xref: /openbmc/linux/arch/s390/kernel/time.c (revision 4f3db074)
1 /*
2  *    Time of day based timer functions.
3  *
4  *  S390 version
5  *    Copyright IBM Corp. 1999, 2008
6  *    Author(s): Hartmut Penner (hp@de.ibm.com),
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
8  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
9  *
10  *  Derived from "arch/i386/kernel/time.c"
11  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
12  */
13 
14 #define KMSG_COMPONENT "time"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16 
17 #include <linux/kernel_stat.h>
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/cpu.h>
27 #include <linux/stop_machine.h>
28 #include <linux/time.h>
29 #include <linux/device.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/smp.h>
33 #include <linux/types.h>
34 #include <linux/profile.h>
35 #include <linux/timex.h>
36 #include <linux/notifier.h>
37 #include <linux/timekeeper_internal.h>
38 #include <linux/clockchips.h>
39 #include <linux/gfp.h>
40 #include <linux/kprobes.h>
41 #include <asm/uaccess.h>
42 #include <asm/delay.h>
43 #include <asm/div64.h>
44 #include <asm/vdso.h>
45 #include <asm/irq.h>
46 #include <asm/irq_regs.h>
47 #include <asm/vtimer.h>
48 #include <asm/etr.h>
49 #include <asm/cio.h>
50 #include "entry.h"
51 
52 /* change this if you have some constant time drift */
53 #define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
54 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
55 
56 u64 sched_clock_base_cc = -1;	/* Force to data section. */
57 EXPORT_SYMBOL_GPL(sched_clock_base_cc);
58 
59 static DEFINE_PER_CPU(struct clock_event_device, comparators);
60 
61 /*
62  * Scheduler clock - returns current time in nanosec units.
63  */
64 unsigned long long notrace sched_clock(void)
65 {
66 	return tod_to_ns(get_tod_clock_monotonic());
67 }
68 NOKPROBE_SYMBOL(sched_clock);
69 
70 /*
71  * Monotonic_clock - returns # of nanoseconds passed since time_init()
72  */
73 unsigned long long monotonic_clock(void)
74 {
75 	return sched_clock();
76 }
77 EXPORT_SYMBOL(monotonic_clock);
78 
79 void tod_to_timeval(__u64 todval, struct timespec *xt)
80 {
81 	unsigned long long sec;
82 
83 	sec = todval >> 12;
84 	do_div(sec, 1000000);
85 	xt->tv_sec = sec;
86 	todval -= (sec * 1000000) << 12;
87 	xt->tv_nsec = ((todval * 1000) >> 12);
88 }
89 EXPORT_SYMBOL(tod_to_timeval);
90 
91 void clock_comparator_work(void)
92 {
93 	struct clock_event_device *cd;
94 
95 	S390_lowcore.clock_comparator = -1ULL;
96 	cd = this_cpu_ptr(&comparators);
97 	cd->event_handler(cd);
98 }
99 
100 /*
101  * Fixup the clock comparator.
102  */
103 static void fixup_clock_comparator(unsigned long long delta)
104 {
105 	/* If nobody is waiting there's nothing to fix. */
106 	if (S390_lowcore.clock_comparator == -1ULL)
107 		return;
108 	S390_lowcore.clock_comparator += delta;
109 	set_clock_comparator(S390_lowcore.clock_comparator);
110 }
111 
112 static int s390_next_event(unsigned long delta,
113 			   struct clock_event_device *evt)
114 {
115 	S390_lowcore.clock_comparator = get_tod_clock() + delta;
116 	set_clock_comparator(S390_lowcore.clock_comparator);
117 	return 0;
118 }
119 
120 static void s390_set_mode(enum clock_event_mode mode,
121 			  struct clock_event_device *evt)
122 {
123 }
124 
125 /*
126  * Set up lowcore and control register of the current cpu to
127  * enable TOD clock and clock comparator interrupts.
128  */
129 void init_cpu_timer(void)
130 {
131 	struct clock_event_device *cd;
132 	int cpu;
133 
134 	S390_lowcore.clock_comparator = -1ULL;
135 	set_clock_comparator(S390_lowcore.clock_comparator);
136 
137 	cpu = smp_processor_id();
138 	cd = &per_cpu(comparators, cpu);
139 	cd->name		= "comparator";
140 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
141 	cd->mult		= 16777;
142 	cd->shift		= 12;
143 	cd->min_delta_ns	= 1;
144 	cd->max_delta_ns	= LONG_MAX;
145 	cd->rating		= 400;
146 	cd->cpumask		= cpumask_of(cpu);
147 	cd->set_next_event	= s390_next_event;
148 	cd->set_mode		= s390_set_mode;
149 
150 	clockevents_register_device(cd);
151 
152 	/* Enable clock comparator timer interrupt. */
153 	__ctl_set_bit(0,11);
154 
155 	/* Always allow the timing alert external interrupt. */
156 	__ctl_set_bit(0, 4);
157 }
158 
159 static void clock_comparator_interrupt(struct ext_code ext_code,
160 				       unsigned int param32,
161 				       unsigned long param64)
162 {
163 	inc_irq_stat(IRQEXT_CLK);
164 	if (S390_lowcore.clock_comparator == -1ULL)
165 		set_clock_comparator(S390_lowcore.clock_comparator);
166 }
167 
168 static void etr_timing_alert(struct etr_irq_parm *);
169 static void stp_timing_alert(struct stp_irq_parm *);
170 
171 static void timing_alert_interrupt(struct ext_code ext_code,
172 				   unsigned int param32, unsigned long param64)
173 {
174 	inc_irq_stat(IRQEXT_TLA);
175 	if (param32 & 0x00c40000)
176 		etr_timing_alert((struct etr_irq_parm *) &param32);
177 	if (param32 & 0x00038000)
178 		stp_timing_alert((struct stp_irq_parm *) &param32);
179 }
180 
181 static void etr_reset(void);
182 static void stp_reset(void);
183 
184 void read_persistent_clock(struct timespec *ts)
185 {
186 	tod_to_timeval(get_tod_clock() - TOD_UNIX_EPOCH, ts);
187 }
188 
189 void read_boot_clock(struct timespec *ts)
190 {
191 	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
192 }
193 
194 static cycle_t read_tod_clock(struct clocksource *cs)
195 {
196 	return get_tod_clock();
197 }
198 
199 static struct clocksource clocksource_tod = {
200 	.name		= "tod",
201 	.rating		= 400,
202 	.read		= read_tod_clock,
203 	.mask		= -1ULL,
204 	.mult		= 1000,
205 	.shift		= 12,
206 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
207 };
208 
209 struct clocksource * __init clocksource_default_clock(void)
210 {
211 	return &clocksource_tod;
212 }
213 
214 void update_vsyscall(struct timekeeper *tk)
215 {
216 	u64 nsecps;
217 
218 	if (tk->tkr_mono.clock != &clocksource_tod)
219 		return;
220 
221 	/* Make userspace gettimeofday spin until we're done. */
222 	++vdso_data->tb_update_count;
223 	smp_wmb();
224 	vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
225 	vdso_data->xtime_clock_sec = tk->xtime_sec;
226 	vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
227 	vdso_data->wtom_clock_sec =
228 		tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
229 	vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
230 		+ ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
231 	nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
232 	while (vdso_data->wtom_clock_nsec >= nsecps) {
233 		vdso_data->wtom_clock_nsec -= nsecps;
234 		vdso_data->wtom_clock_sec++;
235 	}
236 
237 	vdso_data->xtime_coarse_sec = tk->xtime_sec;
238 	vdso_data->xtime_coarse_nsec =
239 		(long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
240 	vdso_data->wtom_coarse_sec =
241 		vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
242 	vdso_data->wtom_coarse_nsec =
243 		vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
244 	while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
245 		vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
246 		vdso_data->wtom_coarse_sec++;
247 	}
248 
249 	vdso_data->tk_mult = tk->tkr_mono.mult;
250 	vdso_data->tk_shift = tk->tkr_mono.shift;
251 	smp_wmb();
252 	++vdso_data->tb_update_count;
253 }
254 
255 extern struct timezone sys_tz;
256 
257 void update_vsyscall_tz(void)
258 {
259 	/* Make userspace gettimeofday spin until we're done. */
260 	++vdso_data->tb_update_count;
261 	smp_wmb();
262 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
263 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
264 	smp_wmb();
265 	++vdso_data->tb_update_count;
266 }
267 
268 /*
269  * Initialize the TOD clock and the CPU timer of
270  * the boot cpu.
271  */
272 void __init time_init(void)
273 {
274 	/* Reset time synchronization interfaces. */
275 	etr_reset();
276 	stp_reset();
277 
278 	/* request the clock comparator external interrupt */
279 	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
280 		panic("Couldn't request external interrupt 0x1004");
281 
282 	/* request the timing alert external interrupt */
283 	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
284 		panic("Couldn't request external interrupt 0x1406");
285 
286 	if (__clocksource_register(&clocksource_tod) != 0)
287 		panic("Could not register TOD clock source");
288 
289 	/* Enable TOD clock interrupts on the boot cpu. */
290 	init_cpu_timer();
291 
292 	/* Enable cpu timer interrupts on the boot cpu. */
293 	vtime_init();
294 }
295 
296 /*
297  * The time is "clock". old is what we think the time is.
298  * Adjust the value by a multiple of jiffies and add the delta to ntp.
299  * "delay" is an approximation how long the synchronization took. If
300  * the time correction is positive, then "delay" is subtracted from
301  * the time difference and only the remaining part is passed to ntp.
302  */
303 static unsigned long long adjust_time(unsigned long long old,
304 				      unsigned long long clock,
305 				      unsigned long long delay)
306 {
307 	unsigned long long delta, ticks;
308 	struct timex adjust;
309 
310 	if (clock > old) {
311 		/* It is later than we thought. */
312 		delta = ticks = clock - old;
313 		delta = ticks = (delta < delay) ? 0 : delta - delay;
314 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
315 		adjust.offset = ticks * (1000000 / HZ);
316 	} else {
317 		/* It is earlier than we thought. */
318 		delta = ticks = old - clock;
319 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
320 		delta = -delta;
321 		adjust.offset = -ticks * (1000000 / HZ);
322 	}
323 	sched_clock_base_cc += delta;
324 	if (adjust.offset != 0) {
325 		pr_notice("The ETR interface has adjusted the clock "
326 			  "by %li microseconds\n", adjust.offset);
327 		adjust.modes = ADJ_OFFSET_SINGLESHOT;
328 		do_adjtimex(&adjust);
329 	}
330 	return delta;
331 }
332 
333 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
334 static DEFINE_MUTEX(clock_sync_mutex);
335 static unsigned long clock_sync_flags;
336 
337 #define CLOCK_SYNC_HAS_ETR	0
338 #define CLOCK_SYNC_HAS_STP	1
339 #define CLOCK_SYNC_ETR		2
340 #define CLOCK_SYNC_STP		3
341 
342 /*
343  * The synchronous get_clock function. It will write the current clock
344  * value to the clock pointer and return 0 if the clock is in sync with
345  * the external time source. If the clock mode is local it will return
346  * -EOPNOTSUPP and -EAGAIN if the clock is not in sync with the external
347  * reference.
348  */
349 int get_sync_clock(unsigned long long *clock)
350 {
351 	atomic_t *sw_ptr;
352 	unsigned int sw0, sw1;
353 
354 	sw_ptr = &get_cpu_var(clock_sync_word);
355 	sw0 = atomic_read(sw_ptr);
356 	*clock = get_tod_clock();
357 	sw1 = atomic_read(sw_ptr);
358 	put_cpu_var(clock_sync_word);
359 	if (sw0 == sw1 && (sw0 & 0x80000000U))
360 		/* Success: time is in sync. */
361 		return 0;
362 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
363 	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
364 		return -EOPNOTSUPP;
365 	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
366 	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
367 		return -EACCES;
368 	return -EAGAIN;
369 }
370 EXPORT_SYMBOL(get_sync_clock);
371 
372 /*
373  * Make get_sync_clock return -EAGAIN.
374  */
375 static void disable_sync_clock(void *dummy)
376 {
377 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
378 	/*
379 	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
380 	 * fail until the sync bit is turned back on. In addition
381 	 * increase the "sequence" counter to avoid the race of an
382 	 * etr event and the complete recovery against get_sync_clock.
383 	 */
384 	atomic_clear_mask(0x80000000, sw_ptr);
385 	atomic_inc(sw_ptr);
386 }
387 
388 /*
389  * Make get_sync_clock return 0 again.
390  * Needs to be called from a context disabled for preemption.
391  */
392 static void enable_sync_clock(void)
393 {
394 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
395 	atomic_set_mask(0x80000000, sw_ptr);
396 }
397 
398 /*
399  * Function to check if the clock is in sync.
400  */
401 static inline int check_sync_clock(void)
402 {
403 	atomic_t *sw_ptr;
404 	int rc;
405 
406 	sw_ptr = &get_cpu_var(clock_sync_word);
407 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
408 	put_cpu_var(clock_sync_word);
409 	return rc;
410 }
411 
412 /* Single threaded workqueue used for etr and stp sync events */
413 static struct workqueue_struct *time_sync_wq;
414 
415 static void __init time_init_wq(void)
416 {
417 	if (time_sync_wq)
418 		return;
419 	time_sync_wq = create_singlethread_workqueue("timesync");
420 }
421 
422 /*
423  * External Time Reference (ETR) code.
424  */
425 static int etr_port0_online;
426 static int etr_port1_online;
427 static int etr_steai_available;
428 
429 static int __init early_parse_etr(char *p)
430 {
431 	if (strncmp(p, "off", 3) == 0)
432 		etr_port0_online = etr_port1_online = 0;
433 	else if (strncmp(p, "port0", 5) == 0)
434 		etr_port0_online = 1;
435 	else if (strncmp(p, "port1", 5) == 0)
436 		etr_port1_online = 1;
437 	else if (strncmp(p, "on", 2) == 0)
438 		etr_port0_online = etr_port1_online = 1;
439 	return 0;
440 }
441 early_param("etr", early_parse_etr);
442 
443 enum etr_event {
444 	ETR_EVENT_PORT0_CHANGE,
445 	ETR_EVENT_PORT1_CHANGE,
446 	ETR_EVENT_PORT_ALERT,
447 	ETR_EVENT_SYNC_CHECK,
448 	ETR_EVENT_SWITCH_LOCAL,
449 	ETR_EVENT_UPDATE,
450 };
451 
452 /*
453  * Valid bit combinations of the eacr register are (x = don't care):
454  * e0 e1 dp p0 p1 ea es sl
455  *  0  0  x  0	0  0  0  0  initial, disabled state
456  *  0  0  x  0	1  1  0  0  port 1 online
457  *  0  0  x  1	0  1  0  0  port 0 online
458  *  0  0  x  1	1  1  0  0  both ports online
459  *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
460  *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
461  *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
462  *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
463  *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
464  *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
465  *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
466  *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
467  *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
468  *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
469  *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
470  *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
471  *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
472  *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
473  *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
474  *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
475  */
476 static struct etr_eacr etr_eacr;
477 static u64 etr_tolec;			/* time of last eacr update */
478 static struct etr_aib etr_port0;
479 static int etr_port0_uptodate;
480 static struct etr_aib etr_port1;
481 static int etr_port1_uptodate;
482 static unsigned long etr_events;
483 static struct timer_list etr_timer;
484 
485 static void etr_timeout(unsigned long dummy);
486 static void etr_work_fn(struct work_struct *work);
487 static DEFINE_MUTEX(etr_work_mutex);
488 static DECLARE_WORK(etr_work, etr_work_fn);
489 
490 /*
491  * Reset ETR attachment.
492  */
493 static void etr_reset(void)
494 {
495 	etr_eacr =  (struct etr_eacr) {
496 		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
497 		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
498 		.es = 0, .sl = 0 };
499 	if (etr_setr(&etr_eacr) == 0) {
500 		etr_tolec = get_tod_clock();
501 		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
502 		if (etr_port0_online && etr_port1_online)
503 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
504 	} else if (etr_port0_online || etr_port1_online) {
505 		pr_warning("The real or virtual hardware system does "
506 			   "not provide an ETR interface\n");
507 		etr_port0_online = etr_port1_online = 0;
508 	}
509 }
510 
511 static int __init etr_init(void)
512 {
513 	struct etr_aib aib;
514 
515 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
516 		return 0;
517 	time_init_wq();
518 	/* Check if this machine has the steai instruction. */
519 	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
520 		etr_steai_available = 1;
521 	setup_timer(&etr_timer, etr_timeout, 0UL);
522 	if (etr_port0_online) {
523 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
524 		queue_work(time_sync_wq, &etr_work);
525 	}
526 	if (etr_port1_online) {
527 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
528 		queue_work(time_sync_wq, &etr_work);
529 	}
530 	return 0;
531 }
532 
533 arch_initcall(etr_init);
534 
535 /*
536  * Two sorts of ETR machine checks. The architecture reads:
537  * "When a machine-check niterruption occurs and if a switch-to-local or
538  *  ETR-sync-check interrupt request is pending but disabled, this pending
539  *  disabled interruption request is indicated and is cleared".
540  * Which means that we can get etr_switch_to_local events from the machine
541  * check handler although the interruption condition is disabled. Lovely..
542  */
543 
544 /*
545  * Switch to local machine check. This is called when the last usable
546  * ETR port goes inactive. After switch to local the clock is not in sync.
547  */
548 void etr_switch_to_local(void)
549 {
550 	if (!etr_eacr.sl)
551 		return;
552 	disable_sync_clock(NULL);
553 	if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
554 		etr_eacr.es = etr_eacr.sl = 0;
555 		etr_setr(&etr_eacr);
556 		queue_work(time_sync_wq, &etr_work);
557 	}
558 }
559 
560 /*
561  * ETR sync check machine check. This is called when the ETR OTE and the
562  * local clock OTE are farther apart than the ETR sync check tolerance.
563  * After a ETR sync check the clock is not in sync. The machine check
564  * is broadcasted to all cpus at the same time.
565  */
566 void etr_sync_check(void)
567 {
568 	if (!etr_eacr.es)
569 		return;
570 	disable_sync_clock(NULL);
571 	if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
572 		etr_eacr.es = 0;
573 		etr_setr(&etr_eacr);
574 		queue_work(time_sync_wq, &etr_work);
575 	}
576 }
577 
578 /*
579  * ETR timing alert. There are two causes:
580  * 1) port state change, check the usability of the port
581  * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
582  *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
583  *    or ETR-data word 4 (edf4) has changed.
584  */
585 static void etr_timing_alert(struct etr_irq_parm *intparm)
586 {
587 	if (intparm->pc0)
588 		/* ETR port 0 state change. */
589 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
590 	if (intparm->pc1)
591 		/* ETR port 1 state change. */
592 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
593 	if (intparm->eai)
594 		/*
595 		 * ETR port alert on either port 0, 1 or both.
596 		 * Both ports are not up-to-date now.
597 		 */
598 		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
599 	queue_work(time_sync_wq, &etr_work);
600 }
601 
602 static void etr_timeout(unsigned long dummy)
603 {
604 	set_bit(ETR_EVENT_UPDATE, &etr_events);
605 	queue_work(time_sync_wq, &etr_work);
606 }
607 
608 /*
609  * Check if the etr mode is pss.
610  */
611 static inline int etr_mode_is_pps(struct etr_eacr eacr)
612 {
613 	return eacr.es && !eacr.sl;
614 }
615 
616 /*
617  * Check if the etr mode is etr.
618  */
619 static inline int etr_mode_is_etr(struct etr_eacr eacr)
620 {
621 	return eacr.es && eacr.sl;
622 }
623 
624 /*
625  * Check if the port can be used for TOD synchronization.
626  * For PPS mode the port has to receive OTEs. For ETR mode
627  * the port has to receive OTEs, the ETR stepping bit has to
628  * be zero and the validity bits for data frame 1, 2, and 3
629  * have to be 1.
630  */
631 static int etr_port_valid(struct etr_aib *aib, int port)
632 {
633 	unsigned int psc;
634 
635 	/* Check that this port is receiving OTEs. */
636 	if (aib->tsp == 0)
637 		return 0;
638 
639 	psc = port ? aib->esw.psc1 : aib->esw.psc0;
640 	if (psc == etr_lpsc_pps_mode)
641 		return 1;
642 	if (psc == etr_lpsc_operational_step)
643 		return !aib->esw.y && aib->slsw.v1 &&
644 			aib->slsw.v2 && aib->slsw.v3;
645 	return 0;
646 }
647 
648 /*
649  * Check if two ports are on the same network.
650  */
651 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
652 {
653 	// FIXME: any other fields we have to compare?
654 	return aib1->edf1.net_id == aib2->edf1.net_id;
655 }
656 
657 /*
658  * Wrapper for etr_stei that converts physical port states
659  * to logical port states to be consistent with the output
660  * of stetr (see etr_psc vs. etr_lpsc).
661  */
662 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
663 {
664 	BUG_ON(etr_steai(aib, func) != 0);
665 	/* Convert port state to logical port state. */
666 	if (aib->esw.psc0 == 1)
667 		aib->esw.psc0 = 2;
668 	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
669 		aib->esw.psc0 = 1;
670 	if (aib->esw.psc1 == 1)
671 		aib->esw.psc1 = 2;
672 	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
673 		aib->esw.psc1 = 1;
674 }
675 
676 /*
677  * Check if the aib a2 is still connected to the same attachment as
678  * aib a1, the etv values differ by one and a2 is valid.
679  */
680 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
681 {
682 	int state_a1, state_a2;
683 
684 	/* Paranoia check: e0/e1 should better be the same. */
685 	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
686 	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
687 		return 0;
688 
689 	/* Still connected to the same etr ? */
690 	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
691 	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
692 	if (state_a1 == etr_lpsc_operational_step) {
693 		if (state_a2 != etr_lpsc_operational_step ||
694 		    a1->edf1.net_id != a2->edf1.net_id ||
695 		    a1->edf1.etr_id != a2->edf1.etr_id ||
696 		    a1->edf1.etr_pn != a2->edf1.etr_pn)
697 			return 0;
698 	} else if (state_a2 != etr_lpsc_pps_mode)
699 		return 0;
700 
701 	/* The ETV value of a2 needs to be ETV of a1 + 1. */
702 	if (a1->edf2.etv + 1 != a2->edf2.etv)
703 		return 0;
704 
705 	if (!etr_port_valid(a2, p))
706 		return 0;
707 
708 	return 1;
709 }
710 
711 struct clock_sync_data {
712 	atomic_t cpus;
713 	int in_sync;
714 	unsigned long long fixup_cc;
715 	int etr_port;
716 	struct etr_aib *etr_aib;
717 };
718 
719 static void clock_sync_cpu(struct clock_sync_data *sync)
720 {
721 	atomic_dec(&sync->cpus);
722 	enable_sync_clock();
723 	/*
724 	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
725 	 * is called on all other cpus while the TOD clocks is stopped.
726 	 * __udelay will stop the cpu on an enabled wait psw until the
727 	 * TOD is running again.
728 	 */
729 	while (sync->in_sync == 0) {
730 		__udelay(1);
731 		/*
732 		 * A different cpu changes *in_sync. Therefore use
733 		 * barrier() to force memory access.
734 		 */
735 		barrier();
736 	}
737 	if (sync->in_sync != 1)
738 		/* Didn't work. Clear per-cpu in sync bit again. */
739 		disable_sync_clock(NULL);
740 	/*
741 	 * This round of TOD syncing is done. Set the clock comparator
742 	 * to the next tick and let the processor continue.
743 	 */
744 	fixup_clock_comparator(sync->fixup_cc);
745 }
746 
747 /*
748  * Sync the TOD clock using the port referred to by aibp. This port
749  * has to be enabled and the other port has to be disabled. The
750  * last eacr update has to be more than 1.6 seconds in the past.
751  */
752 static int etr_sync_clock(void *data)
753 {
754 	static int first;
755 	unsigned long long clock, old_clock, delay, delta;
756 	struct clock_sync_data *etr_sync;
757 	struct etr_aib *sync_port, *aib;
758 	int port;
759 	int rc;
760 
761 	etr_sync = data;
762 
763 	if (xchg(&first, 1) == 1) {
764 		/* Slave */
765 		clock_sync_cpu(etr_sync);
766 		return 0;
767 	}
768 
769 	/* Wait until all other cpus entered the sync function. */
770 	while (atomic_read(&etr_sync->cpus) != 0)
771 		cpu_relax();
772 
773 	port = etr_sync->etr_port;
774 	aib = etr_sync->etr_aib;
775 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
776 	enable_sync_clock();
777 
778 	/* Set clock to next OTE. */
779 	__ctl_set_bit(14, 21);
780 	__ctl_set_bit(0, 29);
781 	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
782 	old_clock = get_tod_clock();
783 	if (set_tod_clock(clock) == 0) {
784 		__udelay(1);	/* Wait for the clock to start. */
785 		__ctl_clear_bit(0, 29);
786 		__ctl_clear_bit(14, 21);
787 		etr_stetr(aib);
788 		/* Adjust Linux timing variables. */
789 		delay = (unsigned long long)
790 			(aib->edf2.etv - sync_port->edf2.etv) << 32;
791 		delta = adjust_time(old_clock, clock, delay);
792 		etr_sync->fixup_cc = delta;
793 		fixup_clock_comparator(delta);
794 		/* Verify that the clock is properly set. */
795 		if (!etr_aib_follows(sync_port, aib, port)) {
796 			/* Didn't work. */
797 			disable_sync_clock(NULL);
798 			etr_sync->in_sync = -EAGAIN;
799 			rc = -EAGAIN;
800 		} else {
801 			etr_sync->in_sync = 1;
802 			rc = 0;
803 		}
804 	} else {
805 		/* Could not set the clock ?!? */
806 		__ctl_clear_bit(0, 29);
807 		__ctl_clear_bit(14, 21);
808 		disable_sync_clock(NULL);
809 		etr_sync->in_sync = -EAGAIN;
810 		rc = -EAGAIN;
811 	}
812 	xchg(&first, 0);
813 	return rc;
814 }
815 
816 static int etr_sync_clock_stop(struct etr_aib *aib, int port)
817 {
818 	struct clock_sync_data etr_sync;
819 	struct etr_aib *sync_port;
820 	int follows;
821 	int rc;
822 
823 	/* Check if the current aib is adjacent to the sync port aib. */
824 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
825 	follows = etr_aib_follows(sync_port, aib, port);
826 	memcpy(sync_port, aib, sizeof(*aib));
827 	if (!follows)
828 		return -EAGAIN;
829 	memset(&etr_sync, 0, sizeof(etr_sync));
830 	etr_sync.etr_aib = aib;
831 	etr_sync.etr_port = port;
832 	get_online_cpus();
833 	atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
834 	rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
835 	put_online_cpus();
836 	return rc;
837 }
838 
839 /*
840  * Handle the immediate effects of the different events.
841  * The port change event is used for online/offline changes.
842  */
843 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
844 {
845 	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
846 		eacr.es = 0;
847 	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
848 		eacr.es = eacr.sl = 0;
849 	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
850 		etr_port0_uptodate = etr_port1_uptodate = 0;
851 
852 	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
853 		if (eacr.e0)
854 			/*
855 			 * Port change of an enabled port. We have to
856 			 * assume that this can have caused an stepping
857 			 * port switch.
858 			 */
859 			etr_tolec = get_tod_clock();
860 		eacr.p0 = etr_port0_online;
861 		if (!eacr.p0)
862 			eacr.e0 = 0;
863 		etr_port0_uptodate = 0;
864 	}
865 	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
866 		if (eacr.e1)
867 			/*
868 			 * Port change of an enabled port. We have to
869 			 * assume that this can have caused an stepping
870 			 * port switch.
871 			 */
872 			etr_tolec = get_tod_clock();
873 		eacr.p1 = etr_port1_online;
874 		if (!eacr.p1)
875 			eacr.e1 = 0;
876 		etr_port1_uptodate = 0;
877 	}
878 	clear_bit(ETR_EVENT_UPDATE, &etr_events);
879 	return eacr;
880 }
881 
882 /*
883  * Set up a timer that expires after the etr_tolec + 1.6 seconds if
884  * one of the ports needs an update.
885  */
886 static void etr_set_tolec_timeout(unsigned long long now)
887 {
888 	unsigned long micros;
889 
890 	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
891 	    (!etr_eacr.p1 || etr_port1_uptodate))
892 		return;
893 	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
894 	micros = (micros > 1600000) ? 0 : 1600000 - micros;
895 	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
896 }
897 
898 /*
899  * Set up a time that expires after 1/2 second.
900  */
901 static void etr_set_sync_timeout(void)
902 {
903 	mod_timer(&etr_timer, jiffies + HZ/2);
904 }
905 
906 /*
907  * Update the aib information for one or both ports.
908  */
909 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
910 					 struct etr_eacr eacr)
911 {
912 	/* With both ports disabled the aib information is useless. */
913 	if (!eacr.e0 && !eacr.e1)
914 		return eacr;
915 
916 	/* Update port0 or port1 with aib stored in etr_work_fn. */
917 	if (aib->esw.q == 0) {
918 		/* Information for port 0 stored. */
919 		if (eacr.p0 && !etr_port0_uptodate) {
920 			etr_port0 = *aib;
921 			if (etr_port0_online)
922 				etr_port0_uptodate = 1;
923 		}
924 	} else {
925 		/* Information for port 1 stored. */
926 		if (eacr.p1 && !etr_port1_uptodate) {
927 			etr_port1 = *aib;
928 			if (etr_port0_online)
929 				etr_port1_uptodate = 1;
930 		}
931 	}
932 
933 	/*
934 	 * Do not try to get the alternate port aib if the clock
935 	 * is not in sync yet.
936 	 */
937 	if (!eacr.es || !check_sync_clock())
938 		return eacr;
939 
940 	/*
941 	 * If steai is available we can get the information about
942 	 * the other port immediately. If only stetr is available the
943 	 * data-port bit toggle has to be used.
944 	 */
945 	if (etr_steai_available) {
946 		if (eacr.p0 && !etr_port0_uptodate) {
947 			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
948 			etr_port0_uptodate = 1;
949 		}
950 		if (eacr.p1 && !etr_port1_uptodate) {
951 			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
952 			etr_port1_uptodate = 1;
953 		}
954 	} else {
955 		/*
956 		 * One port was updated above, if the other
957 		 * port is not uptodate toggle dp bit.
958 		 */
959 		if ((eacr.p0 && !etr_port0_uptodate) ||
960 		    (eacr.p1 && !etr_port1_uptodate))
961 			eacr.dp ^= 1;
962 		else
963 			eacr.dp = 0;
964 	}
965 	return eacr;
966 }
967 
968 /*
969  * Write new etr control register if it differs from the current one.
970  * Return 1 if etr_tolec has been updated as well.
971  */
972 static void etr_update_eacr(struct etr_eacr eacr)
973 {
974 	int dp_changed;
975 
976 	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
977 		/* No change, return. */
978 		return;
979 	/*
980 	 * The disable of an active port of the change of the data port
981 	 * bit can/will cause a change in the data port.
982 	 */
983 	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
984 		(etr_eacr.dp ^ eacr.dp) != 0;
985 	etr_eacr = eacr;
986 	etr_setr(&etr_eacr);
987 	if (dp_changed)
988 		etr_tolec = get_tod_clock();
989 }
990 
991 /*
992  * ETR work. In this function you'll find the main logic. In
993  * particular this is the only function that calls etr_update_eacr(),
994  * it "controls" the etr control register.
995  */
996 static void etr_work_fn(struct work_struct *work)
997 {
998 	unsigned long long now;
999 	struct etr_eacr eacr;
1000 	struct etr_aib aib;
1001 	int sync_port;
1002 
1003 	/* prevent multiple execution. */
1004 	mutex_lock(&etr_work_mutex);
1005 
1006 	/* Create working copy of etr_eacr. */
1007 	eacr = etr_eacr;
1008 
1009 	/* Check for the different events and their immediate effects. */
1010 	eacr = etr_handle_events(eacr);
1011 
1012 	/* Check if ETR is supposed to be active. */
1013 	eacr.ea = eacr.p0 || eacr.p1;
1014 	if (!eacr.ea) {
1015 		/* Both ports offline. Reset everything. */
1016 		eacr.dp = eacr.es = eacr.sl = 0;
1017 		on_each_cpu(disable_sync_clock, NULL, 1);
1018 		del_timer_sync(&etr_timer);
1019 		etr_update_eacr(eacr);
1020 		goto out_unlock;
1021 	}
1022 
1023 	/* Store aib to get the current ETR status word. */
1024 	BUG_ON(etr_stetr(&aib) != 0);
1025 	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
1026 	now = get_tod_clock();
1027 
1028 	/*
1029 	 * Update the port information if the last stepping port change
1030 	 * or data port change is older than 1.6 seconds.
1031 	 */
1032 	if (now >= etr_tolec + (1600000 << 12))
1033 		eacr = etr_handle_update(&aib, eacr);
1034 
1035 	/*
1036 	 * Select ports to enable. The preferred synchronization mode is PPS.
1037 	 * If a port can be enabled depends on a number of things:
1038 	 * 1) The port needs to be online and uptodate. A port is not
1039 	 *    disabled just because it is not uptodate, but it is only
1040 	 *    enabled if it is uptodate.
1041 	 * 2) The port needs to have the same mode (pps / etr).
1042 	 * 3) The port needs to be usable -> etr_port_valid() == 1
1043 	 * 4) To enable the second port the clock needs to be in sync.
1044 	 * 5) If both ports are useable and are ETR ports, the network id
1045 	 *    has to be the same.
1046 	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1047 	 */
1048 	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1049 		eacr.sl = 0;
1050 		eacr.e0 = 1;
1051 		if (!etr_mode_is_pps(etr_eacr))
1052 			eacr.es = 0;
1053 		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1054 			eacr.e1 = 0;
1055 		// FIXME: uptodate checks ?
1056 		else if (etr_port0_uptodate && etr_port1_uptodate)
1057 			eacr.e1 = 1;
1058 		sync_port = (etr_port0_uptodate &&
1059 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1060 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1061 		eacr.sl = 0;
1062 		eacr.e0 = 0;
1063 		eacr.e1 = 1;
1064 		if (!etr_mode_is_pps(etr_eacr))
1065 			eacr.es = 0;
1066 		sync_port = (etr_port1_uptodate &&
1067 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1068 	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1069 		eacr.sl = 1;
1070 		eacr.e0 = 1;
1071 		if (!etr_mode_is_etr(etr_eacr))
1072 			eacr.es = 0;
1073 		if (!eacr.es || !eacr.p1 ||
1074 		    aib.esw.psc1 != etr_lpsc_operational_alt)
1075 			eacr.e1 = 0;
1076 		else if (etr_port0_uptodate && etr_port1_uptodate &&
1077 			 etr_compare_network(&etr_port0, &etr_port1))
1078 			eacr.e1 = 1;
1079 		sync_port = (etr_port0_uptodate &&
1080 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1081 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1082 		eacr.sl = 1;
1083 		eacr.e0 = 0;
1084 		eacr.e1 = 1;
1085 		if (!etr_mode_is_etr(etr_eacr))
1086 			eacr.es = 0;
1087 		sync_port = (etr_port1_uptodate &&
1088 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1089 	} else {
1090 		/* Both ports not usable. */
1091 		eacr.es = eacr.sl = 0;
1092 		sync_port = -1;
1093 	}
1094 
1095 	/*
1096 	 * If the clock is in sync just update the eacr and return.
1097 	 * If there is no valid sync port wait for a port update.
1098 	 */
1099 	if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1100 		etr_update_eacr(eacr);
1101 		etr_set_tolec_timeout(now);
1102 		goto out_unlock;
1103 	}
1104 
1105 	/*
1106 	 * Prepare control register for clock syncing
1107 	 * (reset data port bit, set sync check control.
1108 	 */
1109 	eacr.dp = 0;
1110 	eacr.es = 1;
1111 
1112 	/*
1113 	 * Update eacr and try to synchronize the clock. If the update
1114 	 * of eacr caused a stepping port switch (or if we have to
1115 	 * assume that a stepping port switch has occurred) or the
1116 	 * clock syncing failed, reset the sync check control bit
1117 	 * and set up a timer to try again after 0.5 seconds
1118 	 */
1119 	etr_update_eacr(eacr);
1120 	if (now < etr_tolec + (1600000 << 12) ||
1121 	    etr_sync_clock_stop(&aib, sync_port) != 0) {
1122 		/* Sync failed. Try again in 1/2 second. */
1123 		eacr.es = 0;
1124 		etr_update_eacr(eacr);
1125 		etr_set_sync_timeout();
1126 	} else
1127 		etr_set_tolec_timeout(now);
1128 out_unlock:
1129 	mutex_unlock(&etr_work_mutex);
1130 }
1131 
1132 /*
1133  * Sysfs interface functions
1134  */
1135 static struct bus_type etr_subsys = {
1136 	.name		= "etr",
1137 	.dev_name	= "etr",
1138 };
1139 
1140 static struct device etr_port0_dev = {
1141 	.id	= 0,
1142 	.bus	= &etr_subsys,
1143 };
1144 
1145 static struct device etr_port1_dev = {
1146 	.id	= 1,
1147 	.bus	= &etr_subsys,
1148 };
1149 
1150 /*
1151  * ETR subsys attributes
1152  */
1153 static ssize_t etr_stepping_port_show(struct device *dev,
1154 					struct device_attribute *attr,
1155 					char *buf)
1156 {
1157 	return sprintf(buf, "%i\n", etr_port0.esw.p);
1158 }
1159 
1160 static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1161 
1162 static ssize_t etr_stepping_mode_show(struct device *dev,
1163 					struct device_attribute *attr,
1164 					char *buf)
1165 {
1166 	char *mode_str;
1167 
1168 	if (etr_mode_is_pps(etr_eacr))
1169 		mode_str = "pps";
1170 	else if (etr_mode_is_etr(etr_eacr))
1171 		mode_str = "etr";
1172 	else
1173 		mode_str = "local";
1174 	return sprintf(buf, "%s\n", mode_str);
1175 }
1176 
1177 static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1178 
1179 /*
1180  * ETR port attributes
1181  */
1182 static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
1183 {
1184 	if (dev == &etr_port0_dev)
1185 		return etr_port0_online ? &etr_port0 : NULL;
1186 	else
1187 		return etr_port1_online ? &etr_port1 : NULL;
1188 }
1189 
1190 static ssize_t etr_online_show(struct device *dev,
1191 				struct device_attribute *attr,
1192 				char *buf)
1193 {
1194 	unsigned int online;
1195 
1196 	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1197 	return sprintf(buf, "%i\n", online);
1198 }
1199 
1200 static ssize_t etr_online_store(struct device *dev,
1201 				struct device_attribute *attr,
1202 				const char *buf, size_t count)
1203 {
1204 	unsigned int value;
1205 
1206 	value = simple_strtoul(buf, NULL, 0);
1207 	if (value != 0 && value != 1)
1208 		return -EINVAL;
1209 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1210 		return -EOPNOTSUPP;
1211 	mutex_lock(&clock_sync_mutex);
1212 	if (dev == &etr_port0_dev) {
1213 		if (etr_port0_online == value)
1214 			goto out;	/* Nothing to do. */
1215 		etr_port0_online = value;
1216 		if (etr_port0_online && etr_port1_online)
1217 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1218 		else
1219 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1220 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1221 		queue_work(time_sync_wq, &etr_work);
1222 	} else {
1223 		if (etr_port1_online == value)
1224 			goto out;	/* Nothing to do. */
1225 		etr_port1_online = value;
1226 		if (etr_port0_online && etr_port1_online)
1227 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1228 		else
1229 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1230 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1231 		queue_work(time_sync_wq, &etr_work);
1232 	}
1233 out:
1234 	mutex_unlock(&clock_sync_mutex);
1235 	return count;
1236 }
1237 
1238 static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
1239 
1240 static ssize_t etr_stepping_control_show(struct device *dev,
1241 					struct device_attribute *attr,
1242 					char *buf)
1243 {
1244 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1245 		       etr_eacr.e0 : etr_eacr.e1);
1246 }
1247 
1248 static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1249 
1250 static ssize_t etr_mode_code_show(struct device *dev,
1251 				struct device_attribute *attr, char *buf)
1252 {
1253 	if (!etr_port0_online && !etr_port1_online)
1254 		/* Status word is not uptodate if both ports are offline. */
1255 		return -ENODATA;
1256 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1257 		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1258 }
1259 
1260 static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1261 
1262 static ssize_t etr_untuned_show(struct device *dev,
1263 				struct device_attribute *attr, char *buf)
1264 {
1265 	struct etr_aib *aib = etr_aib_from_dev(dev);
1266 
1267 	if (!aib || !aib->slsw.v1)
1268 		return -ENODATA;
1269 	return sprintf(buf, "%i\n", aib->edf1.u);
1270 }
1271 
1272 static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
1273 
1274 static ssize_t etr_network_id_show(struct device *dev,
1275 				struct device_attribute *attr, char *buf)
1276 {
1277 	struct etr_aib *aib = etr_aib_from_dev(dev);
1278 
1279 	if (!aib || !aib->slsw.v1)
1280 		return -ENODATA;
1281 	return sprintf(buf, "%i\n", aib->edf1.net_id);
1282 }
1283 
1284 static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
1285 
1286 static ssize_t etr_id_show(struct device *dev,
1287 			struct device_attribute *attr, char *buf)
1288 {
1289 	struct etr_aib *aib = etr_aib_from_dev(dev);
1290 
1291 	if (!aib || !aib->slsw.v1)
1292 		return -ENODATA;
1293 	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1294 }
1295 
1296 static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
1297 
1298 static ssize_t etr_port_number_show(struct device *dev,
1299 			struct device_attribute *attr, char *buf)
1300 {
1301 	struct etr_aib *aib = etr_aib_from_dev(dev);
1302 
1303 	if (!aib || !aib->slsw.v1)
1304 		return -ENODATA;
1305 	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1306 }
1307 
1308 static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
1309 
1310 static ssize_t etr_coupled_show(struct device *dev,
1311 			struct device_attribute *attr, char *buf)
1312 {
1313 	struct etr_aib *aib = etr_aib_from_dev(dev);
1314 
1315 	if (!aib || !aib->slsw.v3)
1316 		return -ENODATA;
1317 	return sprintf(buf, "%i\n", aib->edf3.c);
1318 }
1319 
1320 static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
1321 
1322 static ssize_t etr_local_time_show(struct device *dev,
1323 			struct device_attribute *attr, char *buf)
1324 {
1325 	struct etr_aib *aib = etr_aib_from_dev(dev);
1326 
1327 	if (!aib || !aib->slsw.v3)
1328 		return -ENODATA;
1329 	return sprintf(buf, "%i\n", aib->edf3.blto);
1330 }
1331 
1332 static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
1333 
1334 static ssize_t etr_utc_offset_show(struct device *dev,
1335 			struct device_attribute *attr, char *buf)
1336 {
1337 	struct etr_aib *aib = etr_aib_from_dev(dev);
1338 
1339 	if (!aib || !aib->slsw.v3)
1340 		return -ENODATA;
1341 	return sprintf(buf, "%i\n", aib->edf3.buo);
1342 }
1343 
1344 static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1345 
1346 static struct device_attribute *etr_port_attributes[] = {
1347 	&dev_attr_online,
1348 	&dev_attr_stepping_control,
1349 	&dev_attr_state_code,
1350 	&dev_attr_untuned,
1351 	&dev_attr_network,
1352 	&dev_attr_id,
1353 	&dev_attr_port,
1354 	&dev_attr_coupled,
1355 	&dev_attr_local_time,
1356 	&dev_attr_utc_offset,
1357 	NULL
1358 };
1359 
1360 static int __init etr_register_port(struct device *dev)
1361 {
1362 	struct device_attribute **attr;
1363 	int rc;
1364 
1365 	rc = device_register(dev);
1366 	if (rc)
1367 		goto out;
1368 	for (attr = etr_port_attributes; *attr; attr++) {
1369 		rc = device_create_file(dev, *attr);
1370 		if (rc)
1371 			goto out_unreg;
1372 	}
1373 	return 0;
1374 out_unreg:
1375 	for (; attr >= etr_port_attributes; attr--)
1376 		device_remove_file(dev, *attr);
1377 	device_unregister(dev);
1378 out:
1379 	return rc;
1380 }
1381 
1382 static void __init etr_unregister_port(struct device *dev)
1383 {
1384 	struct device_attribute **attr;
1385 
1386 	for (attr = etr_port_attributes; *attr; attr++)
1387 		device_remove_file(dev, *attr);
1388 	device_unregister(dev);
1389 }
1390 
1391 static int __init etr_init_sysfs(void)
1392 {
1393 	int rc;
1394 
1395 	rc = subsys_system_register(&etr_subsys, NULL);
1396 	if (rc)
1397 		goto out;
1398 	rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1399 	if (rc)
1400 		goto out_unreg_subsys;
1401 	rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1402 	if (rc)
1403 		goto out_remove_stepping_port;
1404 	rc = etr_register_port(&etr_port0_dev);
1405 	if (rc)
1406 		goto out_remove_stepping_mode;
1407 	rc = etr_register_port(&etr_port1_dev);
1408 	if (rc)
1409 		goto out_remove_port0;
1410 	return 0;
1411 
1412 out_remove_port0:
1413 	etr_unregister_port(&etr_port0_dev);
1414 out_remove_stepping_mode:
1415 	device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1416 out_remove_stepping_port:
1417 	device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1418 out_unreg_subsys:
1419 	bus_unregister(&etr_subsys);
1420 out:
1421 	return rc;
1422 }
1423 
1424 device_initcall(etr_init_sysfs);
1425 
1426 /*
1427  * Server Time Protocol (STP) code.
1428  */
1429 static int stp_online;
1430 static struct stp_sstpi stp_info;
1431 static void *stp_page;
1432 
1433 static void stp_work_fn(struct work_struct *work);
1434 static DEFINE_MUTEX(stp_work_mutex);
1435 static DECLARE_WORK(stp_work, stp_work_fn);
1436 static struct timer_list stp_timer;
1437 
1438 static int __init early_parse_stp(char *p)
1439 {
1440 	if (strncmp(p, "off", 3) == 0)
1441 		stp_online = 0;
1442 	else if (strncmp(p, "on", 2) == 0)
1443 		stp_online = 1;
1444 	return 0;
1445 }
1446 early_param("stp", early_parse_stp);
1447 
1448 /*
1449  * Reset STP attachment.
1450  */
1451 static void __init stp_reset(void)
1452 {
1453 	int rc;
1454 
1455 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1456 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1457 	if (rc == 0)
1458 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1459 	else if (stp_online) {
1460 		pr_warning("The real or virtual hardware system does "
1461 			   "not provide an STP interface\n");
1462 		free_page((unsigned long) stp_page);
1463 		stp_page = NULL;
1464 		stp_online = 0;
1465 	}
1466 }
1467 
1468 static void stp_timeout(unsigned long dummy)
1469 {
1470 	queue_work(time_sync_wq, &stp_work);
1471 }
1472 
1473 static int __init stp_init(void)
1474 {
1475 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1476 		return 0;
1477 	setup_timer(&stp_timer, stp_timeout, 0UL);
1478 	time_init_wq();
1479 	if (!stp_online)
1480 		return 0;
1481 	queue_work(time_sync_wq, &stp_work);
1482 	return 0;
1483 }
1484 
1485 arch_initcall(stp_init);
1486 
1487 /*
1488  * STP timing alert. There are three causes:
1489  * 1) timing status change
1490  * 2) link availability change
1491  * 3) time control parameter change
1492  * In all three cases we are only interested in the clock source state.
1493  * If a STP clock source is now available use it.
1494  */
1495 static void stp_timing_alert(struct stp_irq_parm *intparm)
1496 {
1497 	if (intparm->tsc || intparm->lac || intparm->tcpc)
1498 		queue_work(time_sync_wq, &stp_work);
1499 }
1500 
1501 /*
1502  * STP sync check machine check. This is called when the timing state
1503  * changes from the synchronized state to the unsynchronized state.
1504  * After a STP sync check the clock is not in sync. The machine check
1505  * is broadcasted to all cpus at the same time.
1506  */
1507 void stp_sync_check(void)
1508 {
1509 	disable_sync_clock(NULL);
1510 	queue_work(time_sync_wq, &stp_work);
1511 }
1512 
1513 /*
1514  * STP island condition machine check. This is called when an attached
1515  * server  attempts to communicate over an STP link and the servers
1516  * have matching CTN ids and have a valid stratum-1 configuration
1517  * but the configurations do not match.
1518  */
1519 void stp_island_check(void)
1520 {
1521 	disable_sync_clock(NULL);
1522 	queue_work(time_sync_wq, &stp_work);
1523 }
1524 
1525 
1526 static int stp_sync_clock(void *data)
1527 {
1528 	static int first;
1529 	unsigned long long old_clock, delta;
1530 	struct clock_sync_data *stp_sync;
1531 	int rc;
1532 
1533 	stp_sync = data;
1534 
1535 	if (xchg(&first, 1) == 1) {
1536 		/* Slave */
1537 		clock_sync_cpu(stp_sync);
1538 		return 0;
1539 	}
1540 
1541 	/* Wait until all other cpus entered the sync function. */
1542 	while (atomic_read(&stp_sync->cpus) != 0)
1543 		cpu_relax();
1544 
1545 	enable_sync_clock();
1546 
1547 	rc = 0;
1548 	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1549 	    stp_info.todoff[2] || stp_info.todoff[3] ||
1550 	    stp_info.tmd != 2) {
1551 		old_clock = get_tod_clock();
1552 		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1553 		if (rc == 0) {
1554 			delta = adjust_time(old_clock, get_tod_clock(), 0);
1555 			fixup_clock_comparator(delta);
1556 			rc = chsc_sstpi(stp_page, &stp_info,
1557 					sizeof(struct stp_sstpi));
1558 			if (rc == 0 && stp_info.tmd != 2)
1559 				rc = -EAGAIN;
1560 		}
1561 	}
1562 	if (rc) {
1563 		disable_sync_clock(NULL);
1564 		stp_sync->in_sync = -EAGAIN;
1565 	} else
1566 		stp_sync->in_sync = 1;
1567 	xchg(&first, 0);
1568 	return 0;
1569 }
1570 
1571 /*
1572  * STP work. Check for the STP state and take over the clock
1573  * synchronization if the STP clock source is usable.
1574  */
1575 static void stp_work_fn(struct work_struct *work)
1576 {
1577 	struct clock_sync_data stp_sync;
1578 	int rc;
1579 
1580 	/* prevent multiple execution. */
1581 	mutex_lock(&stp_work_mutex);
1582 
1583 	if (!stp_online) {
1584 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1585 		del_timer_sync(&stp_timer);
1586 		goto out_unlock;
1587 	}
1588 
1589 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1590 	if (rc)
1591 		goto out_unlock;
1592 
1593 	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1594 	if (rc || stp_info.c == 0)
1595 		goto out_unlock;
1596 
1597 	/* Skip synchronization if the clock is already in sync. */
1598 	if (check_sync_clock())
1599 		goto out_unlock;
1600 
1601 	memset(&stp_sync, 0, sizeof(stp_sync));
1602 	get_online_cpus();
1603 	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1604 	stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1605 	put_online_cpus();
1606 
1607 	if (!check_sync_clock())
1608 		/*
1609 		 * There is a usable clock but the synchonization failed.
1610 		 * Retry after a second.
1611 		 */
1612 		mod_timer(&stp_timer, jiffies + HZ);
1613 
1614 out_unlock:
1615 	mutex_unlock(&stp_work_mutex);
1616 }
1617 
1618 /*
1619  * STP subsys sysfs interface functions
1620  */
1621 static struct bus_type stp_subsys = {
1622 	.name		= "stp",
1623 	.dev_name	= "stp",
1624 };
1625 
1626 static ssize_t stp_ctn_id_show(struct device *dev,
1627 				struct device_attribute *attr,
1628 				char *buf)
1629 {
1630 	if (!stp_online)
1631 		return -ENODATA;
1632 	return sprintf(buf, "%016llx\n",
1633 		       *(unsigned long long *) stp_info.ctnid);
1634 }
1635 
1636 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1637 
1638 static ssize_t stp_ctn_type_show(struct device *dev,
1639 				struct device_attribute *attr,
1640 				char *buf)
1641 {
1642 	if (!stp_online)
1643 		return -ENODATA;
1644 	return sprintf(buf, "%i\n", stp_info.ctn);
1645 }
1646 
1647 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1648 
1649 static ssize_t stp_dst_offset_show(struct device *dev,
1650 				   struct device_attribute *attr,
1651 				   char *buf)
1652 {
1653 	if (!stp_online || !(stp_info.vbits & 0x2000))
1654 		return -ENODATA;
1655 	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1656 }
1657 
1658 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1659 
1660 static ssize_t stp_leap_seconds_show(struct device *dev,
1661 					struct device_attribute *attr,
1662 					char *buf)
1663 {
1664 	if (!stp_online || !(stp_info.vbits & 0x8000))
1665 		return -ENODATA;
1666 	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1667 }
1668 
1669 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1670 
1671 static ssize_t stp_stratum_show(struct device *dev,
1672 				struct device_attribute *attr,
1673 				char *buf)
1674 {
1675 	if (!stp_online)
1676 		return -ENODATA;
1677 	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1678 }
1679 
1680 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
1681 
1682 static ssize_t stp_time_offset_show(struct device *dev,
1683 				struct device_attribute *attr,
1684 				char *buf)
1685 {
1686 	if (!stp_online || !(stp_info.vbits & 0x0800))
1687 		return -ENODATA;
1688 	return sprintf(buf, "%i\n", (int) stp_info.tto);
1689 }
1690 
1691 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1692 
1693 static ssize_t stp_time_zone_offset_show(struct device *dev,
1694 				struct device_attribute *attr,
1695 				char *buf)
1696 {
1697 	if (!stp_online || !(stp_info.vbits & 0x4000))
1698 		return -ENODATA;
1699 	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1700 }
1701 
1702 static DEVICE_ATTR(time_zone_offset, 0400,
1703 			 stp_time_zone_offset_show, NULL);
1704 
1705 static ssize_t stp_timing_mode_show(struct device *dev,
1706 				struct device_attribute *attr,
1707 				char *buf)
1708 {
1709 	if (!stp_online)
1710 		return -ENODATA;
1711 	return sprintf(buf, "%i\n", stp_info.tmd);
1712 }
1713 
1714 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1715 
1716 static ssize_t stp_timing_state_show(struct device *dev,
1717 				struct device_attribute *attr,
1718 				char *buf)
1719 {
1720 	if (!stp_online)
1721 		return -ENODATA;
1722 	return sprintf(buf, "%i\n", stp_info.tst);
1723 }
1724 
1725 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1726 
1727 static ssize_t stp_online_show(struct device *dev,
1728 				struct device_attribute *attr,
1729 				char *buf)
1730 {
1731 	return sprintf(buf, "%i\n", stp_online);
1732 }
1733 
1734 static ssize_t stp_online_store(struct device *dev,
1735 				struct device_attribute *attr,
1736 				const char *buf, size_t count)
1737 {
1738 	unsigned int value;
1739 
1740 	value = simple_strtoul(buf, NULL, 0);
1741 	if (value != 0 && value != 1)
1742 		return -EINVAL;
1743 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1744 		return -EOPNOTSUPP;
1745 	mutex_lock(&clock_sync_mutex);
1746 	stp_online = value;
1747 	if (stp_online)
1748 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1749 	else
1750 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1751 	queue_work(time_sync_wq, &stp_work);
1752 	mutex_unlock(&clock_sync_mutex);
1753 	return count;
1754 }
1755 
1756 /*
1757  * Can't use DEVICE_ATTR because the attribute should be named
1758  * stp/online but dev_attr_online already exists in this file ..
1759  */
1760 static struct device_attribute dev_attr_stp_online = {
1761 	.attr = { .name = "online", .mode = 0600 },
1762 	.show	= stp_online_show,
1763 	.store	= stp_online_store,
1764 };
1765 
1766 static struct device_attribute *stp_attributes[] = {
1767 	&dev_attr_ctn_id,
1768 	&dev_attr_ctn_type,
1769 	&dev_attr_dst_offset,
1770 	&dev_attr_leap_seconds,
1771 	&dev_attr_stp_online,
1772 	&dev_attr_stratum,
1773 	&dev_attr_time_offset,
1774 	&dev_attr_time_zone_offset,
1775 	&dev_attr_timing_mode,
1776 	&dev_attr_timing_state,
1777 	NULL
1778 };
1779 
1780 static int __init stp_init_sysfs(void)
1781 {
1782 	struct device_attribute **attr;
1783 	int rc;
1784 
1785 	rc = subsys_system_register(&stp_subsys, NULL);
1786 	if (rc)
1787 		goto out;
1788 	for (attr = stp_attributes; *attr; attr++) {
1789 		rc = device_create_file(stp_subsys.dev_root, *attr);
1790 		if (rc)
1791 			goto out_unreg;
1792 	}
1793 	return 0;
1794 out_unreg:
1795 	for (; attr >= stp_attributes; attr--)
1796 		device_remove_file(stp_subsys.dev_root, *attr);
1797 	bus_unregister(&stp_subsys);
1798 out:
1799 	return rc;
1800 }
1801 
1802 device_initcall(stp_init_sysfs);
1803