. */
168 	__ctl_set_bit(0,11);
169 
170 	/* Always allow the timing alert external interrupt. */
171 	__ctl_set_bit(0, 4);
172 }
173 
174 static void clock_comparator_interrupt(__u16 code)
175 {
176 	if (S390_lowcore.clock_comparator == -1ULL)
177 		set_clock_comparator(S390_lowcore.clock_comparator);
178 }
179 
180 static void etr_timing_alert(struct etr_irq_parm *);
181 static void stp_timing_alert(struct stp_irq_parm *);
182 
183 static void timing_alert_interrupt(__u16 code)
184 {
185 	if (S390_lowcore.ext_params & 0x00c40000)
186 		etr_timing_alert((struct etr_irq_parm *)
187 				 &S390_lowcore.ext_params);
188 	if (S390_lowcore.ext_params & 0x00038000)
189 		stp_timing_alert((struct stp_irq_parm *)
190 				 &S390_lowcore.ext_params);
191 }
192 
193 static void etr_reset(void);
194 static void stp_reset(void);
195 
196 unsigned long read_persistent_clock(void)
197 {
198 	struct timespec ts;
199 
200 	tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, &ts);
201 	return ts.tv_sec;
202 }
203 
204 static cycle_t read_tod_clock(struct clocksource *cs)
205 {
206 	return get_clock();
207 }
208 
209 static struct clocksource clocksource_tod = {
210 	.name		= "tod",
211 	.rating		= 400,
212 	.read		= read_tod_clock,
213 	.mask		= -1ULL,
214 	.mult		= 1000,
215 	.shift		= 12,
216 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
217 };
218 
219 
220 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
221 {
222 	if (clock != &clocksource_tod)
223 		return;
224 
225 	/* Make userspace gettimeofday spin until we're done. */
226 	++vdso_data->tb_update_count;
227 	smp_wmb();
228 	vdso_data->xtime_tod_stamp = clock->cycle_last;
229 	vdso_data->xtime_clock_sec = xtime.tv_sec;
230 	vdso_data->xtime_clock_nsec = xtime.tv_nsec;
231 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
232 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
233 	smp_wmb();
234 	++vdso_data->tb_update_count;
235 }
236 
237 extern struct timezone sys_tz;
238 
239 void update_vsyscall_tz(void)
240 {
241 	/* Make userspace gettimeofday spin until we're done. */
242 	++vdso_data->tb_update_count;
243 	smp_wmb();
244 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
245 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
246 	smp_wmb();
247 	++vdso_data->tb_update_count;
248 }
249 
250 /*
251  * Initialize the TOD clock and the CPU timer of
252  * the boot cpu.
253  */
254 void __init time_init(void)
255 {
256 	struct timespec ts;
257 	unsigned long flags;
258 	cycle_t now;
259 
260 	/* Reset time synchronization interfaces. */
261 	etr_reset();
262 	stp_reset();
263 
264 	/* request the clock comparator external interrupt */
265 	if (register_early_external_interrupt(0x1004,
266 					      clock_comparator_interrupt,
267 					      &ext_int_info_cc) != 0)
268                 panic("Couldn't request external interrupt 0x1004");
269 
270 	/* request the timing alert external interrupt */
271 	if (register_early_external_interrupt(0x1406,
272 					      timing_alert_interrupt,
273 					      &ext_int_etr_cc) != 0)
274 		panic("Couldn't request external interrupt 0x1406");
275 
276 	if (clocksource_register(&clocksource_tod) != 0)
277 		panic("Could not register TOD clock source");
278 
279 	/*
280 	 * The TOD clock is an accurate clock. The xtime should be
281 	 * initialized in a way that the difference between TOD and
282 	 * xtime is reasonably small. Too bad that timekeeping_init
283 	 * sets xtime.tv_nsec to zero. In addition the clock source
284 	 * change from the jiffies clock source to the TOD clock
285 	 * source add another error of up to 1/HZ second. The same
286 	 * function sets wall_to_monotonic to a value that is too
287 	 * small for /proc/uptime to be accurate.
288 	 * Reset xtime and wall_to_monotonic to sane values.
289 	 */
290 	write_seqlock_irqsave(&xtime_lock, flags);
291 	now = get_clock();
292 	tod_to_timeval(now - TOD_UNIX_EPOCH, &xtime);
293 	clocksource_tod.cycle_last = now;
294 	clocksource_tod.raw_time = xtime;
295 	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, &ts);
296 	set_normalized_timespec(&wall_to_monotonic, -ts.tv_sec, -ts.tv_nsec);
297 	write_sequnlock_irqrestore(&xtime_lock, flags);
298 
299 	/* Enable TOD clock interrupts on the boot cpu. */
300 	init_cpu_timer();
301 
302 	/* Enable cpu timer interrupts on the boot cpu. */
303 	vtime_init();
304 }
305 
306 /*
307  * The time is "clock". old is what we think the time is.
308  * Adjust the value by a multiple of jiffies and add the delta to ntp.
309  * "delay" is an approximation how long the synchronization took. If
310  * the time correction is positive, then "delay" is subtracted from
311  * the time difference and only the remaining part is passed to ntp.
312  */
313 static unsigned long long adjust_time(unsigned long long old,
314 				      unsigned long long clock,
315 				      unsigned long long delay)
316 {
317 	unsigned long long delta, ticks;
318 	struct timex adjust;
319 
320 	if (clock > old) {
321 		/* It is later than we thought. */
322 		delta = ticks = clock - old;
323 		delta = ticks = (delta < delay) ? 0 : delta - delay;
324 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
325 		adjust.offset = ticks * (1000000 / HZ);
326 	} else {
327 		/* It is earlier than we thought. */
328 		delta = ticks = old - clock;
329 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
330 		delta = -delta;
331 		adjust.offset = -ticks * (1000000 / HZ);
332 	}
333 	sched_clock_base_cc += delta;
334 	if (adjust.offset != 0) {
335 		pr_notice("The ETR interface has adjusted the clock "
336 			  "by %li microseconds\n", adjust.offset);
337 		adjust.modes = ADJ_OFFSET_SINGLESHOT;
338 		do_adjtimex(&adjust);
339 	}
340 	return delta;
341 }
342 
343 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
344 static DEFINE_MUTEX(clock_sync_mutex);
345 static unsigned long clock_sync_flags;
346 
347 #define CLOCK_SYNC_HAS_ETR	0
348 #define CLOCK_SYNC_HAS_STP	1
349 #define CLOCK_SYNC_ETR		2
350 #define CLOCK_SYNC_STP		3
351 
352 /*
353  * The synchronous get_clock function. It will write the current clock
354  * value to the clock pointer and return 0 if the clock is in sync with
355  * the external time source. If the clock mode is local it will return
356  * -ENOSYS and -EAGAIN if the clock is not in sync with the external
357  * reference.
358  */
359 int get_sync_clock(unsigned long long *clock)
360 {
361 	atomic_t *sw_ptr;
362 	unsigned int sw0, sw1;
363 
364 	sw_ptr = &get_cpu_var(clock_sync_word);
365 	sw0 = atomic_read(sw_ptr);
366 	*clock = get_clock();
367 	sw1 = atomic_read(sw_ptr);
368 	put_cpu_var(clock_sync_sync);
369 	if (sw0 == sw1 && (sw0 & 0x80000000U))
370 		/* Success: time is in sync. */
371 		return 0;
372 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
373 	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
374 		return -ENOSYS;
375 	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
376 	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
377 		return -EACCES;
378 	return -EAGAIN;
379 }
380 EXPORT_SYMBOL(get_sync_clock);
381 
382 /*
383  * Make get_sync_clock return -EAGAIN.
384  */
385 static void disable_sync_clock(void *dummy)
386 {
387 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
388 	/*
389 	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
390 	 * fail until the sync bit is turned back on. In addition
391 	 * increase the "sequence" counter to avoid the race of an
392 	 * etr event and the complete recovery against get_sync_clock.
393 	 */
394 	atomic_clear_mask(0x80000000, sw_ptr);
395 	atomic_inc(sw_ptr);
396 }
397 
398 /*
399  * Make get_sync_clock return 0 again.
400  * Needs to be called from a context disabled for preemption.
401  */
402 static void enable_sync_clock(void)
403 {
404 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
405 	atomic_set_mask(0x80000000, sw_ptr);
406 }
407 
408 /*
409  * Function to check if the clock is in sync.
410  */
411 static inline int check_sync_clock(void)
412 {
413 	atomic_t *sw_ptr;
414 	int rc;
415 
416 	sw_ptr = &get_cpu_var(clock_sync_word);
417 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
418 	put_cpu_var(clock_sync_sync);
419 	return rc;
420 }
421 
422 /* Single threaded workqueue used for etr and stp sync events */
423 static struct workqueue_struct *time_sync_wq;
424 
425 static void __init time_init_wq(void)
426 {
427 	if (time_sync_wq)
428 		return;
429 	time_sync_wq = create_singlethread_workqueue("timesync");
430 	stop_machine_create();
431 }
432 
433 /*
434  * External Time Reference (ETR) code.
435  */
436 static int etr_port0_online;
437 static int etr_port1_online;
438 static int etr_steai_available;
439 
440 static int __init early_parse_etr(char *p)
441 {
442 	if (strncmp(p, "off", 3) == 0)
443 		etr_port0_online = etr_port1_online = 0;
444 	else if (strncmp(p, "port0", 5) == 0)
445 		etr_port0_online = 1;
446 	else if (strncmp(p, "port1", 5) == 0)
447 		etr_port1_online = 1;
448 	else if (strncmp(p, "on", 2) == 0)
449 		etr_port0_online = etr_port1_online = 1;
450 	return 0;
451 }
452 early_param("etr", early_parse_etr);
453 
454 enum etr_event {
455 	ETR_EVENT_PORT0_CHANGE,
456 	ETR_EVENT_PORT1_CHANGE,
457 	ETR_EVENT_PORT_ALERT,
458 	ETR_EVENT_SYNC_CHECK,
459 	ETR_EVENT_SWITCH_LOCAL,
460 	ETR_EVENT_UPDATE,
461 };
462 
463 /*
464  * Valid bit combinations of the eacr register are (x = don't care):
465  * e0 e1 dp p0 p1 ea es sl
466  *  0  0  x  0	0  0  0  0  initial, disabled state
467  *  0  0  x  0	1  1  0  0  port 1 online
468  *  0  0  x  1	0  1  0  0  port 0 online
469  *  0  0  x  1	1  1  0  0  both ports online
470  *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
471  *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
472  *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
473  *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
474  *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
475  *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
476  *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
477  *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
478  *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
479  *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
480  *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
481  *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
482  *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
483  *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
484  *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
485  *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
486  */
487 static struct etr_eacr etr_eacr;
488 static u64 etr_tolec;			/* time of last eacr update */
489 static struct etr_aib etr_port0;
490 static int etr_port0_uptodate;
491 static struct etr_aib etr_port1;
492 static int etr_port1_uptodate;
493 static unsigned long etr_events;
494 static struct timer_list etr_timer;
495 
496 static void etr_timeout(unsigned long dummy);
497 static void etr_work_fn(struct work_struct *work);
498 static DEFINE_MUTEX(etr_work_mutex);
499 static DECLARE_WORK(etr_work, etr_work_fn);
500 
501 /*
502  * Reset ETR attachment.
503  */
504 static void etr_reset(void)
505 {
506 	etr_eacr =  (struct etr_eacr) {
507 		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
508 		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
509 		.es = 0, .sl = 0 };
510 	if (etr_setr(&etr_eacr) == 0) {
511 		etr_tolec = get_clock();
512 		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
513 		if (etr_port0_online && etr_port1_online)
514 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
515 	} else if (etr_port0_online || etr_port1_online) {
516 		pr_warning("The real or virtual hardware system does "
517 			   "not provide an ETR interface\n");
518 		etr_port0_online = etr_port1_online = 0;
519 	}
520 }
521 
522 static int __init etr_init(void)
523 {
524 	struct etr_aib aib;
525 
526 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
527 		return 0;
528 	time_init_wq();
529 	/* Check if this machine has the steai instruction. */
530 	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
531 		etr_steai_available = 1;
532 	setup_timer(&etr_timer, etr_timeout, 0UL);
533 	if (etr_port0_online) {
534 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
535 		queue_work(time_sync_wq, &etr_work);
536 	}
537 	if (etr_port1_online) {
538 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
539 		queue_work(time_sync_wq, &etr_work);
540 	}
541 	return 0;
542 }
543 
544 arch_initcall(etr_init);
545 
546 /*
547  * Two sorts of ETR machine checks. The architecture reads:
548  * "When a machine-check niterruption occurs and if a switch-to-local or
549  *  ETR-sync-check interrupt request is pending but disabled, this pending
550  *  disabled interruption request is indicated and is cleared".
551  * Which means that we can get etr_switch_to_local events from the machine
552  * check handler although the interruption condition is disabled. Lovely..
553  */
554 
555 /*
556  * Switch to local machine check. This is called when the last usable
557  * ETR port goes inactive. After switch to local the clock is not in sync.
558  */
559 void etr_switch_to_local(void)
560 {
561 	if (!etr_eacr.sl)
562 		return;
563 	disable_sync_clock(NULL);
564 	set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events);
565 	queue_work(time_sync_wq, &etr_work);
566 }
567 
568 /*
569  * ETR sync check machine check. This is called when the ETR OTE and the
570  * local clock OTE are farther apart than the ETR sync check tolerance.
571  * After a ETR sync check the clock is not in sync. The machine check
572  * is broadcasted to all cpus at the same time.
573  */
574 void etr_sync_check(void)
575 {
576 	if (!etr_eacr.es)
577 		return;
578 	disable_sync_clock(NULL);
579 	set_bit(ETR_EVENT_SYNC_CHECK, &etr_events);
580 	queue_work(time_sync_wq, &etr_work);
581 }
582 
583 /*
584  * ETR timing alert. There are two causes:
585  * 1) port state change, check the usability of the port
586  * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
587  *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
588  *    or ETR-data word 4 (edf4) has changed.
589  */
590 static void etr_timing_alert(struct etr_irq_parm *intparm)
591 {
592 	if (intparm->pc0)
593 		/* ETR port 0 state change. */
594 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
595 	if (intparm->pc1)
596 		/* ETR port 1 state change. */
597 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
598 	if (intparm->eai)
599 		/*
600 		 * ETR port alert on either port 0, 1 or both.
601 		 * Both ports are not up-to-date now.
602 		 */
603 		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
604 	queue_work(time_sync_wq, &etr_work);
605 }
606 
607 static void etr_timeout(unsigned long dummy)
608 {
609 	set_bit(ETR_EVENT_UPDATE, &etr_events);
610 	queue_work(time_sync_wq, &etr_work);
611 }
612 
613 /*
614  * Check if the etr mode is pss.
615  */
616 static inline int etr_mode_is_pps(struct etr_eacr eacr)
617 {
618 	return eacr.es && !eacr.sl;
619 }
620 
621 /*
622  * Check if the etr mode is etr.
623  */
624 static inline int etr_mode_is_etr(struct etr_eacr eacr)
625 {
626 	return eacr.es && eacr.sl;
627 }
628 
629 /*
630  * Check if the port can be used for TOD synchronization.
631  * For PPS mode the port has to receive OTEs. For ETR mode
632  * the port has to receive OTEs, the ETR stepping bit has to
633  * be zero and the validity bits for data frame 1, 2, and 3
634  * have to be 1.
635  */
636 static int etr_port_valid(struct etr_aib *aib, int port)
637 {
638 	unsigned int psc;
639 
640 	/* Check that this port is receiving OTEs. */
641 	if (aib->tsp == 0)
642 		return 0;
643 
644 	psc = port ? aib->esw.psc1 : aib->esw.psc0;
645 	if (psc == etr_lpsc_pps_mode)
646 		return 1;
647 	if (psc == etr_lpsc_operational_step)
648 		return !aib->esw.y && aib->slsw.v1 &&
649 			aib->slsw.v2 && aib->slsw.v3;
650 	return 0;
651 }
652 
653 /*
654  * Check if two ports are on the same network.
655  */
656 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
657 {
658 	// FIXME: any other fields we have to compare?
659 	return aib1->edf1.net_id == aib2->edf1.net_id;
660 }
661 
662 /*
663  * Wrapper for etr_stei that converts physical port states
664  * to logical port states to be consistent with the output
665  * of stetr (see etr_psc vs. etr_lpsc).
666  */
667 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
668 {
669 	BUG_ON(etr_steai(aib, func) != 0);
670 	/* Convert port state to logical port state. */
671 	if (aib->esw.psc0 == 1)
672 		aib->esw.psc0 = 2;
673 	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
674 		aib->esw.psc0 = 1;
675 	if (aib->esw.psc1 == 1)
676 		aib->esw.psc1 = 2;
677 	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
678 		aib->esw.psc1 = 1;
679 }
680 
681 /*
682  * Check if the aib a2 is still connected to the same attachment as
683  * aib a1, the etv values differ by one and a2 is valid.
684  */
685 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
686 {
687 	int state_a1, state_a2;
688 
689 	/* Paranoia check: e0/e1 should better be the same. */
690 	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
691 	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
692 		return 0;
693 
694 	/* Still connected to the same etr ? */
695 	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
696 	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
697 	if (state_a1 == etr_lpsc_operational_step) {
698 		if (state_a2 != etr_lpsc_operational_step ||
699 		    a1->edf1.net_id != a2->edf1.net_id ||
700 		    a1->edf1.etr_id != a2->edf1.etr_id ||
701 		    a1->edf1.etr_pn != a2->edf1.etr_pn)
702 			return 0;
703 	} else if (state_a2 != etr_lpsc_pps_mode)
704 		return 0;
705 
706 	/* The ETV value of a2 needs to be ETV of a1 + 1. */
707 	if (a1->edf2.etv + 1 != a2->edf2.etv)
708 		return 0;
709 
710 	if (!etr_port_valid(a2, p))
711 		return 0;
712 
713 	return 1;
714 }
715 
716 struct clock_sync_data {
717 	atomic_t cpus;
718 	int in_sync;
719 	unsigned long long fixup_cc;
720 	int etr_port;
721 	struct etr_aib *etr_aib;
722 };
723 
724 static void clock_sync_cpu(struct clock_sync_data *sync)
725 {
726 	atomic_dec(&sync->cpus);
727 	enable_sync_clock();
728 	/*
729 	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
730 	 * is called on all other cpus while the TOD clocks is stopped.
731 	 * __udelay will stop the cpu on an enabled wait psw until the
732 	 * TOD is running again.
733 	 */
734 	while (sync->in_sync == 0) {
735 		__udelay(1);
736 		/*
737 		 * A different cpu changes *in_sync. Therefore use
738 		 * barrier() to force memory access.
739 		 */
740 		barrier();
741 	}
742 	if (sync->in_sync != 1)
743 		/* Didn't work. Clear per-cpu in sync bit again. */
744 		disable_sync_clock(NULL);
745 	/*
746 	 * This round of TOD syncing is done. Set the clock comparator
747 	 * to the next tick and let the processor continue.
748 	 */
749 	fixup_clock_comparator(sync->fixup_cc);
750 }
751 
752 /*
753  * Sync the TOD clock using the port refered to by aibp. This port
754  * has to be enabled and the other port has to be disabled. The
755  * last eacr update has to be more than 1.6 seconds in the past.
756  */
757 static int etr_sync_clock(void *data)
758 {
759 	static int first;
760 	unsigned long long clock, old_clock, delay, delta;
761 	struct clock_sync_data *etr_sync;
762 	struct etr_aib *sync_port, *aib;
763 	int port;
764 	int rc;
765 
766 	etr_sync = data;
767 
768 	if (xchg(&first, 1) == 1) {
769 		/* Slave */
770 		clock_sync_cpu(etr_sync);
771 		return 0;
772 	}
773 
774 	/* Wait until all other cpus entered the sync function. */
775 	while (atomic_read(&etr_sync->cpus) != 0)
776 		cpu_relax();
777 
778 	port = etr_sync->etr_port;
779 	aib = etr_sync->etr_aib;
780 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
781 	enable_sync_clock();
782 
783 	/* Set clock to next OTE. */
784 	__ctl_set_bit(14, 21);
785 	__ctl_set_bit(0, 29);
786 	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
787 	old_clock = get_clock();
788 	if (set_clock(clock) == 0) {
789 		__udelay(1);	/* Wait for the clock to start. */
790 		__ctl_clear_bit(0, 29);
791 		__ctl_clear_bit(14, 21);
792 		etr_stetr(aib);
793 		/* Adjust Linux timing variables. */
794 		delay = (unsigned long long)
795 			(aib->edf2.etv - sync_port->edf2.etv) << 32;
796 		delta = adjust_time(old_clock, clock, delay);
797 		etr_sync->fixup_cc = delta;
798 		fixup_clock_comparator(delta);
799 		/* Verify that the clock is properly set. */
800 		if (!etr_aib_follows(sync_port, aib, port)) {
801 			/* Didn't work. */
802 			disable_sync_clock(NULL);
803 			etr_sync->in_sync = -EAGAIN;
804 			rc = -EAGAIN;
805 		} else {
806 			etr_sync->in_sync = 1;
807 			rc = 0;
808 		}
809 	} else {
810 		/* Could not set the clock ?!? */
811 		__ctl_clear_bit(0, 29);
812 		__ctl_clear_bit(14, 21);
813 		disable_sync_clock(NULL);
814 		etr_sync->in_sync = -EAGAIN;
815 		rc = -EAGAIN;
816 	}
817 	xchg(&first, 0);
818 	return rc;
819 }
820 
821 static int etr_sync_clock_stop(struct etr_aib *aib, int port)
822 {
823 	struct clock_sync_data etr_sync;
824 	struct etr_aib *sync_port;
825 	int follows;
826 	int rc;
827 
828 	/* Check if the current aib is adjacent to the sync port aib. */
829 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
830 	follows = etr_aib_follows(sync_port, aib, port);
831 	memcpy(sync_port, aib, sizeof(*aib));
832 	if (!follows)
833 		return -EAGAIN;
834 	memset(&etr_sync, 0, sizeof(etr_sync));
835 	etr_sync.etr_aib = aib;
836 	etr_sync.etr_port = port;
837 	get_online_cpus();
838 	atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
839 	rc = stop_machine(etr_sync_clock, &etr_sync, &cpu_online_map);
840 	put_online_cpus();
841 	return rc;
842 }
843 
844 /*
845  * Handle the immediate effects of the different events.
846  * The port change event is used for online/offline changes.
847  */
848 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
849 {
850 	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
851 		eacr.es = 0;
852 	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
853 		eacr.es = eacr.sl = 0;
854 	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
855 		etr_port0_uptodate = etr_port1_uptodate = 0;
856 
857 	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
858 		if (eacr.e0)
859 			/*
860 			 * Port change of an enabled port. We have to
861 			 * assume that this can have caused an stepping
862 			 * port switch.
863 			 */
864 			etr_tolec = get_clock();
865 		eacr.p0 = etr_port0_online;
866 		if (!eacr.p0)
867 			eacr.e0 = 0;
868 		etr_port0_uptodate = 0;
869 	}
870 	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
871 		if (eacr.e1)
872 			/*
873 			 * Port change of an enabled port. We have to
874 			 * assume that this can have caused an stepping
875 			 * port switch.
876 			 */
877 			etr_tolec = get_clock();
878 		eacr.p1 = etr_port1_online;
879 		if (!eacr.p1)
880 			eacr.e1 = 0;
881 		etr_port1_uptodate = 0;
882 	}
883 	clear_bit(ETR_EVENT_UPDATE, &etr_events);
884 	return eacr;
885 }
886 
887 /*
888  * Set up a timer that expires after the etr_tolec + 1.6 seconds if
889  * one of the ports needs an update.
890  */
891 static void etr_set_tolec_timeout(unsigned long long now)
892 {
893 	unsigned long micros;
894 
895 	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
896 	    (!etr_eacr.p1 || etr_port1_uptodate))
897 		return;
898 	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
899 	micros = (micros > 1600000) ? 0 : 1600000 - micros;
900 	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
901 }
902 
903 /*
904  * Set up a time that expires after 1/2 second.
905  */
906 static void etr_set_sync_timeout(void)
907 {
908 	mod_timer(&etr_timer, jiffies + HZ/2);
909 }
910 
911 /*
912  * Update the aib information for one or both ports.
913  */
914 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
915 					 struct etr_eacr eacr)
916 {
917 	/* With both ports disabled the aib information is useless. */
918 	if (!eacr.e0 && !eacr.e1)
919 		return eacr;
920 
921 	/* Update port0 or port1 with aib stored in etr_work_fn. */
922 	if (aib->esw.q == 0) {
923 		/* Information for port 0 stored. */
924 		if (eacr.p0 && !etr_port0_uptodate) {
925 			etr_port0 = *aib;
926 			if (etr_port0_online)
927 				etr_port0_uptodate = 1;
928 		}
929 	} else {
930 		/* Information for port 1 stored. */
931 		if (eacr.p1 && !etr_port1_uptodate) {
932 			etr_port1 = *aib;
933 			if (etr_port0_online)
934 				etr_port1_uptodate = 1;
935 		}
936 	}
937 
938 	/*
939 	 * Do not try to get the alternate port aib if the clock
940 	 * is not in sync yet.
941 	 */
942 	if (!check_sync_clock())
943 		return eacr;
944 
945 	/*
946 	 * If steai is available we can get the information about
947 	 * the other port immediately. If only stetr is available the
948 	 * data-port bit toggle has to be used.
949 	 */
950 	if (etr_steai_available) {
951 		if (eacr.p0 && !etr_port0_uptodate) {
952 			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
953 			etr_port0_uptodate = 1;
954 		}
955 		if (eacr.p1 && !etr_port1_uptodate) {
956 			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
957 			etr_port1_uptodate = 1;
958 		}
959 	} else {
960 		/*
961 		 * One port was updated above, if the other
962 		 * port is not uptodate toggle dp bit.
963 		 */
964 		if ((eacr.p0 && !etr_port0_uptodate) ||
965 		    (eacr.p1 && !etr_port1_uptodate))
966 			eacr.dp ^= 1;
967 		else
968 			eacr.dp = 0;
969 	}
970 	return eacr;
971 }
972 
973 /*
974  * Write new etr control register if it differs from the current one.
975  * Return 1 if etr_tolec has been updated as well.
976  */
977 static void etr_update_eacr(struct etr_eacr eacr)
978 {
979 	int dp_changed;
980 
981 	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
982 		/* No change, return. */
983 		return;
984 	/*
985 	 * The disable of an active port of the change of the data port
986 	 * bit can/will cause a change in the data port.
987 	 */
988 	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
989 		(etr_eacr.dp ^ eacr.dp) != 0;
990 	etr_eacr = eacr;
991 	etr_setr(&etr_eacr);
992 	if (dp_changed)
993 		etr_tolec = get_clock();
994 }
995 
996 /*
997  * ETR work. In this function you'll find the main logic. In
998  * particular this is the only function that calls etr_update_eacr(),
999  * it "controls" the etr control register.
1000  */
1001 static void etr_work_fn(struct work_struct *work)
1002 {
1003 	unsigned long long now;
1004 	struct etr_eacr eacr;
1005 	struct etr_aib aib;
1006 	int sync_port;
1007 
1008 	/* prevent multiple execution. */
1009 	mutex_lock(&etr_work_mutex);
1010 
1011 	/* Create working copy of etr_eacr. */
1012 	eacr = etr_eacr;
1013 
1014 	/* Check for the different events and their immediate effects. */
1015 	eacr = etr_handle_events(eacr);
1016 
1017 	/* Check if ETR is supposed to be active. */
1018 	eacr.ea = eacr.p0 || eacr.p1;
1019 	if (!eacr.ea) {
1020 		/* Both ports offline. Reset everything. */
1021 		eacr.dp = eacr.es = eacr.sl = 0;
1022 		on_each_cpu(disable_sync_clock, NULL, 1);
1023 		del_timer_sync(&etr_timer);
1024 		etr_update_eacr(eacr);
1025 		goto out_unlock;
1026 	}
1027 
1028 	/* Store aib to get the current ETR status word. */
1029 	BUG_ON(etr_stetr(&aib) != 0);
1030 	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
1031 	now = get_clock();
1032 
1033 	/*
1034 	 * Update the port information if the last stepping port change
1035 	 * or data port change is older than 1.6 seconds.
1036 	 */
1037 	if (now >= etr_tolec + (1600000 << 12))
1038 		eacr = etr_handle_update(&aib, eacr);
1039 
1040 	/*
1041 	 * Select ports to enable. The prefered synchronization mode is PPS.
1042 	 * If a port can be enabled depends on a number of things:
1043 	 * 1) The port needs to be online and uptodate. A port is not
1044 	 *    disabled just because it is not uptodate, but it is only
1045 	 *    enabled if it is uptodate.
1046 	 * 2) The port needs to have the same mode (pps / etr).
1047 	 * 3) The port needs to be usable -> etr_port_valid() == 1
1048 	 * 4) To enable the second port the clock needs to be in sync.
1049 	 * 5) If both ports are useable and are ETR ports, the network id
1050 	 *    has to be the same.
1051 	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1052 	 */
1053 	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1054 		eacr.sl = 0;
1055 		eacr.e0 = 1;
1056 		if (!etr_mode_is_pps(etr_eacr))
1057 			eacr.es = 0;
1058 		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1059 			eacr.e1 = 0;
1060 		// FIXME: uptodate checks ?
1061 		else if (etr_port0_uptodate && etr_port1_uptodate)
1062 			eacr.e1 = 1;
1063 		sync_port = (etr_port0_uptodate &&
1064 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1065 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1066 		eacr.sl = 0;
1067 		eacr.e0 = 0;
1068 		eacr.e1 = 1;
1069 		if (!etr_mode_is_pps(etr_eacr))
1070 			eacr.es = 0;
1071 		sync_port = (etr_port1_uptodate &&
1072 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1073 	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1074 		eacr.sl = 1;
1075 		eacr.e0 = 1;
1076 		if (!etr_mode_is_etr(etr_eacr))
1077 			eacr.es = 0;
1078 		if (!eacr.es || !eacr.p1 ||
1079 		    aib.esw.psc1 != etr_lpsc_operational_alt)
1080 			eacr.e1 = 0;
1081 		else if (etr_port0_uptodate && etr_port1_uptodate &&
1082 			 etr_compare_network(&etr_port0, &etr_port1))
1083 			eacr.e1 = 1;
1084 		sync_port = (etr_port0_uptodate &&
1085 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1086 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1087 		eacr.sl = 1;
1088 		eacr.e0 = 0;
1089 		eacr.e1 = 1;
1090 		if (!etr_mode_is_etr(etr_eacr))
1091 			eacr.es = 0;
1092 		sync_port = (etr_port1_uptodate &&
1093 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1094 	} else {
1095 		/* Both ports not usable. */
1096 		eacr.es = eacr.sl = 0;
1097 		sync_port = -1;
1098 	}
1099 
1100 	/*
1101 	 * If the clock is in sync just update the eacr and return.
1102 	 * If there is no valid sync port wait for a port update.
1103 	 */
1104 	if (check_sync_clock() || sync_port < 0) {
1105 		etr_update_eacr(eacr);
1106 		etr_set_tolec_timeout(now);
1107 		goto out_unlock;
1108 	}
1109 
1110 	/*
1111 	 * Prepare control register for clock syncing
1112 	 * (reset data port bit, set sync check control.
1113 	 */
1114 	eacr.dp = 0;
1115 	eacr.es = 1;
1116 
1117 	/*
1118 	 * Update eacr and try to synchronize the clock. If the update
1119 	 * of eacr caused a stepping port switch (or if we have to
1120 	 * assume that a stepping port switch has occured) or the
1121 	 * clock syncing failed, reset the sync check control bit
1122 	 * and set up a timer to try again after 0.5 seconds
1123 	 */
1124 	etr_update_eacr(eacr);
1125 	if (now < etr_tolec + (1600000 << 12) ||
1126 	    etr_sync_clock_stop(&aib, sync_port) != 0) {
1127 		/* Sync failed. Try again in 1/2 second. */
1128 		eacr.es = 0;
1129 		etr_update_eacr(eacr);
1130 		etr_set_sync_timeout();
1131 	} else
1132 		etr_set_tolec_timeout(now);
1133 out_unlock:
1134 	mutex_unlock(&etr_work_mutex);
1135 }
1136 
1137 /*
1138  * Sysfs interface functions
1139  */
1140 static struct sysdev_class etr_sysclass = {
1141 	.name	= "etr",
1142 };
1143 
1144 static struct sys_device etr_port0_dev = {
1145 	.id	= 0,
1146 	.cls	= &etr_sysclass,
1147 };
1148 
1149 static struct sys_device etr_port1_dev = {
1150 	.id	= 1,
1151 	.cls	= &etr_sysclass,
1152 };
1153 
1154 /*
1155  * ETR class attributes
1156  */
1157 static ssize_t etr_stepping_port_show(struct sysdev_class *class, char *buf)
1158 {
1159 	return sprintf(buf, "%i\n", etr_port0.esw.p);
1160 }
1161 
1162 static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1163 
1164 static ssize_t etr_stepping_mode_show(struct sysdev_class *class, char *buf)
1165 {
1166 	char *mode_str;
1167 
1168 	if (etr_mode_is_pps(etr_eacr))
1169 		mode_str = "pps";
1170 	else if (etr_mode_is_etr(etr_eacr))
1171 		mode_str = "etr";
1172 	else
1173 		mode_str = "local";
1174 	return sprintf(buf, "%s\n", mode_str);
1175 }
1176 
1177 static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1178 
1179 /*
1180  * ETR port attributes
1181  */
1182 static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev)
1183 {
1184 	if (dev == &etr_port0_dev)
1185 		return etr_port0_online ? &etr_port0 : NULL;
1186 	else
1187 		return etr_port1_online ? &etr_port1 : NULL;
1188 }
1189 
1190 static ssize_t etr_online_show(struct sys_device *dev,
1191 				struct sysdev_attribute *attr,
1192 				char *buf)
1193 {
1194 	unsigned int online;
1195 
1196 	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1197 	return sprintf(buf, "%i\n", online);
1198 }
1199 
1200 static ssize_t etr_online_store(struct sys_device *dev,
1201 				struct sysdev_attribute *attr,
1202 				const char *buf, size_t count)
1203 {
1204 	unsigned int value;
1205 
1206 	value = simple_strtoul(buf, NULL, 0);
1207 	if (value != 0 && value != 1)
1208 		return -EINVAL;
1209 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1210 		return -EOPNOTSUPP;
1211 	mutex_lock(&clock_sync_mutex);
1212 	if (dev == &etr_port0_dev) {
1213 		if (etr_port0_online == value)
1214 			goto out;	/* Nothing to do. */
1215 		etr_port0_online = value;
1216 		if (etr_port0_online && etr_port1_online)
1217 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1218 		else
1219 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1220 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1221 		queue_work(time_sync_wq, &etr_work);
1222 	} else {
1223 		if (etr_port1_online == value)
1224 			goto out;	/* Nothing to do. */
1225 		etr_port1_online = value;
1226 		if (etr_port0_online && etr_port1_online)
1227 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1228 		else
1229 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1230 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1231 		queue_work(time_sync_wq, &etr_work);
1232 	}
1233 out:
1234 	mutex_unlock(&clock_sync_mutex);
1235 	return count;
1236 }
1237 
1238 static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store);
1239 
1240 static ssize_t etr_stepping_control_show(struct sys_device *dev,
1241 					struct sysdev_attribute *attr,
1242 					char *buf)
1243 {
1244 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1245 		       etr_eacr.e0 : etr_eacr.e1);
1246 }
1247 
1248 static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1249 
1250 static ssize_t etr_mode_code_show(struct sys_device *dev,
1251 				struct sysdev_attribute *attr, char *buf)
1252 {
1253 	if (!etr_port0_online && !etr_port1_online)
1254 		/* Status word is not uptodate if both ports are offline. */
1255 		return -ENODATA;
1256 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1257 		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1258 }
1259 
1260 static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1261 
1262 static ssize_t etr_untuned_show(struct sys_device *dev,
1263 				struct sysdev_attribute *attr, char *buf)
1264 {
1265 	struct etr_aib *aib = etr_aib_from_dev(dev);
1266 
1267 	if (!aib || !aib->slsw.v1)
1268 		return -ENODATA;
1269 	return sprintf(buf, "%i\n", aib->edf1.u);
1270 }
1271 
1272 static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL);
1273 
1274 static ssize_t etr_network_id_show(struct sys_device *dev,
1275 				struct sysdev_attribute *attr, char *buf)
1276 {
1277 	struct etr_aib *aib = etr_aib_from_dev(dev);
1278 
1279 	if (!aib || !aib->slsw.v1)
1280 		return -ENODATA;
1281 	return sprintf(buf, "%i\n", aib->edf1.net_id);
1282 }
1283 
1284 static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL);
1285 
1286 static ssize_t etr_id_show(struct sys_device *dev,
1287 			struct sysdev_attribute *attr, char *buf)
1288 {
1289 	struct etr_aib *aib = etr_aib_from_dev(dev);
1290 
1291 	if (!aib || !aib->slsw.v1)
1292 		return -ENODATA;
1293 	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1294 }
1295 
1296 static SYSDEV_ATTR(id, 0400, etr_id_show, NULL);
1297 
1298 static ssize_t etr_port_number_show(struct sys_device *dev,
1299 			struct sysdev_attribute *attr, char *buf)
1300 {
1301 	struct etr_aib *aib = etr_aib_from_dev(dev);
1302 
1303 	if (!aib || !aib->slsw.v1)
1304 		return -ENODATA;
1305 	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1306 }
1307 
1308 static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL);
1309 
1310 static ssize_t etr_coupled_show(struct sys_device *dev,
1311 			struct sysdev_attribute *attr, char *buf)
1312 {
1313 	struct etr_aib *aib = etr_aib_from_dev(dev);
1314 
1315 	if (!aib || !aib->slsw.v3)
1316 		return -ENODATA;
1317 	return sprintf(buf, "%i\n", aib->edf3.c);
1318 }
1319 
1320 static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL);
1321 
1322 static ssize_t etr_local_time_show(struct sys_device *dev,
1323 			struct sysdev_attribute *attr, char *buf)
1324 {
1325 	struct etr_aib *aib = etr_aib_from_dev(dev);
1326 
1327 	if (!aib || !aib->slsw.v3)
1328 		return -ENODATA;
1329 	return sprintf(buf, "%i\n", aib->edf3.blto);
1330 }
1331 
1332 static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL);
1333 
1334 static ssize_t etr_utc_offset_show(struct sys_device *dev,
1335 			struct sysdev_attribute *attr, char *buf)
1336 {
1337 	struct etr_aib *aib = etr_aib_from_dev(dev);
1338 
1339 	if (!aib || !aib->slsw.v3)
1340 		return -ENODATA;
1341 	return sprintf(buf, "%i\n", aib->edf3.buo);
1342 }
1343 
1344 static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1345 
1346 static struct sysdev_attribute *etr_port_attributes[] = {
1347 	&attr_online,
1348 	&attr_stepping_control,
1349 	&attr_state_code,
1350 	&attr_untuned,
1351 	&attr_network,
1352 	&attr_id,
1353 	&attr_port,
1354 	&attr_coupled,
1355 	&attr_local_time,
1356 	&attr_utc_offset,
1357 	NULL
1358 };
1359 
1360 static int __init etr_register_port(struct sys_device *dev)
1361 {
1362 	struct sysdev_attribute **attr;
1363 	int rc;
1364 
1365 	rc = sysdev_register(dev);
1366 	if (rc)
1367 		goto out;
1368 	for (attr = etr_port_attributes; *attr; attr++) {
1369 		rc = sysdev_create_file(dev, *attr);
1370 		if (rc)
1371 			goto out_unreg;
1372 	}
1373 	return 0;
1374 out_unreg:
1375 	for (; attr >= etr_port_attributes; attr--)
1376 		sysdev_remove_file(dev, *attr);
1377 	sysdev_unregister(dev);
1378 out:
1379 	return rc;
1380 }
1381 
1382 static void __init etr_unregister_port(struct sys_device *dev)
1383 {
1384 	struct sysdev_attribute **attr;
1385 
1386 	for (attr = etr_port_attributes; *attr; attr++)
1387 		sysdev_remove_file(dev, *attr);
1388 	sysdev_unregister(dev);
1389 }
1390 
1391 static int __init etr_init_sysfs(void)
1392 {
1393 	int rc;
1394 
1395 	rc = sysdev_class_register(&etr_sysclass);
1396 	if (rc)
1397 		goto out;
1398 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port);
1399 	if (rc)
1400 		goto out_unreg_class;
1401 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode);
1402 	if (rc)
1403 		goto out_remove_stepping_port;
1404 	rc = etr_register_port(&etr_port0_dev);
1405 	if (rc)
1406 		goto out_remove_stepping_mode;
1407 	rc = etr_register_port(&etr_port1_dev);
1408 	if (rc)
1409 		goto out_remove_port0;
1410 	return 0;
1411 
1412 out_remove_port0:
1413 	etr_unregister_port(&etr_port0_dev);
1414 out_remove_stepping_mode:
1415 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode);
1416 out_remove_stepping_port:
1417 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port);
1418 out_unreg_class:
1419 	sysdev_class_unregister(&etr_sysclass);
1420 out:
1421 	return rc;
1422 }
1423 
1424 device_initcall(etr_init_sysfs);
1425 
1426 /*
1427  * Server Time Protocol (STP) code.
1428  */
1429 static int stp_online;
1430 static struct stp_sstpi stp_info;
1431 static void *stp_page;
1432 
1433 static void stp_work_fn(struct work_struct *work);
1434 static DEFINE_MUTEX(stp_work_mutex);
1435 static DECLARE_WORK(stp_work, stp_work_fn);
1436 static struct timer_list stp_timer;
1437 
1438 static int __init early_parse_stp(char *p)
1439 {
1440 	if (strncmp(p, "off", 3) == 0)
1441 		stp_online = 0;
1442 	else if (strncmp(p, "on", 2) == 0)
1443 		stp_online = 1;
1444 	return 0;
1445 }
1446 early_param("stp", early_parse_stp);
1447 
1448 /*
1449  * Reset STP attachment.
1450  */
1451 static void __init stp_reset(void)
1452 {
1453 	int rc;
1454 
1455 	stp_page = alloc_bootmem_pages(PAGE_SIZE);
1456 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1457 	if (rc == 0)
1458 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1459 	else if (stp_online) {
1460 		pr_warning("The real or virtual hardware system does "
1461 			   "not provide an STP interface\n");
1462 		free_bootmem((unsigned long) stp_page, PAGE_SIZE);
1463 		stp_page = NULL;
1464 		stp_online = 0;
1465 	}
1466 }
1467 
1468 static void stp_timeout(unsigned long dummy)
1469 {
1470 	queue_work(time_sync_wq, &stp_work);
1471 }
1472 
1473 static int __init stp_init(void)
1474 {
1475 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1476 		return 0;
1477 	setup_timer(&stp_timer, stp_timeout, 0UL);
1478 	time_init_wq();
1479 	if (!stp_online)
1480 		return 0;
1481 	queue_work(time_sync_wq, &stp_work);
1482 	return 0;
1483 }
1484 
1485 arch_initcall(stp_init);
1486 
1487 /*
1488  * STP timing alert. There are three causes:
1489  * 1) timing status change
1490  * 2) link availability change
1491  * 3) time control parameter change
1492  * In all three cases we are only interested in the clock source state.
1493  * If a STP clock source is now available use it.
1494  */
1495 static void stp_timing_alert(struct stp_irq_parm *intparm)
1496 {
1497 	if (intparm->tsc || intparm->lac || intparm->tcpc)
1498 		queue_work(time_sync_wq, &stp_work);
1499 }
1500 
1501 /*
1502  * STP sync check machine check. This is called when the timing state
1503  * changes from the synchronized state to the unsynchronized state.
1504  * After a STP sync check the clock is not in sync. The machine check
1505  * is broadcasted to all cpus at the same time.
1506  */
1507 void stp_sync_check(void)
1508 {
1509 	disable_sync_clock(NULL);
1510 	queue_work(time_sync_wq, &stp_work);
1511 }
1512 
1513 /*
1514  * STP island condition machine check. This is called when an attached
1515  * server  attempts to communicate over an STP link and the servers
1516  * have matching CTN ids and have a valid stratum-1 configuration
1517  * but the configurations do not match.
1518  */
1519 void stp_island_check(void)
1520 {
1521 	disable_sync_clock(NULL);
1522 	queue_work(time_sync_wq, &stp_work);
1523 }
1524 
1525 
1526 static int stp_sync_clock(void *data)
1527 {
1528 	static int first;
1529 	unsigned long long old_clock, delta;
1530 	struct clock_sync_data *stp_sync;
1531 	int rc;
1532 
1533 	stp_sync = data;
1534 
1535 	if (xchg(&first, 1) == 1) {
1536 		/* Slave */
1537 		clock_sync_cpu(stp_sync);
1538 		return 0;
1539 	}
1540 
1541 	/* Wait until all other cpus entered the sync function. */
1542 	while (atomic_read(&stp_sync->cpus) != 0)
1543 		cpu_relax();
1544 
1545 	enable_sync_clock();
1546 
1547 	rc = 0;
1548 	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1549 	    stp_info.todoff[2] || stp_info.todoff[3] ||
1550 	    stp_info.tmd != 2) {
1551 		old_clock = get_clock();
1552 		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1553 		if (rc == 0) {
1554 			delta = adjust_time(old_clock, get_clock(), 0);
1555 			fixup_clock_comparator(delta);
1556 			rc = chsc_sstpi(stp_page, &stp_info,
1557 					sizeof(struct stp_sstpi));
1558 			if (rc == 0 && stp_info.tmd != 2)
1559 				rc = -EAGAIN;
1560 		}
1561 	}
1562 	if (rc) {
1563 		disable_sync_clock(NULL);
1564 		stp_sync->in_sync = -EAGAIN;
1565 	} else
1566 		stp_sync->in_sync = 1;
1567 	xchg(&first, 0);
1568 	return 0;
1569 }
1570 
1571 /*
1572  * STP work. Check for the STP state and take over the clock
1573  * synchronization if the STP clock source is usable.
1574  */
1575 static void stp_work_fn(struct work_struct *work)
1576 {
1577 	struct clock_sync_data stp_sync;
1578 	int rc;
1579 
1580 	/* prevent multiple execution. */
1581 	mutex_lock(&stp_work_mutex);
1582 
1583 	if (!stp_online) {
1584 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1585 		del_timer_sync(&stp_timer);
1586 		goto out_unlock;
1587 	}
1588 
1589 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1590 	if (rc)
1591 		goto out_unlock;
1592 
1593 	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1594 	if (rc || stp_info.c == 0)
1595 		goto out_unlock;
1596 
1597 	/* Skip synchronization if the clock is already in sync. */
1598 	if (check_sync_clock())
1599 		goto out_unlock;
1600 
1601 	memset(&stp_sync, 0, sizeof(stp_sync));
1602 	get_online_cpus();
1603 	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1604 	stop_machine(stp_sync_clock, &stp_sync, &cpu_online_map);
1605 	put_online_cpus();
1606 
1607 	if (!check_sync_clock())
1608 		/*
1609 		 * There is a usable clock but the synchonization failed.
1610 		 * Retry after a second.
1611 		 */
1612 		mod_timer(&stp_timer, jiffies + HZ);
1613 
1614 out_unlock:
1615 	mutex_unlock(&stp_work_mutex);
1616 }
1617 
1618 /*
1619  * STP class sysfs interface functions
1620  */
1621 static struct sysdev_class stp_sysclass = {
1622 	.name	= "stp",
1623 };
1624 
1625 static ssize_t stp_ctn_id_show(struct sysdev_class *class, char *buf)
1626 {
1627 	if (!stp_online)
1628 		return -ENODATA;
1629 	return sprintf(buf, "%016llx\n",
1630 		       *(unsigned long long *) stp_info.ctnid);
1631 }
1632 
1633 static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1634 
1635 static ssize_t stp_ctn_type_show(struct sysdev_class *class, char *buf)
1636 {
1637 	if (!stp_online)
1638 		return -ENODATA;
1639 	return sprintf(buf, "%i\n", stp_info.ctn);
1640 }
1641 
1642 static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1643 
1644 static ssize_t stp_dst_offset_show(struct sysdev_class *class, char *buf)
1645 {
1646 	if (!stp_online || !(stp_info.vbits & 0x2000))
1647 		return -ENODATA;
1648 	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1649 }
1650 
1651 static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1652 
1653 static ssize_t stp_leap_seconds_show(struct sysdev_class *class, char *buf)
1654 {
1655 	if (!stp_online || !(stp_info.vbits & 0x8000))
1656 		return -ENODATA;
1657 	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1658 }
1659 
1660 static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1661 
1662 static ssize_t stp_stratum_show(struct sysdev_class *class, char *buf)
1663 {
1664 	if (!stp_online)
1665 		return -ENODATA;
1666 	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1667 }
1668 
1669 static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL);
1670 
1671 static ssize_t stp_time_offset_show(struct sysdev_class *class, char *buf)
1672 {
1673 	if (!stp_online || !(stp_info.vbits & 0x0800))
1674 		return -ENODATA;
1675 	return sprintf(buf, "%i\n", (int) stp_info.tto);
1676 }
1677 
1678 static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1679 
1680 static ssize_t stp_time_zone_offset_show(struct sysdev_class *class, char *buf)
1681 {
1682 	if (!stp_online || !(stp_info.vbits & 0x4000))
1683 		return -ENODATA;
1684 	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1685 }
1686 
1687 static SYSDEV_CLASS_ATTR(time_zone_offset, 0400,
1688 			 stp_time_zone_offset_show, NULL);
1689 
1690 static ssize_t stp_timing_mode_show(struct sysdev_class *class, char *buf)
1691 {
1692 	if (!stp_online)
1693 		return -ENODATA;
1694 	return sprintf(buf, "%i\n", stp_info.tmd);
1695 }
1696 
1697 static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1698 
1699 static ssize_t stp_timing_state_show(struct sysdev_class *class, char *buf)
1700 {
1701 	if (!stp_online)
1702 		return -ENODATA;
1703 	return sprintf(buf, "%i\n", stp_info.tst);
1704 }
1705 
1706 static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1707 
1708 static ssize_t stp_online_show(struct sysdev_class *class, char *buf)
1709 {
1710 	return sprintf(buf, "%i\n", stp_online);
1711 }
1712 
1713 static ssize_t stp_online_store(struct sysdev_class *class,
1714 				const char *buf, size_t count)
1715 {
1716 	unsigned int value;
1717 
1718 	value = simple_strtoul(buf, NULL, 0);
1719 	if (value != 0 && value != 1)
1720 		return -EINVAL;
1721 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1722 		return -EOPNOTSUPP;
1723 	mutex_lock(&clock_sync_mutex);
1724 	stp_online = value;
1725 	if (stp_online)
1726 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1727 	else
1728 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1729 	queue_work(time_sync_wq, &stp_work);
1730 	mutex_unlock(&clock_sync_mutex);
1731 	return count;
1732 }
1733 
1734 /*
1735  * Can't use SYSDEV_CLASS_ATTR because the attribute should be named
1736  * stp/online but attr_online already exists in this file ..
1737  */
1738 static struct sysdev_class_attribute attr_stp_online = {
1739 	.attr = { .name = "online", .mode = 0600 },
1740 	.show	= stp_online_show,
1741 	.store	= stp_online_store,
1742 };
1743 
1744 static struct sysdev_class_attribute *stp_attributes[] = {
1745 	&attr_ctn_id,
1746 	&attr_ctn_type,
1747 	&attr_dst_offset,
1748 	&attr_leap_seconds,
1749 	&attr_stp_online,
1750 	&attr_stratum,
1751 	&attr_time_offset,
1752 	&attr_time_zone_offset,
1753 	&attr_timing_mode,
1754 	&attr_timing_state,
1755 	NULL
1756 };
1757 
1758 static int __init stp_init_sysfs(void)
1759 {
1760 	struct sysdev_class_attribute **attr;
1761 	int rc;
1762 
1763 	rc = sysdev_class_register(&stp_sysclass);
1764 	if (rc)
1765 		goto out;
1766 	for (attr = stp_attributes; *attr; attr++) {
1767 		rc = sysdev_class_create_file(&stp_sysclass, *attr);
1768 		if (rc)
1769 			goto out_unreg;
1770 	}
1771 	return 0;
1772 out_unreg:
1773 	for (; attr >= stp_attributes; attr--)
1774 		sysdev_class_remove_file(&stp_sysclass, *attr);
1775 	sysdev_class_unregister(&stp_sysclass);
1776 out:
1777 	return rc;
1778 }
1779 
1780 device_initcall(stp_init_sysfs);
1781