xref: /openbmc/linux/arch/s390/kernel/time.c (revision 4b2a108c)
1 /*
2  *  arch/s390/kernel/time.c
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/cpu.h>
27 #include <linux/stop_machine.h>
28 #include <linux/time.h>
29 #include <linux/sysdev.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/smp.h>
33 #include <linux/types.h>
34 #include <linux/profile.h>
35 #include <linux/timex.h>
36 #include <linux/notifier.h>
37 #include <linux/clocksource.h>
38 #include <linux/clockchips.h>
39 #include <asm/uaccess.h>
40 #include <asm/delay.h>
41 #include <asm/s390_ext.h>
42 #include <asm/div64.h>
43 #include <asm/vdso.h>
44 #include <asm/irq.h>
45 #include <asm/irq_regs.h>
46 #include <asm/timer.h>
47 #include <asm/etr.h>
48 #include <asm/cio.h>
49 
50 /* change this if you have some constant time drift */
51 #define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
52 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
53 
54 /*
55  * Create a small time difference between the timer interrupts
56  * on the different cpus to avoid lock contention.
57  */
58 #define CPU_DEVIATION       (smp_processor_id() << 12)
59 
60 #define TICK_SIZE tick
61 
62 u64 sched_clock_base_cc = -1;	/* Force to data section. */
63 
64 static DEFINE_PER_CPU(struct clock_event_device, comparators);
65 
66 /*
67  * Scheduler clock - returns current time in nanosec units.
68  */
69 unsigned long long notrace sched_clock(void)
70 {
71 	return ((get_clock_xt() - sched_clock_base_cc) * 125) >> 9;
72 }
73 
74 /*
75  * Monotonic_clock - returns # of nanoseconds passed since time_init()
76  */
77 unsigned long long monotonic_clock(void)
78 {
79 	return sched_clock();
80 }
81 EXPORT_SYMBOL(monotonic_clock);
82 
83 void tod_to_timeval(__u64 todval, struct timespec *xtime)
84 {
85 	unsigned long long sec;
86 
87 	sec = todval >> 12;
88 	do_div(sec, 1000000);
89 	xtime->tv_sec = sec;
90 	todval -= (sec * 1000000) << 12;
91 	xtime->tv_nsec = ((todval * 1000) >> 12);
92 }
93 
94 void clock_comparator_work(void)
95 {
96 	struct clock_event_device *cd;
97 
98 	S390_lowcore.clock_comparator = -1ULL;
99 	set_clock_comparator(S390_lowcore.clock_comparator);
100 	cd = &__get_cpu_var(comparators);
101 	cd->event_handler(cd);
102 }
103 
104 /*
105  * Fixup the clock comparator.
106  */
107 static void fixup_clock_comparator(unsigned long long delta)
108 {
109 	/* If nobody is waiting there's nothing to fix. */
110 	if (S390_lowcore.clock_comparator == -1ULL)
111 		return;
112 	S390_lowcore.clock_comparator += delta;
113 	set_clock_comparator(S390_lowcore.clock_comparator);
114 }
115 
116 static int s390_next_event(unsigned long delta,
117 			   struct clock_event_device *evt)
118 {
119 	S390_lowcore.clock_comparator = get_clock() + delta;
120 	set_clock_comparator(S390_lowcore.clock_comparator);
121 	return 0;
122 }
123 
124 static void s390_set_mode(enum clock_event_mode mode,
125 			  struct clock_event_device *evt)
126 {
127 }
128 
129 /*
130  * Set up lowcore and control register of the current cpu to
131  * enable TOD clock and clock comparator interrupts.
132  */
133 void init_cpu_timer(void)
134 {
135 	struct clock_event_device *cd;
136 	int cpu;
137 
138 	S390_lowcore.clock_comparator = -1ULL;
139 	set_clock_comparator(S390_lowcore.clock_comparator);
140 
141 	cpu = smp_processor_id();
142 	cd = &per_cpu(comparators, cpu);
143 	cd->name		= "comparator";
144 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
145 	cd->mult		= 16777;
146 	cd->shift		= 12;
147 	cd->min_delta_ns	= 1;
148 	cd->max_delta_ns	= LONG_MAX;
149 	cd->rating		= 400;
150 	cd->cpumask		= cpumask_of(cpu);
151 	cd->set_next_event	= s390_next_event;
152 	cd->set_mode		= s390_set_mode;
153 
154 	clockevents_register_device(cd);
155 
156 	/* Enable clock comparator timer interrupt. */
157 	__ctl_set_bit(0,11);
158 
159 	/* Always allow the timing alert external interrupt. */
160 	__ctl_set_bit(0, 4);
161 }
162 
163 static void clock_comparator_interrupt(__u16 code)
164 {
165 	if (S390_lowcore.clock_comparator == -1ULL)
166 		set_clock_comparator(S390_lowcore.clock_comparator);
167 }
168 
169 static void etr_timing_alert(struct etr_irq_parm *);
170 static void stp_timing_alert(struct stp_irq_parm *);
171 
172 static void timing_alert_interrupt(__u16 code)
173 {
174 	if (S390_lowcore.ext_params & 0x00c40000)
175 		etr_timing_alert((struct etr_irq_parm *)
176 				 &S390_lowcore.ext_params);
177 	if (S390_lowcore.ext_params & 0x00038000)
178 		stp_timing_alert((struct stp_irq_parm *)
179 				 &S390_lowcore.ext_params);
180 }
181 
182 static void etr_reset(void);
183 static void stp_reset(void);
184 
185 unsigned long read_persistent_clock(void)
186 {
187 	struct timespec ts;
188 
189 	tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, &ts);
190 	return ts.tv_sec;
191 }
192 
193 static cycle_t read_tod_clock(struct clocksource *cs)
194 {
195 	return get_clock();
196 }
197 
198 static struct clocksource clocksource_tod = {
199 	.name		= "tod",
200 	.rating		= 400,
201 	.read		= read_tod_clock,
202 	.mask		= -1ULL,
203 	.mult		= 1000,
204 	.shift		= 12,
205 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
206 };
207 
208 
209 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
210 {
211 	if (clock != &clocksource_tod)
212 		return;
213 
214 	/* Make userspace gettimeofday spin until we're done. */
215 	++vdso_data->tb_update_count;
216 	smp_wmb();
217 	vdso_data->xtime_tod_stamp = clock->cycle_last;
218 	vdso_data->xtime_clock_sec = xtime.tv_sec;
219 	vdso_data->xtime_clock_nsec = xtime.tv_nsec;
220 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
221 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
222 	smp_wmb();
223 	++vdso_data->tb_update_count;
224 }
225 
226 extern struct timezone sys_tz;
227 
228 void update_vsyscall_tz(void)
229 {
230 	/* Make userspace gettimeofday spin until we're done. */
231 	++vdso_data->tb_update_count;
232 	smp_wmb();
233 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
234 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
235 	smp_wmb();
236 	++vdso_data->tb_update_count;
237 }
238 
239 /*
240  * Initialize the TOD clock and the CPU timer of
241  * the boot cpu.
242  */
243 void __init time_init(void)
244 {
245 	struct timespec ts;
246 	unsigned long flags;
247 	cycle_t now;
248 
249 	/* Reset time synchronization interfaces. */
250 	etr_reset();
251 	stp_reset();
252 
253 	/* request the clock comparator external interrupt */
254 	if (register_external_interrupt(0x1004, clock_comparator_interrupt))
255                 panic("Couldn't request external interrupt 0x1004");
256 
257 	/* request the timing alert external interrupt */
258 	if (register_external_interrupt(0x1406, timing_alert_interrupt))
259 		panic("Couldn't request external interrupt 0x1406");
260 
261 	if (clocksource_register(&clocksource_tod) != 0)
262 		panic("Could not register TOD clock source");
263 
264 	/*
265 	 * The TOD clock is an accurate clock. The xtime should be
266 	 * initialized in a way that the difference between TOD and
267 	 * xtime is reasonably small. Too bad that timekeeping_init
268 	 * sets xtime.tv_nsec to zero. In addition the clock source
269 	 * change from the jiffies clock source to the TOD clock
270 	 * source add another error of up to 1/HZ second. The same
271 	 * function sets wall_to_monotonic to a value that is too
272 	 * small for /proc/uptime to be accurate.
273 	 * Reset xtime and wall_to_monotonic to sane values.
274 	 */
275 	write_seqlock_irqsave(&xtime_lock, flags);
276 	now = get_clock();
277 	tod_to_timeval(now - TOD_UNIX_EPOCH, &xtime);
278 	clocksource_tod.cycle_last = now;
279 	clocksource_tod.raw_time = xtime;
280 	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, &ts);
281 	set_normalized_timespec(&wall_to_monotonic, -ts.tv_sec, -ts.tv_nsec);
282 	write_sequnlock_irqrestore(&xtime_lock, flags);
283 
284 	/* Enable TOD clock interrupts on the boot cpu. */
285 	init_cpu_timer();
286 
287 	/* Enable cpu timer interrupts on the boot cpu. */
288 	vtime_init();
289 }
290 
291 /*
292  * The time is "clock". old is what we think the time is.
293  * Adjust the value by a multiple of jiffies and add the delta to ntp.
294  * "delay" is an approximation how long the synchronization took. If
295  * the time correction is positive, then "delay" is subtracted from
296  * the time difference and only the remaining part is passed to ntp.
297  */
298 static unsigned long long adjust_time(unsigned long long old,
299 				      unsigned long long clock,
300 				      unsigned long long delay)
301 {
302 	unsigned long long delta, ticks;
303 	struct timex adjust;
304 
305 	if (clock > old) {
306 		/* It is later than we thought. */
307 		delta = ticks = clock - old;
308 		delta = ticks = (delta < delay) ? 0 : delta - delay;
309 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
310 		adjust.offset = ticks * (1000000 / HZ);
311 	} else {
312 		/* It is earlier than we thought. */
313 		delta = ticks = old - clock;
314 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
315 		delta = -delta;
316 		adjust.offset = -ticks * (1000000 / HZ);
317 	}
318 	sched_clock_base_cc += delta;
319 	if (adjust.offset != 0) {
320 		pr_notice("The ETR interface has adjusted the clock "
321 			  "by %li microseconds\n", adjust.offset);
322 		adjust.modes = ADJ_OFFSET_SINGLESHOT;
323 		do_adjtimex(&adjust);
324 	}
325 	return delta;
326 }
327 
328 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
329 static DEFINE_MUTEX(clock_sync_mutex);
330 static unsigned long clock_sync_flags;
331 
332 #define CLOCK_SYNC_HAS_ETR	0
333 #define CLOCK_SYNC_HAS_STP	1
334 #define CLOCK_SYNC_ETR		2
335 #define CLOCK_SYNC_STP		3
336 
337 /*
338  * The synchronous get_clock function. It will write the current clock
339  * value to the clock pointer and return 0 if the clock is in sync with
340  * the external time source. If the clock mode is local it will return
341  * -ENOSYS and -EAGAIN if the clock is not in sync with the external
342  * reference.
343  */
344 int get_sync_clock(unsigned long long *clock)
345 {
346 	atomic_t *sw_ptr;
347 	unsigned int sw0, sw1;
348 
349 	sw_ptr = &get_cpu_var(clock_sync_word);
350 	sw0 = atomic_read(sw_ptr);
351 	*clock = get_clock();
352 	sw1 = atomic_read(sw_ptr);
353 	put_cpu_var(clock_sync_sync);
354 	if (sw0 == sw1 && (sw0 & 0x80000000U))
355 		/* Success: time is in sync. */
356 		return 0;
357 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
358 	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
359 		return -ENOSYS;
360 	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
361 	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
362 		return -EACCES;
363 	return -EAGAIN;
364 }
365 EXPORT_SYMBOL(get_sync_clock);
366 
367 /*
368  * Make get_sync_clock return -EAGAIN.
369  */
370 static void disable_sync_clock(void *dummy)
371 {
372 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
373 	/*
374 	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
375 	 * fail until the sync bit is turned back on. In addition
376 	 * increase the "sequence" counter to avoid the race of an
377 	 * etr event and the complete recovery against get_sync_clock.
378 	 */
379 	atomic_clear_mask(0x80000000, sw_ptr);
380 	atomic_inc(sw_ptr);
381 }
382 
383 /*
384  * Make get_sync_clock return 0 again.
385  * Needs to be called from a context disabled for preemption.
386  */
387 static void enable_sync_clock(void)
388 {
389 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
390 	atomic_set_mask(0x80000000, sw_ptr);
391 }
392 
393 /*
394  * Function to check if the clock is in sync.
395  */
396 static inline int check_sync_clock(void)
397 {
398 	atomic_t *sw_ptr;
399 	int rc;
400 
401 	sw_ptr = &get_cpu_var(clock_sync_word);
402 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
403 	put_cpu_var(clock_sync_sync);
404 	return rc;
405 }
406 
407 /* Single threaded workqueue used for etr and stp sync events */
408 static struct workqueue_struct *time_sync_wq;
409 
410 static void __init time_init_wq(void)
411 {
412 	if (time_sync_wq)
413 		return;
414 	time_sync_wq = create_singlethread_workqueue("timesync");
415 	stop_machine_create();
416 }
417 
418 /*
419  * External Time Reference (ETR) code.
420  */
421 static int etr_port0_online;
422 static int etr_port1_online;
423 static int etr_steai_available;
424 
425 static int __init early_parse_etr(char *p)
426 {
427 	if (strncmp(p, "off", 3) == 0)
428 		etr_port0_online = etr_port1_online = 0;
429 	else if (strncmp(p, "port0", 5) == 0)
430 		etr_port0_online = 1;
431 	else if (strncmp(p, "port1", 5) == 0)
432 		etr_port1_online = 1;
433 	else if (strncmp(p, "on", 2) == 0)
434 		etr_port0_online = etr_port1_online = 1;
435 	return 0;
436 }
437 early_param("etr", early_parse_etr);
438 
439 enum etr_event {
440 	ETR_EVENT_PORT0_CHANGE,
441 	ETR_EVENT_PORT1_CHANGE,
442 	ETR_EVENT_PORT_ALERT,
443 	ETR_EVENT_SYNC_CHECK,
444 	ETR_EVENT_SWITCH_LOCAL,
445 	ETR_EVENT_UPDATE,
446 };
447 
448 /*
449  * Valid bit combinations of the eacr register are (x = don't care):
450  * e0 e1 dp p0 p1 ea es sl
451  *  0  0  x  0	0  0  0  0  initial, disabled state
452  *  0  0  x  0	1  1  0  0  port 1 online
453  *  0  0  x  1	0  1  0  0  port 0 online
454  *  0  0  x  1	1  1  0  0  both ports online
455  *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
456  *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
457  *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
458  *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
459  *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
460  *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
461  *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
462  *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
463  *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
464  *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
465  *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
466  *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
467  *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
468  *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
469  *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
470  *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
471  */
472 static struct etr_eacr etr_eacr;
473 static u64 etr_tolec;			/* time of last eacr update */
474 static struct etr_aib etr_port0;
475 static int etr_port0_uptodate;
476 static struct etr_aib etr_port1;
477 static int etr_port1_uptodate;
478 static unsigned long etr_events;
479 static struct timer_list etr_timer;
480 
481 static void etr_timeout(unsigned long dummy);
482 static void etr_work_fn(struct work_struct *work);
483 static DEFINE_MUTEX(etr_work_mutex);
484 static DECLARE_WORK(etr_work, etr_work_fn);
485 
486 /*
487  * Reset ETR attachment.
488  */
489 static void etr_reset(void)
490 {
491 	etr_eacr =  (struct etr_eacr) {
492 		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
493 		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
494 		.es = 0, .sl = 0 };
495 	if (etr_setr(&etr_eacr) == 0) {
496 		etr_tolec = get_clock();
497 		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
498 		if (etr_port0_online && etr_port1_online)
499 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
500 	} else if (etr_port0_online || etr_port1_online) {
501 		pr_warning("The real or virtual hardware system does "
502 			   "not provide an ETR interface\n");
503 		etr_port0_online = etr_port1_online = 0;
504 	}
505 }
506 
507 static int __init etr_init(void)
508 {
509 	struct etr_aib aib;
510 
511 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
512 		return 0;
513 	time_init_wq();
514 	/* Check if this machine has the steai instruction. */
515 	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
516 		etr_steai_available = 1;
517 	setup_timer(&etr_timer, etr_timeout, 0UL);
518 	if (etr_port0_online) {
519 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
520 		queue_work(time_sync_wq, &etr_work);
521 	}
522 	if (etr_port1_online) {
523 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
524 		queue_work(time_sync_wq, &etr_work);
525 	}
526 	return 0;
527 }
528 
529 arch_initcall(etr_init);
530 
531 /*
532  * Two sorts of ETR machine checks. The architecture reads:
533  * "When a machine-check niterruption occurs and if a switch-to-local or
534  *  ETR-sync-check interrupt request is pending but disabled, this pending
535  *  disabled interruption request is indicated and is cleared".
536  * Which means that we can get etr_switch_to_local events from the machine
537  * check handler although the interruption condition is disabled. Lovely..
538  */
539 
540 /*
541  * Switch to local machine check. This is called when the last usable
542  * ETR port goes inactive. After switch to local the clock is not in sync.
543  */
544 void etr_switch_to_local(void)
545 {
546 	if (!etr_eacr.sl)
547 		return;
548 	disable_sync_clock(NULL);
549 	set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events);
550 	queue_work(time_sync_wq, &etr_work);
551 }
552 
553 /*
554  * ETR sync check machine check. This is called when the ETR OTE and the
555  * local clock OTE are farther apart than the ETR sync check tolerance.
556  * After a ETR sync check the clock is not in sync. The machine check
557  * is broadcasted to all cpus at the same time.
558  */
559 void etr_sync_check(void)
560 {
561 	if (!etr_eacr.es)
562 		return;
563 	disable_sync_clock(NULL);
564 	set_bit(ETR_EVENT_SYNC_CHECK, &etr_events);
565 	queue_work(time_sync_wq, &etr_work);
566 }
567 
568 /*
569  * ETR timing alert. There are two causes:
570  * 1) port state change, check the usability of the port
571  * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
572  *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
573  *    or ETR-data word 4 (edf4) has changed.
574  */
575 static void etr_timing_alert(struct etr_irq_parm *intparm)
576 {
577 	if (intparm->pc0)
578 		/* ETR port 0 state change. */
579 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
580 	if (intparm->pc1)
581 		/* ETR port 1 state change. */
582 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
583 	if (intparm->eai)
584 		/*
585 		 * ETR port alert on either port 0, 1 or both.
586 		 * Both ports are not up-to-date now.
587 		 */
588 		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
589 	queue_work(time_sync_wq, &etr_work);
590 }
591 
592 static void etr_timeout(unsigned long dummy)
593 {
594 	set_bit(ETR_EVENT_UPDATE, &etr_events);
595 	queue_work(time_sync_wq, &etr_work);
596 }
597 
598 /*
599  * Check if the etr mode is pss.
600  */
601 static inline int etr_mode_is_pps(struct etr_eacr eacr)
602 {
603 	return eacr.es && !eacr.sl;
604 }
605 
606 /*
607  * Check if the etr mode is etr.
608  */
609 static inline int etr_mode_is_etr(struct etr_eacr eacr)
610 {
611 	return eacr.es && eacr.sl;
612 }
613 
614 /*
615  * Check if the port can be used for TOD synchronization.
616  * For PPS mode the port has to receive OTEs. For ETR mode
617  * the port has to receive OTEs, the ETR stepping bit has to
618  * be zero and the validity bits for data frame 1, 2, and 3
619  * have to be 1.
620  */
621 static int etr_port_valid(struct etr_aib *aib, int port)
622 {
623 	unsigned int psc;
624 
625 	/* Check that this port is receiving OTEs. */
626 	if (aib->tsp == 0)
627 		return 0;
628 
629 	psc = port ? aib->esw.psc1 : aib->esw.psc0;
630 	if (psc == etr_lpsc_pps_mode)
631 		return 1;
632 	if (psc == etr_lpsc_operational_step)
633 		return !aib->esw.y && aib->slsw.v1 &&
634 			aib->slsw.v2 && aib->slsw.v3;
635 	return 0;
636 }
637 
638 /*
639  * Check if two ports are on the same network.
640  */
641 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
642 {
643 	// FIXME: any other fields we have to compare?
644 	return aib1->edf1.net_id == aib2->edf1.net_id;
645 }
646 
647 /*
648  * Wrapper for etr_stei that converts physical port states
649  * to logical port states to be consistent with the output
650  * of stetr (see etr_psc vs. etr_lpsc).
651  */
652 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
653 {
654 	BUG_ON(etr_steai(aib, func) != 0);
655 	/* Convert port state to logical port state. */
656 	if (aib->esw.psc0 == 1)
657 		aib->esw.psc0 = 2;
658 	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
659 		aib->esw.psc0 = 1;
660 	if (aib->esw.psc1 == 1)
661 		aib->esw.psc1 = 2;
662 	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
663 		aib->esw.psc1 = 1;
664 }
665 
666 /*
667  * Check if the aib a2 is still connected to the same attachment as
668  * aib a1, the etv values differ by one and a2 is valid.
669  */
670 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
671 {
672 	int state_a1, state_a2;
673 
674 	/* Paranoia check: e0/e1 should better be the same. */
675 	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
676 	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
677 		return 0;
678 
679 	/* Still connected to the same etr ? */
680 	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
681 	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
682 	if (state_a1 == etr_lpsc_operational_step) {
683 		if (state_a2 != etr_lpsc_operational_step ||
684 		    a1->edf1.net_id != a2->edf1.net_id ||
685 		    a1->edf1.etr_id != a2->edf1.etr_id ||
686 		    a1->edf1.etr_pn != a2->edf1.etr_pn)
687 			return 0;
688 	} else if (state_a2 != etr_lpsc_pps_mode)
689 		return 0;
690 
691 	/* The ETV value of a2 needs to be ETV of a1 + 1. */
692 	if (a1->edf2.etv + 1 != a2->edf2.etv)
693 		return 0;
694 
695 	if (!etr_port_valid(a2, p))
696 		return 0;
697 
698 	return 1;
699 }
700 
701 struct clock_sync_data {
702 	atomic_t cpus;
703 	int in_sync;
704 	unsigned long long fixup_cc;
705 	int etr_port;
706 	struct etr_aib *etr_aib;
707 };
708 
709 static void clock_sync_cpu(struct clock_sync_data *sync)
710 {
711 	atomic_dec(&sync->cpus);
712 	enable_sync_clock();
713 	/*
714 	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
715 	 * is called on all other cpus while the TOD clocks is stopped.
716 	 * __udelay will stop the cpu on an enabled wait psw until the
717 	 * TOD is running again.
718 	 */
719 	while (sync->in_sync == 0) {
720 		__udelay(1);
721 		/*
722 		 * A different cpu changes *in_sync. Therefore use
723 		 * barrier() to force memory access.
724 		 */
725 		barrier();
726 	}
727 	if (sync->in_sync != 1)
728 		/* Didn't work. Clear per-cpu in sync bit again. */
729 		disable_sync_clock(NULL);
730 	/*
731 	 * This round of TOD syncing is done. Set the clock comparator
732 	 * to the next tick and let the processor continue.
733 	 */
734 	fixup_clock_comparator(sync->fixup_cc);
735 }
736 
737 /*
738  * Sync the TOD clock using the port refered to by aibp. This port
739  * has to be enabled and the other port has to be disabled. The
740  * last eacr update has to be more than 1.6 seconds in the past.
741  */
742 static int etr_sync_clock(void *data)
743 {
744 	static int first;
745 	unsigned long long clock, old_clock, delay, delta;
746 	struct clock_sync_data *etr_sync;
747 	struct etr_aib *sync_port, *aib;
748 	int port;
749 	int rc;
750 
751 	etr_sync = data;
752 
753 	if (xchg(&first, 1) == 1) {
754 		/* Slave */
755 		clock_sync_cpu(etr_sync);
756 		return 0;
757 	}
758 
759 	/* Wait until all other cpus entered the sync function. */
760 	while (atomic_read(&etr_sync->cpus) != 0)
761 		cpu_relax();
762 
763 	port = etr_sync->etr_port;
764 	aib = etr_sync->etr_aib;
765 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
766 	enable_sync_clock();
767 
768 	/* Set clock to next OTE. */
769 	__ctl_set_bit(14, 21);
770 	__ctl_set_bit(0, 29);
771 	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
772 	old_clock = get_clock();
773 	if (set_clock(clock) == 0) {
774 		__udelay(1);	/* Wait for the clock to start. */
775 		__ctl_clear_bit(0, 29);
776 		__ctl_clear_bit(14, 21);
777 		etr_stetr(aib);
778 		/* Adjust Linux timing variables. */
779 		delay = (unsigned long long)
780 			(aib->edf2.etv - sync_port->edf2.etv) << 32;
781 		delta = adjust_time(old_clock, clock, delay);
782 		etr_sync->fixup_cc = delta;
783 		fixup_clock_comparator(delta);
784 		/* Verify that the clock is properly set. */
785 		if (!etr_aib_follows(sync_port, aib, port)) {
786 			/* Didn't work. */
787 			disable_sync_clock(NULL);
788 			etr_sync->in_sync = -EAGAIN;
789 			rc = -EAGAIN;
790 		} else {
791 			etr_sync->in_sync = 1;
792 			rc = 0;
793 		}
794 	} else {
795 		/* Could not set the clock ?!? */
796 		__ctl_clear_bit(0, 29);
797 		__ctl_clear_bit(14, 21);
798 		disable_sync_clock(NULL);
799 		etr_sync->in_sync = -EAGAIN;
800 		rc = -EAGAIN;
801 	}
802 	xchg(&first, 0);
803 	return rc;
804 }
805 
806 static int etr_sync_clock_stop(struct etr_aib *aib, int port)
807 {
808 	struct clock_sync_data etr_sync;
809 	struct etr_aib *sync_port;
810 	int follows;
811 	int rc;
812 
813 	/* Check if the current aib is adjacent to the sync port aib. */
814 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
815 	follows = etr_aib_follows(sync_port, aib, port);
816 	memcpy(sync_port, aib, sizeof(*aib));
817 	if (!follows)
818 		return -EAGAIN;
819 	memset(&etr_sync, 0, sizeof(etr_sync));
820 	etr_sync.etr_aib = aib;
821 	etr_sync.etr_port = port;
822 	get_online_cpus();
823 	atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
824 	rc = stop_machine(etr_sync_clock, &etr_sync, &cpu_online_map);
825 	put_online_cpus();
826 	return rc;
827 }
828 
829 /*
830  * Handle the immediate effects of the different events.
831  * The port change event is used for online/offline changes.
832  */
833 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
834 {
835 	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
836 		eacr.es = 0;
837 	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
838 		eacr.es = eacr.sl = 0;
839 	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
840 		etr_port0_uptodate = etr_port1_uptodate = 0;
841 
842 	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
843 		if (eacr.e0)
844 			/*
845 			 * Port change of an enabled port. We have to
846 			 * assume that this can have caused an stepping
847 			 * port switch.
848 			 */
849 			etr_tolec = get_clock();
850 		eacr.p0 = etr_port0_online;
851 		if (!eacr.p0)
852 			eacr.e0 = 0;
853 		etr_port0_uptodate = 0;
854 	}
855 	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
856 		if (eacr.e1)
857 			/*
858 			 * Port change of an enabled port. We have to
859 			 * assume that this can have caused an stepping
860 			 * port switch.
861 			 */
862 			etr_tolec = get_clock();
863 		eacr.p1 = etr_port1_online;
864 		if (!eacr.p1)
865 			eacr.e1 = 0;
866 		etr_port1_uptodate = 0;
867 	}
868 	clear_bit(ETR_EVENT_UPDATE, &etr_events);
869 	return eacr;
870 }
871 
872 /*
873  * Set up a timer that expires after the etr_tolec + 1.6 seconds if
874  * one of the ports needs an update.
875  */
876 static void etr_set_tolec_timeout(unsigned long long now)
877 {
878 	unsigned long micros;
879 
880 	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
881 	    (!etr_eacr.p1 || etr_port1_uptodate))
882 		return;
883 	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
884 	micros = (micros > 1600000) ? 0 : 1600000 - micros;
885 	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
886 }
887 
888 /*
889  * Set up a time that expires after 1/2 second.
890  */
891 static void etr_set_sync_timeout(void)
892 {
893 	mod_timer(&etr_timer, jiffies + HZ/2);
894 }
895 
896 /*
897  * Update the aib information for one or both ports.
898  */
899 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
900 					 struct etr_eacr eacr)
901 {
902 	/* With both ports disabled the aib information is useless. */
903 	if (!eacr.e0 && !eacr.e1)
904 		return eacr;
905 
906 	/* Update port0 or port1 with aib stored in etr_work_fn. */
907 	if (aib->esw.q == 0) {
908 		/* Information for port 0 stored. */
909 		if (eacr.p0 && !etr_port0_uptodate) {
910 			etr_port0 = *aib;
911 			if (etr_port0_online)
912 				etr_port0_uptodate = 1;
913 		}
914 	} else {
915 		/* Information for port 1 stored. */
916 		if (eacr.p1 && !etr_port1_uptodate) {
917 			etr_port1 = *aib;
918 			if (etr_port0_online)
919 				etr_port1_uptodate = 1;
920 		}
921 	}
922 
923 	/*
924 	 * Do not try to get the alternate port aib if the clock
925 	 * is not in sync yet.
926 	 */
927 	if (!check_sync_clock())
928 		return eacr;
929 
930 	/*
931 	 * If steai is available we can get the information about
932 	 * the other port immediately. If only stetr is available the
933 	 * data-port bit toggle has to be used.
934 	 */
935 	if (etr_steai_available) {
936 		if (eacr.p0 && !etr_port0_uptodate) {
937 			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
938 			etr_port0_uptodate = 1;
939 		}
940 		if (eacr.p1 && !etr_port1_uptodate) {
941 			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
942 			etr_port1_uptodate = 1;
943 		}
944 	} else {
945 		/*
946 		 * One port was updated above, if the other
947 		 * port is not uptodate toggle dp bit.
948 		 */
949 		if ((eacr.p0 && !etr_port0_uptodate) ||
950 		    (eacr.p1 && !etr_port1_uptodate))
951 			eacr.dp ^= 1;
952 		else
953 			eacr.dp = 0;
954 	}
955 	return eacr;
956 }
957 
958 /*
959  * Write new etr control register if it differs from the current one.
960  * Return 1 if etr_tolec has been updated as well.
961  */
962 static void etr_update_eacr(struct etr_eacr eacr)
963 {
964 	int dp_changed;
965 
966 	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
967 		/* No change, return. */
968 		return;
969 	/*
970 	 * The disable of an active port of the change of the data port
971 	 * bit can/will cause a change in the data port.
972 	 */
973 	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
974 		(etr_eacr.dp ^ eacr.dp) != 0;
975 	etr_eacr = eacr;
976 	etr_setr(&etr_eacr);
977 	if (dp_changed)
978 		etr_tolec = get_clock();
979 }
980 
981 /*
982  * ETR work. In this function you'll find the main logic. In
983  * particular this is the only function that calls etr_update_eacr(),
984  * it "controls" the etr control register.
985  */
986 static void etr_work_fn(struct work_struct *work)
987 {
988 	unsigned long long now;
989 	struct etr_eacr eacr;
990 	struct etr_aib aib;
991 	int sync_port;
992 
993 	/* prevent multiple execution. */
994 	mutex_lock(&etr_work_mutex);
995 
996 	/* Create working copy of etr_eacr. */
997 	eacr = etr_eacr;
998 
999 	/* Check for the different events and their immediate effects. */
1000 	eacr = etr_handle_events(eacr);
1001 
1002 	/* Check if ETR is supposed to be active. */
1003 	eacr.ea = eacr.p0 || eacr.p1;
1004 	if (!eacr.ea) {
1005 		/* Both ports offline. Reset everything. */
1006 		eacr.dp = eacr.es = eacr.sl = 0;
1007 		on_each_cpu(disable_sync_clock, NULL, 1);
1008 		del_timer_sync(&etr_timer);
1009 		etr_update_eacr(eacr);
1010 		goto out_unlock;
1011 	}
1012 
1013 	/* Store aib to get the current ETR status word. */
1014 	BUG_ON(etr_stetr(&aib) != 0);
1015 	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
1016 	now = get_clock();
1017 
1018 	/*
1019 	 * Update the port information if the last stepping port change
1020 	 * or data port change is older than 1.6 seconds.
1021 	 */
1022 	if (now >= etr_tolec + (1600000 << 12))
1023 		eacr = etr_handle_update(&aib, eacr);
1024 
1025 	/*
1026 	 * Select ports to enable. The prefered synchronization mode is PPS.
1027 	 * If a port can be enabled depends on a number of things:
1028 	 * 1) The port needs to be online and uptodate. A port is not
1029 	 *    disabled just because it is not uptodate, but it is only
1030 	 *    enabled if it is uptodate.
1031 	 * 2) The port needs to have the same mode (pps / etr).
1032 	 * 3) The port needs to be usable -> etr_port_valid() == 1
1033 	 * 4) To enable the second port the clock needs to be in sync.
1034 	 * 5) If both ports are useable and are ETR ports, the network id
1035 	 *    has to be the same.
1036 	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1037 	 */
1038 	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1039 		eacr.sl = 0;
1040 		eacr.e0 = 1;
1041 		if (!etr_mode_is_pps(etr_eacr))
1042 			eacr.es = 0;
1043 		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1044 			eacr.e1 = 0;
1045 		// FIXME: uptodate checks ?
1046 		else if (etr_port0_uptodate && etr_port1_uptodate)
1047 			eacr.e1 = 1;
1048 		sync_port = (etr_port0_uptodate &&
1049 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1050 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1051 		eacr.sl = 0;
1052 		eacr.e0 = 0;
1053 		eacr.e1 = 1;
1054 		if (!etr_mode_is_pps(etr_eacr))
1055 			eacr.es = 0;
1056 		sync_port = (etr_port1_uptodate &&
1057 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1058 	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1059 		eacr.sl = 1;
1060 		eacr.e0 = 1;
1061 		if (!etr_mode_is_etr(etr_eacr))
1062 			eacr.es = 0;
1063 		if (!eacr.es || !eacr.p1 ||
1064 		    aib.esw.psc1 != etr_lpsc_operational_alt)
1065 			eacr.e1 = 0;
1066 		else if (etr_port0_uptodate && etr_port1_uptodate &&
1067 			 etr_compare_network(&etr_port0, &etr_port1))
1068 			eacr.e1 = 1;
1069 		sync_port = (etr_port0_uptodate &&
1070 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1071 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1072 		eacr.sl = 1;
1073 		eacr.e0 = 0;
1074 		eacr.e1 = 1;
1075 		if (!etr_mode_is_etr(etr_eacr))
1076 			eacr.es = 0;
1077 		sync_port = (etr_port1_uptodate &&
1078 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1079 	} else {
1080 		/* Both ports not usable. */
1081 		eacr.es = eacr.sl = 0;
1082 		sync_port = -1;
1083 	}
1084 
1085 	/*
1086 	 * If the clock is in sync just update the eacr and return.
1087 	 * If there is no valid sync port wait for a port update.
1088 	 */
1089 	if (check_sync_clock() || sync_port < 0) {
1090 		etr_update_eacr(eacr);
1091 		etr_set_tolec_timeout(now);
1092 		goto out_unlock;
1093 	}
1094 
1095 	/*
1096 	 * Prepare control register for clock syncing
1097 	 * (reset data port bit, set sync check control.
1098 	 */
1099 	eacr.dp = 0;
1100 	eacr.es = 1;
1101 
1102 	/*
1103 	 * Update eacr and try to synchronize the clock. If the update
1104 	 * of eacr caused a stepping port switch (or if we have to
1105 	 * assume that a stepping port switch has occured) or the
1106 	 * clock syncing failed, reset the sync check control bit
1107 	 * and set up a timer to try again after 0.5 seconds
1108 	 */
1109 	etr_update_eacr(eacr);
1110 	if (now < etr_tolec + (1600000 << 12) ||
1111 	    etr_sync_clock_stop(&aib, sync_port) != 0) {
1112 		/* Sync failed. Try again in 1/2 second. */
1113 		eacr.es = 0;
1114 		etr_update_eacr(eacr);
1115 		etr_set_sync_timeout();
1116 	} else
1117 		etr_set_tolec_timeout(now);
1118 out_unlock:
1119 	mutex_unlock(&etr_work_mutex);
1120 }
1121 
1122 /*
1123  * Sysfs interface functions
1124  */
1125 static struct sysdev_class etr_sysclass = {
1126 	.name	= "etr",
1127 };
1128 
1129 static struct sys_device etr_port0_dev = {
1130 	.id	= 0,
1131 	.cls	= &etr_sysclass,
1132 };
1133 
1134 static struct sys_device etr_port1_dev = {
1135 	.id	= 1,
1136 	.cls	= &etr_sysclass,
1137 };
1138 
1139 /*
1140  * ETR class attributes
1141  */
1142 static ssize_t etr_stepping_port_show(struct sysdev_class *class, char *buf)
1143 {
1144 	return sprintf(buf, "%i\n", etr_port0.esw.p);
1145 }
1146 
1147 static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1148 
1149 static ssize_t etr_stepping_mode_show(struct sysdev_class *class, char *buf)
1150 {
1151 	char *mode_str;
1152 
1153 	if (etr_mode_is_pps(etr_eacr))
1154 		mode_str = "pps";
1155 	else if (etr_mode_is_etr(etr_eacr))
1156 		mode_str = "etr";
1157 	else
1158 		mode_str = "local";
1159 	return sprintf(buf, "%s\n", mode_str);
1160 }
1161 
1162 static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1163 
1164 /*
1165  * ETR port attributes
1166  */
1167 static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev)
1168 {
1169 	if (dev == &etr_port0_dev)
1170 		return etr_port0_online ? &etr_port0 : NULL;
1171 	else
1172 		return etr_port1_online ? &etr_port1 : NULL;
1173 }
1174 
1175 static ssize_t etr_online_show(struct sys_device *dev,
1176 				struct sysdev_attribute *attr,
1177 				char *buf)
1178 {
1179 	unsigned int online;
1180 
1181 	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1182 	return sprintf(buf, "%i\n", online);
1183 }
1184 
1185 static ssize_t etr_online_store(struct sys_device *dev,
1186 				struct sysdev_attribute *attr,
1187 				const char *buf, size_t count)
1188 {
1189 	unsigned int value;
1190 
1191 	value = simple_strtoul(buf, NULL, 0);
1192 	if (value != 0 && value != 1)
1193 		return -EINVAL;
1194 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1195 		return -EOPNOTSUPP;
1196 	mutex_lock(&clock_sync_mutex);
1197 	if (dev == &etr_port0_dev) {
1198 		if (etr_port0_online == value)
1199 			goto out;	/* Nothing to do. */
1200 		etr_port0_online = value;
1201 		if (etr_port0_online && etr_port1_online)
1202 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1203 		else
1204 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1205 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1206 		queue_work(time_sync_wq, &etr_work);
1207 	} else {
1208 		if (etr_port1_online == value)
1209 			goto out;	/* Nothing to do. */
1210 		etr_port1_online = value;
1211 		if (etr_port0_online && etr_port1_online)
1212 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1213 		else
1214 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1215 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1216 		queue_work(time_sync_wq, &etr_work);
1217 	}
1218 out:
1219 	mutex_unlock(&clock_sync_mutex);
1220 	return count;
1221 }
1222 
1223 static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store);
1224 
1225 static ssize_t etr_stepping_control_show(struct sys_device *dev,
1226 					struct sysdev_attribute *attr,
1227 					char *buf)
1228 {
1229 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1230 		       etr_eacr.e0 : etr_eacr.e1);
1231 }
1232 
1233 static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1234 
1235 static ssize_t etr_mode_code_show(struct sys_device *dev,
1236 				struct sysdev_attribute *attr, char *buf)
1237 {
1238 	if (!etr_port0_online && !etr_port1_online)
1239 		/* Status word is not uptodate if both ports are offline. */
1240 		return -ENODATA;
1241 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1242 		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1243 }
1244 
1245 static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1246 
1247 static ssize_t etr_untuned_show(struct sys_device *dev,
1248 				struct sysdev_attribute *attr, char *buf)
1249 {
1250 	struct etr_aib *aib = etr_aib_from_dev(dev);
1251 
1252 	if (!aib || !aib->slsw.v1)
1253 		return -ENODATA;
1254 	return sprintf(buf, "%i\n", aib->edf1.u);
1255 }
1256 
1257 static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL);
1258 
1259 static ssize_t etr_network_id_show(struct sys_device *dev,
1260 				struct sysdev_attribute *attr, char *buf)
1261 {
1262 	struct etr_aib *aib = etr_aib_from_dev(dev);
1263 
1264 	if (!aib || !aib->slsw.v1)
1265 		return -ENODATA;
1266 	return sprintf(buf, "%i\n", aib->edf1.net_id);
1267 }
1268 
1269 static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL);
1270 
1271 static ssize_t etr_id_show(struct sys_device *dev,
1272 			struct sysdev_attribute *attr, char *buf)
1273 {
1274 	struct etr_aib *aib = etr_aib_from_dev(dev);
1275 
1276 	if (!aib || !aib->slsw.v1)
1277 		return -ENODATA;
1278 	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1279 }
1280 
1281 static SYSDEV_ATTR(id, 0400, etr_id_show, NULL);
1282 
1283 static ssize_t etr_port_number_show(struct sys_device *dev,
1284 			struct sysdev_attribute *attr, char *buf)
1285 {
1286 	struct etr_aib *aib = etr_aib_from_dev(dev);
1287 
1288 	if (!aib || !aib->slsw.v1)
1289 		return -ENODATA;
1290 	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1291 }
1292 
1293 static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL);
1294 
1295 static ssize_t etr_coupled_show(struct sys_device *dev,
1296 			struct sysdev_attribute *attr, char *buf)
1297 {
1298 	struct etr_aib *aib = etr_aib_from_dev(dev);
1299 
1300 	if (!aib || !aib->slsw.v3)
1301 		return -ENODATA;
1302 	return sprintf(buf, "%i\n", aib->edf3.c);
1303 }
1304 
1305 static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL);
1306 
1307 static ssize_t etr_local_time_show(struct sys_device *dev,
1308 			struct sysdev_attribute *attr, char *buf)
1309 {
1310 	struct etr_aib *aib = etr_aib_from_dev(dev);
1311 
1312 	if (!aib || !aib->slsw.v3)
1313 		return -ENODATA;
1314 	return sprintf(buf, "%i\n", aib->edf3.blto);
1315 }
1316 
1317 static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL);
1318 
1319 static ssize_t etr_utc_offset_show(struct sys_device *dev,
1320 			struct sysdev_attribute *attr, char *buf)
1321 {
1322 	struct etr_aib *aib = etr_aib_from_dev(dev);
1323 
1324 	if (!aib || !aib->slsw.v3)
1325 		return -ENODATA;
1326 	return sprintf(buf, "%i\n", aib->edf3.buo);
1327 }
1328 
1329 static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1330 
1331 static struct sysdev_attribute *etr_port_attributes[] = {
1332 	&attr_online,
1333 	&attr_stepping_control,
1334 	&attr_state_code,
1335 	&attr_untuned,
1336 	&attr_network,
1337 	&attr_id,
1338 	&attr_port,
1339 	&attr_coupled,
1340 	&attr_local_time,
1341 	&attr_utc_offset,
1342 	NULL
1343 };
1344 
1345 static int __init etr_register_port(struct sys_device *dev)
1346 {
1347 	struct sysdev_attribute **attr;
1348 	int rc;
1349 
1350 	rc = sysdev_register(dev);
1351 	if (rc)
1352 		goto out;
1353 	for (attr = etr_port_attributes; *attr; attr++) {
1354 		rc = sysdev_create_file(dev, *attr);
1355 		if (rc)
1356 			goto out_unreg;
1357 	}
1358 	return 0;
1359 out_unreg:
1360 	for (; attr >= etr_port_attributes; attr--)
1361 		sysdev_remove_file(dev, *attr);
1362 	sysdev_unregister(dev);
1363 out:
1364 	return rc;
1365 }
1366 
1367 static void __init etr_unregister_port(struct sys_device *dev)
1368 {
1369 	struct sysdev_attribute **attr;
1370 
1371 	for (attr = etr_port_attributes; *attr; attr++)
1372 		sysdev_remove_file(dev, *attr);
1373 	sysdev_unregister(dev);
1374 }
1375 
1376 static int __init etr_init_sysfs(void)
1377 {
1378 	int rc;
1379 
1380 	rc = sysdev_class_register(&etr_sysclass);
1381 	if (rc)
1382 		goto out;
1383 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port);
1384 	if (rc)
1385 		goto out_unreg_class;
1386 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode);
1387 	if (rc)
1388 		goto out_remove_stepping_port;
1389 	rc = etr_register_port(&etr_port0_dev);
1390 	if (rc)
1391 		goto out_remove_stepping_mode;
1392 	rc = etr_register_port(&etr_port1_dev);
1393 	if (rc)
1394 		goto out_remove_port0;
1395 	return 0;
1396 
1397 out_remove_port0:
1398 	etr_unregister_port(&etr_port0_dev);
1399 out_remove_stepping_mode:
1400 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode);
1401 out_remove_stepping_port:
1402 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port);
1403 out_unreg_class:
1404 	sysdev_class_unregister(&etr_sysclass);
1405 out:
1406 	return rc;
1407 }
1408 
1409 device_initcall(etr_init_sysfs);
1410 
1411 /*
1412  * Server Time Protocol (STP) code.
1413  */
1414 static int stp_online;
1415 static struct stp_sstpi stp_info;
1416 static void *stp_page;
1417 
1418 static void stp_work_fn(struct work_struct *work);
1419 static DEFINE_MUTEX(stp_work_mutex);
1420 static DECLARE_WORK(stp_work, stp_work_fn);
1421 static struct timer_list stp_timer;
1422 
1423 static int __init early_parse_stp(char *p)
1424 {
1425 	if (strncmp(p, "off", 3) == 0)
1426 		stp_online = 0;
1427 	else if (strncmp(p, "on", 2) == 0)
1428 		stp_online = 1;
1429 	return 0;
1430 }
1431 early_param("stp", early_parse_stp);
1432 
1433 /*
1434  * Reset STP attachment.
1435  */
1436 static void __init stp_reset(void)
1437 {
1438 	int rc;
1439 
1440 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1441 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1442 	if (rc == 0)
1443 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1444 	else if (stp_online) {
1445 		pr_warning("The real or virtual hardware system does "
1446 			   "not provide an STP interface\n");
1447 		free_page((unsigned long) stp_page);
1448 		stp_page = NULL;
1449 		stp_online = 0;
1450 	}
1451 }
1452 
1453 static void stp_timeout(unsigned long dummy)
1454 {
1455 	queue_work(time_sync_wq, &stp_work);
1456 }
1457 
1458 static int __init stp_init(void)
1459 {
1460 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1461 		return 0;
1462 	setup_timer(&stp_timer, stp_timeout, 0UL);
1463 	time_init_wq();
1464 	if (!stp_online)
1465 		return 0;
1466 	queue_work(time_sync_wq, &stp_work);
1467 	return 0;
1468 }
1469 
1470 arch_initcall(stp_init);
1471 
1472 /*
1473  * STP timing alert. There are three causes:
1474  * 1) timing status change
1475  * 2) link availability change
1476  * 3) time control parameter change
1477  * In all three cases we are only interested in the clock source state.
1478  * If a STP clock source is now available use it.
1479  */
1480 static void stp_timing_alert(struct stp_irq_parm *intparm)
1481 {
1482 	if (intparm->tsc || intparm->lac || intparm->tcpc)
1483 		queue_work(time_sync_wq, &stp_work);
1484 }
1485 
1486 /*
1487  * STP sync check machine check. This is called when the timing state
1488  * changes from the synchronized state to the unsynchronized state.
1489  * After a STP sync check the clock is not in sync. The machine check
1490  * is broadcasted to all cpus at the same time.
1491  */
1492 void stp_sync_check(void)
1493 {
1494 	disable_sync_clock(NULL);
1495 	queue_work(time_sync_wq, &stp_work);
1496 }
1497 
1498 /*
1499  * STP island condition machine check. This is called when an attached
1500  * server  attempts to communicate over an STP link and the servers
1501  * have matching CTN ids and have a valid stratum-1 configuration
1502  * but the configurations do not match.
1503  */
1504 void stp_island_check(void)
1505 {
1506 	disable_sync_clock(NULL);
1507 	queue_work(time_sync_wq, &stp_work);
1508 }
1509 
1510 
1511 static int stp_sync_clock(void *data)
1512 {
1513 	static int first;
1514 	unsigned long long old_clock, delta;
1515 	struct clock_sync_data *stp_sync;
1516 	int rc;
1517 
1518 	stp_sync = data;
1519 
1520 	if (xchg(&first, 1) == 1) {
1521 		/* Slave */
1522 		clock_sync_cpu(stp_sync);
1523 		return 0;
1524 	}
1525 
1526 	/* Wait until all other cpus entered the sync function. */
1527 	while (atomic_read(&stp_sync->cpus) != 0)
1528 		cpu_relax();
1529 
1530 	enable_sync_clock();
1531 
1532 	rc = 0;
1533 	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1534 	    stp_info.todoff[2] || stp_info.todoff[3] ||
1535 	    stp_info.tmd != 2) {
1536 		old_clock = get_clock();
1537 		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1538 		if (rc == 0) {
1539 			delta = adjust_time(old_clock, get_clock(), 0);
1540 			fixup_clock_comparator(delta);
1541 			rc = chsc_sstpi(stp_page, &stp_info,
1542 					sizeof(struct stp_sstpi));
1543 			if (rc == 0 && stp_info.tmd != 2)
1544 				rc = -EAGAIN;
1545 		}
1546 	}
1547 	if (rc) {
1548 		disable_sync_clock(NULL);
1549 		stp_sync->in_sync = -EAGAIN;
1550 	} else
1551 		stp_sync->in_sync = 1;
1552 	xchg(&first, 0);
1553 	return 0;
1554 }
1555 
1556 /*
1557  * STP work. Check for the STP state and take over the clock
1558  * synchronization if the STP clock source is usable.
1559  */
1560 static void stp_work_fn(struct work_struct *work)
1561 {
1562 	struct clock_sync_data stp_sync;
1563 	int rc;
1564 
1565 	/* prevent multiple execution. */
1566 	mutex_lock(&stp_work_mutex);
1567 
1568 	if (!stp_online) {
1569 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1570 		del_timer_sync(&stp_timer);
1571 		goto out_unlock;
1572 	}
1573 
1574 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1575 	if (rc)
1576 		goto out_unlock;
1577 
1578 	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1579 	if (rc || stp_info.c == 0)
1580 		goto out_unlock;
1581 
1582 	/* Skip synchronization if the clock is already in sync. */
1583 	if (check_sync_clock())
1584 		goto out_unlock;
1585 
1586 	memset(&stp_sync, 0, sizeof(stp_sync));
1587 	get_online_cpus();
1588 	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1589 	stop_machine(stp_sync_clock, &stp_sync, &cpu_online_map);
1590 	put_online_cpus();
1591 
1592 	if (!check_sync_clock())
1593 		/*
1594 		 * There is a usable clock but the synchonization failed.
1595 		 * Retry after a second.
1596 		 */
1597 		mod_timer(&stp_timer, jiffies + HZ);
1598 
1599 out_unlock:
1600 	mutex_unlock(&stp_work_mutex);
1601 }
1602 
1603 /*
1604  * STP class sysfs interface functions
1605  */
1606 static struct sysdev_class stp_sysclass = {
1607 	.name	= "stp",
1608 };
1609 
1610 static ssize_t stp_ctn_id_show(struct sysdev_class *class, char *buf)
1611 {
1612 	if (!stp_online)
1613 		return -ENODATA;
1614 	return sprintf(buf, "%016llx\n",
1615 		       *(unsigned long long *) stp_info.ctnid);
1616 }
1617 
1618 static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1619 
1620 static ssize_t stp_ctn_type_show(struct sysdev_class *class, char *buf)
1621 {
1622 	if (!stp_online)
1623 		return -ENODATA;
1624 	return sprintf(buf, "%i\n", stp_info.ctn);
1625 }
1626 
1627 static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1628 
1629 static ssize_t stp_dst_offset_show(struct sysdev_class *class, char *buf)
1630 {
1631 	if (!stp_online || !(stp_info.vbits & 0x2000))
1632 		return -ENODATA;
1633 	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1634 }
1635 
1636 static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1637 
1638 static ssize_t stp_leap_seconds_show(struct sysdev_class *class, char *buf)
1639 {
1640 	if (!stp_online || !(stp_info.vbits & 0x8000))
1641 		return -ENODATA;
1642 	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1643 }
1644 
1645 static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1646 
1647 static ssize_t stp_stratum_show(struct sysdev_class *class, char *buf)
1648 {
1649 	if (!stp_online)
1650 		return -ENODATA;
1651 	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1652 }
1653 
1654 static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL);
1655 
1656 static ssize_t stp_time_offset_show(struct sysdev_class *class, char *buf)
1657 {
1658 	if (!stp_online || !(stp_info.vbits & 0x0800))
1659 		return -ENODATA;
1660 	return sprintf(buf, "%i\n", (int) stp_info.tto);
1661 }
1662 
1663 static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1664 
1665 static ssize_t stp_time_zone_offset_show(struct sysdev_class *class, char *buf)
1666 {
1667 	if (!stp_online || !(stp_info.vbits & 0x4000))
1668 		return -ENODATA;
1669 	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1670 }
1671 
1672 static SYSDEV_CLASS_ATTR(time_zone_offset, 0400,
1673 			 stp_time_zone_offset_show, NULL);
1674 
1675 static ssize_t stp_timing_mode_show(struct sysdev_class *class, char *buf)
1676 {
1677 	if (!stp_online)
1678 		return -ENODATA;
1679 	return sprintf(buf, "%i\n", stp_info.tmd);
1680 }
1681 
1682 static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1683 
1684 static ssize_t stp_timing_state_show(struct sysdev_class *class, char *buf)
1685 {
1686 	if (!stp_online)
1687 		return -ENODATA;
1688 	return sprintf(buf, "%i\n", stp_info.tst);
1689 }
1690 
1691 static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1692 
1693 static ssize_t stp_online_show(struct sysdev_class *class, char *buf)
1694 {
1695 	return sprintf(buf, "%i\n", stp_online);
1696 }
1697 
1698 static ssize_t stp_online_store(struct sysdev_class *class,
1699 				const char *buf, size_t count)
1700 {
1701 	unsigned int value;
1702 
1703 	value = simple_strtoul(buf, NULL, 0);
1704 	if (value != 0 && value != 1)
1705 		return -EINVAL;
1706 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1707 		return -EOPNOTSUPP;
1708 	mutex_lock(&clock_sync_mutex);
1709 	stp_online = value;
1710 	if (stp_online)
1711 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1712 	else
1713 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1714 	queue_work(time_sync_wq, &stp_work);
1715 	mutex_unlock(&clock_sync_mutex);
1716 	return count;
1717 }
1718 
1719 /*
1720  * Can't use SYSDEV_CLASS_ATTR because the attribute should be named
1721  * stp/online but attr_online already exists in this file ..
1722  */
1723 static struct sysdev_class_attribute attr_stp_online = {
1724 	.attr = { .name = "online", .mode = 0600 },
1725 	.show	= stp_online_show,
1726 	.store	= stp_online_store,
1727 };
1728 
1729 static struct sysdev_class_attribute *stp_attributes[] = {
1730 	&attr_ctn_id,
1731 	&attr_ctn_type,
1732 	&attr_dst_offset,
1733 	&attr_leap_seconds,
1734 	&attr_stp_online,
1735 	&attr_stratum,
1736 	&attr_time_offset,
1737 	&attr_time_zone_offset,
1738 	&attr_timing_mode,
1739 	&attr_timing_state,
1740 	NULL
1741 };
1742 
1743 static int __init stp_init_sysfs(void)
1744 {
1745 	struct sysdev_class_attribute **attr;
1746 	int rc;
1747 
1748 	rc = sysdev_class_register(&stp_sysclass);
1749 	if (rc)
1750 		goto out;
1751 	for (attr = stp_attributes; *attr; attr++) {
1752 		rc = sysdev_class_create_file(&stp_sysclass, *attr);
1753 		if (rc)
1754 			goto out_unreg;
1755 	}
1756 	return 0;
1757 out_unreg:
1758 	for (; attr >= stp_attributes; attr--)
1759 		sysdev_class_remove_file(&stp_sysclass, *attr);
1760 	sysdev_class_unregister(&stp_sysclass);
1761 out:
1762 	return rc;
1763 }
1764 
1765 device_initcall(stp_init_sysfs);
1766