1 /* 2 * Time of day based timer functions. 3 * 4 * S390 version 5 * Copyright IBM Corp. 1999, 2008 6 * Author(s): Hartmut Penner (hp@de.ibm.com), 7 * Martin Schwidefsky (schwidefsky@de.ibm.com), 8 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 9 * 10 * Derived from "arch/i386/kernel/time.c" 11 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 12 */ 13 14 #define KMSG_COMPONENT "time" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/kernel_stat.h> 18 #include <linux/errno.h> 19 #include <linux/module.h> 20 #include <linux/sched.h> 21 #include <linux/kernel.h> 22 #include <linux/param.h> 23 #include <linux/string.h> 24 #include <linux/mm.h> 25 #include <linux/interrupt.h> 26 #include <linux/cpu.h> 27 #include <linux/stop_machine.h> 28 #include <linux/time.h> 29 #include <linux/device.h> 30 #include <linux/delay.h> 31 #include <linux/init.h> 32 #include <linux/smp.h> 33 #include <linux/types.h> 34 #include <linux/profile.h> 35 #include <linux/timex.h> 36 #include <linux/notifier.h> 37 #include <linux/timekeeper_internal.h> 38 #include <linux/clockchips.h> 39 #include <linux/gfp.h> 40 #include <linux/kprobes.h> 41 #include <asm/uaccess.h> 42 #include <asm/delay.h> 43 #include <asm/div64.h> 44 #include <asm/vdso.h> 45 #include <asm/irq.h> 46 #include <asm/irq_regs.h> 47 #include <asm/vtimer.h> 48 #include <asm/etr.h> 49 #include <asm/cio.h> 50 #include "entry.h" 51 52 /* change this if you have some constant time drift */ 53 #define USECS_PER_JIFFY ((unsigned long) 1000000/HZ) 54 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12) 55 56 u64 sched_clock_base_cc = -1; /* Force to data section. */ 57 EXPORT_SYMBOL_GPL(sched_clock_base_cc); 58 59 static DEFINE_PER_CPU(struct clock_event_device, comparators); 60 61 /* 62 * Scheduler clock - returns current time in nanosec units. 63 */ 64 unsigned long long notrace __kprobes sched_clock(void) 65 { 66 return tod_to_ns(get_tod_clock_monotonic()); 67 } 68 69 /* 70 * Monotonic_clock - returns # of nanoseconds passed since time_init() 71 */ 72 unsigned long long monotonic_clock(void) 73 { 74 return sched_clock(); 75 } 76 EXPORT_SYMBOL(monotonic_clock); 77 78 void tod_to_timeval(__u64 todval, struct timespec *xt) 79 { 80 unsigned long long sec; 81 82 sec = todval >> 12; 83 do_div(sec, 1000000); 84 xt->tv_sec = sec; 85 todval -= (sec * 1000000) << 12; 86 xt->tv_nsec = ((todval * 1000) >> 12); 87 } 88 EXPORT_SYMBOL(tod_to_timeval); 89 90 void clock_comparator_work(void) 91 { 92 struct clock_event_device *cd; 93 94 S390_lowcore.clock_comparator = -1ULL; 95 cd = &__get_cpu_var(comparators); 96 cd->event_handler(cd); 97 } 98 99 /* 100 * Fixup the clock comparator. 101 */ 102 static void fixup_clock_comparator(unsigned long long delta) 103 { 104 /* If nobody is waiting there's nothing to fix. */ 105 if (S390_lowcore.clock_comparator == -1ULL) 106 return; 107 S390_lowcore.clock_comparator += delta; 108 set_clock_comparator(S390_lowcore.clock_comparator); 109 } 110 111 static int s390_next_ktime(ktime_t expires, 112 struct clock_event_device *evt) 113 { 114 struct timespec ts; 115 u64 nsecs; 116 117 ts.tv_sec = ts.tv_nsec = 0; 118 monotonic_to_bootbased(&ts); 119 nsecs = ktime_to_ns(ktime_add(timespec_to_ktime(ts), expires)); 120 do_div(nsecs, 125); 121 S390_lowcore.clock_comparator = sched_clock_base_cc + (nsecs << 9); 122 /* Program the maximum value if we have an overflow (== year 2042) */ 123 if (unlikely(S390_lowcore.clock_comparator < sched_clock_base_cc)) 124 S390_lowcore.clock_comparator = -1ULL; 125 set_clock_comparator(S390_lowcore.clock_comparator); 126 return 0; 127 } 128 129 static void s390_set_mode(enum clock_event_mode mode, 130 struct clock_event_device *evt) 131 { 132 } 133 134 /* 135 * Set up lowcore and control register of the current cpu to 136 * enable TOD clock and clock comparator interrupts. 137 */ 138 void init_cpu_timer(void) 139 { 140 struct clock_event_device *cd; 141 int cpu; 142 143 S390_lowcore.clock_comparator = -1ULL; 144 set_clock_comparator(S390_lowcore.clock_comparator); 145 146 cpu = smp_processor_id(); 147 cd = &per_cpu(comparators, cpu); 148 cd->name = "comparator"; 149 cd->features = CLOCK_EVT_FEAT_ONESHOT | 150 CLOCK_EVT_FEAT_KTIME; 151 cd->mult = 16777; 152 cd->shift = 12; 153 cd->min_delta_ns = 1; 154 cd->max_delta_ns = LONG_MAX; 155 cd->rating = 400; 156 cd->cpumask = cpumask_of(cpu); 157 cd->set_next_ktime = s390_next_ktime; 158 cd->set_mode = s390_set_mode; 159 160 clockevents_register_device(cd); 161 162 /* Enable clock comparator timer interrupt. */ 163 __ctl_set_bit(0,11); 164 165 /* Always allow the timing alert external interrupt. */ 166 __ctl_set_bit(0, 4); 167 } 168 169 static void clock_comparator_interrupt(struct ext_code ext_code, 170 unsigned int param32, 171 unsigned long param64) 172 { 173 inc_irq_stat(IRQEXT_CLK); 174 if (S390_lowcore.clock_comparator == -1ULL) 175 set_clock_comparator(S390_lowcore.clock_comparator); 176 } 177 178 static void etr_timing_alert(struct etr_irq_parm *); 179 static void stp_timing_alert(struct stp_irq_parm *); 180 181 static void timing_alert_interrupt(struct ext_code ext_code, 182 unsigned int param32, unsigned long param64) 183 { 184 inc_irq_stat(IRQEXT_TLA); 185 if (param32 & 0x00c40000) 186 etr_timing_alert((struct etr_irq_parm *) ¶m32); 187 if (param32 & 0x00038000) 188 stp_timing_alert((struct stp_irq_parm *) ¶m32); 189 } 190 191 static void etr_reset(void); 192 static void stp_reset(void); 193 194 void read_persistent_clock(struct timespec *ts) 195 { 196 tod_to_timeval(get_tod_clock() - TOD_UNIX_EPOCH, ts); 197 } 198 199 void read_boot_clock(struct timespec *ts) 200 { 201 tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts); 202 } 203 204 static cycle_t read_tod_clock(struct clocksource *cs) 205 { 206 return get_tod_clock(); 207 } 208 209 static struct clocksource clocksource_tod = { 210 .name = "tod", 211 .rating = 400, 212 .read = read_tod_clock, 213 .mask = -1ULL, 214 .mult = 1000, 215 .shift = 12, 216 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 217 }; 218 219 struct clocksource * __init clocksource_default_clock(void) 220 { 221 return &clocksource_tod; 222 } 223 224 void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm, 225 struct clocksource *clock, u32 mult) 226 { 227 if (clock != &clocksource_tod) 228 return; 229 230 /* Make userspace gettimeofday spin until we're done. */ 231 ++vdso_data->tb_update_count; 232 smp_wmb(); 233 vdso_data->xtime_tod_stamp = clock->cycle_last; 234 vdso_data->xtime_clock_sec = wall_time->tv_sec; 235 vdso_data->xtime_clock_nsec = wall_time->tv_nsec; 236 vdso_data->wtom_clock_sec = wtm->tv_sec; 237 vdso_data->wtom_clock_nsec = wtm->tv_nsec; 238 vdso_data->ntp_mult = mult; 239 smp_wmb(); 240 ++vdso_data->tb_update_count; 241 } 242 243 extern struct timezone sys_tz; 244 245 void update_vsyscall_tz(void) 246 { 247 /* Make userspace gettimeofday spin until we're done. */ 248 ++vdso_data->tb_update_count; 249 smp_wmb(); 250 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 251 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 252 smp_wmb(); 253 ++vdso_data->tb_update_count; 254 } 255 256 /* 257 * Initialize the TOD clock and the CPU timer of 258 * the boot cpu. 259 */ 260 void __init time_init(void) 261 { 262 /* Reset time synchronization interfaces. */ 263 etr_reset(); 264 stp_reset(); 265 266 /* request the clock comparator external interrupt */ 267 if (register_external_interrupt(0x1004, clock_comparator_interrupt)) 268 panic("Couldn't request external interrupt 0x1004"); 269 270 /* request the timing alert external interrupt */ 271 if (register_external_interrupt(0x1406, timing_alert_interrupt)) 272 panic("Couldn't request external interrupt 0x1406"); 273 274 if (clocksource_register(&clocksource_tod) != 0) 275 panic("Could not register TOD clock source"); 276 277 /* Enable TOD clock interrupts on the boot cpu. */ 278 init_cpu_timer(); 279 280 /* Enable cpu timer interrupts on the boot cpu. */ 281 vtime_init(); 282 } 283 284 /* 285 * The time is "clock". old is what we think the time is. 286 * Adjust the value by a multiple of jiffies and add the delta to ntp. 287 * "delay" is an approximation how long the synchronization took. If 288 * the time correction is positive, then "delay" is subtracted from 289 * the time difference and only the remaining part is passed to ntp. 290 */ 291 static unsigned long long adjust_time(unsigned long long old, 292 unsigned long long clock, 293 unsigned long long delay) 294 { 295 unsigned long long delta, ticks; 296 struct timex adjust; 297 298 if (clock > old) { 299 /* It is later than we thought. */ 300 delta = ticks = clock - old; 301 delta = ticks = (delta < delay) ? 0 : delta - delay; 302 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY); 303 adjust.offset = ticks * (1000000 / HZ); 304 } else { 305 /* It is earlier than we thought. */ 306 delta = ticks = old - clock; 307 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY); 308 delta = -delta; 309 adjust.offset = -ticks * (1000000 / HZ); 310 } 311 sched_clock_base_cc += delta; 312 if (adjust.offset != 0) { 313 pr_notice("The ETR interface has adjusted the clock " 314 "by %li microseconds\n", adjust.offset); 315 adjust.modes = ADJ_OFFSET_SINGLESHOT; 316 do_adjtimex(&adjust); 317 } 318 return delta; 319 } 320 321 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 322 static DEFINE_MUTEX(clock_sync_mutex); 323 static unsigned long clock_sync_flags; 324 325 #define CLOCK_SYNC_HAS_ETR 0 326 #define CLOCK_SYNC_HAS_STP 1 327 #define CLOCK_SYNC_ETR 2 328 #define CLOCK_SYNC_STP 3 329 330 /* 331 * The synchronous get_clock function. It will write the current clock 332 * value to the clock pointer and return 0 if the clock is in sync with 333 * the external time source. If the clock mode is local it will return 334 * -EOPNOTSUPP and -EAGAIN if the clock is not in sync with the external 335 * reference. 336 */ 337 int get_sync_clock(unsigned long long *clock) 338 { 339 atomic_t *sw_ptr; 340 unsigned int sw0, sw1; 341 342 sw_ptr = &get_cpu_var(clock_sync_word); 343 sw0 = atomic_read(sw_ptr); 344 *clock = get_tod_clock(); 345 sw1 = atomic_read(sw_ptr); 346 put_cpu_var(clock_sync_word); 347 if (sw0 == sw1 && (sw0 & 0x80000000U)) 348 /* Success: time is in sync. */ 349 return 0; 350 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) && 351 !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 352 return -EOPNOTSUPP; 353 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) && 354 !test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 355 return -EACCES; 356 return -EAGAIN; 357 } 358 EXPORT_SYMBOL(get_sync_clock); 359 360 /* 361 * Make get_sync_clock return -EAGAIN. 362 */ 363 static void disable_sync_clock(void *dummy) 364 { 365 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word); 366 /* 367 * Clear the in-sync bit 2^31. All get_sync_clock calls will 368 * fail until the sync bit is turned back on. In addition 369 * increase the "sequence" counter to avoid the race of an 370 * etr event and the complete recovery against get_sync_clock. 371 */ 372 atomic_clear_mask(0x80000000, sw_ptr); 373 atomic_inc(sw_ptr); 374 } 375 376 /* 377 * Make get_sync_clock return 0 again. 378 * Needs to be called from a context disabled for preemption. 379 */ 380 static void enable_sync_clock(void) 381 { 382 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word); 383 atomic_set_mask(0x80000000, sw_ptr); 384 } 385 386 /* 387 * Function to check if the clock is in sync. 388 */ 389 static inline int check_sync_clock(void) 390 { 391 atomic_t *sw_ptr; 392 int rc; 393 394 sw_ptr = &get_cpu_var(clock_sync_word); 395 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 396 put_cpu_var(clock_sync_word); 397 return rc; 398 } 399 400 /* Single threaded workqueue used for etr and stp sync events */ 401 static struct workqueue_struct *time_sync_wq; 402 403 static void __init time_init_wq(void) 404 { 405 if (time_sync_wq) 406 return; 407 time_sync_wq = create_singlethread_workqueue("timesync"); 408 } 409 410 /* 411 * External Time Reference (ETR) code. 412 */ 413 static int etr_port0_online; 414 static int etr_port1_online; 415 static int etr_steai_available; 416 417 static int __init early_parse_etr(char *p) 418 { 419 if (strncmp(p, "off", 3) == 0) 420 etr_port0_online = etr_port1_online = 0; 421 else if (strncmp(p, "port0", 5) == 0) 422 etr_port0_online = 1; 423 else if (strncmp(p, "port1", 5) == 0) 424 etr_port1_online = 1; 425 else if (strncmp(p, "on", 2) == 0) 426 etr_port0_online = etr_port1_online = 1; 427 return 0; 428 } 429 early_param("etr", early_parse_etr); 430 431 enum etr_event { 432 ETR_EVENT_PORT0_CHANGE, 433 ETR_EVENT_PORT1_CHANGE, 434 ETR_EVENT_PORT_ALERT, 435 ETR_EVENT_SYNC_CHECK, 436 ETR_EVENT_SWITCH_LOCAL, 437 ETR_EVENT_UPDATE, 438 }; 439 440 /* 441 * Valid bit combinations of the eacr register are (x = don't care): 442 * e0 e1 dp p0 p1 ea es sl 443 * 0 0 x 0 0 0 0 0 initial, disabled state 444 * 0 0 x 0 1 1 0 0 port 1 online 445 * 0 0 x 1 0 1 0 0 port 0 online 446 * 0 0 x 1 1 1 0 0 both ports online 447 * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode 448 * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode 449 * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync 450 * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync 451 * 0 1 x 1 1 1 0 0 both ports online, port 1 usable 452 * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync 453 * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync 454 * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode 455 * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode 456 * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync 457 * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync 458 * 1 0 x 1 1 1 0 0 both ports online, port 0 usable 459 * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync 460 * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync 461 * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync 462 * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync 463 */ 464 static struct etr_eacr etr_eacr; 465 static u64 etr_tolec; /* time of last eacr update */ 466 static struct etr_aib etr_port0; 467 static int etr_port0_uptodate; 468 static struct etr_aib etr_port1; 469 static int etr_port1_uptodate; 470 static unsigned long etr_events; 471 static struct timer_list etr_timer; 472 473 static void etr_timeout(unsigned long dummy); 474 static void etr_work_fn(struct work_struct *work); 475 static DEFINE_MUTEX(etr_work_mutex); 476 static DECLARE_WORK(etr_work, etr_work_fn); 477 478 /* 479 * Reset ETR attachment. 480 */ 481 static void etr_reset(void) 482 { 483 etr_eacr = (struct etr_eacr) { 484 .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0, 485 .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0, 486 .es = 0, .sl = 0 }; 487 if (etr_setr(&etr_eacr) == 0) { 488 etr_tolec = get_tod_clock(); 489 set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags); 490 if (etr_port0_online && etr_port1_online) 491 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 492 } else if (etr_port0_online || etr_port1_online) { 493 pr_warning("The real or virtual hardware system does " 494 "not provide an ETR interface\n"); 495 etr_port0_online = etr_port1_online = 0; 496 } 497 } 498 499 static int __init etr_init(void) 500 { 501 struct etr_aib aib; 502 503 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags)) 504 return 0; 505 time_init_wq(); 506 /* Check if this machine has the steai instruction. */ 507 if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0) 508 etr_steai_available = 1; 509 setup_timer(&etr_timer, etr_timeout, 0UL); 510 if (etr_port0_online) { 511 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 512 queue_work(time_sync_wq, &etr_work); 513 } 514 if (etr_port1_online) { 515 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 516 queue_work(time_sync_wq, &etr_work); 517 } 518 return 0; 519 } 520 521 arch_initcall(etr_init); 522 523 /* 524 * Two sorts of ETR machine checks. The architecture reads: 525 * "When a machine-check niterruption occurs and if a switch-to-local or 526 * ETR-sync-check interrupt request is pending but disabled, this pending 527 * disabled interruption request is indicated and is cleared". 528 * Which means that we can get etr_switch_to_local events from the machine 529 * check handler although the interruption condition is disabled. Lovely.. 530 */ 531 532 /* 533 * Switch to local machine check. This is called when the last usable 534 * ETR port goes inactive. After switch to local the clock is not in sync. 535 */ 536 void etr_switch_to_local(void) 537 { 538 if (!etr_eacr.sl) 539 return; 540 disable_sync_clock(NULL); 541 if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) { 542 etr_eacr.es = etr_eacr.sl = 0; 543 etr_setr(&etr_eacr); 544 queue_work(time_sync_wq, &etr_work); 545 } 546 } 547 548 /* 549 * ETR sync check machine check. This is called when the ETR OTE and the 550 * local clock OTE are farther apart than the ETR sync check tolerance. 551 * After a ETR sync check the clock is not in sync. The machine check 552 * is broadcasted to all cpus at the same time. 553 */ 554 void etr_sync_check(void) 555 { 556 if (!etr_eacr.es) 557 return; 558 disable_sync_clock(NULL); 559 if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) { 560 etr_eacr.es = 0; 561 etr_setr(&etr_eacr); 562 queue_work(time_sync_wq, &etr_work); 563 } 564 } 565 566 /* 567 * ETR timing alert. There are two causes: 568 * 1) port state change, check the usability of the port 569 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the 570 * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3) 571 * or ETR-data word 4 (edf4) has changed. 572 */ 573 static void etr_timing_alert(struct etr_irq_parm *intparm) 574 { 575 if (intparm->pc0) 576 /* ETR port 0 state change. */ 577 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 578 if (intparm->pc1) 579 /* ETR port 1 state change. */ 580 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 581 if (intparm->eai) 582 /* 583 * ETR port alert on either port 0, 1 or both. 584 * Both ports are not up-to-date now. 585 */ 586 set_bit(ETR_EVENT_PORT_ALERT, &etr_events); 587 queue_work(time_sync_wq, &etr_work); 588 } 589 590 static void etr_timeout(unsigned long dummy) 591 { 592 set_bit(ETR_EVENT_UPDATE, &etr_events); 593 queue_work(time_sync_wq, &etr_work); 594 } 595 596 /* 597 * Check if the etr mode is pss. 598 */ 599 static inline int etr_mode_is_pps(struct etr_eacr eacr) 600 { 601 return eacr.es && !eacr.sl; 602 } 603 604 /* 605 * Check if the etr mode is etr. 606 */ 607 static inline int etr_mode_is_etr(struct etr_eacr eacr) 608 { 609 return eacr.es && eacr.sl; 610 } 611 612 /* 613 * Check if the port can be used for TOD synchronization. 614 * For PPS mode the port has to receive OTEs. For ETR mode 615 * the port has to receive OTEs, the ETR stepping bit has to 616 * be zero and the validity bits for data frame 1, 2, and 3 617 * have to be 1. 618 */ 619 static int etr_port_valid(struct etr_aib *aib, int port) 620 { 621 unsigned int psc; 622 623 /* Check that this port is receiving OTEs. */ 624 if (aib->tsp == 0) 625 return 0; 626 627 psc = port ? aib->esw.psc1 : aib->esw.psc0; 628 if (psc == etr_lpsc_pps_mode) 629 return 1; 630 if (psc == etr_lpsc_operational_step) 631 return !aib->esw.y && aib->slsw.v1 && 632 aib->slsw.v2 && aib->slsw.v3; 633 return 0; 634 } 635 636 /* 637 * Check if two ports are on the same network. 638 */ 639 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2) 640 { 641 // FIXME: any other fields we have to compare? 642 return aib1->edf1.net_id == aib2->edf1.net_id; 643 } 644 645 /* 646 * Wrapper for etr_stei that converts physical port states 647 * to logical port states to be consistent with the output 648 * of stetr (see etr_psc vs. etr_lpsc). 649 */ 650 static void etr_steai_cv(struct etr_aib *aib, unsigned int func) 651 { 652 BUG_ON(etr_steai(aib, func) != 0); 653 /* Convert port state to logical port state. */ 654 if (aib->esw.psc0 == 1) 655 aib->esw.psc0 = 2; 656 else if (aib->esw.psc0 == 0 && aib->esw.p == 0) 657 aib->esw.psc0 = 1; 658 if (aib->esw.psc1 == 1) 659 aib->esw.psc1 = 2; 660 else if (aib->esw.psc1 == 0 && aib->esw.p == 1) 661 aib->esw.psc1 = 1; 662 } 663 664 /* 665 * Check if the aib a2 is still connected to the same attachment as 666 * aib a1, the etv values differ by one and a2 is valid. 667 */ 668 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p) 669 { 670 int state_a1, state_a2; 671 672 /* Paranoia check: e0/e1 should better be the same. */ 673 if (a1->esw.eacr.e0 != a2->esw.eacr.e0 || 674 a1->esw.eacr.e1 != a2->esw.eacr.e1) 675 return 0; 676 677 /* Still connected to the same etr ? */ 678 state_a1 = p ? a1->esw.psc1 : a1->esw.psc0; 679 state_a2 = p ? a2->esw.psc1 : a2->esw.psc0; 680 if (state_a1 == etr_lpsc_operational_step) { 681 if (state_a2 != etr_lpsc_operational_step || 682 a1->edf1.net_id != a2->edf1.net_id || 683 a1->edf1.etr_id != a2->edf1.etr_id || 684 a1->edf1.etr_pn != a2->edf1.etr_pn) 685 return 0; 686 } else if (state_a2 != etr_lpsc_pps_mode) 687 return 0; 688 689 /* The ETV value of a2 needs to be ETV of a1 + 1. */ 690 if (a1->edf2.etv + 1 != a2->edf2.etv) 691 return 0; 692 693 if (!etr_port_valid(a2, p)) 694 return 0; 695 696 return 1; 697 } 698 699 struct clock_sync_data { 700 atomic_t cpus; 701 int in_sync; 702 unsigned long long fixup_cc; 703 int etr_port; 704 struct etr_aib *etr_aib; 705 }; 706 707 static void clock_sync_cpu(struct clock_sync_data *sync) 708 { 709 atomic_dec(&sync->cpus); 710 enable_sync_clock(); 711 /* 712 * This looks like a busy wait loop but it isn't. etr_sync_cpus 713 * is called on all other cpus while the TOD clocks is stopped. 714 * __udelay will stop the cpu on an enabled wait psw until the 715 * TOD is running again. 716 */ 717 while (sync->in_sync == 0) { 718 __udelay(1); 719 /* 720 * A different cpu changes *in_sync. Therefore use 721 * barrier() to force memory access. 722 */ 723 barrier(); 724 } 725 if (sync->in_sync != 1) 726 /* Didn't work. Clear per-cpu in sync bit again. */ 727 disable_sync_clock(NULL); 728 /* 729 * This round of TOD syncing is done. Set the clock comparator 730 * to the next tick and let the processor continue. 731 */ 732 fixup_clock_comparator(sync->fixup_cc); 733 } 734 735 /* 736 * Sync the TOD clock using the port referred to by aibp. This port 737 * has to be enabled and the other port has to be disabled. The 738 * last eacr update has to be more than 1.6 seconds in the past. 739 */ 740 static int etr_sync_clock(void *data) 741 { 742 static int first; 743 unsigned long long clock, old_clock, delay, delta; 744 struct clock_sync_data *etr_sync; 745 struct etr_aib *sync_port, *aib; 746 int port; 747 int rc; 748 749 etr_sync = data; 750 751 if (xchg(&first, 1) == 1) { 752 /* Slave */ 753 clock_sync_cpu(etr_sync); 754 return 0; 755 } 756 757 /* Wait until all other cpus entered the sync function. */ 758 while (atomic_read(&etr_sync->cpus) != 0) 759 cpu_relax(); 760 761 port = etr_sync->etr_port; 762 aib = etr_sync->etr_aib; 763 sync_port = (port == 0) ? &etr_port0 : &etr_port1; 764 enable_sync_clock(); 765 766 /* Set clock to next OTE. */ 767 __ctl_set_bit(14, 21); 768 __ctl_set_bit(0, 29); 769 clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32; 770 old_clock = get_tod_clock(); 771 if (set_tod_clock(clock) == 0) { 772 __udelay(1); /* Wait for the clock to start. */ 773 __ctl_clear_bit(0, 29); 774 __ctl_clear_bit(14, 21); 775 etr_stetr(aib); 776 /* Adjust Linux timing variables. */ 777 delay = (unsigned long long) 778 (aib->edf2.etv - sync_port->edf2.etv) << 32; 779 delta = adjust_time(old_clock, clock, delay); 780 etr_sync->fixup_cc = delta; 781 fixup_clock_comparator(delta); 782 /* Verify that the clock is properly set. */ 783 if (!etr_aib_follows(sync_port, aib, port)) { 784 /* Didn't work. */ 785 disable_sync_clock(NULL); 786 etr_sync->in_sync = -EAGAIN; 787 rc = -EAGAIN; 788 } else { 789 etr_sync->in_sync = 1; 790 rc = 0; 791 } 792 } else { 793 /* Could not set the clock ?!? */ 794 __ctl_clear_bit(0, 29); 795 __ctl_clear_bit(14, 21); 796 disable_sync_clock(NULL); 797 etr_sync->in_sync = -EAGAIN; 798 rc = -EAGAIN; 799 } 800 xchg(&first, 0); 801 return rc; 802 } 803 804 static int etr_sync_clock_stop(struct etr_aib *aib, int port) 805 { 806 struct clock_sync_data etr_sync; 807 struct etr_aib *sync_port; 808 int follows; 809 int rc; 810 811 /* Check if the current aib is adjacent to the sync port aib. */ 812 sync_port = (port == 0) ? &etr_port0 : &etr_port1; 813 follows = etr_aib_follows(sync_port, aib, port); 814 memcpy(sync_port, aib, sizeof(*aib)); 815 if (!follows) 816 return -EAGAIN; 817 memset(&etr_sync, 0, sizeof(etr_sync)); 818 etr_sync.etr_aib = aib; 819 etr_sync.etr_port = port; 820 get_online_cpus(); 821 atomic_set(&etr_sync.cpus, num_online_cpus() - 1); 822 rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask); 823 put_online_cpus(); 824 return rc; 825 } 826 827 /* 828 * Handle the immediate effects of the different events. 829 * The port change event is used for online/offline changes. 830 */ 831 static struct etr_eacr etr_handle_events(struct etr_eacr eacr) 832 { 833 if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) 834 eacr.es = 0; 835 if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) 836 eacr.es = eacr.sl = 0; 837 if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events)) 838 etr_port0_uptodate = etr_port1_uptodate = 0; 839 840 if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) { 841 if (eacr.e0) 842 /* 843 * Port change of an enabled port. We have to 844 * assume that this can have caused an stepping 845 * port switch. 846 */ 847 etr_tolec = get_tod_clock(); 848 eacr.p0 = etr_port0_online; 849 if (!eacr.p0) 850 eacr.e0 = 0; 851 etr_port0_uptodate = 0; 852 } 853 if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) { 854 if (eacr.e1) 855 /* 856 * Port change of an enabled port. We have to 857 * assume that this can have caused an stepping 858 * port switch. 859 */ 860 etr_tolec = get_tod_clock(); 861 eacr.p1 = etr_port1_online; 862 if (!eacr.p1) 863 eacr.e1 = 0; 864 etr_port1_uptodate = 0; 865 } 866 clear_bit(ETR_EVENT_UPDATE, &etr_events); 867 return eacr; 868 } 869 870 /* 871 * Set up a timer that expires after the etr_tolec + 1.6 seconds if 872 * one of the ports needs an update. 873 */ 874 static void etr_set_tolec_timeout(unsigned long long now) 875 { 876 unsigned long micros; 877 878 if ((!etr_eacr.p0 || etr_port0_uptodate) && 879 (!etr_eacr.p1 || etr_port1_uptodate)) 880 return; 881 micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0; 882 micros = (micros > 1600000) ? 0 : 1600000 - micros; 883 mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1); 884 } 885 886 /* 887 * Set up a time that expires after 1/2 second. 888 */ 889 static void etr_set_sync_timeout(void) 890 { 891 mod_timer(&etr_timer, jiffies + HZ/2); 892 } 893 894 /* 895 * Update the aib information for one or both ports. 896 */ 897 static struct etr_eacr etr_handle_update(struct etr_aib *aib, 898 struct etr_eacr eacr) 899 { 900 /* With both ports disabled the aib information is useless. */ 901 if (!eacr.e0 && !eacr.e1) 902 return eacr; 903 904 /* Update port0 or port1 with aib stored in etr_work_fn. */ 905 if (aib->esw.q == 0) { 906 /* Information for port 0 stored. */ 907 if (eacr.p0 && !etr_port0_uptodate) { 908 etr_port0 = *aib; 909 if (etr_port0_online) 910 etr_port0_uptodate = 1; 911 } 912 } else { 913 /* Information for port 1 stored. */ 914 if (eacr.p1 && !etr_port1_uptodate) { 915 etr_port1 = *aib; 916 if (etr_port0_online) 917 etr_port1_uptodate = 1; 918 } 919 } 920 921 /* 922 * Do not try to get the alternate port aib if the clock 923 * is not in sync yet. 924 */ 925 if (!eacr.es || !check_sync_clock()) 926 return eacr; 927 928 /* 929 * If steai is available we can get the information about 930 * the other port immediately. If only stetr is available the 931 * data-port bit toggle has to be used. 932 */ 933 if (etr_steai_available) { 934 if (eacr.p0 && !etr_port0_uptodate) { 935 etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0); 936 etr_port0_uptodate = 1; 937 } 938 if (eacr.p1 && !etr_port1_uptodate) { 939 etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1); 940 etr_port1_uptodate = 1; 941 } 942 } else { 943 /* 944 * One port was updated above, if the other 945 * port is not uptodate toggle dp bit. 946 */ 947 if ((eacr.p0 && !etr_port0_uptodate) || 948 (eacr.p1 && !etr_port1_uptodate)) 949 eacr.dp ^= 1; 950 else 951 eacr.dp = 0; 952 } 953 return eacr; 954 } 955 956 /* 957 * Write new etr control register if it differs from the current one. 958 * Return 1 if etr_tolec has been updated as well. 959 */ 960 static void etr_update_eacr(struct etr_eacr eacr) 961 { 962 int dp_changed; 963 964 if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0) 965 /* No change, return. */ 966 return; 967 /* 968 * The disable of an active port of the change of the data port 969 * bit can/will cause a change in the data port. 970 */ 971 dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 || 972 (etr_eacr.dp ^ eacr.dp) != 0; 973 etr_eacr = eacr; 974 etr_setr(&etr_eacr); 975 if (dp_changed) 976 etr_tolec = get_tod_clock(); 977 } 978 979 /* 980 * ETR work. In this function you'll find the main logic. In 981 * particular this is the only function that calls etr_update_eacr(), 982 * it "controls" the etr control register. 983 */ 984 static void etr_work_fn(struct work_struct *work) 985 { 986 unsigned long long now; 987 struct etr_eacr eacr; 988 struct etr_aib aib; 989 int sync_port; 990 991 /* prevent multiple execution. */ 992 mutex_lock(&etr_work_mutex); 993 994 /* Create working copy of etr_eacr. */ 995 eacr = etr_eacr; 996 997 /* Check for the different events and their immediate effects. */ 998 eacr = etr_handle_events(eacr); 999 1000 /* Check if ETR is supposed to be active. */ 1001 eacr.ea = eacr.p0 || eacr.p1; 1002 if (!eacr.ea) { 1003 /* Both ports offline. Reset everything. */ 1004 eacr.dp = eacr.es = eacr.sl = 0; 1005 on_each_cpu(disable_sync_clock, NULL, 1); 1006 del_timer_sync(&etr_timer); 1007 etr_update_eacr(eacr); 1008 goto out_unlock; 1009 } 1010 1011 /* Store aib to get the current ETR status word. */ 1012 BUG_ON(etr_stetr(&aib) != 0); 1013 etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */ 1014 now = get_tod_clock(); 1015 1016 /* 1017 * Update the port information if the last stepping port change 1018 * or data port change is older than 1.6 seconds. 1019 */ 1020 if (now >= etr_tolec + (1600000 << 12)) 1021 eacr = etr_handle_update(&aib, eacr); 1022 1023 /* 1024 * Select ports to enable. The preferred synchronization mode is PPS. 1025 * If a port can be enabled depends on a number of things: 1026 * 1) The port needs to be online and uptodate. A port is not 1027 * disabled just because it is not uptodate, but it is only 1028 * enabled if it is uptodate. 1029 * 2) The port needs to have the same mode (pps / etr). 1030 * 3) The port needs to be usable -> etr_port_valid() == 1 1031 * 4) To enable the second port the clock needs to be in sync. 1032 * 5) If both ports are useable and are ETR ports, the network id 1033 * has to be the same. 1034 * The eacr.sl bit is used to indicate etr mode vs. pps mode. 1035 */ 1036 if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) { 1037 eacr.sl = 0; 1038 eacr.e0 = 1; 1039 if (!etr_mode_is_pps(etr_eacr)) 1040 eacr.es = 0; 1041 if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode) 1042 eacr.e1 = 0; 1043 // FIXME: uptodate checks ? 1044 else if (etr_port0_uptodate && etr_port1_uptodate) 1045 eacr.e1 = 1; 1046 sync_port = (etr_port0_uptodate && 1047 etr_port_valid(&etr_port0, 0)) ? 0 : -1; 1048 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) { 1049 eacr.sl = 0; 1050 eacr.e0 = 0; 1051 eacr.e1 = 1; 1052 if (!etr_mode_is_pps(etr_eacr)) 1053 eacr.es = 0; 1054 sync_port = (etr_port1_uptodate && 1055 etr_port_valid(&etr_port1, 1)) ? 1 : -1; 1056 } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) { 1057 eacr.sl = 1; 1058 eacr.e0 = 1; 1059 if (!etr_mode_is_etr(etr_eacr)) 1060 eacr.es = 0; 1061 if (!eacr.es || !eacr.p1 || 1062 aib.esw.psc1 != etr_lpsc_operational_alt) 1063 eacr.e1 = 0; 1064 else if (etr_port0_uptodate && etr_port1_uptodate && 1065 etr_compare_network(&etr_port0, &etr_port1)) 1066 eacr.e1 = 1; 1067 sync_port = (etr_port0_uptodate && 1068 etr_port_valid(&etr_port0, 0)) ? 0 : -1; 1069 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) { 1070 eacr.sl = 1; 1071 eacr.e0 = 0; 1072 eacr.e1 = 1; 1073 if (!etr_mode_is_etr(etr_eacr)) 1074 eacr.es = 0; 1075 sync_port = (etr_port1_uptodate && 1076 etr_port_valid(&etr_port1, 1)) ? 1 : -1; 1077 } else { 1078 /* Both ports not usable. */ 1079 eacr.es = eacr.sl = 0; 1080 sync_port = -1; 1081 } 1082 1083 /* 1084 * If the clock is in sync just update the eacr and return. 1085 * If there is no valid sync port wait for a port update. 1086 */ 1087 if ((eacr.es && check_sync_clock()) || sync_port < 0) { 1088 etr_update_eacr(eacr); 1089 etr_set_tolec_timeout(now); 1090 goto out_unlock; 1091 } 1092 1093 /* 1094 * Prepare control register for clock syncing 1095 * (reset data port bit, set sync check control. 1096 */ 1097 eacr.dp = 0; 1098 eacr.es = 1; 1099 1100 /* 1101 * Update eacr and try to synchronize the clock. If the update 1102 * of eacr caused a stepping port switch (or if we have to 1103 * assume that a stepping port switch has occurred) or the 1104 * clock syncing failed, reset the sync check control bit 1105 * and set up a timer to try again after 0.5 seconds 1106 */ 1107 etr_update_eacr(eacr); 1108 if (now < etr_tolec + (1600000 << 12) || 1109 etr_sync_clock_stop(&aib, sync_port) != 0) { 1110 /* Sync failed. Try again in 1/2 second. */ 1111 eacr.es = 0; 1112 etr_update_eacr(eacr); 1113 etr_set_sync_timeout(); 1114 } else 1115 etr_set_tolec_timeout(now); 1116 out_unlock: 1117 mutex_unlock(&etr_work_mutex); 1118 } 1119 1120 /* 1121 * Sysfs interface functions 1122 */ 1123 static struct bus_type etr_subsys = { 1124 .name = "etr", 1125 .dev_name = "etr", 1126 }; 1127 1128 static struct device etr_port0_dev = { 1129 .id = 0, 1130 .bus = &etr_subsys, 1131 }; 1132 1133 static struct device etr_port1_dev = { 1134 .id = 1, 1135 .bus = &etr_subsys, 1136 }; 1137 1138 /* 1139 * ETR subsys attributes 1140 */ 1141 static ssize_t etr_stepping_port_show(struct device *dev, 1142 struct device_attribute *attr, 1143 char *buf) 1144 { 1145 return sprintf(buf, "%i\n", etr_port0.esw.p); 1146 } 1147 1148 static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL); 1149 1150 static ssize_t etr_stepping_mode_show(struct device *dev, 1151 struct device_attribute *attr, 1152 char *buf) 1153 { 1154 char *mode_str; 1155 1156 if (etr_mode_is_pps(etr_eacr)) 1157 mode_str = "pps"; 1158 else if (etr_mode_is_etr(etr_eacr)) 1159 mode_str = "etr"; 1160 else 1161 mode_str = "local"; 1162 return sprintf(buf, "%s\n", mode_str); 1163 } 1164 1165 static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL); 1166 1167 /* 1168 * ETR port attributes 1169 */ 1170 static inline struct etr_aib *etr_aib_from_dev(struct device *dev) 1171 { 1172 if (dev == &etr_port0_dev) 1173 return etr_port0_online ? &etr_port0 : NULL; 1174 else 1175 return etr_port1_online ? &etr_port1 : NULL; 1176 } 1177 1178 static ssize_t etr_online_show(struct device *dev, 1179 struct device_attribute *attr, 1180 char *buf) 1181 { 1182 unsigned int online; 1183 1184 online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online; 1185 return sprintf(buf, "%i\n", online); 1186 } 1187 1188 static ssize_t etr_online_store(struct device *dev, 1189 struct device_attribute *attr, 1190 const char *buf, size_t count) 1191 { 1192 unsigned int value; 1193 1194 value = simple_strtoul(buf, NULL, 0); 1195 if (value != 0 && value != 1) 1196 return -EINVAL; 1197 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags)) 1198 return -EOPNOTSUPP; 1199 mutex_lock(&clock_sync_mutex); 1200 if (dev == &etr_port0_dev) { 1201 if (etr_port0_online == value) 1202 goto out; /* Nothing to do. */ 1203 etr_port0_online = value; 1204 if (etr_port0_online && etr_port1_online) 1205 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1206 else 1207 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1208 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 1209 queue_work(time_sync_wq, &etr_work); 1210 } else { 1211 if (etr_port1_online == value) 1212 goto out; /* Nothing to do. */ 1213 etr_port1_online = value; 1214 if (etr_port0_online && etr_port1_online) 1215 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1216 else 1217 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1218 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 1219 queue_work(time_sync_wq, &etr_work); 1220 } 1221 out: 1222 mutex_unlock(&clock_sync_mutex); 1223 return count; 1224 } 1225 1226 static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store); 1227 1228 static ssize_t etr_stepping_control_show(struct device *dev, 1229 struct device_attribute *attr, 1230 char *buf) 1231 { 1232 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ? 1233 etr_eacr.e0 : etr_eacr.e1); 1234 } 1235 1236 static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL); 1237 1238 static ssize_t etr_mode_code_show(struct device *dev, 1239 struct device_attribute *attr, char *buf) 1240 { 1241 if (!etr_port0_online && !etr_port1_online) 1242 /* Status word is not uptodate if both ports are offline. */ 1243 return -ENODATA; 1244 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ? 1245 etr_port0.esw.psc0 : etr_port0.esw.psc1); 1246 } 1247 1248 static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL); 1249 1250 static ssize_t etr_untuned_show(struct device *dev, 1251 struct device_attribute *attr, char *buf) 1252 { 1253 struct etr_aib *aib = etr_aib_from_dev(dev); 1254 1255 if (!aib || !aib->slsw.v1) 1256 return -ENODATA; 1257 return sprintf(buf, "%i\n", aib->edf1.u); 1258 } 1259 1260 static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL); 1261 1262 static ssize_t etr_network_id_show(struct device *dev, 1263 struct device_attribute *attr, char *buf) 1264 { 1265 struct etr_aib *aib = etr_aib_from_dev(dev); 1266 1267 if (!aib || !aib->slsw.v1) 1268 return -ENODATA; 1269 return sprintf(buf, "%i\n", aib->edf1.net_id); 1270 } 1271 1272 static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL); 1273 1274 static ssize_t etr_id_show(struct device *dev, 1275 struct device_attribute *attr, char *buf) 1276 { 1277 struct etr_aib *aib = etr_aib_from_dev(dev); 1278 1279 if (!aib || !aib->slsw.v1) 1280 return -ENODATA; 1281 return sprintf(buf, "%i\n", aib->edf1.etr_id); 1282 } 1283 1284 static DEVICE_ATTR(id, 0400, etr_id_show, NULL); 1285 1286 static ssize_t etr_port_number_show(struct device *dev, 1287 struct device_attribute *attr, char *buf) 1288 { 1289 struct etr_aib *aib = etr_aib_from_dev(dev); 1290 1291 if (!aib || !aib->slsw.v1) 1292 return -ENODATA; 1293 return sprintf(buf, "%i\n", aib->edf1.etr_pn); 1294 } 1295 1296 static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL); 1297 1298 static ssize_t etr_coupled_show(struct device *dev, 1299 struct device_attribute *attr, char *buf) 1300 { 1301 struct etr_aib *aib = etr_aib_from_dev(dev); 1302 1303 if (!aib || !aib->slsw.v3) 1304 return -ENODATA; 1305 return sprintf(buf, "%i\n", aib->edf3.c); 1306 } 1307 1308 static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL); 1309 1310 static ssize_t etr_local_time_show(struct device *dev, 1311 struct device_attribute *attr, char *buf) 1312 { 1313 struct etr_aib *aib = etr_aib_from_dev(dev); 1314 1315 if (!aib || !aib->slsw.v3) 1316 return -ENODATA; 1317 return sprintf(buf, "%i\n", aib->edf3.blto); 1318 } 1319 1320 static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL); 1321 1322 static ssize_t etr_utc_offset_show(struct device *dev, 1323 struct device_attribute *attr, char *buf) 1324 { 1325 struct etr_aib *aib = etr_aib_from_dev(dev); 1326 1327 if (!aib || !aib->slsw.v3) 1328 return -ENODATA; 1329 return sprintf(buf, "%i\n", aib->edf3.buo); 1330 } 1331 1332 static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL); 1333 1334 static struct device_attribute *etr_port_attributes[] = { 1335 &dev_attr_online, 1336 &dev_attr_stepping_control, 1337 &dev_attr_state_code, 1338 &dev_attr_untuned, 1339 &dev_attr_network, 1340 &dev_attr_id, 1341 &dev_attr_port, 1342 &dev_attr_coupled, 1343 &dev_attr_local_time, 1344 &dev_attr_utc_offset, 1345 NULL 1346 }; 1347 1348 static int __init etr_register_port(struct device *dev) 1349 { 1350 struct device_attribute **attr; 1351 int rc; 1352 1353 rc = device_register(dev); 1354 if (rc) 1355 goto out; 1356 for (attr = etr_port_attributes; *attr; attr++) { 1357 rc = device_create_file(dev, *attr); 1358 if (rc) 1359 goto out_unreg; 1360 } 1361 return 0; 1362 out_unreg: 1363 for (; attr >= etr_port_attributes; attr--) 1364 device_remove_file(dev, *attr); 1365 device_unregister(dev); 1366 out: 1367 return rc; 1368 } 1369 1370 static void __init etr_unregister_port(struct device *dev) 1371 { 1372 struct device_attribute **attr; 1373 1374 for (attr = etr_port_attributes; *attr; attr++) 1375 device_remove_file(dev, *attr); 1376 device_unregister(dev); 1377 } 1378 1379 static int __init etr_init_sysfs(void) 1380 { 1381 int rc; 1382 1383 rc = subsys_system_register(&etr_subsys, NULL); 1384 if (rc) 1385 goto out; 1386 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port); 1387 if (rc) 1388 goto out_unreg_subsys; 1389 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode); 1390 if (rc) 1391 goto out_remove_stepping_port; 1392 rc = etr_register_port(&etr_port0_dev); 1393 if (rc) 1394 goto out_remove_stepping_mode; 1395 rc = etr_register_port(&etr_port1_dev); 1396 if (rc) 1397 goto out_remove_port0; 1398 return 0; 1399 1400 out_remove_port0: 1401 etr_unregister_port(&etr_port0_dev); 1402 out_remove_stepping_mode: 1403 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode); 1404 out_remove_stepping_port: 1405 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port); 1406 out_unreg_subsys: 1407 bus_unregister(&etr_subsys); 1408 out: 1409 return rc; 1410 } 1411 1412 device_initcall(etr_init_sysfs); 1413 1414 /* 1415 * Server Time Protocol (STP) code. 1416 */ 1417 static int stp_online; 1418 static struct stp_sstpi stp_info; 1419 static void *stp_page; 1420 1421 static void stp_work_fn(struct work_struct *work); 1422 static DEFINE_MUTEX(stp_work_mutex); 1423 static DECLARE_WORK(stp_work, stp_work_fn); 1424 static struct timer_list stp_timer; 1425 1426 static int __init early_parse_stp(char *p) 1427 { 1428 if (strncmp(p, "off", 3) == 0) 1429 stp_online = 0; 1430 else if (strncmp(p, "on", 2) == 0) 1431 stp_online = 1; 1432 return 0; 1433 } 1434 early_param("stp", early_parse_stp); 1435 1436 /* 1437 * Reset STP attachment. 1438 */ 1439 static void __init stp_reset(void) 1440 { 1441 int rc; 1442 1443 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 1444 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000); 1445 if (rc == 0) 1446 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 1447 else if (stp_online) { 1448 pr_warning("The real or virtual hardware system does " 1449 "not provide an STP interface\n"); 1450 free_page((unsigned long) stp_page); 1451 stp_page = NULL; 1452 stp_online = 0; 1453 } 1454 } 1455 1456 static void stp_timeout(unsigned long dummy) 1457 { 1458 queue_work(time_sync_wq, &stp_work); 1459 } 1460 1461 static int __init stp_init(void) 1462 { 1463 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 1464 return 0; 1465 setup_timer(&stp_timer, stp_timeout, 0UL); 1466 time_init_wq(); 1467 if (!stp_online) 1468 return 0; 1469 queue_work(time_sync_wq, &stp_work); 1470 return 0; 1471 } 1472 1473 arch_initcall(stp_init); 1474 1475 /* 1476 * STP timing alert. There are three causes: 1477 * 1) timing status change 1478 * 2) link availability change 1479 * 3) time control parameter change 1480 * In all three cases we are only interested in the clock source state. 1481 * If a STP clock source is now available use it. 1482 */ 1483 static void stp_timing_alert(struct stp_irq_parm *intparm) 1484 { 1485 if (intparm->tsc || intparm->lac || intparm->tcpc) 1486 queue_work(time_sync_wq, &stp_work); 1487 } 1488 1489 /* 1490 * STP sync check machine check. This is called when the timing state 1491 * changes from the synchronized state to the unsynchronized state. 1492 * After a STP sync check the clock is not in sync. The machine check 1493 * is broadcasted to all cpus at the same time. 1494 */ 1495 void stp_sync_check(void) 1496 { 1497 disable_sync_clock(NULL); 1498 queue_work(time_sync_wq, &stp_work); 1499 } 1500 1501 /* 1502 * STP island condition machine check. This is called when an attached 1503 * server attempts to communicate over an STP link and the servers 1504 * have matching CTN ids and have a valid stratum-1 configuration 1505 * but the configurations do not match. 1506 */ 1507 void stp_island_check(void) 1508 { 1509 disable_sync_clock(NULL); 1510 queue_work(time_sync_wq, &stp_work); 1511 } 1512 1513 1514 static int stp_sync_clock(void *data) 1515 { 1516 static int first; 1517 unsigned long long old_clock, delta; 1518 struct clock_sync_data *stp_sync; 1519 int rc; 1520 1521 stp_sync = data; 1522 1523 if (xchg(&first, 1) == 1) { 1524 /* Slave */ 1525 clock_sync_cpu(stp_sync); 1526 return 0; 1527 } 1528 1529 /* Wait until all other cpus entered the sync function. */ 1530 while (atomic_read(&stp_sync->cpus) != 0) 1531 cpu_relax(); 1532 1533 enable_sync_clock(); 1534 1535 rc = 0; 1536 if (stp_info.todoff[0] || stp_info.todoff[1] || 1537 stp_info.todoff[2] || stp_info.todoff[3] || 1538 stp_info.tmd != 2) { 1539 old_clock = get_tod_clock(); 1540 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0); 1541 if (rc == 0) { 1542 delta = adjust_time(old_clock, get_tod_clock(), 0); 1543 fixup_clock_comparator(delta); 1544 rc = chsc_sstpi(stp_page, &stp_info, 1545 sizeof(struct stp_sstpi)); 1546 if (rc == 0 && stp_info.tmd != 2) 1547 rc = -EAGAIN; 1548 } 1549 } 1550 if (rc) { 1551 disable_sync_clock(NULL); 1552 stp_sync->in_sync = -EAGAIN; 1553 } else 1554 stp_sync->in_sync = 1; 1555 xchg(&first, 0); 1556 return 0; 1557 } 1558 1559 /* 1560 * STP work. Check for the STP state and take over the clock 1561 * synchronization if the STP clock source is usable. 1562 */ 1563 static void stp_work_fn(struct work_struct *work) 1564 { 1565 struct clock_sync_data stp_sync; 1566 int rc; 1567 1568 /* prevent multiple execution. */ 1569 mutex_lock(&stp_work_mutex); 1570 1571 if (!stp_online) { 1572 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000); 1573 del_timer_sync(&stp_timer); 1574 goto out_unlock; 1575 } 1576 1577 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0); 1578 if (rc) 1579 goto out_unlock; 1580 1581 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 1582 if (rc || stp_info.c == 0) 1583 goto out_unlock; 1584 1585 /* Skip synchronization if the clock is already in sync. */ 1586 if (check_sync_clock()) 1587 goto out_unlock; 1588 1589 memset(&stp_sync, 0, sizeof(stp_sync)); 1590 get_online_cpus(); 1591 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 1592 stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask); 1593 put_online_cpus(); 1594 1595 if (!check_sync_clock()) 1596 /* 1597 * There is a usable clock but the synchonization failed. 1598 * Retry after a second. 1599 */ 1600 mod_timer(&stp_timer, jiffies + HZ); 1601 1602 out_unlock: 1603 mutex_unlock(&stp_work_mutex); 1604 } 1605 1606 /* 1607 * STP subsys sysfs interface functions 1608 */ 1609 static struct bus_type stp_subsys = { 1610 .name = "stp", 1611 .dev_name = "stp", 1612 }; 1613 1614 static ssize_t stp_ctn_id_show(struct device *dev, 1615 struct device_attribute *attr, 1616 char *buf) 1617 { 1618 if (!stp_online) 1619 return -ENODATA; 1620 return sprintf(buf, "%016llx\n", 1621 *(unsigned long long *) stp_info.ctnid); 1622 } 1623 1624 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL); 1625 1626 static ssize_t stp_ctn_type_show(struct device *dev, 1627 struct device_attribute *attr, 1628 char *buf) 1629 { 1630 if (!stp_online) 1631 return -ENODATA; 1632 return sprintf(buf, "%i\n", stp_info.ctn); 1633 } 1634 1635 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL); 1636 1637 static ssize_t stp_dst_offset_show(struct device *dev, 1638 struct device_attribute *attr, 1639 char *buf) 1640 { 1641 if (!stp_online || !(stp_info.vbits & 0x2000)) 1642 return -ENODATA; 1643 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); 1644 } 1645 1646 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL); 1647 1648 static ssize_t stp_leap_seconds_show(struct device *dev, 1649 struct device_attribute *attr, 1650 char *buf) 1651 { 1652 if (!stp_online || !(stp_info.vbits & 0x8000)) 1653 return -ENODATA; 1654 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); 1655 } 1656 1657 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL); 1658 1659 static ssize_t stp_stratum_show(struct device *dev, 1660 struct device_attribute *attr, 1661 char *buf) 1662 { 1663 if (!stp_online) 1664 return -ENODATA; 1665 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); 1666 } 1667 1668 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL); 1669 1670 static ssize_t stp_time_offset_show(struct device *dev, 1671 struct device_attribute *attr, 1672 char *buf) 1673 { 1674 if (!stp_online || !(stp_info.vbits & 0x0800)) 1675 return -ENODATA; 1676 return sprintf(buf, "%i\n", (int) stp_info.tto); 1677 } 1678 1679 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL); 1680 1681 static ssize_t stp_time_zone_offset_show(struct device *dev, 1682 struct device_attribute *attr, 1683 char *buf) 1684 { 1685 if (!stp_online || !(stp_info.vbits & 0x4000)) 1686 return -ENODATA; 1687 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); 1688 } 1689 1690 static DEVICE_ATTR(time_zone_offset, 0400, 1691 stp_time_zone_offset_show, NULL); 1692 1693 static ssize_t stp_timing_mode_show(struct device *dev, 1694 struct device_attribute *attr, 1695 char *buf) 1696 { 1697 if (!stp_online) 1698 return -ENODATA; 1699 return sprintf(buf, "%i\n", stp_info.tmd); 1700 } 1701 1702 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL); 1703 1704 static ssize_t stp_timing_state_show(struct device *dev, 1705 struct device_attribute *attr, 1706 char *buf) 1707 { 1708 if (!stp_online) 1709 return -ENODATA; 1710 return sprintf(buf, "%i\n", stp_info.tst); 1711 } 1712 1713 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL); 1714 1715 static ssize_t stp_online_show(struct device *dev, 1716 struct device_attribute *attr, 1717 char *buf) 1718 { 1719 return sprintf(buf, "%i\n", stp_online); 1720 } 1721 1722 static ssize_t stp_online_store(struct device *dev, 1723 struct device_attribute *attr, 1724 const char *buf, size_t count) 1725 { 1726 unsigned int value; 1727 1728 value = simple_strtoul(buf, NULL, 0); 1729 if (value != 0 && value != 1) 1730 return -EINVAL; 1731 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 1732 return -EOPNOTSUPP; 1733 mutex_lock(&clock_sync_mutex); 1734 stp_online = value; 1735 if (stp_online) 1736 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 1737 else 1738 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 1739 queue_work(time_sync_wq, &stp_work); 1740 mutex_unlock(&clock_sync_mutex); 1741 return count; 1742 } 1743 1744 /* 1745 * Can't use DEVICE_ATTR because the attribute should be named 1746 * stp/online but dev_attr_online already exists in this file .. 1747 */ 1748 static struct device_attribute dev_attr_stp_online = { 1749 .attr = { .name = "online", .mode = 0600 }, 1750 .show = stp_online_show, 1751 .store = stp_online_store, 1752 }; 1753 1754 static struct device_attribute *stp_attributes[] = { 1755 &dev_attr_ctn_id, 1756 &dev_attr_ctn_type, 1757 &dev_attr_dst_offset, 1758 &dev_attr_leap_seconds, 1759 &dev_attr_stp_online, 1760 &dev_attr_stratum, 1761 &dev_attr_time_offset, 1762 &dev_attr_time_zone_offset, 1763 &dev_attr_timing_mode, 1764 &dev_attr_timing_state, 1765 NULL 1766 }; 1767 1768 static int __init stp_init_sysfs(void) 1769 { 1770 struct device_attribute **attr; 1771 int rc; 1772 1773 rc = subsys_system_register(&stp_subsys, NULL); 1774 if (rc) 1775 goto out; 1776 for (attr = stp_attributes; *attr; attr++) { 1777 rc = device_create_file(stp_subsys.dev_root, *attr); 1778 if (rc) 1779 goto out_unreg; 1780 } 1781 return 0; 1782 out_unreg: 1783 for (; attr >= stp_attributes; attr--) 1784 device_remove_file(stp_subsys.dev_root, *attr); 1785 bus_unregister(&stp_subsys); 1786 out: 1787 return rc; 1788 } 1789 1790 device_initcall(stp_init_sysfs); 1791