xref: /openbmc/linux/arch/s390/kernel/time.c (revision 4800cd83)
1 /*
2  *  arch/s390/kernel/time.c
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/module.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/param.h>
24 #include <linux/string.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/cpu.h>
28 #include <linux/stop_machine.h>
29 #include <linux/time.h>
30 #include <linux/sysdev.h>
31 #include <linux/delay.h>
32 #include <linux/init.h>
33 #include <linux/smp.h>
34 #include <linux/types.h>
35 #include <linux/profile.h>
36 #include <linux/timex.h>
37 #include <linux/notifier.h>
38 #include <linux/clocksource.h>
39 #include <linux/clockchips.h>
40 #include <linux/gfp.h>
41 #include <linux/kprobes.h>
42 #include <asm/uaccess.h>
43 #include <asm/delay.h>
44 #include <asm/s390_ext.h>
45 #include <asm/div64.h>
46 #include <asm/vdso.h>
47 #include <asm/irq.h>
48 #include <asm/irq_regs.h>
49 #include <asm/timer.h>
50 #include <asm/etr.h>
51 #include <asm/cio.h>
52 
53 /* change this if you have some constant time drift */
54 #define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
55 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
56 
57 u64 sched_clock_base_cc = -1;	/* Force to data section. */
58 EXPORT_SYMBOL_GPL(sched_clock_base_cc);
59 
60 static DEFINE_PER_CPU(struct clock_event_device, comparators);
61 
62 /*
63  * Scheduler clock - returns current time in nanosec units.
64  */
65 unsigned long long notrace __kprobes sched_clock(void)
66 {
67 	return (get_clock_monotonic() * 125) >> 9;
68 }
69 
70 /*
71  * Monotonic_clock - returns # of nanoseconds passed since time_init()
72  */
73 unsigned long long monotonic_clock(void)
74 {
75 	return sched_clock();
76 }
77 EXPORT_SYMBOL(monotonic_clock);
78 
79 void tod_to_timeval(__u64 todval, struct timespec *xt)
80 {
81 	unsigned long long sec;
82 
83 	sec = todval >> 12;
84 	do_div(sec, 1000000);
85 	xt->tv_sec = sec;
86 	todval -= (sec * 1000000) << 12;
87 	xt->tv_nsec = ((todval * 1000) >> 12);
88 }
89 EXPORT_SYMBOL(tod_to_timeval);
90 
91 void clock_comparator_work(void)
92 {
93 	struct clock_event_device *cd;
94 
95 	S390_lowcore.clock_comparator = -1ULL;
96 	set_clock_comparator(S390_lowcore.clock_comparator);
97 	cd = &__get_cpu_var(comparators);
98 	cd->event_handler(cd);
99 }
100 
101 /*
102  * Fixup the clock comparator.
103  */
104 static void fixup_clock_comparator(unsigned long long delta)
105 {
106 	/* If nobody is waiting there's nothing to fix. */
107 	if (S390_lowcore.clock_comparator == -1ULL)
108 		return;
109 	S390_lowcore.clock_comparator += delta;
110 	set_clock_comparator(S390_lowcore.clock_comparator);
111 }
112 
113 static int s390_next_event(unsigned long delta,
114 			   struct clock_event_device *evt)
115 {
116 	S390_lowcore.clock_comparator = get_clock() + delta;
117 	set_clock_comparator(S390_lowcore.clock_comparator);
118 	return 0;
119 }
120 
121 static void s390_set_mode(enum clock_event_mode mode,
122 			  struct clock_event_device *evt)
123 {
124 }
125 
126 /*
127  * Set up lowcore and control register of the current cpu to
128  * enable TOD clock and clock comparator interrupts.
129  */
130 void init_cpu_timer(void)
131 {
132 	struct clock_event_device *cd;
133 	int cpu;
134 
135 	S390_lowcore.clock_comparator = -1ULL;
136 	set_clock_comparator(S390_lowcore.clock_comparator);
137 
138 	cpu = smp_processor_id();
139 	cd = &per_cpu(comparators, cpu);
140 	cd->name		= "comparator";
141 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
142 	cd->mult		= 16777;
143 	cd->shift		= 12;
144 	cd->min_delta_ns	= 1;
145 	cd->max_delta_ns	= LONG_MAX;
146 	cd->rating		= 400;
147 	cd->cpumask		= cpumask_of(cpu);
148 	cd->set_next_event	= s390_next_event;
149 	cd->set_mode		= s390_set_mode;
150 
151 	clockevents_register_device(cd);
152 
153 	/* Enable clock comparator timer interrupt. */
154 	__ctl_set_bit(0,11);
155 
156 	/* Always allow the timing alert external interrupt. */
157 	__ctl_set_bit(0, 4);
158 }
159 
160 static void clock_comparator_interrupt(unsigned int ext_int_code,
161 				       unsigned int param32,
162 				       unsigned long param64)
163 {
164 	kstat_cpu(smp_processor_id()).irqs[EXTINT_CLK]++;
165 	if (S390_lowcore.clock_comparator == -1ULL)
166 		set_clock_comparator(S390_lowcore.clock_comparator);
167 }
168 
169 static void etr_timing_alert(struct etr_irq_parm *);
170 static void stp_timing_alert(struct stp_irq_parm *);
171 
172 static void timing_alert_interrupt(unsigned int ext_int_code,
173 				   unsigned int param32, unsigned long param64)
174 {
175 	kstat_cpu(smp_processor_id()).irqs[EXTINT_TLA]++;
176 	if (param32 & 0x00c40000)
177 		etr_timing_alert((struct etr_irq_parm *) &param32);
178 	if (param32 & 0x00038000)
179 		stp_timing_alert((struct stp_irq_parm *) &param32);
180 }
181 
182 static void etr_reset(void);
183 static void stp_reset(void);
184 
185 void read_persistent_clock(struct timespec *ts)
186 {
187 	tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, ts);
188 }
189 
190 void read_boot_clock(struct timespec *ts)
191 {
192 	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
193 }
194 
195 static cycle_t read_tod_clock(struct clocksource *cs)
196 {
197 	return get_clock();
198 }
199 
200 static struct clocksource clocksource_tod = {
201 	.name		= "tod",
202 	.rating		= 400,
203 	.read		= read_tod_clock,
204 	.mask		= -1ULL,
205 	.mult		= 1000,
206 	.shift		= 12,
207 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
208 };
209 
210 struct clocksource * __init clocksource_default_clock(void)
211 {
212 	return &clocksource_tod;
213 }
214 
215 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
216 			struct clocksource *clock, u32 mult)
217 {
218 	if (clock != &clocksource_tod)
219 		return;
220 
221 	/* Make userspace gettimeofday spin until we're done. */
222 	++vdso_data->tb_update_count;
223 	smp_wmb();
224 	vdso_data->xtime_tod_stamp = clock->cycle_last;
225 	vdso_data->xtime_clock_sec = wall_time->tv_sec;
226 	vdso_data->xtime_clock_nsec = wall_time->tv_nsec;
227 	vdso_data->wtom_clock_sec = wtm->tv_sec;
228 	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
229 	vdso_data->ntp_mult = mult;
230 	smp_wmb();
231 	++vdso_data->tb_update_count;
232 }
233 
234 extern struct timezone sys_tz;
235 
236 void update_vsyscall_tz(void)
237 {
238 	/* Make userspace gettimeofday spin until we're done. */
239 	++vdso_data->tb_update_count;
240 	smp_wmb();
241 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
242 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
243 	smp_wmb();
244 	++vdso_data->tb_update_count;
245 }
246 
247 /*
248  * Initialize the TOD clock and the CPU timer of
249  * the boot cpu.
250  */
251 void __init time_init(void)
252 {
253 	/* Reset time synchronization interfaces. */
254 	etr_reset();
255 	stp_reset();
256 
257 	/* request the clock comparator external interrupt */
258 	if (register_external_interrupt(0x1004, clock_comparator_interrupt))
259                 panic("Couldn't request external interrupt 0x1004");
260 
261 	/* request the timing alert external interrupt */
262 	if (register_external_interrupt(0x1406, timing_alert_interrupt))
263 		panic("Couldn't request external interrupt 0x1406");
264 
265 	if (clocksource_register(&clocksource_tod) != 0)
266 		panic("Could not register TOD clock source");
267 
268 	/* Enable TOD clock interrupts on the boot cpu. */
269 	init_cpu_timer();
270 
271 	/* Enable cpu timer interrupts on the boot cpu. */
272 	vtime_init();
273 }
274 
275 /*
276  * The time is "clock". old is what we think the time is.
277  * Adjust the value by a multiple of jiffies and add the delta to ntp.
278  * "delay" is an approximation how long the synchronization took. If
279  * the time correction is positive, then "delay" is subtracted from
280  * the time difference and only the remaining part is passed to ntp.
281  */
282 static unsigned long long adjust_time(unsigned long long old,
283 				      unsigned long long clock,
284 				      unsigned long long delay)
285 {
286 	unsigned long long delta, ticks;
287 	struct timex adjust;
288 
289 	if (clock > old) {
290 		/* It is later than we thought. */
291 		delta = ticks = clock - old;
292 		delta = ticks = (delta < delay) ? 0 : delta - delay;
293 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
294 		adjust.offset = ticks * (1000000 / HZ);
295 	} else {
296 		/* It is earlier than we thought. */
297 		delta = ticks = old - clock;
298 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
299 		delta = -delta;
300 		adjust.offset = -ticks * (1000000 / HZ);
301 	}
302 	sched_clock_base_cc += delta;
303 	if (adjust.offset != 0) {
304 		pr_notice("The ETR interface has adjusted the clock "
305 			  "by %li microseconds\n", adjust.offset);
306 		adjust.modes = ADJ_OFFSET_SINGLESHOT;
307 		do_adjtimex(&adjust);
308 	}
309 	return delta;
310 }
311 
312 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
313 static DEFINE_MUTEX(clock_sync_mutex);
314 static unsigned long clock_sync_flags;
315 
316 #define CLOCK_SYNC_HAS_ETR	0
317 #define CLOCK_SYNC_HAS_STP	1
318 #define CLOCK_SYNC_ETR		2
319 #define CLOCK_SYNC_STP		3
320 
321 /*
322  * The synchronous get_clock function. It will write the current clock
323  * value to the clock pointer and return 0 if the clock is in sync with
324  * the external time source. If the clock mode is local it will return
325  * -ENOSYS and -EAGAIN if the clock is not in sync with the external
326  * reference.
327  */
328 int get_sync_clock(unsigned long long *clock)
329 {
330 	atomic_t *sw_ptr;
331 	unsigned int sw0, sw1;
332 
333 	sw_ptr = &get_cpu_var(clock_sync_word);
334 	sw0 = atomic_read(sw_ptr);
335 	*clock = get_clock();
336 	sw1 = atomic_read(sw_ptr);
337 	put_cpu_var(clock_sync_word);
338 	if (sw0 == sw1 && (sw0 & 0x80000000U))
339 		/* Success: time is in sync. */
340 		return 0;
341 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
342 	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
343 		return -ENOSYS;
344 	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
345 	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
346 		return -EACCES;
347 	return -EAGAIN;
348 }
349 EXPORT_SYMBOL(get_sync_clock);
350 
351 /*
352  * Make get_sync_clock return -EAGAIN.
353  */
354 static void disable_sync_clock(void *dummy)
355 {
356 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
357 	/*
358 	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
359 	 * fail until the sync bit is turned back on. In addition
360 	 * increase the "sequence" counter to avoid the race of an
361 	 * etr event and the complete recovery against get_sync_clock.
362 	 */
363 	atomic_clear_mask(0x80000000, sw_ptr);
364 	atomic_inc(sw_ptr);
365 }
366 
367 /*
368  * Make get_sync_clock return 0 again.
369  * Needs to be called from a context disabled for preemption.
370  */
371 static void enable_sync_clock(void)
372 {
373 	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
374 	atomic_set_mask(0x80000000, sw_ptr);
375 }
376 
377 /*
378  * Function to check if the clock is in sync.
379  */
380 static inline int check_sync_clock(void)
381 {
382 	atomic_t *sw_ptr;
383 	int rc;
384 
385 	sw_ptr = &get_cpu_var(clock_sync_word);
386 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
387 	put_cpu_var(clock_sync_word);
388 	return rc;
389 }
390 
391 /* Single threaded workqueue used for etr and stp sync events */
392 static struct workqueue_struct *time_sync_wq;
393 
394 static void __init time_init_wq(void)
395 {
396 	if (time_sync_wq)
397 		return;
398 	time_sync_wq = create_singlethread_workqueue("timesync");
399 }
400 
401 /*
402  * External Time Reference (ETR) code.
403  */
404 static int etr_port0_online;
405 static int etr_port1_online;
406 static int etr_steai_available;
407 
408 static int __init early_parse_etr(char *p)
409 {
410 	if (strncmp(p, "off", 3) == 0)
411 		etr_port0_online = etr_port1_online = 0;
412 	else if (strncmp(p, "port0", 5) == 0)
413 		etr_port0_online = 1;
414 	else if (strncmp(p, "port1", 5) == 0)
415 		etr_port1_online = 1;
416 	else if (strncmp(p, "on", 2) == 0)
417 		etr_port0_online = etr_port1_online = 1;
418 	return 0;
419 }
420 early_param("etr", early_parse_etr);
421 
422 enum etr_event {
423 	ETR_EVENT_PORT0_CHANGE,
424 	ETR_EVENT_PORT1_CHANGE,
425 	ETR_EVENT_PORT_ALERT,
426 	ETR_EVENT_SYNC_CHECK,
427 	ETR_EVENT_SWITCH_LOCAL,
428 	ETR_EVENT_UPDATE,
429 };
430 
431 /*
432  * Valid bit combinations of the eacr register are (x = don't care):
433  * e0 e1 dp p0 p1 ea es sl
434  *  0  0  x  0	0  0  0  0  initial, disabled state
435  *  0  0  x  0	1  1  0  0  port 1 online
436  *  0  0  x  1	0  1  0  0  port 0 online
437  *  0  0  x  1	1  1  0  0  both ports online
438  *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
439  *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
440  *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
441  *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
442  *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
443  *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
444  *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
445  *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
446  *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
447  *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
448  *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
449  *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
450  *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
451  *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
452  *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
453  *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
454  */
455 static struct etr_eacr etr_eacr;
456 static u64 etr_tolec;			/* time of last eacr update */
457 static struct etr_aib etr_port0;
458 static int etr_port0_uptodate;
459 static struct etr_aib etr_port1;
460 static int etr_port1_uptodate;
461 static unsigned long etr_events;
462 static struct timer_list etr_timer;
463 
464 static void etr_timeout(unsigned long dummy);
465 static void etr_work_fn(struct work_struct *work);
466 static DEFINE_MUTEX(etr_work_mutex);
467 static DECLARE_WORK(etr_work, etr_work_fn);
468 
469 /*
470  * Reset ETR attachment.
471  */
472 static void etr_reset(void)
473 {
474 	etr_eacr =  (struct etr_eacr) {
475 		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
476 		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
477 		.es = 0, .sl = 0 };
478 	if (etr_setr(&etr_eacr) == 0) {
479 		etr_tolec = get_clock();
480 		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
481 		if (etr_port0_online && etr_port1_online)
482 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
483 	} else if (etr_port0_online || etr_port1_online) {
484 		pr_warning("The real or virtual hardware system does "
485 			   "not provide an ETR interface\n");
486 		etr_port0_online = etr_port1_online = 0;
487 	}
488 }
489 
490 static int __init etr_init(void)
491 {
492 	struct etr_aib aib;
493 
494 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
495 		return 0;
496 	time_init_wq();
497 	/* Check if this machine has the steai instruction. */
498 	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
499 		etr_steai_available = 1;
500 	setup_timer(&etr_timer, etr_timeout, 0UL);
501 	if (etr_port0_online) {
502 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
503 		queue_work(time_sync_wq, &etr_work);
504 	}
505 	if (etr_port1_online) {
506 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
507 		queue_work(time_sync_wq, &etr_work);
508 	}
509 	return 0;
510 }
511 
512 arch_initcall(etr_init);
513 
514 /*
515  * Two sorts of ETR machine checks. The architecture reads:
516  * "When a machine-check niterruption occurs and if a switch-to-local or
517  *  ETR-sync-check interrupt request is pending but disabled, this pending
518  *  disabled interruption request is indicated and is cleared".
519  * Which means that we can get etr_switch_to_local events from the machine
520  * check handler although the interruption condition is disabled. Lovely..
521  */
522 
523 /*
524  * Switch to local machine check. This is called when the last usable
525  * ETR port goes inactive. After switch to local the clock is not in sync.
526  */
527 void etr_switch_to_local(void)
528 {
529 	if (!etr_eacr.sl)
530 		return;
531 	disable_sync_clock(NULL);
532 	if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
533 		etr_eacr.es = etr_eacr.sl = 0;
534 		etr_setr(&etr_eacr);
535 		queue_work(time_sync_wq, &etr_work);
536 	}
537 }
538 
539 /*
540  * ETR sync check machine check. This is called when the ETR OTE and the
541  * local clock OTE are farther apart than the ETR sync check tolerance.
542  * After a ETR sync check the clock is not in sync. The machine check
543  * is broadcasted to all cpus at the same time.
544  */
545 void etr_sync_check(void)
546 {
547 	if (!etr_eacr.es)
548 		return;
549 	disable_sync_clock(NULL);
550 	if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
551 		etr_eacr.es = 0;
552 		etr_setr(&etr_eacr);
553 		queue_work(time_sync_wq, &etr_work);
554 	}
555 }
556 
557 /*
558  * ETR timing alert. There are two causes:
559  * 1) port state change, check the usability of the port
560  * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
561  *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
562  *    or ETR-data word 4 (edf4) has changed.
563  */
564 static void etr_timing_alert(struct etr_irq_parm *intparm)
565 {
566 	if (intparm->pc0)
567 		/* ETR port 0 state change. */
568 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
569 	if (intparm->pc1)
570 		/* ETR port 1 state change. */
571 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
572 	if (intparm->eai)
573 		/*
574 		 * ETR port alert on either port 0, 1 or both.
575 		 * Both ports are not up-to-date now.
576 		 */
577 		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
578 	queue_work(time_sync_wq, &etr_work);
579 }
580 
581 static void etr_timeout(unsigned long dummy)
582 {
583 	set_bit(ETR_EVENT_UPDATE, &etr_events);
584 	queue_work(time_sync_wq, &etr_work);
585 }
586 
587 /*
588  * Check if the etr mode is pss.
589  */
590 static inline int etr_mode_is_pps(struct etr_eacr eacr)
591 {
592 	return eacr.es && !eacr.sl;
593 }
594 
595 /*
596  * Check if the etr mode is etr.
597  */
598 static inline int etr_mode_is_etr(struct etr_eacr eacr)
599 {
600 	return eacr.es && eacr.sl;
601 }
602 
603 /*
604  * Check if the port can be used for TOD synchronization.
605  * For PPS mode the port has to receive OTEs. For ETR mode
606  * the port has to receive OTEs, the ETR stepping bit has to
607  * be zero and the validity bits for data frame 1, 2, and 3
608  * have to be 1.
609  */
610 static int etr_port_valid(struct etr_aib *aib, int port)
611 {
612 	unsigned int psc;
613 
614 	/* Check that this port is receiving OTEs. */
615 	if (aib->tsp == 0)
616 		return 0;
617 
618 	psc = port ? aib->esw.psc1 : aib->esw.psc0;
619 	if (psc == etr_lpsc_pps_mode)
620 		return 1;
621 	if (psc == etr_lpsc_operational_step)
622 		return !aib->esw.y && aib->slsw.v1 &&
623 			aib->slsw.v2 && aib->slsw.v3;
624 	return 0;
625 }
626 
627 /*
628  * Check if two ports are on the same network.
629  */
630 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
631 {
632 	// FIXME: any other fields we have to compare?
633 	return aib1->edf1.net_id == aib2->edf1.net_id;
634 }
635 
636 /*
637  * Wrapper for etr_stei that converts physical port states
638  * to logical port states to be consistent with the output
639  * of stetr (see etr_psc vs. etr_lpsc).
640  */
641 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
642 {
643 	BUG_ON(etr_steai(aib, func) != 0);
644 	/* Convert port state to logical port state. */
645 	if (aib->esw.psc0 == 1)
646 		aib->esw.psc0 = 2;
647 	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
648 		aib->esw.psc0 = 1;
649 	if (aib->esw.psc1 == 1)
650 		aib->esw.psc1 = 2;
651 	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
652 		aib->esw.psc1 = 1;
653 }
654 
655 /*
656  * Check if the aib a2 is still connected to the same attachment as
657  * aib a1, the etv values differ by one and a2 is valid.
658  */
659 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
660 {
661 	int state_a1, state_a2;
662 
663 	/* Paranoia check: e0/e1 should better be the same. */
664 	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
665 	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
666 		return 0;
667 
668 	/* Still connected to the same etr ? */
669 	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
670 	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
671 	if (state_a1 == etr_lpsc_operational_step) {
672 		if (state_a2 != etr_lpsc_operational_step ||
673 		    a1->edf1.net_id != a2->edf1.net_id ||
674 		    a1->edf1.etr_id != a2->edf1.etr_id ||
675 		    a1->edf1.etr_pn != a2->edf1.etr_pn)
676 			return 0;
677 	} else if (state_a2 != etr_lpsc_pps_mode)
678 		return 0;
679 
680 	/* The ETV value of a2 needs to be ETV of a1 + 1. */
681 	if (a1->edf2.etv + 1 != a2->edf2.etv)
682 		return 0;
683 
684 	if (!etr_port_valid(a2, p))
685 		return 0;
686 
687 	return 1;
688 }
689 
690 struct clock_sync_data {
691 	atomic_t cpus;
692 	int in_sync;
693 	unsigned long long fixup_cc;
694 	int etr_port;
695 	struct etr_aib *etr_aib;
696 };
697 
698 static void clock_sync_cpu(struct clock_sync_data *sync)
699 {
700 	atomic_dec(&sync->cpus);
701 	enable_sync_clock();
702 	/*
703 	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
704 	 * is called on all other cpus while the TOD clocks is stopped.
705 	 * __udelay will stop the cpu on an enabled wait psw until the
706 	 * TOD is running again.
707 	 */
708 	while (sync->in_sync == 0) {
709 		__udelay(1);
710 		/*
711 		 * A different cpu changes *in_sync. Therefore use
712 		 * barrier() to force memory access.
713 		 */
714 		barrier();
715 	}
716 	if (sync->in_sync != 1)
717 		/* Didn't work. Clear per-cpu in sync bit again. */
718 		disable_sync_clock(NULL);
719 	/*
720 	 * This round of TOD syncing is done. Set the clock comparator
721 	 * to the next tick and let the processor continue.
722 	 */
723 	fixup_clock_comparator(sync->fixup_cc);
724 }
725 
726 /*
727  * Sync the TOD clock using the port refered to by aibp. This port
728  * has to be enabled and the other port has to be disabled. The
729  * last eacr update has to be more than 1.6 seconds in the past.
730  */
731 static int etr_sync_clock(void *data)
732 {
733 	static int first;
734 	unsigned long long clock, old_clock, delay, delta;
735 	struct clock_sync_data *etr_sync;
736 	struct etr_aib *sync_port, *aib;
737 	int port;
738 	int rc;
739 
740 	etr_sync = data;
741 
742 	if (xchg(&first, 1) == 1) {
743 		/* Slave */
744 		clock_sync_cpu(etr_sync);
745 		return 0;
746 	}
747 
748 	/* Wait until all other cpus entered the sync function. */
749 	while (atomic_read(&etr_sync->cpus) != 0)
750 		cpu_relax();
751 
752 	port = etr_sync->etr_port;
753 	aib = etr_sync->etr_aib;
754 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
755 	enable_sync_clock();
756 
757 	/* Set clock to next OTE. */
758 	__ctl_set_bit(14, 21);
759 	__ctl_set_bit(0, 29);
760 	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
761 	old_clock = get_clock();
762 	if (set_clock(clock) == 0) {
763 		__udelay(1);	/* Wait for the clock to start. */
764 		__ctl_clear_bit(0, 29);
765 		__ctl_clear_bit(14, 21);
766 		etr_stetr(aib);
767 		/* Adjust Linux timing variables. */
768 		delay = (unsigned long long)
769 			(aib->edf2.etv - sync_port->edf2.etv) << 32;
770 		delta = adjust_time(old_clock, clock, delay);
771 		etr_sync->fixup_cc = delta;
772 		fixup_clock_comparator(delta);
773 		/* Verify that the clock is properly set. */
774 		if (!etr_aib_follows(sync_port, aib, port)) {
775 			/* Didn't work. */
776 			disable_sync_clock(NULL);
777 			etr_sync->in_sync = -EAGAIN;
778 			rc = -EAGAIN;
779 		} else {
780 			etr_sync->in_sync = 1;
781 			rc = 0;
782 		}
783 	} else {
784 		/* Could not set the clock ?!? */
785 		__ctl_clear_bit(0, 29);
786 		__ctl_clear_bit(14, 21);
787 		disable_sync_clock(NULL);
788 		etr_sync->in_sync = -EAGAIN;
789 		rc = -EAGAIN;
790 	}
791 	xchg(&first, 0);
792 	return rc;
793 }
794 
795 static int etr_sync_clock_stop(struct etr_aib *aib, int port)
796 {
797 	struct clock_sync_data etr_sync;
798 	struct etr_aib *sync_port;
799 	int follows;
800 	int rc;
801 
802 	/* Check if the current aib is adjacent to the sync port aib. */
803 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
804 	follows = etr_aib_follows(sync_port, aib, port);
805 	memcpy(sync_port, aib, sizeof(*aib));
806 	if (!follows)
807 		return -EAGAIN;
808 	memset(&etr_sync, 0, sizeof(etr_sync));
809 	etr_sync.etr_aib = aib;
810 	etr_sync.etr_port = port;
811 	get_online_cpus();
812 	atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
813 	rc = stop_machine(etr_sync_clock, &etr_sync, &cpu_online_map);
814 	put_online_cpus();
815 	return rc;
816 }
817 
818 /*
819  * Handle the immediate effects of the different events.
820  * The port change event is used for online/offline changes.
821  */
822 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
823 {
824 	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
825 		eacr.es = 0;
826 	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
827 		eacr.es = eacr.sl = 0;
828 	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
829 		etr_port0_uptodate = etr_port1_uptodate = 0;
830 
831 	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
832 		if (eacr.e0)
833 			/*
834 			 * Port change of an enabled port. We have to
835 			 * assume that this can have caused an stepping
836 			 * port switch.
837 			 */
838 			etr_tolec = get_clock();
839 		eacr.p0 = etr_port0_online;
840 		if (!eacr.p0)
841 			eacr.e0 = 0;
842 		etr_port0_uptodate = 0;
843 	}
844 	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
845 		if (eacr.e1)
846 			/*
847 			 * Port change of an enabled port. We have to
848 			 * assume that this can have caused an stepping
849 			 * port switch.
850 			 */
851 			etr_tolec = get_clock();
852 		eacr.p1 = etr_port1_online;
853 		if (!eacr.p1)
854 			eacr.e1 = 0;
855 		etr_port1_uptodate = 0;
856 	}
857 	clear_bit(ETR_EVENT_UPDATE, &etr_events);
858 	return eacr;
859 }
860 
861 /*
862  * Set up a timer that expires after the etr_tolec + 1.6 seconds if
863  * one of the ports needs an update.
864  */
865 static void etr_set_tolec_timeout(unsigned long long now)
866 {
867 	unsigned long micros;
868 
869 	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
870 	    (!etr_eacr.p1 || etr_port1_uptodate))
871 		return;
872 	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
873 	micros = (micros > 1600000) ? 0 : 1600000 - micros;
874 	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
875 }
876 
877 /*
878  * Set up a time that expires after 1/2 second.
879  */
880 static void etr_set_sync_timeout(void)
881 {
882 	mod_timer(&etr_timer, jiffies + HZ/2);
883 }
884 
885 /*
886  * Update the aib information for one or both ports.
887  */
888 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
889 					 struct etr_eacr eacr)
890 {
891 	/* With both ports disabled the aib information is useless. */
892 	if (!eacr.e0 && !eacr.e1)
893 		return eacr;
894 
895 	/* Update port0 or port1 with aib stored in etr_work_fn. */
896 	if (aib->esw.q == 0) {
897 		/* Information for port 0 stored. */
898 		if (eacr.p0 && !etr_port0_uptodate) {
899 			etr_port0 = *aib;
900 			if (etr_port0_online)
901 				etr_port0_uptodate = 1;
902 		}
903 	} else {
904 		/* Information for port 1 stored. */
905 		if (eacr.p1 && !etr_port1_uptodate) {
906 			etr_port1 = *aib;
907 			if (etr_port0_online)
908 				etr_port1_uptodate = 1;
909 		}
910 	}
911 
912 	/*
913 	 * Do not try to get the alternate port aib if the clock
914 	 * is not in sync yet.
915 	 */
916 	if (!eacr.es || !check_sync_clock())
917 		return eacr;
918 
919 	/*
920 	 * If steai is available we can get the information about
921 	 * the other port immediately. If only stetr is available the
922 	 * data-port bit toggle has to be used.
923 	 */
924 	if (etr_steai_available) {
925 		if (eacr.p0 && !etr_port0_uptodate) {
926 			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
927 			etr_port0_uptodate = 1;
928 		}
929 		if (eacr.p1 && !etr_port1_uptodate) {
930 			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
931 			etr_port1_uptodate = 1;
932 		}
933 	} else {
934 		/*
935 		 * One port was updated above, if the other
936 		 * port is not uptodate toggle dp bit.
937 		 */
938 		if ((eacr.p0 && !etr_port0_uptodate) ||
939 		    (eacr.p1 && !etr_port1_uptodate))
940 			eacr.dp ^= 1;
941 		else
942 			eacr.dp = 0;
943 	}
944 	return eacr;
945 }
946 
947 /*
948  * Write new etr control register if it differs from the current one.
949  * Return 1 if etr_tolec has been updated as well.
950  */
951 static void etr_update_eacr(struct etr_eacr eacr)
952 {
953 	int dp_changed;
954 
955 	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
956 		/* No change, return. */
957 		return;
958 	/*
959 	 * The disable of an active port of the change of the data port
960 	 * bit can/will cause a change in the data port.
961 	 */
962 	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
963 		(etr_eacr.dp ^ eacr.dp) != 0;
964 	etr_eacr = eacr;
965 	etr_setr(&etr_eacr);
966 	if (dp_changed)
967 		etr_tolec = get_clock();
968 }
969 
970 /*
971  * ETR work. In this function you'll find the main logic. In
972  * particular this is the only function that calls etr_update_eacr(),
973  * it "controls" the etr control register.
974  */
975 static void etr_work_fn(struct work_struct *work)
976 {
977 	unsigned long long now;
978 	struct etr_eacr eacr;
979 	struct etr_aib aib;
980 	int sync_port;
981 
982 	/* prevent multiple execution. */
983 	mutex_lock(&etr_work_mutex);
984 
985 	/* Create working copy of etr_eacr. */
986 	eacr = etr_eacr;
987 
988 	/* Check for the different events and their immediate effects. */
989 	eacr = etr_handle_events(eacr);
990 
991 	/* Check if ETR is supposed to be active. */
992 	eacr.ea = eacr.p0 || eacr.p1;
993 	if (!eacr.ea) {
994 		/* Both ports offline. Reset everything. */
995 		eacr.dp = eacr.es = eacr.sl = 0;
996 		on_each_cpu(disable_sync_clock, NULL, 1);
997 		del_timer_sync(&etr_timer);
998 		etr_update_eacr(eacr);
999 		goto out_unlock;
1000 	}
1001 
1002 	/* Store aib to get the current ETR status word. */
1003 	BUG_ON(etr_stetr(&aib) != 0);
1004 	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
1005 	now = get_clock();
1006 
1007 	/*
1008 	 * Update the port information if the last stepping port change
1009 	 * or data port change is older than 1.6 seconds.
1010 	 */
1011 	if (now >= etr_tolec + (1600000 << 12))
1012 		eacr = etr_handle_update(&aib, eacr);
1013 
1014 	/*
1015 	 * Select ports to enable. The prefered synchronization mode is PPS.
1016 	 * If a port can be enabled depends on a number of things:
1017 	 * 1) The port needs to be online and uptodate. A port is not
1018 	 *    disabled just because it is not uptodate, but it is only
1019 	 *    enabled if it is uptodate.
1020 	 * 2) The port needs to have the same mode (pps / etr).
1021 	 * 3) The port needs to be usable -> etr_port_valid() == 1
1022 	 * 4) To enable the second port the clock needs to be in sync.
1023 	 * 5) If both ports are useable and are ETR ports, the network id
1024 	 *    has to be the same.
1025 	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1026 	 */
1027 	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1028 		eacr.sl = 0;
1029 		eacr.e0 = 1;
1030 		if (!etr_mode_is_pps(etr_eacr))
1031 			eacr.es = 0;
1032 		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1033 			eacr.e1 = 0;
1034 		// FIXME: uptodate checks ?
1035 		else if (etr_port0_uptodate && etr_port1_uptodate)
1036 			eacr.e1 = 1;
1037 		sync_port = (etr_port0_uptodate &&
1038 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1039 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1040 		eacr.sl = 0;
1041 		eacr.e0 = 0;
1042 		eacr.e1 = 1;
1043 		if (!etr_mode_is_pps(etr_eacr))
1044 			eacr.es = 0;
1045 		sync_port = (etr_port1_uptodate &&
1046 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1047 	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1048 		eacr.sl = 1;
1049 		eacr.e0 = 1;
1050 		if (!etr_mode_is_etr(etr_eacr))
1051 			eacr.es = 0;
1052 		if (!eacr.es || !eacr.p1 ||
1053 		    aib.esw.psc1 != etr_lpsc_operational_alt)
1054 			eacr.e1 = 0;
1055 		else if (etr_port0_uptodate && etr_port1_uptodate &&
1056 			 etr_compare_network(&etr_port0, &etr_port1))
1057 			eacr.e1 = 1;
1058 		sync_port = (etr_port0_uptodate &&
1059 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1060 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1061 		eacr.sl = 1;
1062 		eacr.e0 = 0;
1063 		eacr.e1 = 1;
1064 		if (!etr_mode_is_etr(etr_eacr))
1065 			eacr.es = 0;
1066 		sync_port = (etr_port1_uptodate &&
1067 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1068 	} else {
1069 		/* Both ports not usable. */
1070 		eacr.es = eacr.sl = 0;
1071 		sync_port = -1;
1072 	}
1073 
1074 	/*
1075 	 * If the clock is in sync just update the eacr and return.
1076 	 * If there is no valid sync port wait for a port update.
1077 	 */
1078 	if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1079 		etr_update_eacr(eacr);
1080 		etr_set_tolec_timeout(now);
1081 		goto out_unlock;
1082 	}
1083 
1084 	/*
1085 	 * Prepare control register for clock syncing
1086 	 * (reset data port bit, set sync check control.
1087 	 */
1088 	eacr.dp = 0;
1089 	eacr.es = 1;
1090 
1091 	/*
1092 	 * Update eacr and try to synchronize the clock. If the update
1093 	 * of eacr caused a stepping port switch (or if we have to
1094 	 * assume that a stepping port switch has occured) or the
1095 	 * clock syncing failed, reset the sync check control bit
1096 	 * and set up a timer to try again after 0.5 seconds
1097 	 */
1098 	etr_update_eacr(eacr);
1099 	if (now < etr_tolec + (1600000 << 12) ||
1100 	    etr_sync_clock_stop(&aib, sync_port) != 0) {
1101 		/* Sync failed. Try again in 1/2 second. */
1102 		eacr.es = 0;
1103 		etr_update_eacr(eacr);
1104 		etr_set_sync_timeout();
1105 	} else
1106 		etr_set_tolec_timeout(now);
1107 out_unlock:
1108 	mutex_unlock(&etr_work_mutex);
1109 }
1110 
1111 /*
1112  * Sysfs interface functions
1113  */
1114 static struct sysdev_class etr_sysclass = {
1115 	.name	= "etr",
1116 };
1117 
1118 static struct sys_device etr_port0_dev = {
1119 	.id	= 0,
1120 	.cls	= &etr_sysclass,
1121 };
1122 
1123 static struct sys_device etr_port1_dev = {
1124 	.id	= 1,
1125 	.cls	= &etr_sysclass,
1126 };
1127 
1128 /*
1129  * ETR class attributes
1130  */
1131 static ssize_t etr_stepping_port_show(struct sysdev_class *class,
1132 					struct sysdev_class_attribute *attr,
1133 					char *buf)
1134 {
1135 	return sprintf(buf, "%i\n", etr_port0.esw.p);
1136 }
1137 
1138 static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1139 
1140 static ssize_t etr_stepping_mode_show(struct sysdev_class *class,
1141 				      	struct sysdev_class_attribute *attr,
1142 					char *buf)
1143 {
1144 	char *mode_str;
1145 
1146 	if (etr_mode_is_pps(etr_eacr))
1147 		mode_str = "pps";
1148 	else if (etr_mode_is_etr(etr_eacr))
1149 		mode_str = "etr";
1150 	else
1151 		mode_str = "local";
1152 	return sprintf(buf, "%s\n", mode_str);
1153 }
1154 
1155 static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1156 
1157 /*
1158  * ETR port attributes
1159  */
1160 static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev)
1161 {
1162 	if (dev == &etr_port0_dev)
1163 		return etr_port0_online ? &etr_port0 : NULL;
1164 	else
1165 		return etr_port1_online ? &etr_port1 : NULL;
1166 }
1167 
1168 static ssize_t etr_online_show(struct sys_device *dev,
1169 				struct sysdev_attribute *attr,
1170 				char *buf)
1171 {
1172 	unsigned int online;
1173 
1174 	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1175 	return sprintf(buf, "%i\n", online);
1176 }
1177 
1178 static ssize_t etr_online_store(struct sys_device *dev,
1179 				struct sysdev_attribute *attr,
1180 				const char *buf, size_t count)
1181 {
1182 	unsigned int value;
1183 
1184 	value = simple_strtoul(buf, NULL, 0);
1185 	if (value != 0 && value != 1)
1186 		return -EINVAL;
1187 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1188 		return -EOPNOTSUPP;
1189 	mutex_lock(&clock_sync_mutex);
1190 	if (dev == &etr_port0_dev) {
1191 		if (etr_port0_online == value)
1192 			goto out;	/* Nothing to do. */
1193 		etr_port0_online = value;
1194 		if (etr_port0_online && etr_port1_online)
1195 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1196 		else
1197 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1198 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1199 		queue_work(time_sync_wq, &etr_work);
1200 	} else {
1201 		if (etr_port1_online == value)
1202 			goto out;	/* Nothing to do. */
1203 		etr_port1_online = value;
1204 		if (etr_port0_online && etr_port1_online)
1205 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1206 		else
1207 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1208 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1209 		queue_work(time_sync_wq, &etr_work);
1210 	}
1211 out:
1212 	mutex_unlock(&clock_sync_mutex);
1213 	return count;
1214 }
1215 
1216 static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store);
1217 
1218 static ssize_t etr_stepping_control_show(struct sys_device *dev,
1219 					struct sysdev_attribute *attr,
1220 					char *buf)
1221 {
1222 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1223 		       etr_eacr.e0 : etr_eacr.e1);
1224 }
1225 
1226 static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1227 
1228 static ssize_t etr_mode_code_show(struct sys_device *dev,
1229 				struct sysdev_attribute *attr, char *buf)
1230 {
1231 	if (!etr_port0_online && !etr_port1_online)
1232 		/* Status word is not uptodate if both ports are offline. */
1233 		return -ENODATA;
1234 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1235 		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1236 }
1237 
1238 static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1239 
1240 static ssize_t etr_untuned_show(struct sys_device *dev,
1241 				struct sysdev_attribute *attr, char *buf)
1242 {
1243 	struct etr_aib *aib = etr_aib_from_dev(dev);
1244 
1245 	if (!aib || !aib->slsw.v1)
1246 		return -ENODATA;
1247 	return sprintf(buf, "%i\n", aib->edf1.u);
1248 }
1249 
1250 static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL);
1251 
1252 static ssize_t etr_network_id_show(struct sys_device *dev,
1253 				struct sysdev_attribute *attr, char *buf)
1254 {
1255 	struct etr_aib *aib = etr_aib_from_dev(dev);
1256 
1257 	if (!aib || !aib->slsw.v1)
1258 		return -ENODATA;
1259 	return sprintf(buf, "%i\n", aib->edf1.net_id);
1260 }
1261 
1262 static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL);
1263 
1264 static ssize_t etr_id_show(struct sys_device *dev,
1265 			struct sysdev_attribute *attr, char *buf)
1266 {
1267 	struct etr_aib *aib = etr_aib_from_dev(dev);
1268 
1269 	if (!aib || !aib->slsw.v1)
1270 		return -ENODATA;
1271 	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1272 }
1273 
1274 static SYSDEV_ATTR(id, 0400, etr_id_show, NULL);
1275 
1276 static ssize_t etr_port_number_show(struct sys_device *dev,
1277 			struct sysdev_attribute *attr, char *buf)
1278 {
1279 	struct etr_aib *aib = etr_aib_from_dev(dev);
1280 
1281 	if (!aib || !aib->slsw.v1)
1282 		return -ENODATA;
1283 	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1284 }
1285 
1286 static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL);
1287 
1288 static ssize_t etr_coupled_show(struct sys_device *dev,
1289 			struct sysdev_attribute *attr, char *buf)
1290 {
1291 	struct etr_aib *aib = etr_aib_from_dev(dev);
1292 
1293 	if (!aib || !aib->slsw.v3)
1294 		return -ENODATA;
1295 	return sprintf(buf, "%i\n", aib->edf3.c);
1296 }
1297 
1298 static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL);
1299 
1300 static ssize_t etr_local_time_show(struct sys_device *dev,
1301 			struct sysdev_attribute *attr, char *buf)
1302 {
1303 	struct etr_aib *aib = etr_aib_from_dev(dev);
1304 
1305 	if (!aib || !aib->slsw.v3)
1306 		return -ENODATA;
1307 	return sprintf(buf, "%i\n", aib->edf3.blto);
1308 }
1309 
1310 static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL);
1311 
1312 static ssize_t etr_utc_offset_show(struct sys_device *dev,
1313 			struct sysdev_attribute *attr, char *buf)
1314 {
1315 	struct etr_aib *aib = etr_aib_from_dev(dev);
1316 
1317 	if (!aib || !aib->slsw.v3)
1318 		return -ENODATA;
1319 	return sprintf(buf, "%i\n", aib->edf3.buo);
1320 }
1321 
1322 static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1323 
1324 static struct sysdev_attribute *etr_port_attributes[] = {
1325 	&attr_online,
1326 	&attr_stepping_control,
1327 	&attr_state_code,
1328 	&attr_untuned,
1329 	&attr_network,
1330 	&attr_id,
1331 	&attr_port,
1332 	&attr_coupled,
1333 	&attr_local_time,
1334 	&attr_utc_offset,
1335 	NULL
1336 };
1337 
1338 static int __init etr_register_port(struct sys_device *dev)
1339 {
1340 	struct sysdev_attribute **attr;
1341 	int rc;
1342 
1343 	rc = sysdev_register(dev);
1344 	if (rc)
1345 		goto out;
1346 	for (attr = etr_port_attributes; *attr; attr++) {
1347 		rc = sysdev_create_file(dev, *attr);
1348 		if (rc)
1349 			goto out_unreg;
1350 	}
1351 	return 0;
1352 out_unreg:
1353 	for (; attr >= etr_port_attributes; attr--)
1354 		sysdev_remove_file(dev, *attr);
1355 	sysdev_unregister(dev);
1356 out:
1357 	return rc;
1358 }
1359 
1360 static void __init etr_unregister_port(struct sys_device *dev)
1361 {
1362 	struct sysdev_attribute **attr;
1363 
1364 	for (attr = etr_port_attributes; *attr; attr++)
1365 		sysdev_remove_file(dev, *attr);
1366 	sysdev_unregister(dev);
1367 }
1368 
1369 static int __init etr_init_sysfs(void)
1370 {
1371 	int rc;
1372 
1373 	rc = sysdev_class_register(&etr_sysclass);
1374 	if (rc)
1375 		goto out;
1376 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port);
1377 	if (rc)
1378 		goto out_unreg_class;
1379 	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode);
1380 	if (rc)
1381 		goto out_remove_stepping_port;
1382 	rc = etr_register_port(&etr_port0_dev);
1383 	if (rc)
1384 		goto out_remove_stepping_mode;
1385 	rc = etr_register_port(&etr_port1_dev);
1386 	if (rc)
1387 		goto out_remove_port0;
1388 	return 0;
1389 
1390 out_remove_port0:
1391 	etr_unregister_port(&etr_port0_dev);
1392 out_remove_stepping_mode:
1393 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode);
1394 out_remove_stepping_port:
1395 	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port);
1396 out_unreg_class:
1397 	sysdev_class_unregister(&etr_sysclass);
1398 out:
1399 	return rc;
1400 }
1401 
1402 device_initcall(etr_init_sysfs);
1403 
1404 /*
1405  * Server Time Protocol (STP) code.
1406  */
1407 static int stp_online;
1408 static struct stp_sstpi stp_info;
1409 static void *stp_page;
1410 
1411 static void stp_work_fn(struct work_struct *work);
1412 static DEFINE_MUTEX(stp_work_mutex);
1413 static DECLARE_WORK(stp_work, stp_work_fn);
1414 static struct timer_list stp_timer;
1415 
1416 static int __init early_parse_stp(char *p)
1417 {
1418 	if (strncmp(p, "off", 3) == 0)
1419 		stp_online = 0;
1420 	else if (strncmp(p, "on", 2) == 0)
1421 		stp_online = 1;
1422 	return 0;
1423 }
1424 early_param("stp", early_parse_stp);
1425 
1426 /*
1427  * Reset STP attachment.
1428  */
1429 static void __init stp_reset(void)
1430 {
1431 	int rc;
1432 
1433 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1434 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1435 	if (rc == 0)
1436 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1437 	else if (stp_online) {
1438 		pr_warning("The real or virtual hardware system does "
1439 			   "not provide an STP interface\n");
1440 		free_page((unsigned long) stp_page);
1441 		stp_page = NULL;
1442 		stp_online = 0;
1443 	}
1444 }
1445 
1446 static void stp_timeout(unsigned long dummy)
1447 {
1448 	queue_work(time_sync_wq, &stp_work);
1449 }
1450 
1451 static int __init stp_init(void)
1452 {
1453 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1454 		return 0;
1455 	setup_timer(&stp_timer, stp_timeout, 0UL);
1456 	time_init_wq();
1457 	if (!stp_online)
1458 		return 0;
1459 	queue_work(time_sync_wq, &stp_work);
1460 	return 0;
1461 }
1462 
1463 arch_initcall(stp_init);
1464 
1465 /*
1466  * STP timing alert. There are three causes:
1467  * 1) timing status change
1468  * 2) link availability change
1469  * 3) time control parameter change
1470  * In all three cases we are only interested in the clock source state.
1471  * If a STP clock source is now available use it.
1472  */
1473 static void stp_timing_alert(struct stp_irq_parm *intparm)
1474 {
1475 	if (intparm->tsc || intparm->lac || intparm->tcpc)
1476 		queue_work(time_sync_wq, &stp_work);
1477 }
1478 
1479 /*
1480  * STP sync check machine check. This is called when the timing state
1481  * changes from the synchronized state to the unsynchronized state.
1482  * After a STP sync check the clock is not in sync. The machine check
1483  * is broadcasted to all cpus at the same time.
1484  */
1485 void stp_sync_check(void)
1486 {
1487 	disable_sync_clock(NULL);
1488 	queue_work(time_sync_wq, &stp_work);
1489 }
1490 
1491 /*
1492  * STP island condition machine check. This is called when an attached
1493  * server  attempts to communicate over an STP link and the servers
1494  * have matching CTN ids and have a valid stratum-1 configuration
1495  * but the configurations do not match.
1496  */
1497 void stp_island_check(void)
1498 {
1499 	disable_sync_clock(NULL);
1500 	queue_work(time_sync_wq, &stp_work);
1501 }
1502 
1503 
1504 static int stp_sync_clock(void *data)
1505 {
1506 	static int first;
1507 	unsigned long long old_clock, delta;
1508 	struct clock_sync_data *stp_sync;
1509 	int rc;
1510 
1511 	stp_sync = data;
1512 
1513 	if (xchg(&first, 1) == 1) {
1514 		/* Slave */
1515 		clock_sync_cpu(stp_sync);
1516 		return 0;
1517 	}
1518 
1519 	/* Wait until all other cpus entered the sync function. */
1520 	while (atomic_read(&stp_sync->cpus) != 0)
1521 		cpu_relax();
1522 
1523 	enable_sync_clock();
1524 
1525 	rc = 0;
1526 	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1527 	    stp_info.todoff[2] || stp_info.todoff[3] ||
1528 	    stp_info.tmd != 2) {
1529 		old_clock = get_clock();
1530 		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1531 		if (rc == 0) {
1532 			delta = adjust_time(old_clock, get_clock(), 0);
1533 			fixup_clock_comparator(delta);
1534 			rc = chsc_sstpi(stp_page, &stp_info,
1535 					sizeof(struct stp_sstpi));
1536 			if (rc == 0 && stp_info.tmd != 2)
1537 				rc = -EAGAIN;
1538 		}
1539 	}
1540 	if (rc) {
1541 		disable_sync_clock(NULL);
1542 		stp_sync->in_sync = -EAGAIN;
1543 	} else
1544 		stp_sync->in_sync = 1;
1545 	xchg(&first, 0);
1546 	return 0;
1547 }
1548 
1549 /*
1550  * STP work. Check for the STP state and take over the clock
1551  * synchronization if the STP clock source is usable.
1552  */
1553 static void stp_work_fn(struct work_struct *work)
1554 {
1555 	struct clock_sync_data stp_sync;
1556 	int rc;
1557 
1558 	/* prevent multiple execution. */
1559 	mutex_lock(&stp_work_mutex);
1560 
1561 	if (!stp_online) {
1562 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1563 		del_timer_sync(&stp_timer);
1564 		goto out_unlock;
1565 	}
1566 
1567 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1568 	if (rc)
1569 		goto out_unlock;
1570 
1571 	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1572 	if (rc || stp_info.c == 0)
1573 		goto out_unlock;
1574 
1575 	/* Skip synchronization if the clock is already in sync. */
1576 	if (check_sync_clock())
1577 		goto out_unlock;
1578 
1579 	memset(&stp_sync, 0, sizeof(stp_sync));
1580 	get_online_cpus();
1581 	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1582 	stop_machine(stp_sync_clock, &stp_sync, &cpu_online_map);
1583 	put_online_cpus();
1584 
1585 	if (!check_sync_clock())
1586 		/*
1587 		 * There is a usable clock but the synchonization failed.
1588 		 * Retry after a second.
1589 		 */
1590 		mod_timer(&stp_timer, jiffies + HZ);
1591 
1592 out_unlock:
1593 	mutex_unlock(&stp_work_mutex);
1594 }
1595 
1596 /*
1597  * STP class sysfs interface functions
1598  */
1599 static struct sysdev_class stp_sysclass = {
1600 	.name	= "stp",
1601 };
1602 
1603 static ssize_t stp_ctn_id_show(struct sysdev_class *class,
1604 				struct sysdev_class_attribute *attr,
1605 				char *buf)
1606 {
1607 	if (!stp_online)
1608 		return -ENODATA;
1609 	return sprintf(buf, "%016llx\n",
1610 		       *(unsigned long long *) stp_info.ctnid);
1611 }
1612 
1613 static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1614 
1615 static ssize_t stp_ctn_type_show(struct sysdev_class *class,
1616 				struct sysdev_class_attribute *attr,
1617 				char *buf)
1618 {
1619 	if (!stp_online)
1620 		return -ENODATA;
1621 	return sprintf(buf, "%i\n", stp_info.ctn);
1622 }
1623 
1624 static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1625 
1626 static ssize_t stp_dst_offset_show(struct sysdev_class *class,
1627 				   struct sysdev_class_attribute *attr,
1628 				   char *buf)
1629 {
1630 	if (!stp_online || !(stp_info.vbits & 0x2000))
1631 		return -ENODATA;
1632 	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1633 }
1634 
1635 static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1636 
1637 static ssize_t stp_leap_seconds_show(struct sysdev_class *class,
1638 					struct sysdev_class_attribute *attr,
1639 					char *buf)
1640 {
1641 	if (!stp_online || !(stp_info.vbits & 0x8000))
1642 		return -ENODATA;
1643 	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1644 }
1645 
1646 static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1647 
1648 static ssize_t stp_stratum_show(struct sysdev_class *class,
1649 				struct sysdev_class_attribute *attr,
1650 				char *buf)
1651 {
1652 	if (!stp_online)
1653 		return -ENODATA;
1654 	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1655 }
1656 
1657 static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL);
1658 
1659 static ssize_t stp_time_offset_show(struct sysdev_class *class,
1660 				struct sysdev_class_attribute *attr,
1661 				char *buf)
1662 {
1663 	if (!stp_online || !(stp_info.vbits & 0x0800))
1664 		return -ENODATA;
1665 	return sprintf(buf, "%i\n", (int) stp_info.tto);
1666 }
1667 
1668 static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1669 
1670 static ssize_t stp_time_zone_offset_show(struct sysdev_class *class,
1671 				struct sysdev_class_attribute *attr,
1672 				char *buf)
1673 {
1674 	if (!stp_online || !(stp_info.vbits & 0x4000))
1675 		return -ENODATA;
1676 	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1677 }
1678 
1679 static SYSDEV_CLASS_ATTR(time_zone_offset, 0400,
1680 			 stp_time_zone_offset_show, NULL);
1681 
1682 static ssize_t stp_timing_mode_show(struct sysdev_class *class,
1683 				struct sysdev_class_attribute *attr,
1684 				char *buf)
1685 {
1686 	if (!stp_online)
1687 		return -ENODATA;
1688 	return sprintf(buf, "%i\n", stp_info.tmd);
1689 }
1690 
1691 static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1692 
1693 static ssize_t stp_timing_state_show(struct sysdev_class *class,
1694 				struct sysdev_class_attribute *attr,
1695 				char *buf)
1696 {
1697 	if (!stp_online)
1698 		return -ENODATA;
1699 	return sprintf(buf, "%i\n", stp_info.tst);
1700 }
1701 
1702 static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1703 
1704 static ssize_t stp_online_show(struct sysdev_class *class,
1705 				struct sysdev_class_attribute *attr,
1706 				char *buf)
1707 {
1708 	return sprintf(buf, "%i\n", stp_online);
1709 }
1710 
1711 static ssize_t stp_online_store(struct sysdev_class *class,
1712 				struct sysdev_class_attribute *attr,
1713 				const char *buf, size_t count)
1714 {
1715 	unsigned int value;
1716 
1717 	value = simple_strtoul(buf, NULL, 0);
1718 	if (value != 0 && value != 1)
1719 		return -EINVAL;
1720 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1721 		return -EOPNOTSUPP;
1722 	mutex_lock(&clock_sync_mutex);
1723 	stp_online = value;
1724 	if (stp_online)
1725 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1726 	else
1727 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1728 	queue_work(time_sync_wq, &stp_work);
1729 	mutex_unlock(&clock_sync_mutex);
1730 	return count;
1731 }
1732 
1733 /*
1734  * Can't use SYSDEV_CLASS_ATTR because the attribute should be named
1735  * stp/online but attr_online already exists in this file ..
1736  */
1737 static struct sysdev_class_attribute attr_stp_online = {
1738 	.attr = { .name = "online", .mode = 0600 },
1739 	.show	= stp_online_show,
1740 	.store	= stp_online_store,
1741 };
1742 
1743 static struct sysdev_class_attribute *stp_attributes[] = {
1744 	&attr_ctn_id,
1745 	&attr_ctn_type,
1746 	&attr_dst_offset,
1747 	&attr_leap_seconds,
1748 	&attr_stp_online,
1749 	&attr_stratum,
1750 	&attr_time_offset,
1751 	&attr_time_zone_offset,
1752 	&attr_timing_mode,
1753 	&attr_timing_state,
1754 	NULL
1755 };
1756 
1757 static int __init stp_init_sysfs(void)
1758 {
1759 	struct sysdev_class_attribute **attr;
1760 	int rc;
1761 
1762 	rc = sysdev_class_register(&stp_sysclass);
1763 	if (rc)
1764 		goto out;
1765 	for (attr = stp_attributes; *attr; attr++) {
1766 		rc = sysdev_class_create_file(&stp_sysclass, *attr);
1767 		if (rc)
1768 			goto out_unreg;
1769 	}
1770 	return 0;
1771 out_unreg:
1772 	for (; attr >= stp_attributes; attr--)
1773 		sysdev_class_remove_file(&stp_sysclass, *attr);
1774 	sysdev_class_unregister(&stp_sysclass);
1775 out:
1776 	return rc;
1777 }
1778 
1779 device_initcall(stp_init_sysfs);
1780