xref: /openbmc/linux/arch/s390/kernel/time.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/export.h>
21 #include <linux/sched.h>
22 #include <linux/sched/clock.h>
23 #include <linux/kernel.h>
24 #include <linux/param.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/cpu.h>
29 #include <linux/stop_machine.h>
30 #include <linux/time.h>
31 #include <linux/device.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/smp.h>
35 #include <linux/types.h>
36 #include <linux/profile.h>
37 #include <linux/timex.h>
38 #include <linux/notifier.h>
39 #include <linux/timekeeper_internal.h>
40 #include <linux/clockchips.h>
41 #include <linux/gfp.h>
42 #include <linux/kprobes.h>
43 #include <linux/uaccess.h>
44 #include <vdso/vsyscall.h>
45 #include <vdso/clocksource.h>
46 #include <vdso/helpers.h>
47 #include <asm/facility.h>
48 #include <asm/delay.h>
49 #include <asm/div64.h>
50 #include <asm/vdso.h>
51 #include <asm/irq.h>
52 #include <asm/irq_regs.h>
53 #include <asm/vtimer.h>
54 #include <asm/stp.h>
55 #include <asm/cio.h>
56 #include "entry.h"
57 
58 union tod_clock tod_clock_base __section(".data");
59 EXPORT_SYMBOL_GPL(tod_clock_base);
60 
61 u64 clock_comparator_max = -1ULL;
62 EXPORT_SYMBOL_GPL(clock_comparator_max);
63 
64 static DEFINE_PER_CPU(struct clock_event_device, comparators);
65 
66 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
67 EXPORT_SYMBOL(s390_epoch_delta_notifier);
68 
69 unsigned char ptff_function_mask[16];
70 
71 static unsigned long lpar_offset;
72 static unsigned long initial_leap_seconds;
73 static unsigned long tod_steering_end;
74 static long tod_steering_delta;
75 
76 /*
77  * Get time offsets with PTFF
78  */
79 void __init time_early_init(void)
80 {
81 	struct ptff_qto qto;
82 	struct ptff_qui qui;
83 	int cs;
84 
85 	/* Initialize TOD steering parameters */
86 	tod_steering_end = tod_clock_base.tod;
87 	for (cs = 0; cs < CS_BASES; cs++)
88 		vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
89 
90 	if (!test_facility(28))
91 		return;
92 
93 	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
94 
95 	/* get LPAR offset */
96 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
97 		lpar_offset = qto.tod_epoch_difference;
98 
99 	/* get initial leap seconds */
100 	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
101 		initial_leap_seconds = (unsigned long)
102 			((long) qui.old_leap * 4096000000L);
103 }
104 
105 unsigned long long noinstr sched_clock_noinstr(void)
106 {
107 	return tod_to_ns(__get_tod_clock_monotonic());
108 }
109 
110 /*
111  * Scheduler clock - returns current time in nanosec units.
112  */
113 unsigned long long notrace sched_clock(void)
114 {
115 	return tod_to_ns(get_tod_clock_monotonic());
116 }
117 NOKPROBE_SYMBOL(sched_clock);
118 
119 static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt)
120 {
121 	unsigned long rem, sec, nsec;
122 
123 	sec = clk->us;
124 	rem = do_div(sec, 1000000);
125 	nsec = ((clk->sus + (rem << 12)) * 125) >> 9;
126 	xt->tv_sec = sec;
127 	xt->tv_nsec = nsec;
128 }
129 
130 void clock_comparator_work(void)
131 {
132 	struct clock_event_device *cd;
133 
134 	S390_lowcore.clock_comparator = clock_comparator_max;
135 	cd = this_cpu_ptr(&comparators);
136 	cd->event_handler(cd);
137 }
138 
139 static int s390_next_event(unsigned long delta,
140 			   struct clock_event_device *evt)
141 {
142 	S390_lowcore.clock_comparator = get_tod_clock() + delta;
143 	set_clock_comparator(S390_lowcore.clock_comparator);
144 	return 0;
145 }
146 
147 /*
148  * Set up lowcore and control register of the current cpu to
149  * enable TOD clock and clock comparator interrupts.
150  */
151 void init_cpu_timer(void)
152 {
153 	struct clock_event_device *cd;
154 	int cpu;
155 
156 	S390_lowcore.clock_comparator = clock_comparator_max;
157 	set_clock_comparator(S390_lowcore.clock_comparator);
158 
159 	cpu = smp_processor_id();
160 	cd = &per_cpu(comparators, cpu);
161 	cd->name		= "comparator";
162 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
163 	cd->mult		= 16777;
164 	cd->shift		= 12;
165 	cd->min_delta_ns	= 1;
166 	cd->min_delta_ticks	= 1;
167 	cd->max_delta_ns	= LONG_MAX;
168 	cd->max_delta_ticks	= ULONG_MAX;
169 	cd->rating		= 400;
170 	cd->cpumask		= cpumask_of(cpu);
171 	cd->set_next_event	= s390_next_event;
172 
173 	clockevents_register_device(cd);
174 
175 	/* Enable clock comparator timer interrupt. */
176 	__ctl_set_bit(0,11);
177 
178 	/* Always allow the timing alert external interrupt. */
179 	__ctl_set_bit(0, 4);
180 }
181 
182 static void clock_comparator_interrupt(struct ext_code ext_code,
183 				       unsigned int param32,
184 				       unsigned long param64)
185 {
186 	inc_irq_stat(IRQEXT_CLK);
187 	if (S390_lowcore.clock_comparator == clock_comparator_max)
188 		set_clock_comparator(S390_lowcore.clock_comparator);
189 }
190 
191 static void stp_timing_alert(struct stp_irq_parm *);
192 
193 static void timing_alert_interrupt(struct ext_code ext_code,
194 				   unsigned int param32, unsigned long param64)
195 {
196 	inc_irq_stat(IRQEXT_TLA);
197 	if (param32 & 0x00038000)
198 		stp_timing_alert((struct stp_irq_parm *) &param32);
199 }
200 
201 static void stp_reset(void);
202 
203 void read_persistent_clock64(struct timespec64 *ts)
204 {
205 	union tod_clock clk;
206 	u64 delta;
207 
208 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
209 	store_tod_clock_ext(&clk);
210 	clk.eitod -= delta;
211 	ext_to_timespec64(&clk, ts);
212 }
213 
214 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
215 						 struct timespec64 *boot_offset)
216 {
217 	struct timespec64 boot_time;
218 	union tod_clock clk;
219 	u64 delta;
220 
221 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
222 	clk = tod_clock_base;
223 	clk.eitod -= delta;
224 	ext_to_timespec64(&clk, &boot_time);
225 
226 	read_persistent_clock64(wall_time);
227 	*boot_offset = timespec64_sub(*wall_time, boot_time);
228 }
229 
230 static u64 read_tod_clock(struct clocksource *cs)
231 {
232 	unsigned long now, adj;
233 
234 	preempt_disable(); /* protect from changes to steering parameters */
235 	now = get_tod_clock();
236 	adj = tod_steering_end - now;
237 	if (unlikely((s64) adj > 0))
238 		/*
239 		 * manually steer by 1 cycle every 2^16 cycles. This
240 		 * corresponds to shifting the tod delta by 15. 1s is
241 		 * therefore steered in ~9h. The adjust will decrease
242 		 * over time, until it finally reaches 0.
243 		 */
244 		now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
245 	preempt_enable();
246 	return now;
247 }
248 
249 static struct clocksource clocksource_tod = {
250 	.name		= "tod",
251 	.rating		= 400,
252 	.read		= read_tod_clock,
253 	.mask		= CLOCKSOURCE_MASK(64),
254 	.mult		= 1000,
255 	.shift		= 12,
256 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
257 	.vdso_clock_mode = VDSO_CLOCKMODE_TOD,
258 };
259 
260 struct clocksource * __init clocksource_default_clock(void)
261 {
262 	return &clocksource_tod;
263 }
264 
265 /*
266  * Initialize the TOD clock and the CPU timer of
267  * the boot cpu.
268  */
269 void __init time_init(void)
270 {
271 	/* Reset time synchronization interfaces. */
272 	stp_reset();
273 
274 	/* request the clock comparator external interrupt */
275 	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
276 		panic("Couldn't request external interrupt 0x1004");
277 
278 	/* request the timing alert external interrupt */
279 	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
280 		panic("Couldn't request external interrupt 0x1406");
281 
282 	if (__clocksource_register(&clocksource_tod) != 0)
283 		panic("Could not register TOD clock source");
284 
285 	/* Enable TOD clock interrupts on the boot cpu. */
286 	init_cpu_timer();
287 
288 	/* Enable cpu timer interrupts on the boot cpu. */
289 	vtime_init();
290 }
291 
292 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
293 static DEFINE_MUTEX(stp_mutex);
294 static unsigned long clock_sync_flags;
295 
296 #define CLOCK_SYNC_HAS_STP		0
297 #define CLOCK_SYNC_STP			1
298 #define CLOCK_SYNC_STPINFO_VALID	2
299 
300 /*
301  * The get_clock function for the physical clock. It will get the current
302  * TOD clock, subtract the LPAR offset and write the result to *clock.
303  * The function returns 0 if the clock is in sync with the external time
304  * source. If the clock mode is local it will return -EOPNOTSUPP and
305  * -EAGAIN if the clock is not in sync with the external reference.
306  */
307 int get_phys_clock(unsigned long *clock)
308 {
309 	atomic_t *sw_ptr;
310 	unsigned int sw0, sw1;
311 
312 	sw_ptr = &get_cpu_var(clock_sync_word);
313 	sw0 = atomic_read(sw_ptr);
314 	*clock = get_tod_clock() - lpar_offset;
315 	sw1 = atomic_read(sw_ptr);
316 	put_cpu_var(clock_sync_word);
317 	if (sw0 == sw1 && (sw0 & 0x80000000U))
318 		/* Success: time is in sync. */
319 		return 0;
320 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
321 		return -EOPNOTSUPP;
322 	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
323 		return -EACCES;
324 	return -EAGAIN;
325 }
326 EXPORT_SYMBOL(get_phys_clock);
327 
328 /*
329  * Make get_phys_clock() return -EAGAIN.
330  */
331 static void disable_sync_clock(void *dummy)
332 {
333 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
334 	/*
335 	 * Clear the in-sync bit 2^31. All get_phys_clock calls will
336 	 * fail until the sync bit is turned back on. In addition
337 	 * increase the "sequence" counter to avoid the race of an
338 	 * stp event and the complete recovery against get_phys_clock.
339 	 */
340 	atomic_andnot(0x80000000, sw_ptr);
341 	atomic_inc(sw_ptr);
342 }
343 
344 /*
345  * Make get_phys_clock() return 0 again.
346  * Needs to be called from a context disabled for preemption.
347  */
348 static void enable_sync_clock(void)
349 {
350 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
351 	atomic_or(0x80000000, sw_ptr);
352 }
353 
354 /*
355  * Function to check if the clock is in sync.
356  */
357 static inline int check_sync_clock(void)
358 {
359 	atomic_t *sw_ptr;
360 	int rc;
361 
362 	sw_ptr = &get_cpu_var(clock_sync_word);
363 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
364 	put_cpu_var(clock_sync_word);
365 	return rc;
366 }
367 
368 /*
369  * Apply clock delta to the global data structures.
370  * This is called once on the CPU that performed the clock sync.
371  */
372 static void clock_sync_global(long delta)
373 {
374 	unsigned long now, adj;
375 	struct ptff_qto qto;
376 	int cs;
377 
378 	/* Fixup the monotonic sched clock. */
379 	tod_clock_base.eitod += delta;
380 	/* Adjust TOD steering parameters. */
381 	now = get_tod_clock();
382 	adj = tod_steering_end - now;
383 	if (unlikely((s64) adj >= 0))
384 		/* Calculate how much of the old adjustment is left. */
385 		tod_steering_delta = (tod_steering_delta < 0) ?
386 			-(adj >> 15) : (adj >> 15);
387 	tod_steering_delta += delta;
388 	if ((abs(tod_steering_delta) >> 48) != 0)
389 		panic("TOD clock sync offset %li is too large to drift\n",
390 		      tod_steering_delta);
391 	tod_steering_end = now + (abs(tod_steering_delta) << 15);
392 	for (cs = 0; cs < CS_BASES; cs++) {
393 		vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
394 		vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta;
395 	}
396 
397 	/* Update LPAR offset. */
398 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
399 		lpar_offset = qto.tod_epoch_difference;
400 	/* Call the TOD clock change notifier. */
401 	atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
402 }
403 
404 /*
405  * Apply clock delta to the per-CPU data structures of this CPU.
406  * This is called for each online CPU after the call to clock_sync_global.
407  */
408 static void clock_sync_local(long delta)
409 {
410 	/* Add the delta to the clock comparator. */
411 	if (S390_lowcore.clock_comparator != clock_comparator_max) {
412 		S390_lowcore.clock_comparator += delta;
413 		set_clock_comparator(S390_lowcore.clock_comparator);
414 	}
415 	/* Adjust the last_update_clock time-stamp. */
416 	S390_lowcore.last_update_clock += delta;
417 }
418 
419 /* Single threaded workqueue used for stp sync events */
420 static struct workqueue_struct *time_sync_wq;
421 
422 static void __init time_init_wq(void)
423 {
424 	if (time_sync_wq)
425 		return;
426 	time_sync_wq = create_singlethread_workqueue("timesync");
427 }
428 
429 struct clock_sync_data {
430 	atomic_t cpus;
431 	int in_sync;
432 	long clock_delta;
433 };
434 
435 /*
436  * Server Time Protocol (STP) code.
437  */
438 static bool stp_online;
439 static struct stp_sstpi stp_info;
440 static void *stp_page;
441 
442 static void stp_work_fn(struct work_struct *work);
443 static DECLARE_WORK(stp_work, stp_work_fn);
444 static struct timer_list stp_timer;
445 
446 static int __init early_parse_stp(char *p)
447 {
448 	return kstrtobool(p, &stp_online);
449 }
450 early_param("stp", early_parse_stp);
451 
452 /*
453  * Reset STP attachment.
454  */
455 static void __init stp_reset(void)
456 {
457 	int rc;
458 
459 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
460 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
461 	if (rc == 0)
462 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
463 	else if (stp_online) {
464 		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
465 		free_page((unsigned long) stp_page);
466 		stp_page = NULL;
467 		stp_online = false;
468 	}
469 }
470 
471 static void stp_timeout(struct timer_list *unused)
472 {
473 	queue_work(time_sync_wq, &stp_work);
474 }
475 
476 static int __init stp_init(void)
477 {
478 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
479 		return 0;
480 	timer_setup(&stp_timer, stp_timeout, 0);
481 	time_init_wq();
482 	if (!stp_online)
483 		return 0;
484 	queue_work(time_sync_wq, &stp_work);
485 	return 0;
486 }
487 
488 arch_initcall(stp_init);
489 
490 /*
491  * STP timing alert. There are three causes:
492  * 1) timing status change
493  * 2) link availability change
494  * 3) time control parameter change
495  * In all three cases we are only interested in the clock source state.
496  * If a STP clock source is now available use it.
497  */
498 static void stp_timing_alert(struct stp_irq_parm *intparm)
499 {
500 	if (intparm->tsc || intparm->lac || intparm->tcpc)
501 		queue_work(time_sync_wq, &stp_work);
502 }
503 
504 /*
505  * STP sync check machine check. This is called when the timing state
506  * changes from the synchronized state to the unsynchronized state.
507  * After a STP sync check the clock is not in sync. The machine check
508  * is broadcasted to all cpus at the same time.
509  */
510 int stp_sync_check(void)
511 {
512 	disable_sync_clock(NULL);
513 	return 1;
514 }
515 
516 /*
517  * STP island condition machine check. This is called when an attached
518  * server  attempts to communicate over an STP link and the servers
519  * have matching CTN ids and have a valid stratum-1 configuration
520  * but the configurations do not match.
521  */
522 int stp_island_check(void)
523 {
524 	disable_sync_clock(NULL);
525 	return 1;
526 }
527 
528 void stp_queue_work(void)
529 {
530 	queue_work(time_sync_wq, &stp_work);
531 }
532 
533 static int __store_stpinfo(void)
534 {
535 	int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
536 
537 	if (rc)
538 		clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
539 	else
540 		set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
541 	return rc;
542 }
543 
544 static int stpinfo_valid(void)
545 {
546 	return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
547 }
548 
549 static int stp_sync_clock(void *data)
550 {
551 	struct clock_sync_data *sync = data;
552 	long clock_delta, flags;
553 	static int first;
554 	int rc;
555 
556 	enable_sync_clock();
557 	if (xchg(&first, 1) == 0) {
558 		/* Wait until all other cpus entered the sync function. */
559 		while (atomic_read(&sync->cpus) != 0)
560 			cpu_relax();
561 		rc = 0;
562 		if (stp_info.todoff || stp_info.tmd != 2) {
563 			flags = vdso_update_begin();
564 			rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
565 					&clock_delta);
566 			if (rc == 0) {
567 				sync->clock_delta = clock_delta;
568 				clock_sync_global(clock_delta);
569 				rc = __store_stpinfo();
570 				if (rc == 0 && stp_info.tmd != 2)
571 					rc = -EAGAIN;
572 			}
573 			vdso_update_end(flags);
574 		}
575 		sync->in_sync = rc ? -EAGAIN : 1;
576 		xchg(&first, 0);
577 	} else {
578 		/* Slave */
579 		atomic_dec(&sync->cpus);
580 		/* Wait for in_sync to be set. */
581 		while (READ_ONCE(sync->in_sync) == 0)
582 			__udelay(1);
583 	}
584 	if (sync->in_sync != 1)
585 		/* Didn't work. Clear per-cpu in sync bit again. */
586 		disable_sync_clock(NULL);
587 	/* Apply clock delta to per-CPU fields of this CPU. */
588 	clock_sync_local(sync->clock_delta);
589 
590 	return 0;
591 }
592 
593 static int stp_clear_leap(void)
594 {
595 	struct __kernel_timex txc;
596 	int ret;
597 
598 	memset(&txc, 0, sizeof(txc));
599 
600 	ret = do_adjtimex(&txc);
601 	if (ret < 0)
602 		return ret;
603 
604 	txc.modes = ADJ_STATUS;
605 	txc.status &= ~(STA_INS|STA_DEL);
606 	return do_adjtimex(&txc);
607 }
608 
609 static void stp_check_leap(void)
610 {
611 	struct stp_stzi stzi;
612 	struct stp_lsoib *lsoib = &stzi.lsoib;
613 	struct __kernel_timex txc;
614 	int64_t timediff;
615 	int leapdiff, ret;
616 
617 	if (!stp_info.lu || !check_sync_clock()) {
618 		/*
619 		 * Either a scheduled leap second was removed by the operator,
620 		 * or STP is out of sync. In both cases, clear the leap second
621 		 * kernel flags.
622 		 */
623 		if (stp_clear_leap() < 0)
624 			pr_err("failed to clear leap second flags\n");
625 		return;
626 	}
627 
628 	if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) {
629 		pr_err("stzi failed\n");
630 		return;
631 	}
632 
633 	timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC;
634 	leapdiff = lsoib->nlso - lsoib->also;
635 
636 	if (leapdiff != 1 && leapdiff != -1) {
637 		pr_err("Cannot schedule %d leap seconds\n", leapdiff);
638 		return;
639 	}
640 
641 	if (timediff < 0) {
642 		if (stp_clear_leap() < 0)
643 			pr_err("failed to clear leap second flags\n");
644 	} else if (timediff < 7200) {
645 		memset(&txc, 0, sizeof(txc));
646 		ret = do_adjtimex(&txc);
647 		if (ret < 0)
648 			return;
649 
650 		txc.modes = ADJ_STATUS;
651 		if (leapdiff > 0)
652 			txc.status |= STA_INS;
653 		else
654 			txc.status |= STA_DEL;
655 		ret = do_adjtimex(&txc);
656 		if (ret < 0)
657 			pr_err("failed to set leap second flags\n");
658 		/* arm Timer to clear leap second flags */
659 		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC));
660 	} else {
661 		/* The day the leap second is scheduled for hasn't been reached. Retry
662 		 * in one hour.
663 		 */
664 		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC));
665 	}
666 }
667 
668 /*
669  * STP work. Check for the STP state and take over the clock
670  * synchronization if the STP clock source is usable.
671  */
672 static void stp_work_fn(struct work_struct *work)
673 {
674 	struct clock_sync_data stp_sync;
675 	int rc;
676 
677 	/* prevent multiple execution. */
678 	mutex_lock(&stp_mutex);
679 
680 	if (!stp_online) {
681 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
682 		del_timer_sync(&stp_timer);
683 		goto out_unlock;
684 	}
685 
686 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
687 	if (rc)
688 		goto out_unlock;
689 
690 	rc = __store_stpinfo();
691 	if (rc || stp_info.c == 0)
692 		goto out_unlock;
693 
694 	/* Skip synchronization if the clock is already in sync. */
695 	if (!check_sync_clock()) {
696 		memset(&stp_sync, 0, sizeof(stp_sync));
697 		cpus_read_lock();
698 		atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
699 		stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
700 		cpus_read_unlock();
701 	}
702 
703 	if (!check_sync_clock())
704 		/*
705 		 * There is a usable clock but the synchonization failed.
706 		 * Retry after a second.
707 		 */
708 		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
709 	else if (stp_info.lu)
710 		stp_check_leap();
711 
712 out_unlock:
713 	mutex_unlock(&stp_mutex);
714 }
715 
716 /*
717  * STP subsys sysfs interface functions
718  */
719 static struct bus_type stp_subsys = {
720 	.name		= "stp",
721 	.dev_name	= "stp",
722 };
723 
724 static ssize_t ctn_id_show(struct device *dev,
725 				struct device_attribute *attr,
726 				char *buf)
727 {
728 	ssize_t ret = -ENODATA;
729 
730 	mutex_lock(&stp_mutex);
731 	if (stpinfo_valid())
732 		ret = sprintf(buf, "%016lx\n",
733 			      *(unsigned long *) stp_info.ctnid);
734 	mutex_unlock(&stp_mutex);
735 	return ret;
736 }
737 
738 static DEVICE_ATTR_RO(ctn_id);
739 
740 static ssize_t ctn_type_show(struct device *dev,
741 				struct device_attribute *attr,
742 				char *buf)
743 {
744 	ssize_t ret = -ENODATA;
745 
746 	mutex_lock(&stp_mutex);
747 	if (stpinfo_valid())
748 		ret = sprintf(buf, "%i\n", stp_info.ctn);
749 	mutex_unlock(&stp_mutex);
750 	return ret;
751 }
752 
753 static DEVICE_ATTR_RO(ctn_type);
754 
755 static ssize_t dst_offset_show(struct device *dev,
756 				   struct device_attribute *attr,
757 				   char *buf)
758 {
759 	ssize_t ret = -ENODATA;
760 
761 	mutex_lock(&stp_mutex);
762 	if (stpinfo_valid() && (stp_info.vbits & 0x2000))
763 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
764 	mutex_unlock(&stp_mutex);
765 	return ret;
766 }
767 
768 static DEVICE_ATTR_RO(dst_offset);
769 
770 static ssize_t leap_seconds_show(struct device *dev,
771 					struct device_attribute *attr,
772 					char *buf)
773 {
774 	ssize_t ret = -ENODATA;
775 
776 	mutex_lock(&stp_mutex);
777 	if (stpinfo_valid() && (stp_info.vbits & 0x8000))
778 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
779 	mutex_unlock(&stp_mutex);
780 	return ret;
781 }
782 
783 static DEVICE_ATTR_RO(leap_seconds);
784 
785 static ssize_t leap_seconds_scheduled_show(struct device *dev,
786 						struct device_attribute *attr,
787 						char *buf)
788 {
789 	struct stp_stzi stzi;
790 	ssize_t ret;
791 
792 	mutex_lock(&stp_mutex);
793 	if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
794 		mutex_unlock(&stp_mutex);
795 		return -ENODATA;
796 	}
797 
798 	ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
799 	mutex_unlock(&stp_mutex);
800 	if (ret < 0)
801 		return ret;
802 
803 	if (!stzi.lsoib.p)
804 		return sprintf(buf, "0,0\n");
805 
806 	return sprintf(buf, "%lu,%d\n",
807 		       tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
808 		       stzi.lsoib.nlso - stzi.lsoib.also);
809 }
810 
811 static DEVICE_ATTR_RO(leap_seconds_scheduled);
812 
813 static ssize_t stratum_show(struct device *dev,
814 				struct device_attribute *attr,
815 				char *buf)
816 {
817 	ssize_t ret = -ENODATA;
818 
819 	mutex_lock(&stp_mutex);
820 	if (stpinfo_valid())
821 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
822 	mutex_unlock(&stp_mutex);
823 	return ret;
824 }
825 
826 static DEVICE_ATTR_RO(stratum);
827 
828 static ssize_t time_offset_show(struct device *dev,
829 				struct device_attribute *attr,
830 				char *buf)
831 {
832 	ssize_t ret = -ENODATA;
833 
834 	mutex_lock(&stp_mutex);
835 	if (stpinfo_valid() && (stp_info.vbits & 0x0800))
836 		ret = sprintf(buf, "%i\n", (int) stp_info.tto);
837 	mutex_unlock(&stp_mutex);
838 	return ret;
839 }
840 
841 static DEVICE_ATTR_RO(time_offset);
842 
843 static ssize_t time_zone_offset_show(struct device *dev,
844 				struct device_attribute *attr,
845 				char *buf)
846 {
847 	ssize_t ret = -ENODATA;
848 
849 	mutex_lock(&stp_mutex);
850 	if (stpinfo_valid() && (stp_info.vbits & 0x4000))
851 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
852 	mutex_unlock(&stp_mutex);
853 	return ret;
854 }
855 
856 static DEVICE_ATTR_RO(time_zone_offset);
857 
858 static ssize_t timing_mode_show(struct device *dev,
859 				struct device_attribute *attr,
860 				char *buf)
861 {
862 	ssize_t ret = -ENODATA;
863 
864 	mutex_lock(&stp_mutex);
865 	if (stpinfo_valid())
866 		ret = sprintf(buf, "%i\n", stp_info.tmd);
867 	mutex_unlock(&stp_mutex);
868 	return ret;
869 }
870 
871 static DEVICE_ATTR_RO(timing_mode);
872 
873 static ssize_t timing_state_show(struct device *dev,
874 				struct device_attribute *attr,
875 				char *buf)
876 {
877 	ssize_t ret = -ENODATA;
878 
879 	mutex_lock(&stp_mutex);
880 	if (stpinfo_valid())
881 		ret = sprintf(buf, "%i\n", stp_info.tst);
882 	mutex_unlock(&stp_mutex);
883 	return ret;
884 }
885 
886 static DEVICE_ATTR_RO(timing_state);
887 
888 static ssize_t online_show(struct device *dev,
889 				struct device_attribute *attr,
890 				char *buf)
891 {
892 	return sprintf(buf, "%i\n", stp_online);
893 }
894 
895 static ssize_t online_store(struct device *dev,
896 				struct device_attribute *attr,
897 				const char *buf, size_t count)
898 {
899 	unsigned int value;
900 
901 	value = simple_strtoul(buf, NULL, 0);
902 	if (value != 0 && value != 1)
903 		return -EINVAL;
904 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
905 		return -EOPNOTSUPP;
906 	mutex_lock(&stp_mutex);
907 	stp_online = value;
908 	if (stp_online)
909 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
910 	else
911 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
912 	queue_work(time_sync_wq, &stp_work);
913 	mutex_unlock(&stp_mutex);
914 	return count;
915 }
916 
917 /*
918  * Can't use DEVICE_ATTR because the attribute should be named
919  * stp/online but dev_attr_online already exists in this file ..
920  */
921 static DEVICE_ATTR_RW(online);
922 
923 static struct attribute *stp_dev_attrs[] = {
924 	&dev_attr_ctn_id.attr,
925 	&dev_attr_ctn_type.attr,
926 	&dev_attr_dst_offset.attr,
927 	&dev_attr_leap_seconds.attr,
928 	&dev_attr_online.attr,
929 	&dev_attr_leap_seconds_scheduled.attr,
930 	&dev_attr_stratum.attr,
931 	&dev_attr_time_offset.attr,
932 	&dev_attr_time_zone_offset.attr,
933 	&dev_attr_timing_mode.attr,
934 	&dev_attr_timing_state.attr,
935 	NULL
936 };
937 ATTRIBUTE_GROUPS(stp_dev);
938 
939 static int __init stp_init_sysfs(void)
940 {
941 	return subsys_system_register(&stp_subsys, stp_dev_groups);
942 }
943 
944 device_initcall(stp_init_sysfs);
945