1 /* 2 * arch/s390/kernel/time.c 3 * Time of day based timer functions. 4 * 5 * S390 version 6 * Copyright IBM Corp. 1999, 2008 7 * Author(s): Hartmut Penner (hp@de.ibm.com), 8 * Martin Schwidefsky (schwidefsky@de.ibm.com), 9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 10 * 11 * Derived from "arch/i386/kernel/time.c" 12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 13 */ 14 15 #include <linux/errno.h> 16 #include <linux/module.h> 17 #include <linux/sched.h> 18 #include <linux/kernel.h> 19 #include <linux/param.h> 20 #include <linux/string.h> 21 #include <linux/mm.h> 22 #include <linux/interrupt.h> 23 #include <linux/time.h> 24 #include <linux/sysdev.h> 25 #include <linux/delay.h> 26 #include <linux/init.h> 27 #include <linux/smp.h> 28 #include <linux/types.h> 29 #include <linux/profile.h> 30 #include <linux/timex.h> 31 #include <linux/notifier.h> 32 #include <linux/clocksource.h> 33 #include <linux/clockchips.h> 34 #include <linux/bootmem.h> 35 #include <asm/uaccess.h> 36 #include <asm/delay.h> 37 #include <asm/s390_ext.h> 38 #include <asm/div64.h> 39 #include <asm/irq.h> 40 #include <asm/irq_regs.h> 41 #include <asm/timer.h> 42 #include <asm/etr.h> 43 #include <asm/cio.h> 44 45 /* change this if you have some constant time drift */ 46 #define USECS_PER_JIFFY ((unsigned long) 1000000/HZ) 47 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12) 48 49 /* The value of the TOD clock for 1.1.1970. */ 50 #define TOD_UNIX_EPOCH 0x7d91048bca000000ULL 51 52 /* 53 * Create a small time difference between the timer interrupts 54 * on the different cpus to avoid lock contention. 55 */ 56 #define CPU_DEVIATION (smp_processor_id() << 12) 57 58 #define TICK_SIZE tick 59 60 static ext_int_info_t ext_int_info_cc; 61 static ext_int_info_t ext_int_etr_cc; 62 static u64 jiffies_timer_cc; 63 64 static DEFINE_PER_CPU(struct clock_event_device, comparators); 65 66 /* 67 * Scheduler clock - returns current time in nanosec units. 68 */ 69 unsigned long long sched_clock(void) 70 { 71 return ((get_clock_xt() - jiffies_timer_cc) * 125) >> 9; 72 } 73 74 /* 75 * Monotonic_clock - returns # of nanoseconds passed since time_init() 76 */ 77 unsigned long long monotonic_clock(void) 78 { 79 return sched_clock(); 80 } 81 EXPORT_SYMBOL(monotonic_clock); 82 83 void tod_to_timeval(__u64 todval, struct timespec *xtime) 84 { 85 unsigned long long sec; 86 87 sec = todval >> 12; 88 do_div(sec, 1000000); 89 xtime->tv_sec = sec; 90 todval -= (sec * 1000000) << 12; 91 xtime->tv_nsec = ((todval * 1000) >> 12); 92 } 93 94 #ifdef CONFIG_PROFILING 95 #define s390_do_profile() profile_tick(CPU_PROFILING) 96 #else 97 #define s390_do_profile() do { ; } while(0) 98 #endif /* CONFIG_PROFILING */ 99 100 void clock_comparator_work(void) 101 { 102 struct clock_event_device *cd; 103 104 S390_lowcore.clock_comparator = -1ULL; 105 set_clock_comparator(S390_lowcore.clock_comparator); 106 cd = &__get_cpu_var(comparators); 107 cd->event_handler(cd); 108 s390_do_profile(); 109 } 110 111 /* 112 * Fixup the clock comparator. 113 */ 114 static void fixup_clock_comparator(unsigned long long delta) 115 { 116 /* If nobody is waiting there's nothing to fix. */ 117 if (S390_lowcore.clock_comparator == -1ULL) 118 return; 119 S390_lowcore.clock_comparator += delta; 120 set_clock_comparator(S390_lowcore.clock_comparator); 121 } 122 123 static int s390_next_event(unsigned long delta, 124 struct clock_event_device *evt) 125 { 126 S390_lowcore.clock_comparator = get_clock() + delta; 127 set_clock_comparator(S390_lowcore.clock_comparator); 128 return 0; 129 } 130 131 static void s390_set_mode(enum clock_event_mode mode, 132 struct clock_event_device *evt) 133 { 134 } 135 136 /* 137 * Set up lowcore and control register of the current cpu to 138 * enable TOD clock and clock comparator interrupts. 139 */ 140 void init_cpu_timer(void) 141 { 142 struct clock_event_device *cd; 143 int cpu; 144 145 S390_lowcore.clock_comparator = -1ULL; 146 set_clock_comparator(S390_lowcore.clock_comparator); 147 148 cpu = smp_processor_id(); 149 cd = &per_cpu(comparators, cpu); 150 cd->name = "comparator"; 151 cd->features = CLOCK_EVT_FEAT_ONESHOT; 152 cd->mult = 16777; 153 cd->shift = 12; 154 cd->min_delta_ns = 1; 155 cd->max_delta_ns = LONG_MAX; 156 cd->rating = 400; 157 cd->cpumask = cpumask_of_cpu(cpu); 158 cd->set_next_event = s390_next_event; 159 cd->set_mode = s390_set_mode; 160 161 clockevents_register_device(cd); 162 163 /* Enable clock comparator timer interrupt. */ 164 __ctl_set_bit(0,11); 165 166 /* Always allow the timing alert external interrupt. */ 167 __ctl_set_bit(0, 4); 168 } 169 170 static void clock_comparator_interrupt(__u16 code) 171 { 172 } 173 174 static void etr_timing_alert(struct etr_irq_parm *); 175 static void stp_timing_alert(struct stp_irq_parm *); 176 177 static void timing_alert_interrupt(__u16 code) 178 { 179 if (S390_lowcore.ext_params & 0x00c40000) 180 etr_timing_alert((struct etr_irq_parm *) 181 &S390_lowcore.ext_params); 182 if (S390_lowcore.ext_params & 0x00038000) 183 stp_timing_alert((struct stp_irq_parm *) 184 &S390_lowcore.ext_params); 185 } 186 187 static void etr_reset(void); 188 static void stp_reset(void); 189 190 /* 191 * Get the TOD clock running. 192 */ 193 static u64 __init reset_tod_clock(void) 194 { 195 u64 time; 196 197 etr_reset(); 198 stp_reset(); 199 if (store_clock(&time) == 0) 200 return time; 201 /* TOD clock not running. Set the clock to Unix Epoch. */ 202 if (set_clock(TOD_UNIX_EPOCH) != 0 || store_clock(&time) != 0) 203 panic("TOD clock not operational."); 204 205 return TOD_UNIX_EPOCH; 206 } 207 208 static cycle_t read_tod_clock(void) 209 { 210 return get_clock(); 211 } 212 213 static struct clocksource clocksource_tod = { 214 .name = "tod", 215 .rating = 400, 216 .read = read_tod_clock, 217 .mask = -1ULL, 218 .mult = 1000, 219 .shift = 12, 220 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 221 }; 222 223 224 /* 225 * Initialize the TOD clock and the CPU timer of 226 * the boot cpu. 227 */ 228 void __init time_init(void) 229 { 230 u64 init_timer_cc; 231 232 init_timer_cc = reset_tod_clock(); 233 jiffies_timer_cc = init_timer_cc - jiffies_64 * CLK_TICKS_PER_JIFFY; 234 235 /* set xtime */ 236 tod_to_timeval(init_timer_cc - TOD_UNIX_EPOCH, &xtime); 237 set_normalized_timespec(&wall_to_monotonic, 238 -xtime.tv_sec, -xtime.tv_nsec); 239 240 /* request the clock comparator external interrupt */ 241 if (register_early_external_interrupt(0x1004, 242 clock_comparator_interrupt, 243 &ext_int_info_cc) != 0) 244 panic("Couldn't request external interrupt 0x1004"); 245 246 if (clocksource_register(&clocksource_tod) != 0) 247 panic("Could not register TOD clock source"); 248 249 /* request the timing alert external interrupt */ 250 if (register_early_external_interrupt(0x1406, 251 timing_alert_interrupt, 252 &ext_int_etr_cc) != 0) 253 panic("Couldn't request external interrupt 0x1406"); 254 255 /* Enable TOD clock interrupts on the boot cpu. */ 256 init_cpu_timer(); 257 258 #ifdef CONFIG_VIRT_TIMER 259 vtime_init(); 260 #endif 261 } 262 263 /* 264 * The time is "clock". old is what we think the time is. 265 * Adjust the value by a multiple of jiffies and add the delta to ntp. 266 * "delay" is an approximation how long the synchronization took. If 267 * the time correction is positive, then "delay" is subtracted from 268 * the time difference and only the remaining part is passed to ntp. 269 */ 270 static unsigned long long adjust_time(unsigned long long old, 271 unsigned long long clock, 272 unsigned long long delay) 273 { 274 unsigned long long delta, ticks; 275 struct timex adjust; 276 277 if (clock > old) { 278 /* It is later than we thought. */ 279 delta = ticks = clock - old; 280 delta = ticks = (delta < delay) ? 0 : delta - delay; 281 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY); 282 adjust.offset = ticks * (1000000 / HZ); 283 } else { 284 /* It is earlier than we thought. */ 285 delta = ticks = old - clock; 286 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY); 287 delta = -delta; 288 adjust.offset = -ticks * (1000000 / HZ); 289 } 290 jiffies_timer_cc += delta; 291 if (adjust.offset != 0) { 292 printk(KERN_NOTICE "etr: time adjusted by %li micro-seconds\n", 293 adjust.offset); 294 adjust.modes = ADJ_OFFSET_SINGLESHOT; 295 do_adjtimex(&adjust); 296 } 297 return delta; 298 } 299 300 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 301 static unsigned long clock_sync_flags; 302 303 #define CLOCK_SYNC_HAS_ETR 0 304 #define CLOCK_SYNC_HAS_STP 1 305 #define CLOCK_SYNC_ETR 2 306 #define CLOCK_SYNC_STP 3 307 308 /* 309 * The synchronous get_clock function. It will write the current clock 310 * value to the clock pointer and return 0 if the clock is in sync with 311 * the external time source. If the clock mode is local it will return 312 * -ENOSYS and -EAGAIN if the clock is not in sync with the external 313 * reference. 314 */ 315 int get_sync_clock(unsigned long long *clock) 316 { 317 atomic_t *sw_ptr; 318 unsigned int sw0, sw1; 319 320 sw_ptr = &get_cpu_var(clock_sync_word); 321 sw0 = atomic_read(sw_ptr); 322 *clock = get_clock(); 323 sw1 = atomic_read(sw_ptr); 324 put_cpu_var(clock_sync_sync); 325 if (sw0 == sw1 && (sw0 & 0x80000000U)) 326 /* Success: time is in sync. */ 327 return 0; 328 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) && 329 !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 330 return -ENOSYS; 331 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) && 332 !test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 333 return -EACCES; 334 return -EAGAIN; 335 } 336 EXPORT_SYMBOL(get_sync_clock); 337 338 /* 339 * Make get_sync_clock return -EAGAIN. 340 */ 341 static void disable_sync_clock(void *dummy) 342 { 343 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word); 344 /* 345 * Clear the in-sync bit 2^31. All get_sync_clock calls will 346 * fail until the sync bit is turned back on. In addition 347 * increase the "sequence" counter to avoid the race of an 348 * etr event and the complete recovery against get_sync_clock. 349 */ 350 atomic_clear_mask(0x80000000, sw_ptr); 351 atomic_inc(sw_ptr); 352 } 353 354 /* 355 * Make get_sync_clock return 0 again. 356 * Needs to be called from a context disabled for preemption. 357 */ 358 static void enable_sync_clock(void) 359 { 360 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word); 361 atomic_set_mask(0x80000000, sw_ptr); 362 } 363 364 /* 365 * External Time Reference (ETR) code. 366 */ 367 static int etr_port0_online; 368 static int etr_port1_online; 369 static int etr_steai_available; 370 371 static int __init early_parse_etr(char *p) 372 { 373 if (strncmp(p, "off", 3) == 0) 374 etr_port0_online = etr_port1_online = 0; 375 else if (strncmp(p, "port0", 5) == 0) 376 etr_port0_online = 1; 377 else if (strncmp(p, "port1", 5) == 0) 378 etr_port1_online = 1; 379 else if (strncmp(p, "on", 2) == 0) 380 etr_port0_online = etr_port1_online = 1; 381 return 0; 382 } 383 early_param("etr", early_parse_etr); 384 385 enum etr_event { 386 ETR_EVENT_PORT0_CHANGE, 387 ETR_EVENT_PORT1_CHANGE, 388 ETR_EVENT_PORT_ALERT, 389 ETR_EVENT_SYNC_CHECK, 390 ETR_EVENT_SWITCH_LOCAL, 391 ETR_EVENT_UPDATE, 392 }; 393 394 /* 395 * Valid bit combinations of the eacr register are (x = don't care): 396 * e0 e1 dp p0 p1 ea es sl 397 * 0 0 x 0 0 0 0 0 initial, disabled state 398 * 0 0 x 0 1 1 0 0 port 1 online 399 * 0 0 x 1 0 1 0 0 port 0 online 400 * 0 0 x 1 1 1 0 0 both ports online 401 * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode 402 * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode 403 * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync 404 * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync 405 * 0 1 x 1 1 1 0 0 both ports online, port 1 usable 406 * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync 407 * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync 408 * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode 409 * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode 410 * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync 411 * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync 412 * 1 0 x 1 1 1 0 0 both ports online, port 0 usable 413 * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync 414 * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync 415 * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync 416 * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync 417 */ 418 static struct etr_eacr etr_eacr; 419 static u64 etr_tolec; /* time of last eacr update */ 420 static struct etr_aib etr_port0; 421 static int etr_port0_uptodate; 422 static struct etr_aib etr_port1; 423 static int etr_port1_uptodate; 424 static unsigned long etr_events; 425 static struct timer_list etr_timer; 426 427 static void etr_timeout(unsigned long dummy); 428 static void etr_work_fn(struct work_struct *work); 429 static DECLARE_WORK(etr_work, etr_work_fn); 430 431 /* 432 * Reset ETR attachment. 433 */ 434 static void etr_reset(void) 435 { 436 etr_eacr = (struct etr_eacr) { 437 .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0, 438 .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0, 439 .es = 0, .sl = 0 }; 440 if (etr_setr(&etr_eacr) == 0) { 441 etr_tolec = get_clock(); 442 set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags); 443 } else if (etr_port0_online || etr_port1_online) { 444 printk(KERN_WARNING "Running on non ETR capable " 445 "machine, only local mode available.\n"); 446 etr_port0_online = etr_port1_online = 0; 447 } 448 } 449 450 static int __init etr_init(void) 451 { 452 struct etr_aib aib; 453 454 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags)) 455 return 0; 456 /* Check if this machine has the steai instruction. */ 457 if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0) 458 etr_steai_available = 1; 459 setup_timer(&etr_timer, etr_timeout, 0UL); 460 if (etr_port0_online) { 461 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 462 schedule_work(&etr_work); 463 } 464 if (etr_port1_online) { 465 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 466 schedule_work(&etr_work); 467 } 468 return 0; 469 } 470 471 arch_initcall(etr_init); 472 473 /* 474 * Two sorts of ETR machine checks. The architecture reads: 475 * "When a machine-check niterruption occurs and if a switch-to-local or 476 * ETR-sync-check interrupt request is pending but disabled, this pending 477 * disabled interruption request is indicated and is cleared". 478 * Which means that we can get etr_switch_to_local events from the machine 479 * check handler although the interruption condition is disabled. Lovely.. 480 */ 481 482 /* 483 * Switch to local machine check. This is called when the last usable 484 * ETR port goes inactive. After switch to local the clock is not in sync. 485 */ 486 void etr_switch_to_local(void) 487 { 488 if (!etr_eacr.sl) 489 return; 490 if (test_bit(CLOCK_SYNC_ETR, &clock_sync_flags)) 491 disable_sync_clock(NULL); 492 set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events); 493 schedule_work(&etr_work); 494 } 495 496 /* 497 * ETR sync check machine check. This is called when the ETR OTE and the 498 * local clock OTE are farther apart than the ETR sync check tolerance. 499 * After a ETR sync check the clock is not in sync. The machine check 500 * is broadcasted to all cpus at the same time. 501 */ 502 void etr_sync_check(void) 503 { 504 if (!etr_eacr.es) 505 return; 506 if (test_bit(CLOCK_SYNC_ETR, &clock_sync_flags)) 507 disable_sync_clock(NULL); 508 set_bit(ETR_EVENT_SYNC_CHECK, &etr_events); 509 schedule_work(&etr_work); 510 } 511 512 /* 513 * ETR timing alert. There are two causes: 514 * 1) port state change, check the usability of the port 515 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the 516 * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3) 517 * or ETR-data word 4 (edf4) has changed. 518 */ 519 static void etr_timing_alert(struct etr_irq_parm *intparm) 520 { 521 if (intparm->pc0) 522 /* ETR port 0 state change. */ 523 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 524 if (intparm->pc1) 525 /* ETR port 1 state change. */ 526 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 527 if (intparm->eai) 528 /* 529 * ETR port alert on either port 0, 1 or both. 530 * Both ports are not up-to-date now. 531 */ 532 set_bit(ETR_EVENT_PORT_ALERT, &etr_events); 533 schedule_work(&etr_work); 534 } 535 536 static void etr_timeout(unsigned long dummy) 537 { 538 set_bit(ETR_EVENT_UPDATE, &etr_events); 539 schedule_work(&etr_work); 540 } 541 542 /* 543 * Check if the etr mode is pss. 544 */ 545 static inline int etr_mode_is_pps(struct etr_eacr eacr) 546 { 547 return eacr.es && !eacr.sl; 548 } 549 550 /* 551 * Check if the etr mode is etr. 552 */ 553 static inline int etr_mode_is_etr(struct etr_eacr eacr) 554 { 555 return eacr.es && eacr.sl; 556 } 557 558 /* 559 * Check if the port can be used for TOD synchronization. 560 * For PPS mode the port has to receive OTEs. For ETR mode 561 * the port has to receive OTEs, the ETR stepping bit has to 562 * be zero and the validity bits for data frame 1, 2, and 3 563 * have to be 1. 564 */ 565 static int etr_port_valid(struct etr_aib *aib, int port) 566 { 567 unsigned int psc; 568 569 /* Check that this port is receiving OTEs. */ 570 if (aib->tsp == 0) 571 return 0; 572 573 psc = port ? aib->esw.psc1 : aib->esw.psc0; 574 if (psc == etr_lpsc_pps_mode) 575 return 1; 576 if (psc == etr_lpsc_operational_step) 577 return !aib->esw.y && aib->slsw.v1 && 578 aib->slsw.v2 && aib->slsw.v3; 579 return 0; 580 } 581 582 /* 583 * Check if two ports are on the same network. 584 */ 585 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2) 586 { 587 // FIXME: any other fields we have to compare? 588 return aib1->edf1.net_id == aib2->edf1.net_id; 589 } 590 591 /* 592 * Wrapper for etr_stei that converts physical port states 593 * to logical port states to be consistent with the output 594 * of stetr (see etr_psc vs. etr_lpsc). 595 */ 596 static void etr_steai_cv(struct etr_aib *aib, unsigned int func) 597 { 598 BUG_ON(etr_steai(aib, func) != 0); 599 /* Convert port state to logical port state. */ 600 if (aib->esw.psc0 == 1) 601 aib->esw.psc0 = 2; 602 else if (aib->esw.psc0 == 0 && aib->esw.p == 0) 603 aib->esw.psc0 = 1; 604 if (aib->esw.psc1 == 1) 605 aib->esw.psc1 = 2; 606 else if (aib->esw.psc1 == 0 && aib->esw.p == 1) 607 aib->esw.psc1 = 1; 608 } 609 610 /* 611 * Check if the aib a2 is still connected to the same attachment as 612 * aib a1, the etv values differ by one and a2 is valid. 613 */ 614 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p) 615 { 616 int state_a1, state_a2; 617 618 /* Paranoia check: e0/e1 should better be the same. */ 619 if (a1->esw.eacr.e0 != a2->esw.eacr.e0 || 620 a1->esw.eacr.e1 != a2->esw.eacr.e1) 621 return 0; 622 623 /* Still connected to the same etr ? */ 624 state_a1 = p ? a1->esw.psc1 : a1->esw.psc0; 625 state_a2 = p ? a2->esw.psc1 : a2->esw.psc0; 626 if (state_a1 == etr_lpsc_operational_step) { 627 if (state_a2 != etr_lpsc_operational_step || 628 a1->edf1.net_id != a2->edf1.net_id || 629 a1->edf1.etr_id != a2->edf1.etr_id || 630 a1->edf1.etr_pn != a2->edf1.etr_pn) 631 return 0; 632 } else if (state_a2 != etr_lpsc_pps_mode) 633 return 0; 634 635 /* The ETV value of a2 needs to be ETV of a1 + 1. */ 636 if (a1->edf2.etv + 1 != a2->edf2.etv) 637 return 0; 638 639 if (!etr_port_valid(a2, p)) 640 return 0; 641 642 return 1; 643 } 644 645 struct clock_sync_data { 646 int in_sync; 647 unsigned long long fixup_cc; 648 }; 649 650 static void clock_sync_cpu_start(void *dummy) 651 { 652 struct clock_sync_data *sync = dummy; 653 654 enable_sync_clock(); 655 /* 656 * This looks like a busy wait loop but it isn't. etr_sync_cpus 657 * is called on all other cpus while the TOD clocks is stopped. 658 * __udelay will stop the cpu on an enabled wait psw until the 659 * TOD is running again. 660 */ 661 while (sync->in_sync == 0) { 662 __udelay(1); 663 /* 664 * A different cpu changes *in_sync. Therefore use 665 * barrier() to force memory access. 666 */ 667 barrier(); 668 } 669 if (sync->in_sync != 1) 670 /* Didn't work. Clear per-cpu in sync bit again. */ 671 disable_sync_clock(NULL); 672 /* 673 * This round of TOD syncing is done. Set the clock comparator 674 * to the next tick and let the processor continue. 675 */ 676 fixup_clock_comparator(sync->fixup_cc); 677 } 678 679 static void clock_sync_cpu_end(void *dummy) 680 { 681 } 682 683 /* 684 * Sync the TOD clock using the port refered to by aibp. This port 685 * has to be enabled and the other port has to be disabled. The 686 * last eacr update has to be more than 1.6 seconds in the past. 687 */ 688 static int etr_sync_clock(struct etr_aib *aib, int port) 689 { 690 struct etr_aib *sync_port; 691 struct clock_sync_data etr_sync; 692 unsigned long long clock, old_clock, delay, delta; 693 int follows; 694 int rc; 695 696 /* Check if the current aib is adjacent to the sync port aib. */ 697 sync_port = (port == 0) ? &etr_port0 : &etr_port1; 698 follows = etr_aib_follows(sync_port, aib, port); 699 memcpy(sync_port, aib, sizeof(*aib)); 700 if (!follows) 701 return -EAGAIN; 702 703 /* 704 * Catch all other cpus and make them wait until we have 705 * successfully synced the clock. smp_call_function will 706 * return after all other cpus are in etr_sync_cpu_start. 707 */ 708 memset(&etr_sync, 0, sizeof(etr_sync)); 709 preempt_disable(); 710 smp_call_function(clock_sync_cpu_start, &etr_sync, 0); 711 local_irq_disable(); 712 enable_sync_clock(); 713 714 /* Set clock to next OTE. */ 715 __ctl_set_bit(14, 21); 716 __ctl_set_bit(0, 29); 717 clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32; 718 old_clock = get_clock(); 719 if (set_clock(clock) == 0) { 720 __udelay(1); /* Wait for the clock to start. */ 721 __ctl_clear_bit(0, 29); 722 __ctl_clear_bit(14, 21); 723 etr_stetr(aib); 724 /* Adjust Linux timing variables. */ 725 delay = (unsigned long long) 726 (aib->edf2.etv - sync_port->edf2.etv) << 32; 727 delta = adjust_time(old_clock, clock, delay); 728 etr_sync.fixup_cc = delta; 729 fixup_clock_comparator(delta); 730 /* Verify that the clock is properly set. */ 731 if (!etr_aib_follows(sync_port, aib, port)) { 732 /* Didn't work. */ 733 disable_sync_clock(NULL); 734 etr_sync.in_sync = -EAGAIN; 735 rc = -EAGAIN; 736 } else { 737 etr_sync.in_sync = 1; 738 rc = 0; 739 } 740 } else { 741 /* Could not set the clock ?!? */ 742 __ctl_clear_bit(0, 29); 743 __ctl_clear_bit(14, 21); 744 disable_sync_clock(NULL); 745 etr_sync.in_sync = -EAGAIN; 746 rc = -EAGAIN; 747 } 748 local_irq_enable(); 749 smp_call_function(clock_sync_cpu_end, NULL, 0); 750 preempt_enable(); 751 return rc; 752 } 753 754 /* 755 * Handle the immediate effects of the different events. 756 * The port change event is used for online/offline changes. 757 */ 758 static struct etr_eacr etr_handle_events(struct etr_eacr eacr) 759 { 760 if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) 761 eacr.es = 0; 762 if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) 763 eacr.es = eacr.sl = 0; 764 if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events)) 765 etr_port0_uptodate = etr_port1_uptodate = 0; 766 767 if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) { 768 if (eacr.e0) 769 /* 770 * Port change of an enabled port. We have to 771 * assume that this can have caused an stepping 772 * port switch. 773 */ 774 etr_tolec = get_clock(); 775 eacr.p0 = etr_port0_online; 776 if (!eacr.p0) 777 eacr.e0 = 0; 778 etr_port0_uptodate = 0; 779 } 780 if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) { 781 if (eacr.e1) 782 /* 783 * Port change of an enabled port. We have to 784 * assume that this can have caused an stepping 785 * port switch. 786 */ 787 etr_tolec = get_clock(); 788 eacr.p1 = etr_port1_online; 789 if (!eacr.p1) 790 eacr.e1 = 0; 791 etr_port1_uptodate = 0; 792 } 793 clear_bit(ETR_EVENT_UPDATE, &etr_events); 794 return eacr; 795 } 796 797 /* 798 * Set up a timer that expires after the etr_tolec + 1.6 seconds if 799 * one of the ports needs an update. 800 */ 801 static void etr_set_tolec_timeout(unsigned long long now) 802 { 803 unsigned long micros; 804 805 if ((!etr_eacr.p0 || etr_port0_uptodate) && 806 (!etr_eacr.p1 || etr_port1_uptodate)) 807 return; 808 micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0; 809 micros = (micros > 1600000) ? 0 : 1600000 - micros; 810 mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1); 811 } 812 813 /* 814 * Set up a time that expires after 1/2 second. 815 */ 816 static void etr_set_sync_timeout(void) 817 { 818 mod_timer(&etr_timer, jiffies + HZ/2); 819 } 820 821 /* 822 * Update the aib information for one or both ports. 823 */ 824 static struct etr_eacr etr_handle_update(struct etr_aib *aib, 825 struct etr_eacr eacr) 826 { 827 /* With both ports disabled the aib information is useless. */ 828 if (!eacr.e0 && !eacr.e1) 829 return eacr; 830 831 /* Update port0 or port1 with aib stored in etr_work_fn. */ 832 if (aib->esw.q == 0) { 833 /* Information for port 0 stored. */ 834 if (eacr.p0 && !etr_port0_uptodate) { 835 etr_port0 = *aib; 836 if (etr_port0_online) 837 etr_port0_uptodate = 1; 838 } 839 } else { 840 /* Information for port 1 stored. */ 841 if (eacr.p1 && !etr_port1_uptodate) { 842 etr_port1 = *aib; 843 if (etr_port0_online) 844 etr_port1_uptodate = 1; 845 } 846 } 847 848 /* 849 * Do not try to get the alternate port aib if the clock 850 * is not in sync yet. 851 */ 852 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags) && !eacr.es) 853 return eacr; 854 855 /* 856 * If steai is available we can get the information about 857 * the other port immediately. If only stetr is available the 858 * data-port bit toggle has to be used. 859 */ 860 if (etr_steai_available) { 861 if (eacr.p0 && !etr_port0_uptodate) { 862 etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0); 863 etr_port0_uptodate = 1; 864 } 865 if (eacr.p1 && !etr_port1_uptodate) { 866 etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1); 867 etr_port1_uptodate = 1; 868 } 869 } else { 870 /* 871 * One port was updated above, if the other 872 * port is not uptodate toggle dp bit. 873 */ 874 if ((eacr.p0 && !etr_port0_uptodate) || 875 (eacr.p1 && !etr_port1_uptodate)) 876 eacr.dp ^= 1; 877 else 878 eacr.dp = 0; 879 } 880 return eacr; 881 } 882 883 /* 884 * Write new etr control register if it differs from the current one. 885 * Return 1 if etr_tolec has been updated as well. 886 */ 887 static void etr_update_eacr(struct etr_eacr eacr) 888 { 889 int dp_changed; 890 891 if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0) 892 /* No change, return. */ 893 return; 894 /* 895 * The disable of an active port of the change of the data port 896 * bit can/will cause a change in the data port. 897 */ 898 dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 || 899 (etr_eacr.dp ^ eacr.dp) != 0; 900 etr_eacr = eacr; 901 etr_setr(&etr_eacr); 902 if (dp_changed) 903 etr_tolec = get_clock(); 904 } 905 906 /* 907 * ETR tasklet. In this function you'll find the main logic. In 908 * particular this is the only function that calls etr_update_eacr(), 909 * it "controls" the etr control register. 910 */ 911 static void etr_work_fn(struct work_struct *work) 912 { 913 unsigned long long now; 914 struct etr_eacr eacr; 915 struct etr_aib aib; 916 int sync_port; 917 918 /* Create working copy of etr_eacr. */ 919 eacr = etr_eacr; 920 921 /* Check for the different events and their immediate effects. */ 922 eacr = etr_handle_events(eacr); 923 924 /* Check if ETR is supposed to be active. */ 925 eacr.ea = eacr.p0 || eacr.p1; 926 if (!eacr.ea) { 927 /* Both ports offline. Reset everything. */ 928 eacr.dp = eacr.es = eacr.sl = 0; 929 on_each_cpu(disable_sync_clock, NULL, 1); 930 del_timer_sync(&etr_timer); 931 etr_update_eacr(eacr); 932 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 933 return; 934 } 935 936 /* Store aib to get the current ETR status word. */ 937 BUG_ON(etr_stetr(&aib) != 0); 938 etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */ 939 now = get_clock(); 940 941 /* 942 * Update the port information if the last stepping port change 943 * or data port change is older than 1.6 seconds. 944 */ 945 if (now >= etr_tolec + (1600000 << 12)) 946 eacr = etr_handle_update(&aib, eacr); 947 948 /* 949 * Select ports to enable. The prefered synchronization mode is PPS. 950 * If a port can be enabled depends on a number of things: 951 * 1) The port needs to be online and uptodate. A port is not 952 * disabled just because it is not uptodate, but it is only 953 * enabled if it is uptodate. 954 * 2) The port needs to have the same mode (pps / etr). 955 * 3) The port needs to be usable -> etr_port_valid() == 1 956 * 4) To enable the second port the clock needs to be in sync. 957 * 5) If both ports are useable and are ETR ports, the network id 958 * has to be the same. 959 * The eacr.sl bit is used to indicate etr mode vs. pps mode. 960 */ 961 if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) { 962 eacr.sl = 0; 963 eacr.e0 = 1; 964 if (!etr_mode_is_pps(etr_eacr)) 965 eacr.es = 0; 966 if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode) 967 eacr.e1 = 0; 968 // FIXME: uptodate checks ? 969 else if (etr_port0_uptodate && etr_port1_uptodate) 970 eacr.e1 = 1; 971 sync_port = (etr_port0_uptodate && 972 etr_port_valid(&etr_port0, 0)) ? 0 : -1; 973 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) { 974 eacr.sl = 0; 975 eacr.e0 = 0; 976 eacr.e1 = 1; 977 if (!etr_mode_is_pps(etr_eacr)) 978 eacr.es = 0; 979 sync_port = (etr_port1_uptodate && 980 etr_port_valid(&etr_port1, 1)) ? 1 : -1; 981 } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) { 982 eacr.sl = 1; 983 eacr.e0 = 1; 984 if (!etr_mode_is_etr(etr_eacr)) 985 eacr.es = 0; 986 if (!eacr.es || !eacr.p1 || 987 aib.esw.psc1 != etr_lpsc_operational_alt) 988 eacr.e1 = 0; 989 else if (etr_port0_uptodate && etr_port1_uptodate && 990 etr_compare_network(&etr_port0, &etr_port1)) 991 eacr.e1 = 1; 992 sync_port = (etr_port0_uptodate && 993 etr_port_valid(&etr_port0, 0)) ? 0 : -1; 994 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) { 995 eacr.sl = 1; 996 eacr.e0 = 0; 997 eacr.e1 = 1; 998 if (!etr_mode_is_etr(etr_eacr)) 999 eacr.es = 0; 1000 sync_port = (etr_port1_uptodate && 1001 etr_port_valid(&etr_port1, 1)) ? 1 : -1; 1002 } else { 1003 /* Both ports not usable. */ 1004 eacr.es = eacr.sl = 0; 1005 sync_port = -1; 1006 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1007 } 1008 1009 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags)) 1010 eacr.es = 0; 1011 1012 /* 1013 * If the clock is in sync just update the eacr and return. 1014 * If there is no valid sync port wait for a port update. 1015 */ 1016 if (test_bit(CLOCK_SYNC_STP, &clock_sync_flags) || 1017 eacr.es || sync_port < 0) { 1018 etr_update_eacr(eacr); 1019 etr_set_tolec_timeout(now); 1020 return; 1021 } 1022 1023 /* 1024 * Prepare control register for clock syncing 1025 * (reset data port bit, set sync check control. 1026 */ 1027 eacr.dp = 0; 1028 eacr.es = 1; 1029 1030 /* 1031 * Update eacr and try to synchronize the clock. If the update 1032 * of eacr caused a stepping port switch (or if we have to 1033 * assume that a stepping port switch has occured) or the 1034 * clock syncing failed, reset the sync check control bit 1035 * and set up a timer to try again after 0.5 seconds 1036 */ 1037 etr_update_eacr(eacr); 1038 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1039 if (now < etr_tolec + (1600000 << 12) || 1040 etr_sync_clock(&aib, sync_port) != 0) { 1041 /* Sync failed. Try again in 1/2 second. */ 1042 eacr.es = 0; 1043 etr_update_eacr(eacr); 1044 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1045 etr_set_sync_timeout(); 1046 } else 1047 etr_set_tolec_timeout(now); 1048 } 1049 1050 /* 1051 * Sysfs interface functions 1052 */ 1053 static struct sysdev_class etr_sysclass = { 1054 .name = "etr", 1055 }; 1056 1057 static struct sys_device etr_port0_dev = { 1058 .id = 0, 1059 .cls = &etr_sysclass, 1060 }; 1061 1062 static struct sys_device etr_port1_dev = { 1063 .id = 1, 1064 .cls = &etr_sysclass, 1065 }; 1066 1067 /* 1068 * ETR class attributes 1069 */ 1070 static ssize_t etr_stepping_port_show(struct sysdev_class *class, char *buf) 1071 { 1072 return sprintf(buf, "%i\n", etr_port0.esw.p); 1073 } 1074 1075 static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL); 1076 1077 static ssize_t etr_stepping_mode_show(struct sysdev_class *class, char *buf) 1078 { 1079 char *mode_str; 1080 1081 if (etr_mode_is_pps(etr_eacr)) 1082 mode_str = "pps"; 1083 else if (etr_mode_is_etr(etr_eacr)) 1084 mode_str = "etr"; 1085 else 1086 mode_str = "local"; 1087 return sprintf(buf, "%s\n", mode_str); 1088 } 1089 1090 static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL); 1091 1092 /* 1093 * ETR port attributes 1094 */ 1095 static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev) 1096 { 1097 if (dev == &etr_port0_dev) 1098 return etr_port0_online ? &etr_port0 : NULL; 1099 else 1100 return etr_port1_online ? &etr_port1 : NULL; 1101 } 1102 1103 static ssize_t etr_online_show(struct sys_device *dev, 1104 struct sysdev_attribute *attr, 1105 char *buf) 1106 { 1107 unsigned int online; 1108 1109 online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online; 1110 return sprintf(buf, "%i\n", online); 1111 } 1112 1113 static ssize_t etr_online_store(struct sys_device *dev, 1114 struct sysdev_attribute *attr, 1115 const char *buf, size_t count) 1116 { 1117 unsigned int value; 1118 1119 value = simple_strtoul(buf, NULL, 0); 1120 if (value != 0 && value != 1) 1121 return -EINVAL; 1122 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags)) 1123 return -EOPNOTSUPP; 1124 if (dev == &etr_port0_dev) { 1125 if (etr_port0_online == value) 1126 return count; /* Nothing to do. */ 1127 etr_port0_online = value; 1128 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 1129 schedule_work(&etr_work); 1130 } else { 1131 if (etr_port1_online == value) 1132 return count; /* Nothing to do. */ 1133 etr_port1_online = value; 1134 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 1135 schedule_work(&etr_work); 1136 } 1137 return count; 1138 } 1139 1140 static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store); 1141 1142 static ssize_t etr_stepping_control_show(struct sys_device *dev, 1143 struct sysdev_attribute *attr, 1144 char *buf) 1145 { 1146 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ? 1147 etr_eacr.e0 : etr_eacr.e1); 1148 } 1149 1150 static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL); 1151 1152 static ssize_t etr_mode_code_show(struct sys_device *dev, 1153 struct sysdev_attribute *attr, char *buf) 1154 { 1155 if (!etr_port0_online && !etr_port1_online) 1156 /* Status word is not uptodate if both ports are offline. */ 1157 return -ENODATA; 1158 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ? 1159 etr_port0.esw.psc0 : etr_port0.esw.psc1); 1160 } 1161 1162 static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL); 1163 1164 static ssize_t etr_untuned_show(struct sys_device *dev, 1165 struct sysdev_attribute *attr, char *buf) 1166 { 1167 struct etr_aib *aib = etr_aib_from_dev(dev); 1168 1169 if (!aib || !aib->slsw.v1) 1170 return -ENODATA; 1171 return sprintf(buf, "%i\n", aib->edf1.u); 1172 } 1173 1174 static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL); 1175 1176 static ssize_t etr_network_id_show(struct sys_device *dev, 1177 struct sysdev_attribute *attr, char *buf) 1178 { 1179 struct etr_aib *aib = etr_aib_from_dev(dev); 1180 1181 if (!aib || !aib->slsw.v1) 1182 return -ENODATA; 1183 return sprintf(buf, "%i\n", aib->edf1.net_id); 1184 } 1185 1186 static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL); 1187 1188 static ssize_t etr_id_show(struct sys_device *dev, 1189 struct sysdev_attribute *attr, char *buf) 1190 { 1191 struct etr_aib *aib = etr_aib_from_dev(dev); 1192 1193 if (!aib || !aib->slsw.v1) 1194 return -ENODATA; 1195 return sprintf(buf, "%i\n", aib->edf1.etr_id); 1196 } 1197 1198 static SYSDEV_ATTR(id, 0400, etr_id_show, NULL); 1199 1200 static ssize_t etr_port_number_show(struct sys_device *dev, 1201 struct sysdev_attribute *attr, char *buf) 1202 { 1203 struct etr_aib *aib = etr_aib_from_dev(dev); 1204 1205 if (!aib || !aib->slsw.v1) 1206 return -ENODATA; 1207 return sprintf(buf, "%i\n", aib->edf1.etr_pn); 1208 } 1209 1210 static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL); 1211 1212 static ssize_t etr_coupled_show(struct sys_device *dev, 1213 struct sysdev_attribute *attr, char *buf) 1214 { 1215 struct etr_aib *aib = etr_aib_from_dev(dev); 1216 1217 if (!aib || !aib->slsw.v3) 1218 return -ENODATA; 1219 return sprintf(buf, "%i\n", aib->edf3.c); 1220 } 1221 1222 static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL); 1223 1224 static ssize_t etr_local_time_show(struct sys_device *dev, 1225 struct sysdev_attribute *attr, char *buf) 1226 { 1227 struct etr_aib *aib = etr_aib_from_dev(dev); 1228 1229 if (!aib || !aib->slsw.v3) 1230 return -ENODATA; 1231 return sprintf(buf, "%i\n", aib->edf3.blto); 1232 } 1233 1234 static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL); 1235 1236 static ssize_t etr_utc_offset_show(struct sys_device *dev, 1237 struct sysdev_attribute *attr, char *buf) 1238 { 1239 struct etr_aib *aib = etr_aib_from_dev(dev); 1240 1241 if (!aib || !aib->slsw.v3) 1242 return -ENODATA; 1243 return sprintf(buf, "%i\n", aib->edf3.buo); 1244 } 1245 1246 static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL); 1247 1248 static struct sysdev_attribute *etr_port_attributes[] = { 1249 &attr_online, 1250 &attr_stepping_control, 1251 &attr_state_code, 1252 &attr_untuned, 1253 &attr_network, 1254 &attr_id, 1255 &attr_port, 1256 &attr_coupled, 1257 &attr_local_time, 1258 &attr_utc_offset, 1259 NULL 1260 }; 1261 1262 static int __init etr_register_port(struct sys_device *dev) 1263 { 1264 struct sysdev_attribute **attr; 1265 int rc; 1266 1267 rc = sysdev_register(dev); 1268 if (rc) 1269 goto out; 1270 for (attr = etr_port_attributes; *attr; attr++) { 1271 rc = sysdev_create_file(dev, *attr); 1272 if (rc) 1273 goto out_unreg; 1274 } 1275 return 0; 1276 out_unreg: 1277 for (; attr >= etr_port_attributes; attr--) 1278 sysdev_remove_file(dev, *attr); 1279 sysdev_unregister(dev); 1280 out: 1281 return rc; 1282 } 1283 1284 static void __init etr_unregister_port(struct sys_device *dev) 1285 { 1286 struct sysdev_attribute **attr; 1287 1288 for (attr = etr_port_attributes; *attr; attr++) 1289 sysdev_remove_file(dev, *attr); 1290 sysdev_unregister(dev); 1291 } 1292 1293 static int __init etr_init_sysfs(void) 1294 { 1295 int rc; 1296 1297 rc = sysdev_class_register(&etr_sysclass); 1298 if (rc) 1299 goto out; 1300 rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port); 1301 if (rc) 1302 goto out_unreg_class; 1303 rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode); 1304 if (rc) 1305 goto out_remove_stepping_port; 1306 rc = etr_register_port(&etr_port0_dev); 1307 if (rc) 1308 goto out_remove_stepping_mode; 1309 rc = etr_register_port(&etr_port1_dev); 1310 if (rc) 1311 goto out_remove_port0; 1312 return 0; 1313 1314 out_remove_port0: 1315 etr_unregister_port(&etr_port0_dev); 1316 out_remove_stepping_mode: 1317 sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode); 1318 out_remove_stepping_port: 1319 sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port); 1320 out_unreg_class: 1321 sysdev_class_unregister(&etr_sysclass); 1322 out: 1323 return rc; 1324 } 1325 1326 device_initcall(etr_init_sysfs); 1327 1328 /* 1329 * Server Time Protocol (STP) code. 1330 */ 1331 static int stp_online; 1332 static struct stp_sstpi stp_info; 1333 static void *stp_page; 1334 1335 static void stp_work_fn(struct work_struct *work); 1336 static DECLARE_WORK(stp_work, stp_work_fn); 1337 1338 static int __init early_parse_stp(char *p) 1339 { 1340 if (strncmp(p, "off", 3) == 0) 1341 stp_online = 0; 1342 else if (strncmp(p, "on", 2) == 0) 1343 stp_online = 1; 1344 return 0; 1345 } 1346 early_param("stp", early_parse_stp); 1347 1348 /* 1349 * Reset STP attachment. 1350 */ 1351 static void stp_reset(void) 1352 { 1353 int rc; 1354 1355 stp_page = alloc_bootmem_pages(PAGE_SIZE); 1356 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000); 1357 if (rc == 1) 1358 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 1359 else if (stp_online) { 1360 printk(KERN_WARNING "Running on non STP capable machine.\n"); 1361 free_bootmem((unsigned long) stp_page, PAGE_SIZE); 1362 stp_page = NULL; 1363 stp_online = 0; 1364 } 1365 } 1366 1367 static int __init stp_init(void) 1368 { 1369 if (test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags) && stp_online) 1370 schedule_work(&stp_work); 1371 return 0; 1372 } 1373 1374 arch_initcall(stp_init); 1375 1376 /* 1377 * STP timing alert. There are three causes: 1378 * 1) timing status change 1379 * 2) link availability change 1380 * 3) time control parameter change 1381 * In all three cases we are only interested in the clock source state. 1382 * If a STP clock source is now available use it. 1383 */ 1384 static void stp_timing_alert(struct stp_irq_parm *intparm) 1385 { 1386 if (intparm->tsc || intparm->lac || intparm->tcpc) 1387 schedule_work(&stp_work); 1388 } 1389 1390 /* 1391 * STP sync check machine check. This is called when the timing state 1392 * changes from the synchronized state to the unsynchronized state. 1393 * After a STP sync check the clock is not in sync. The machine check 1394 * is broadcasted to all cpus at the same time. 1395 */ 1396 void stp_sync_check(void) 1397 { 1398 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 1399 return; 1400 disable_sync_clock(NULL); 1401 schedule_work(&stp_work); 1402 } 1403 1404 /* 1405 * STP island condition machine check. This is called when an attached 1406 * server attempts to communicate over an STP link and the servers 1407 * have matching CTN ids and have a valid stratum-1 configuration 1408 * but the configurations do not match. 1409 */ 1410 void stp_island_check(void) 1411 { 1412 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 1413 return; 1414 disable_sync_clock(NULL); 1415 schedule_work(&stp_work); 1416 } 1417 1418 /* 1419 * STP tasklet. Check for the STP state and take over the clock 1420 * synchronization if the STP clock source is usable. 1421 */ 1422 static void stp_work_fn(struct work_struct *work) 1423 { 1424 struct clock_sync_data stp_sync; 1425 unsigned long long old_clock, delta; 1426 int rc; 1427 1428 if (!stp_online) { 1429 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000); 1430 return; 1431 } 1432 1433 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0); 1434 if (rc) 1435 return; 1436 1437 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 1438 if (rc || stp_info.c == 0) 1439 return; 1440 1441 /* 1442 * Catch all other cpus and make them wait until we have 1443 * successfully synced the clock. smp_call_function will 1444 * return after all other cpus are in clock_sync_cpu_start. 1445 */ 1446 memset(&stp_sync, 0, sizeof(stp_sync)); 1447 preempt_disable(); 1448 smp_call_function(clock_sync_cpu_start, &stp_sync, 0); 1449 local_irq_disable(); 1450 enable_sync_clock(); 1451 1452 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 1453 if (test_and_clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags)) 1454 schedule_work(&etr_work); 1455 1456 rc = 0; 1457 if (stp_info.todoff[0] || stp_info.todoff[1] || 1458 stp_info.todoff[2] || stp_info.todoff[3] || 1459 stp_info.tmd != 2) { 1460 old_clock = get_clock(); 1461 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0); 1462 if (rc == 0) { 1463 delta = adjust_time(old_clock, get_clock(), 0); 1464 fixup_clock_comparator(delta); 1465 rc = chsc_sstpi(stp_page, &stp_info, 1466 sizeof(struct stp_sstpi)); 1467 if (rc == 0 && stp_info.tmd != 2) 1468 rc = -EAGAIN; 1469 } 1470 } 1471 if (rc) { 1472 disable_sync_clock(NULL); 1473 stp_sync.in_sync = -EAGAIN; 1474 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 1475 if (etr_port0_online || etr_port1_online) 1476 schedule_work(&etr_work); 1477 } else 1478 stp_sync.in_sync = 1; 1479 1480 local_irq_enable(); 1481 smp_call_function(clock_sync_cpu_end, NULL, 0); 1482 preempt_enable(); 1483 } 1484 1485 /* 1486 * STP class sysfs interface functions 1487 */ 1488 static struct sysdev_class stp_sysclass = { 1489 .name = "stp", 1490 }; 1491 1492 static ssize_t stp_ctn_id_show(struct sysdev_class *class, char *buf) 1493 { 1494 if (!stp_online) 1495 return -ENODATA; 1496 return sprintf(buf, "%016llx\n", 1497 *(unsigned long long *) stp_info.ctnid); 1498 } 1499 1500 static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL); 1501 1502 static ssize_t stp_ctn_type_show(struct sysdev_class *class, char *buf) 1503 { 1504 if (!stp_online) 1505 return -ENODATA; 1506 return sprintf(buf, "%i\n", stp_info.ctn); 1507 } 1508 1509 static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL); 1510 1511 static ssize_t stp_dst_offset_show(struct sysdev_class *class, char *buf) 1512 { 1513 if (!stp_online || !(stp_info.vbits & 0x2000)) 1514 return -ENODATA; 1515 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); 1516 } 1517 1518 static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL); 1519 1520 static ssize_t stp_leap_seconds_show(struct sysdev_class *class, char *buf) 1521 { 1522 if (!stp_online || !(stp_info.vbits & 0x8000)) 1523 return -ENODATA; 1524 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); 1525 } 1526 1527 static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL); 1528 1529 static ssize_t stp_stratum_show(struct sysdev_class *class, char *buf) 1530 { 1531 if (!stp_online) 1532 return -ENODATA; 1533 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); 1534 } 1535 1536 static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL); 1537 1538 static ssize_t stp_time_offset_show(struct sysdev_class *class, char *buf) 1539 { 1540 if (!stp_online || !(stp_info.vbits & 0x0800)) 1541 return -ENODATA; 1542 return sprintf(buf, "%i\n", (int) stp_info.tto); 1543 } 1544 1545 static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL); 1546 1547 static ssize_t stp_time_zone_offset_show(struct sysdev_class *class, char *buf) 1548 { 1549 if (!stp_online || !(stp_info.vbits & 0x4000)) 1550 return -ENODATA; 1551 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); 1552 } 1553 1554 static SYSDEV_CLASS_ATTR(time_zone_offset, 0400, 1555 stp_time_zone_offset_show, NULL); 1556 1557 static ssize_t stp_timing_mode_show(struct sysdev_class *class, char *buf) 1558 { 1559 if (!stp_online) 1560 return -ENODATA; 1561 return sprintf(buf, "%i\n", stp_info.tmd); 1562 } 1563 1564 static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL); 1565 1566 static ssize_t stp_timing_state_show(struct sysdev_class *class, char *buf) 1567 { 1568 if (!stp_online) 1569 return -ENODATA; 1570 return sprintf(buf, "%i\n", stp_info.tst); 1571 } 1572 1573 static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL); 1574 1575 static ssize_t stp_online_show(struct sysdev_class *class, char *buf) 1576 { 1577 return sprintf(buf, "%i\n", stp_online); 1578 } 1579 1580 static ssize_t stp_online_store(struct sysdev_class *class, 1581 const char *buf, size_t count) 1582 { 1583 unsigned int value; 1584 1585 value = simple_strtoul(buf, NULL, 0); 1586 if (value != 0 && value != 1) 1587 return -EINVAL; 1588 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 1589 return -EOPNOTSUPP; 1590 stp_online = value; 1591 schedule_work(&stp_work); 1592 return count; 1593 } 1594 1595 /* 1596 * Can't use SYSDEV_CLASS_ATTR because the attribute should be named 1597 * stp/online but attr_online already exists in this file .. 1598 */ 1599 static struct sysdev_class_attribute attr_stp_online = { 1600 .attr = { .name = "online", .mode = 0600 }, 1601 .show = stp_online_show, 1602 .store = stp_online_store, 1603 }; 1604 1605 static struct sysdev_class_attribute *stp_attributes[] = { 1606 &attr_ctn_id, 1607 &attr_ctn_type, 1608 &attr_dst_offset, 1609 &attr_leap_seconds, 1610 &attr_stp_online, 1611 &attr_stratum, 1612 &attr_time_offset, 1613 &attr_time_zone_offset, 1614 &attr_timing_mode, 1615 &attr_timing_state, 1616 NULL 1617 }; 1618 1619 static int __init stp_init_sysfs(void) 1620 { 1621 struct sysdev_class_attribute **attr; 1622 int rc; 1623 1624 rc = sysdev_class_register(&stp_sysclass); 1625 if (rc) 1626 goto out; 1627 for (attr = stp_attributes; *attr; attr++) { 1628 rc = sysdev_class_create_file(&stp_sysclass, *attr); 1629 if (rc) 1630 goto out_unreg; 1631 } 1632 return 0; 1633 out_unreg: 1634 for (; attr >= stp_attributes; attr--) 1635 sysdev_class_remove_file(&stp_sysclass, *attr); 1636 sysdev_class_unregister(&stp_sysclass); 1637 out: 1638 return rc; 1639 } 1640 1641 device_initcall(stp_init_sysfs); 1642