1 /* 2 * arch/s390/kernel/time.c 3 * Time of day based timer functions. 4 * 5 * S390 version 6 * Copyright IBM Corp. 1999, 2008 7 * Author(s): Hartmut Penner (hp@de.ibm.com), 8 * Martin Schwidefsky (schwidefsky@de.ibm.com), 9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 10 * 11 * Derived from "arch/i386/kernel/time.c" 12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 13 */ 14 15 #define KMSG_COMPONENT "time" 16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 17 18 #include <linux/kernel_stat.h> 19 #include <linux/errno.h> 20 #include <linux/module.h> 21 #include <linux/sched.h> 22 #include <linux/kernel.h> 23 #include <linux/param.h> 24 #include <linux/string.h> 25 #include <linux/mm.h> 26 #include <linux/interrupt.h> 27 #include <linux/cpu.h> 28 #include <linux/stop_machine.h> 29 #include <linux/time.h> 30 #include <linux/sysdev.h> 31 #include <linux/delay.h> 32 #include <linux/init.h> 33 #include <linux/smp.h> 34 #include <linux/types.h> 35 #include <linux/profile.h> 36 #include <linux/timex.h> 37 #include <linux/notifier.h> 38 #include <linux/clocksource.h> 39 #include <linux/clockchips.h> 40 #include <linux/gfp.h> 41 #include <linux/kprobes.h> 42 #include <asm/uaccess.h> 43 #include <asm/delay.h> 44 #include <asm/s390_ext.h> 45 #include <asm/div64.h> 46 #include <asm/vdso.h> 47 #include <asm/irq.h> 48 #include <asm/irq_regs.h> 49 #include <asm/timer.h> 50 #include <asm/etr.h> 51 #include <asm/cio.h> 52 53 /* change this if you have some constant time drift */ 54 #define USECS_PER_JIFFY ((unsigned long) 1000000/HZ) 55 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12) 56 57 u64 sched_clock_base_cc = -1; /* Force to data section. */ 58 EXPORT_SYMBOL_GPL(sched_clock_base_cc); 59 60 static DEFINE_PER_CPU(struct clock_event_device, comparators); 61 62 /* 63 * Scheduler clock - returns current time in nanosec units. 64 */ 65 unsigned long long notrace __kprobes sched_clock(void) 66 { 67 return (get_clock_monotonic() * 125) >> 9; 68 } 69 70 /* 71 * Monotonic_clock - returns # of nanoseconds passed since time_init() 72 */ 73 unsigned long long monotonic_clock(void) 74 { 75 return sched_clock(); 76 } 77 EXPORT_SYMBOL(monotonic_clock); 78 79 void tod_to_timeval(__u64 todval, struct timespec *xt) 80 { 81 unsigned long long sec; 82 83 sec = todval >> 12; 84 do_div(sec, 1000000); 85 xt->tv_sec = sec; 86 todval -= (sec * 1000000) << 12; 87 xt->tv_nsec = ((todval * 1000) >> 12); 88 } 89 EXPORT_SYMBOL(tod_to_timeval); 90 91 void clock_comparator_work(void) 92 { 93 struct clock_event_device *cd; 94 95 S390_lowcore.clock_comparator = -1ULL; 96 set_clock_comparator(S390_lowcore.clock_comparator); 97 cd = &__get_cpu_var(comparators); 98 cd->event_handler(cd); 99 } 100 101 /* 102 * Fixup the clock comparator. 103 */ 104 static void fixup_clock_comparator(unsigned long long delta) 105 { 106 /* If nobody is waiting there's nothing to fix. */ 107 if (S390_lowcore.clock_comparator == -1ULL) 108 return; 109 S390_lowcore.clock_comparator += delta; 110 set_clock_comparator(S390_lowcore.clock_comparator); 111 } 112 113 static int s390_next_event(unsigned long delta, 114 struct clock_event_device *evt) 115 { 116 S390_lowcore.clock_comparator = get_clock() + delta; 117 set_clock_comparator(S390_lowcore.clock_comparator); 118 return 0; 119 } 120 121 static void s390_set_mode(enum clock_event_mode mode, 122 struct clock_event_device *evt) 123 { 124 } 125 126 /* 127 * Set up lowcore and control register of the current cpu to 128 * enable TOD clock and clock comparator interrupts. 129 */ 130 void init_cpu_timer(void) 131 { 132 struct clock_event_device *cd; 133 int cpu; 134 135 S390_lowcore.clock_comparator = -1ULL; 136 set_clock_comparator(S390_lowcore.clock_comparator); 137 138 cpu = smp_processor_id(); 139 cd = &per_cpu(comparators, cpu); 140 cd->name = "comparator"; 141 cd->features = CLOCK_EVT_FEAT_ONESHOT; 142 cd->mult = 16777; 143 cd->shift = 12; 144 cd->min_delta_ns = 1; 145 cd->max_delta_ns = LONG_MAX; 146 cd->rating = 400; 147 cd->cpumask = cpumask_of(cpu); 148 cd->set_next_event = s390_next_event; 149 cd->set_mode = s390_set_mode; 150 151 clockevents_register_device(cd); 152 153 /* Enable clock comparator timer interrupt. */ 154 __ctl_set_bit(0,11); 155 156 /* Always allow the timing alert external interrupt. */ 157 __ctl_set_bit(0, 4); 158 } 159 160 static void clock_comparator_interrupt(unsigned int ext_int_code, 161 unsigned int param32, 162 unsigned long param64) 163 { 164 kstat_cpu(smp_processor_id()).irqs[EXTINT_CLK]++; 165 if (S390_lowcore.clock_comparator == -1ULL) 166 set_clock_comparator(S390_lowcore.clock_comparator); 167 } 168 169 static void etr_timing_alert(struct etr_irq_parm *); 170 static void stp_timing_alert(struct stp_irq_parm *); 171 172 static void timing_alert_interrupt(unsigned int ext_int_code, 173 unsigned int param32, unsigned long param64) 174 { 175 kstat_cpu(smp_processor_id()).irqs[EXTINT_TLA]++; 176 if (param32 & 0x00c40000) 177 etr_timing_alert((struct etr_irq_parm *) ¶m32); 178 if (param32 & 0x00038000) 179 stp_timing_alert((struct stp_irq_parm *) ¶m32); 180 } 181 182 static void etr_reset(void); 183 static void stp_reset(void); 184 185 void read_persistent_clock(struct timespec *ts) 186 { 187 tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, ts); 188 } 189 190 void read_boot_clock(struct timespec *ts) 191 { 192 tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts); 193 } 194 195 static cycle_t read_tod_clock(struct clocksource *cs) 196 { 197 return get_clock(); 198 } 199 200 static struct clocksource clocksource_tod = { 201 .name = "tod", 202 .rating = 400, 203 .read = read_tod_clock, 204 .mask = -1ULL, 205 .mult = 1000, 206 .shift = 12, 207 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 208 }; 209 210 struct clocksource * __init clocksource_default_clock(void) 211 { 212 return &clocksource_tod; 213 } 214 215 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm, 216 struct clocksource *clock, u32 mult) 217 { 218 if (clock != &clocksource_tod) 219 return; 220 221 /* Make userspace gettimeofday spin until we're done. */ 222 ++vdso_data->tb_update_count; 223 smp_wmb(); 224 vdso_data->xtime_tod_stamp = clock->cycle_last; 225 vdso_data->xtime_clock_sec = wall_time->tv_sec; 226 vdso_data->xtime_clock_nsec = wall_time->tv_nsec; 227 vdso_data->wtom_clock_sec = wtm->tv_sec; 228 vdso_data->wtom_clock_nsec = wtm->tv_nsec; 229 vdso_data->ntp_mult = mult; 230 smp_wmb(); 231 ++vdso_data->tb_update_count; 232 } 233 234 extern struct timezone sys_tz; 235 236 void update_vsyscall_tz(void) 237 { 238 /* Make userspace gettimeofday spin until we're done. */ 239 ++vdso_data->tb_update_count; 240 smp_wmb(); 241 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 242 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 243 smp_wmb(); 244 ++vdso_data->tb_update_count; 245 } 246 247 /* 248 * Initialize the TOD clock and the CPU timer of 249 * the boot cpu. 250 */ 251 void __init time_init(void) 252 { 253 /* Reset time synchronization interfaces. */ 254 etr_reset(); 255 stp_reset(); 256 257 /* request the clock comparator external interrupt */ 258 if (register_external_interrupt(0x1004, clock_comparator_interrupt)) 259 panic("Couldn't request external interrupt 0x1004"); 260 261 /* request the timing alert external interrupt */ 262 if (register_external_interrupt(0x1406, timing_alert_interrupt)) 263 panic("Couldn't request external interrupt 0x1406"); 264 265 if (clocksource_register(&clocksource_tod) != 0) 266 panic("Could not register TOD clock source"); 267 268 /* Enable TOD clock interrupts on the boot cpu. */ 269 init_cpu_timer(); 270 271 /* Enable cpu timer interrupts on the boot cpu. */ 272 vtime_init(); 273 } 274 275 /* 276 * The time is "clock". old is what we think the time is. 277 * Adjust the value by a multiple of jiffies and add the delta to ntp. 278 * "delay" is an approximation how long the synchronization took. If 279 * the time correction is positive, then "delay" is subtracted from 280 * the time difference and only the remaining part is passed to ntp. 281 */ 282 static unsigned long long adjust_time(unsigned long long old, 283 unsigned long long clock, 284 unsigned long long delay) 285 { 286 unsigned long long delta, ticks; 287 struct timex adjust; 288 289 if (clock > old) { 290 /* It is later than we thought. */ 291 delta = ticks = clock - old; 292 delta = ticks = (delta < delay) ? 0 : delta - delay; 293 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY); 294 adjust.offset = ticks * (1000000 / HZ); 295 } else { 296 /* It is earlier than we thought. */ 297 delta = ticks = old - clock; 298 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY); 299 delta = -delta; 300 adjust.offset = -ticks * (1000000 / HZ); 301 } 302 sched_clock_base_cc += delta; 303 if (adjust.offset != 0) { 304 pr_notice("The ETR interface has adjusted the clock " 305 "by %li microseconds\n", adjust.offset); 306 adjust.modes = ADJ_OFFSET_SINGLESHOT; 307 do_adjtimex(&adjust); 308 } 309 return delta; 310 } 311 312 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 313 static DEFINE_MUTEX(clock_sync_mutex); 314 static unsigned long clock_sync_flags; 315 316 #define CLOCK_SYNC_HAS_ETR 0 317 #define CLOCK_SYNC_HAS_STP 1 318 #define CLOCK_SYNC_ETR 2 319 #define CLOCK_SYNC_STP 3 320 321 /* 322 * The synchronous get_clock function. It will write the current clock 323 * value to the clock pointer and return 0 if the clock is in sync with 324 * the external time source. If the clock mode is local it will return 325 * -ENOSYS and -EAGAIN if the clock is not in sync with the external 326 * reference. 327 */ 328 int get_sync_clock(unsigned long long *clock) 329 { 330 atomic_t *sw_ptr; 331 unsigned int sw0, sw1; 332 333 sw_ptr = &get_cpu_var(clock_sync_word); 334 sw0 = atomic_read(sw_ptr); 335 *clock = get_clock(); 336 sw1 = atomic_read(sw_ptr); 337 put_cpu_var(clock_sync_word); 338 if (sw0 == sw1 && (sw0 & 0x80000000U)) 339 /* Success: time is in sync. */ 340 return 0; 341 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) && 342 !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 343 return -ENOSYS; 344 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) && 345 !test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 346 return -EACCES; 347 return -EAGAIN; 348 } 349 EXPORT_SYMBOL(get_sync_clock); 350 351 /* 352 * Make get_sync_clock return -EAGAIN. 353 */ 354 static void disable_sync_clock(void *dummy) 355 { 356 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word); 357 /* 358 * Clear the in-sync bit 2^31. All get_sync_clock calls will 359 * fail until the sync bit is turned back on. In addition 360 * increase the "sequence" counter to avoid the race of an 361 * etr event and the complete recovery against get_sync_clock. 362 */ 363 atomic_clear_mask(0x80000000, sw_ptr); 364 atomic_inc(sw_ptr); 365 } 366 367 /* 368 * Make get_sync_clock return 0 again. 369 * Needs to be called from a context disabled for preemption. 370 */ 371 static void enable_sync_clock(void) 372 { 373 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word); 374 atomic_set_mask(0x80000000, sw_ptr); 375 } 376 377 /* 378 * Function to check if the clock is in sync. 379 */ 380 static inline int check_sync_clock(void) 381 { 382 atomic_t *sw_ptr; 383 int rc; 384 385 sw_ptr = &get_cpu_var(clock_sync_word); 386 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 387 put_cpu_var(clock_sync_word); 388 return rc; 389 } 390 391 /* Single threaded workqueue used for etr and stp sync events */ 392 static struct workqueue_struct *time_sync_wq; 393 394 static void __init time_init_wq(void) 395 { 396 if (time_sync_wq) 397 return; 398 time_sync_wq = create_singlethread_workqueue("timesync"); 399 } 400 401 /* 402 * External Time Reference (ETR) code. 403 */ 404 static int etr_port0_online; 405 static int etr_port1_online; 406 static int etr_steai_available; 407 408 static int __init early_parse_etr(char *p) 409 { 410 if (strncmp(p, "off", 3) == 0) 411 etr_port0_online = etr_port1_online = 0; 412 else if (strncmp(p, "port0", 5) == 0) 413 etr_port0_online = 1; 414 else if (strncmp(p, "port1", 5) == 0) 415 etr_port1_online = 1; 416 else if (strncmp(p, "on", 2) == 0) 417 etr_port0_online = etr_port1_online = 1; 418 return 0; 419 } 420 early_param("etr", early_parse_etr); 421 422 enum etr_event { 423 ETR_EVENT_PORT0_CHANGE, 424 ETR_EVENT_PORT1_CHANGE, 425 ETR_EVENT_PORT_ALERT, 426 ETR_EVENT_SYNC_CHECK, 427 ETR_EVENT_SWITCH_LOCAL, 428 ETR_EVENT_UPDATE, 429 }; 430 431 /* 432 * Valid bit combinations of the eacr register are (x = don't care): 433 * e0 e1 dp p0 p1 ea es sl 434 * 0 0 x 0 0 0 0 0 initial, disabled state 435 * 0 0 x 0 1 1 0 0 port 1 online 436 * 0 0 x 1 0 1 0 0 port 0 online 437 * 0 0 x 1 1 1 0 0 both ports online 438 * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode 439 * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode 440 * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync 441 * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync 442 * 0 1 x 1 1 1 0 0 both ports online, port 1 usable 443 * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync 444 * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync 445 * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode 446 * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode 447 * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync 448 * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync 449 * 1 0 x 1 1 1 0 0 both ports online, port 0 usable 450 * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync 451 * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync 452 * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync 453 * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync 454 */ 455 static struct etr_eacr etr_eacr; 456 static u64 etr_tolec; /* time of last eacr update */ 457 static struct etr_aib etr_port0; 458 static int etr_port0_uptodate; 459 static struct etr_aib etr_port1; 460 static int etr_port1_uptodate; 461 static unsigned long etr_events; 462 static struct timer_list etr_timer; 463 464 static void etr_timeout(unsigned long dummy); 465 static void etr_work_fn(struct work_struct *work); 466 static DEFINE_MUTEX(etr_work_mutex); 467 static DECLARE_WORK(etr_work, etr_work_fn); 468 469 /* 470 * Reset ETR attachment. 471 */ 472 static void etr_reset(void) 473 { 474 etr_eacr = (struct etr_eacr) { 475 .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0, 476 .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0, 477 .es = 0, .sl = 0 }; 478 if (etr_setr(&etr_eacr) == 0) { 479 etr_tolec = get_clock(); 480 set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags); 481 if (etr_port0_online && etr_port1_online) 482 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 483 } else if (etr_port0_online || etr_port1_online) { 484 pr_warning("The real or virtual hardware system does " 485 "not provide an ETR interface\n"); 486 etr_port0_online = etr_port1_online = 0; 487 } 488 } 489 490 static int __init etr_init(void) 491 { 492 struct etr_aib aib; 493 494 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags)) 495 return 0; 496 time_init_wq(); 497 /* Check if this machine has the steai instruction. */ 498 if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0) 499 etr_steai_available = 1; 500 setup_timer(&etr_timer, etr_timeout, 0UL); 501 if (etr_port0_online) { 502 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 503 queue_work(time_sync_wq, &etr_work); 504 } 505 if (etr_port1_online) { 506 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 507 queue_work(time_sync_wq, &etr_work); 508 } 509 return 0; 510 } 511 512 arch_initcall(etr_init); 513 514 /* 515 * Two sorts of ETR machine checks. The architecture reads: 516 * "When a machine-check niterruption occurs and if a switch-to-local or 517 * ETR-sync-check interrupt request is pending but disabled, this pending 518 * disabled interruption request is indicated and is cleared". 519 * Which means that we can get etr_switch_to_local events from the machine 520 * check handler although the interruption condition is disabled. Lovely.. 521 */ 522 523 /* 524 * Switch to local machine check. This is called when the last usable 525 * ETR port goes inactive. After switch to local the clock is not in sync. 526 */ 527 void etr_switch_to_local(void) 528 { 529 if (!etr_eacr.sl) 530 return; 531 disable_sync_clock(NULL); 532 if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) { 533 etr_eacr.es = etr_eacr.sl = 0; 534 etr_setr(&etr_eacr); 535 queue_work(time_sync_wq, &etr_work); 536 } 537 } 538 539 /* 540 * ETR sync check machine check. This is called when the ETR OTE and the 541 * local clock OTE are farther apart than the ETR sync check tolerance. 542 * After a ETR sync check the clock is not in sync. The machine check 543 * is broadcasted to all cpus at the same time. 544 */ 545 void etr_sync_check(void) 546 { 547 if (!etr_eacr.es) 548 return; 549 disable_sync_clock(NULL); 550 if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) { 551 etr_eacr.es = 0; 552 etr_setr(&etr_eacr); 553 queue_work(time_sync_wq, &etr_work); 554 } 555 } 556 557 /* 558 * ETR timing alert. There are two causes: 559 * 1) port state change, check the usability of the port 560 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the 561 * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3) 562 * or ETR-data word 4 (edf4) has changed. 563 */ 564 static void etr_timing_alert(struct etr_irq_parm *intparm) 565 { 566 if (intparm->pc0) 567 /* ETR port 0 state change. */ 568 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 569 if (intparm->pc1) 570 /* ETR port 1 state change. */ 571 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 572 if (intparm->eai) 573 /* 574 * ETR port alert on either port 0, 1 or both. 575 * Both ports are not up-to-date now. 576 */ 577 set_bit(ETR_EVENT_PORT_ALERT, &etr_events); 578 queue_work(time_sync_wq, &etr_work); 579 } 580 581 static void etr_timeout(unsigned long dummy) 582 { 583 set_bit(ETR_EVENT_UPDATE, &etr_events); 584 queue_work(time_sync_wq, &etr_work); 585 } 586 587 /* 588 * Check if the etr mode is pss. 589 */ 590 static inline int etr_mode_is_pps(struct etr_eacr eacr) 591 { 592 return eacr.es && !eacr.sl; 593 } 594 595 /* 596 * Check if the etr mode is etr. 597 */ 598 static inline int etr_mode_is_etr(struct etr_eacr eacr) 599 { 600 return eacr.es && eacr.sl; 601 } 602 603 /* 604 * Check if the port can be used for TOD synchronization. 605 * For PPS mode the port has to receive OTEs. For ETR mode 606 * the port has to receive OTEs, the ETR stepping bit has to 607 * be zero and the validity bits for data frame 1, 2, and 3 608 * have to be 1. 609 */ 610 static int etr_port_valid(struct etr_aib *aib, int port) 611 { 612 unsigned int psc; 613 614 /* Check that this port is receiving OTEs. */ 615 if (aib->tsp == 0) 616 return 0; 617 618 psc = port ? aib->esw.psc1 : aib->esw.psc0; 619 if (psc == etr_lpsc_pps_mode) 620 return 1; 621 if (psc == etr_lpsc_operational_step) 622 return !aib->esw.y && aib->slsw.v1 && 623 aib->slsw.v2 && aib->slsw.v3; 624 return 0; 625 } 626 627 /* 628 * Check if two ports are on the same network. 629 */ 630 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2) 631 { 632 // FIXME: any other fields we have to compare? 633 return aib1->edf1.net_id == aib2->edf1.net_id; 634 } 635 636 /* 637 * Wrapper for etr_stei that converts physical port states 638 * to logical port states to be consistent with the output 639 * of stetr (see etr_psc vs. etr_lpsc). 640 */ 641 static void etr_steai_cv(struct etr_aib *aib, unsigned int func) 642 { 643 BUG_ON(etr_steai(aib, func) != 0); 644 /* Convert port state to logical port state. */ 645 if (aib->esw.psc0 == 1) 646 aib->esw.psc0 = 2; 647 else if (aib->esw.psc0 == 0 && aib->esw.p == 0) 648 aib->esw.psc0 = 1; 649 if (aib->esw.psc1 == 1) 650 aib->esw.psc1 = 2; 651 else if (aib->esw.psc1 == 0 && aib->esw.p == 1) 652 aib->esw.psc1 = 1; 653 } 654 655 /* 656 * Check if the aib a2 is still connected to the same attachment as 657 * aib a1, the etv values differ by one and a2 is valid. 658 */ 659 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p) 660 { 661 int state_a1, state_a2; 662 663 /* Paranoia check: e0/e1 should better be the same. */ 664 if (a1->esw.eacr.e0 != a2->esw.eacr.e0 || 665 a1->esw.eacr.e1 != a2->esw.eacr.e1) 666 return 0; 667 668 /* Still connected to the same etr ? */ 669 state_a1 = p ? a1->esw.psc1 : a1->esw.psc0; 670 state_a2 = p ? a2->esw.psc1 : a2->esw.psc0; 671 if (state_a1 == etr_lpsc_operational_step) { 672 if (state_a2 != etr_lpsc_operational_step || 673 a1->edf1.net_id != a2->edf1.net_id || 674 a1->edf1.etr_id != a2->edf1.etr_id || 675 a1->edf1.etr_pn != a2->edf1.etr_pn) 676 return 0; 677 } else if (state_a2 != etr_lpsc_pps_mode) 678 return 0; 679 680 /* The ETV value of a2 needs to be ETV of a1 + 1. */ 681 if (a1->edf2.etv + 1 != a2->edf2.etv) 682 return 0; 683 684 if (!etr_port_valid(a2, p)) 685 return 0; 686 687 return 1; 688 } 689 690 struct clock_sync_data { 691 atomic_t cpus; 692 int in_sync; 693 unsigned long long fixup_cc; 694 int etr_port; 695 struct etr_aib *etr_aib; 696 }; 697 698 static void clock_sync_cpu(struct clock_sync_data *sync) 699 { 700 atomic_dec(&sync->cpus); 701 enable_sync_clock(); 702 /* 703 * This looks like a busy wait loop but it isn't. etr_sync_cpus 704 * is called on all other cpus while the TOD clocks is stopped. 705 * __udelay will stop the cpu on an enabled wait psw until the 706 * TOD is running again. 707 */ 708 while (sync->in_sync == 0) { 709 __udelay(1); 710 /* 711 * A different cpu changes *in_sync. Therefore use 712 * barrier() to force memory access. 713 */ 714 barrier(); 715 } 716 if (sync->in_sync != 1) 717 /* Didn't work. Clear per-cpu in sync bit again. */ 718 disable_sync_clock(NULL); 719 /* 720 * This round of TOD syncing is done. Set the clock comparator 721 * to the next tick and let the processor continue. 722 */ 723 fixup_clock_comparator(sync->fixup_cc); 724 } 725 726 /* 727 * Sync the TOD clock using the port refered to by aibp. This port 728 * has to be enabled and the other port has to be disabled. The 729 * last eacr update has to be more than 1.6 seconds in the past. 730 */ 731 static int etr_sync_clock(void *data) 732 { 733 static int first; 734 unsigned long long clock, old_clock, delay, delta; 735 struct clock_sync_data *etr_sync; 736 struct etr_aib *sync_port, *aib; 737 int port; 738 int rc; 739 740 etr_sync = data; 741 742 if (xchg(&first, 1) == 1) { 743 /* Slave */ 744 clock_sync_cpu(etr_sync); 745 return 0; 746 } 747 748 /* Wait until all other cpus entered the sync function. */ 749 while (atomic_read(&etr_sync->cpus) != 0) 750 cpu_relax(); 751 752 port = etr_sync->etr_port; 753 aib = etr_sync->etr_aib; 754 sync_port = (port == 0) ? &etr_port0 : &etr_port1; 755 enable_sync_clock(); 756 757 /* Set clock to next OTE. */ 758 __ctl_set_bit(14, 21); 759 __ctl_set_bit(0, 29); 760 clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32; 761 old_clock = get_clock(); 762 if (set_clock(clock) == 0) { 763 __udelay(1); /* Wait for the clock to start. */ 764 __ctl_clear_bit(0, 29); 765 __ctl_clear_bit(14, 21); 766 etr_stetr(aib); 767 /* Adjust Linux timing variables. */ 768 delay = (unsigned long long) 769 (aib->edf2.etv - sync_port->edf2.etv) << 32; 770 delta = adjust_time(old_clock, clock, delay); 771 etr_sync->fixup_cc = delta; 772 fixup_clock_comparator(delta); 773 /* Verify that the clock is properly set. */ 774 if (!etr_aib_follows(sync_port, aib, port)) { 775 /* Didn't work. */ 776 disable_sync_clock(NULL); 777 etr_sync->in_sync = -EAGAIN; 778 rc = -EAGAIN; 779 } else { 780 etr_sync->in_sync = 1; 781 rc = 0; 782 } 783 } else { 784 /* Could not set the clock ?!? */ 785 __ctl_clear_bit(0, 29); 786 __ctl_clear_bit(14, 21); 787 disable_sync_clock(NULL); 788 etr_sync->in_sync = -EAGAIN; 789 rc = -EAGAIN; 790 } 791 xchg(&first, 0); 792 return rc; 793 } 794 795 static int etr_sync_clock_stop(struct etr_aib *aib, int port) 796 { 797 struct clock_sync_data etr_sync; 798 struct etr_aib *sync_port; 799 int follows; 800 int rc; 801 802 /* Check if the current aib is adjacent to the sync port aib. */ 803 sync_port = (port == 0) ? &etr_port0 : &etr_port1; 804 follows = etr_aib_follows(sync_port, aib, port); 805 memcpy(sync_port, aib, sizeof(*aib)); 806 if (!follows) 807 return -EAGAIN; 808 memset(&etr_sync, 0, sizeof(etr_sync)); 809 etr_sync.etr_aib = aib; 810 etr_sync.etr_port = port; 811 get_online_cpus(); 812 atomic_set(&etr_sync.cpus, num_online_cpus() - 1); 813 rc = stop_machine(etr_sync_clock, &etr_sync, &cpu_online_map); 814 put_online_cpus(); 815 return rc; 816 } 817 818 /* 819 * Handle the immediate effects of the different events. 820 * The port change event is used for online/offline changes. 821 */ 822 static struct etr_eacr etr_handle_events(struct etr_eacr eacr) 823 { 824 if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) 825 eacr.es = 0; 826 if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) 827 eacr.es = eacr.sl = 0; 828 if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events)) 829 etr_port0_uptodate = etr_port1_uptodate = 0; 830 831 if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) { 832 if (eacr.e0) 833 /* 834 * Port change of an enabled port. We have to 835 * assume that this can have caused an stepping 836 * port switch. 837 */ 838 etr_tolec = get_clock(); 839 eacr.p0 = etr_port0_online; 840 if (!eacr.p0) 841 eacr.e0 = 0; 842 etr_port0_uptodate = 0; 843 } 844 if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) { 845 if (eacr.e1) 846 /* 847 * Port change of an enabled port. We have to 848 * assume that this can have caused an stepping 849 * port switch. 850 */ 851 etr_tolec = get_clock(); 852 eacr.p1 = etr_port1_online; 853 if (!eacr.p1) 854 eacr.e1 = 0; 855 etr_port1_uptodate = 0; 856 } 857 clear_bit(ETR_EVENT_UPDATE, &etr_events); 858 return eacr; 859 } 860 861 /* 862 * Set up a timer that expires after the etr_tolec + 1.6 seconds if 863 * one of the ports needs an update. 864 */ 865 static void etr_set_tolec_timeout(unsigned long long now) 866 { 867 unsigned long micros; 868 869 if ((!etr_eacr.p0 || etr_port0_uptodate) && 870 (!etr_eacr.p1 || etr_port1_uptodate)) 871 return; 872 micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0; 873 micros = (micros > 1600000) ? 0 : 1600000 - micros; 874 mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1); 875 } 876 877 /* 878 * Set up a time that expires after 1/2 second. 879 */ 880 static void etr_set_sync_timeout(void) 881 { 882 mod_timer(&etr_timer, jiffies + HZ/2); 883 } 884 885 /* 886 * Update the aib information for one or both ports. 887 */ 888 static struct etr_eacr etr_handle_update(struct etr_aib *aib, 889 struct etr_eacr eacr) 890 { 891 /* With both ports disabled the aib information is useless. */ 892 if (!eacr.e0 && !eacr.e1) 893 return eacr; 894 895 /* Update port0 or port1 with aib stored in etr_work_fn. */ 896 if (aib->esw.q == 0) { 897 /* Information for port 0 stored. */ 898 if (eacr.p0 && !etr_port0_uptodate) { 899 etr_port0 = *aib; 900 if (etr_port0_online) 901 etr_port0_uptodate = 1; 902 } 903 } else { 904 /* Information for port 1 stored. */ 905 if (eacr.p1 && !etr_port1_uptodate) { 906 etr_port1 = *aib; 907 if (etr_port0_online) 908 etr_port1_uptodate = 1; 909 } 910 } 911 912 /* 913 * Do not try to get the alternate port aib if the clock 914 * is not in sync yet. 915 */ 916 if (!eacr.es || !check_sync_clock()) 917 return eacr; 918 919 /* 920 * If steai is available we can get the information about 921 * the other port immediately. If only stetr is available the 922 * data-port bit toggle has to be used. 923 */ 924 if (etr_steai_available) { 925 if (eacr.p0 && !etr_port0_uptodate) { 926 etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0); 927 etr_port0_uptodate = 1; 928 } 929 if (eacr.p1 && !etr_port1_uptodate) { 930 etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1); 931 etr_port1_uptodate = 1; 932 } 933 } else { 934 /* 935 * One port was updated above, if the other 936 * port is not uptodate toggle dp bit. 937 */ 938 if ((eacr.p0 && !etr_port0_uptodate) || 939 (eacr.p1 && !etr_port1_uptodate)) 940 eacr.dp ^= 1; 941 else 942 eacr.dp = 0; 943 } 944 return eacr; 945 } 946 947 /* 948 * Write new etr control register if it differs from the current one. 949 * Return 1 if etr_tolec has been updated as well. 950 */ 951 static void etr_update_eacr(struct etr_eacr eacr) 952 { 953 int dp_changed; 954 955 if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0) 956 /* No change, return. */ 957 return; 958 /* 959 * The disable of an active port of the change of the data port 960 * bit can/will cause a change in the data port. 961 */ 962 dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 || 963 (etr_eacr.dp ^ eacr.dp) != 0; 964 etr_eacr = eacr; 965 etr_setr(&etr_eacr); 966 if (dp_changed) 967 etr_tolec = get_clock(); 968 } 969 970 /* 971 * ETR work. In this function you'll find the main logic. In 972 * particular this is the only function that calls etr_update_eacr(), 973 * it "controls" the etr control register. 974 */ 975 static void etr_work_fn(struct work_struct *work) 976 { 977 unsigned long long now; 978 struct etr_eacr eacr; 979 struct etr_aib aib; 980 int sync_port; 981 982 /* prevent multiple execution. */ 983 mutex_lock(&etr_work_mutex); 984 985 /* Create working copy of etr_eacr. */ 986 eacr = etr_eacr; 987 988 /* Check for the different events and their immediate effects. */ 989 eacr = etr_handle_events(eacr); 990 991 /* Check if ETR is supposed to be active. */ 992 eacr.ea = eacr.p0 || eacr.p1; 993 if (!eacr.ea) { 994 /* Both ports offline. Reset everything. */ 995 eacr.dp = eacr.es = eacr.sl = 0; 996 on_each_cpu(disable_sync_clock, NULL, 1); 997 del_timer_sync(&etr_timer); 998 etr_update_eacr(eacr); 999 goto out_unlock; 1000 } 1001 1002 /* Store aib to get the current ETR status word. */ 1003 BUG_ON(etr_stetr(&aib) != 0); 1004 etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */ 1005 now = get_clock(); 1006 1007 /* 1008 * Update the port information if the last stepping port change 1009 * or data port change is older than 1.6 seconds. 1010 */ 1011 if (now >= etr_tolec + (1600000 << 12)) 1012 eacr = etr_handle_update(&aib, eacr); 1013 1014 /* 1015 * Select ports to enable. The prefered synchronization mode is PPS. 1016 * If a port can be enabled depends on a number of things: 1017 * 1) The port needs to be online and uptodate. A port is not 1018 * disabled just because it is not uptodate, but it is only 1019 * enabled if it is uptodate. 1020 * 2) The port needs to have the same mode (pps / etr). 1021 * 3) The port needs to be usable -> etr_port_valid() == 1 1022 * 4) To enable the second port the clock needs to be in sync. 1023 * 5) If both ports are useable and are ETR ports, the network id 1024 * has to be the same. 1025 * The eacr.sl bit is used to indicate etr mode vs. pps mode. 1026 */ 1027 if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) { 1028 eacr.sl = 0; 1029 eacr.e0 = 1; 1030 if (!etr_mode_is_pps(etr_eacr)) 1031 eacr.es = 0; 1032 if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode) 1033 eacr.e1 = 0; 1034 // FIXME: uptodate checks ? 1035 else if (etr_port0_uptodate && etr_port1_uptodate) 1036 eacr.e1 = 1; 1037 sync_port = (etr_port0_uptodate && 1038 etr_port_valid(&etr_port0, 0)) ? 0 : -1; 1039 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) { 1040 eacr.sl = 0; 1041 eacr.e0 = 0; 1042 eacr.e1 = 1; 1043 if (!etr_mode_is_pps(etr_eacr)) 1044 eacr.es = 0; 1045 sync_port = (etr_port1_uptodate && 1046 etr_port_valid(&etr_port1, 1)) ? 1 : -1; 1047 } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) { 1048 eacr.sl = 1; 1049 eacr.e0 = 1; 1050 if (!etr_mode_is_etr(etr_eacr)) 1051 eacr.es = 0; 1052 if (!eacr.es || !eacr.p1 || 1053 aib.esw.psc1 != etr_lpsc_operational_alt) 1054 eacr.e1 = 0; 1055 else if (etr_port0_uptodate && etr_port1_uptodate && 1056 etr_compare_network(&etr_port0, &etr_port1)) 1057 eacr.e1 = 1; 1058 sync_port = (etr_port0_uptodate && 1059 etr_port_valid(&etr_port0, 0)) ? 0 : -1; 1060 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) { 1061 eacr.sl = 1; 1062 eacr.e0 = 0; 1063 eacr.e1 = 1; 1064 if (!etr_mode_is_etr(etr_eacr)) 1065 eacr.es = 0; 1066 sync_port = (etr_port1_uptodate && 1067 etr_port_valid(&etr_port1, 1)) ? 1 : -1; 1068 } else { 1069 /* Both ports not usable. */ 1070 eacr.es = eacr.sl = 0; 1071 sync_port = -1; 1072 } 1073 1074 /* 1075 * If the clock is in sync just update the eacr and return. 1076 * If there is no valid sync port wait for a port update. 1077 */ 1078 if ((eacr.es && check_sync_clock()) || sync_port < 0) { 1079 etr_update_eacr(eacr); 1080 etr_set_tolec_timeout(now); 1081 goto out_unlock; 1082 } 1083 1084 /* 1085 * Prepare control register for clock syncing 1086 * (reset data port bit, set sync check control. 1087 */ 1088 eacr.dp = 0; 1089 eacr.es = 1; 1090 1091 /* 1092 * Update eacr and try to synchronize the clock. If the update 1093 * of eacr caused a stepping port switch (or if we have to 1094 * assume that a stepping port switch has occured) or the 1095 * clock syncing failed, reset the sync check control bit 1096 * and set up a timer to try again after 0.5 seconds 1097 */ 1098 etr_update_eacr(eacr); 1099 if (now < etr_tolec + (1600000 << 12) || 1100 etr_sync_clock_stop(&aib, sync_port) != 0) { 1101 /* Sync failed. Try again in 1/2 second. */ 1102 eacr.es = 0; 1103 etr_update_eacr(eacr); 1104 etr_set_sync_timeout(); 1105 } else 1106 etr_set_tolec_timeout(now); 1107 out_unlock: 1108 mutex_unlock(&etr_work_mutex); 1109 } 1110 1111 /* 1112 * Sysfs interface functions 1113 */ 1114 static struct sysdev_class etr_sysclass = { 1115 .name = "etr", 1116 }; 1117 1118 static struct sys_device etr_port0_dev = { 1119 .id = 0, 1120 .cls = &etr_sysclass, 1121 }; 1122 1123 static struct sys_device etr_port1_dev = { 1124 .id = 1, 1125 .cls = &etr_sysclass, 1126 }; 1127 1128 /* 1129 * ETR class attributes 1130 */ 1131 static ssize_t etr_stepping_port_show(struct sysdev_class *class, 1132 struct sysdev_class_attribute *attr, 1133 char *buf) 1134 { 1135 return sprintf(buf, "%i\n", etr_port0.esw.p); 1136 } 1137 1138 static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL); 1139 1140 static ssize_t etr_stepping_mode_show(struct sysdev_class *class, 1141 struct sysdev_class_attribute *attr, 1142 char *buf) 1143 { 1144 char *mode_str; 1145 1146 if (etr_mode_is_pps(etr_eacr)) 1147 mode_str = "pps"; 1148 else if (etr_mode_is_etr(etr_eacr)) 1149 mode_str = "etr"; 1150 else 1151 mode_str = "local"; 1152 return sprintf(buf, "%s\n", mode_str); 1153 } 1154 1155 static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL); 1156 1157 /* 1158 * ETR port attributes 1159 */ 1160 static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev) 1161 { 1162 if (dev == &etr_port0_dev) 1163 return etr_port0_online ? &etr_port0 : NULL; 1164 else 1165 return etr_port1_online ? &etr_port1 : NULL; 1166 } 1167 1168 static ssize_t etr_online_show(struct sys_device *dev, 1169 struct sysdev_attribute *attr, 1170 char *buf) 1171 { 1172 unsigned int online; 1173 1174 online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online; 1175 return sprintf(buf, "%i\n", online); 1176 } 1177 1178 static ssize_t etr_online_store(struct sys_device *dev, 1179 struct sysdev_attribute *attr, 1180 const char *buf, size_t count) 1181 { 1182 unsigned int value; 1183 1184 value = simple_strtoul(buf, NULL, 0); 1185 if (value != 0 && value != 1) 1186 return -EINVAL; 1187 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags)) 1188 return -EOPNOTSUPP; 1189 mutex_lock(&clock_sync_mutex); 1190 if (dev == &etr_port0_dev) { 1191 if (etr_port0_online == value) 1192 goto out; /* Nothing to do. */ 1193 etr_port0_online = value; 1194 if (etr_port0_online && etr_port1_online) 1195 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1196 else 1197 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1198 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events); 1199 queue_work(time_sync_wq, &etr_work); 1200 } else { 1201 if (etr_port1_online == value) 1202 goto out; /* Nothing to do. */ 1203 etr_port1_online = value; 1204 if (etr_port0_online && etr_port1_online) 1205 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1206 else 1207 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags); 1208 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events); 1209 queue_work(time_sync_wq, &etr_work); 1210 } 1211 out: 1212 mutex_unlock(&clock_sync_mutex); 1213 return count; 1214 } 1215 1216 static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store); 1217 1218 static ssize_t etr_stepping_control_show(struct sys_device *dev, 1219 struct sysdev_attribute *attr, 1220 char *buf) 1221 { 1222 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ? 1223 etr_eacr.e0 : etr_eacr.e1); 1224 } 1225 1226 static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL); 1227 1228 static ssize_t etr_mode_code_show(struct sys_device *dev, 1229 struct sysdev_attribute *attr, char *buf) 1230 { 1231 if (!etr_port0_online && !etr_port1_online) 1232 /* Status word is not uptodate if both ports are offline. */ 1233 return -ENODATA; 1234 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ? 1235 etr_port0.esw.psc0 : etr_port0.esw.psc1); 1236 } 1237 1238 static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL); 1239 1240 static ssize_t etr_untuned_show(struct sys_device *dev, 1241 struct sysdev_attribute *attr, char *buf) 1242 { 1243 struct etr_aib *aib = etr_aib_from_dev(dev); 1244 1245 if (!aib || !aib->slsw.v1) 1246 return -ENODATA; 1247 return sprintf(buf, "%i\n", aib->edf1.u); 1248 } 1249 1250 static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL); 1251 1252 static ssize_t etr_network_id_show(struct sys_device *dev, 1253 struct sysdev_attribute *attr, char *buf) 1254 { 1255 struct etr_aib *aib = etr_aib_from_dev(dev); 1256 1257 if (!aib || !aib->slsw.v1) 1258 return -ENODATA; 1259 return sprintf(buf, "%i\n", aib->edf1.net_id); 1260 } 1261 1262 static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL); 1263 1264 static ssize_t etr_id_show(struct sys_device *dev, 1265 struct sysdev_attribute *attr, char *buf) 1266 { 1267 struct etr_aib *aib = etr_aib_from_dev(dev); 1268 1269 if (!aib || !aib->slsw.v1) 1270 return -ENODATA; 1271 return sprintf(buf, "%i\n", aib->edf1.etr_id); 1272 } 1273 1274 static SYSDEV_ATTR(id, 0400, etr_id_show, NULL); 1275 1276 static ssize_t etr_port_number_show(struct sys_device *dev, 1277 struct sysdev_attribute *attr, char *buf) 1278 { 1279 struct etr_aib *aib = etr_aib_from_dev(dev); 1280 1281 if (!aib || !aib->slsw.v1) 1282 return -ENODATA; 1283 return sprintf(buf, "%i\n", aib->edf1.etr_pn); 1284 } 1285 1286 static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL); 1287 1288 static ssize_t etr_coupled_show(struct sys_device *dev, 1289 struct sysdev_attribute *attr, char *buf) 1290 { 1291 struct etr_aib *aib = etr_aib_from_dev(dev); 1292 1293 if (!aib || !aib->slsw.v3) 1294 return -ENODATA; 1295 return sprintf(buf, "%i\n", aib->edf3.c); 1296 } 1297 1298 static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL); 1299 1300 static ssize_t etr_local_time_show(struct sys_device *dev, 1301 struct sysdev_attribute *attr, char *buf) 1302 { 1303 struct etr_aib *aib = etr_aib_from_dev(dev); 1304 1305 if (!aib || !aib->slsw.v3) 1306 return -ENODATA; 1307 return sprintf(buf, "%i\n", aib->edf3.blto); 1308 } 1309 1310 static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL); 1311 1312 static ssize_t etr_utc_offset_show(struct sys_device *dev, 1313 struct sysdev_attribute *attr, char *buf) 1314 { 1315 struct etr_aib *aib = etr_aib_from_dev(dev); 1316 1317 if (!aib || !aib->slsw.v3) 1318 return -ENODATA; 1319 return sprintf(buf, "%i\n", aib->edf3.buo); 1320 } 1321 1322 static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL); 1323 1324 static struct sysdev_attribute *etr_port_attributes[] = { 1325 &attr_online, 1326 &attr_stepping_control, 1327 &attr_state_code, 1328 &attr_untuned, 1329 &attr_network, 1330 &attr_id, 1331 &attr_port, 1332 &attr_coupled, 1333 &attr_local_time, 1334 &attr_utc_offset, 1335 NULL 1336 }; 1337 1338 static int __init etr_register_port(struct sys_device *dev) 1339 { 1340 struct sysdev_attribute **attr; 1341 int rc; 1342 1343 rc = sysdev_register(dev); 1344 if (rc) 1345 goto out; 1346 for (attr = etr_port_attributes; *attr; attr++) { 1347 rc = sysdev_create_file(dev, *attr); 1348 if (rc) 1349 goto out_unreg; 1350 } 1351 return 0; 1352 out_unreg: 1353 for (; attr >= etr_port_attributes; attr--) 1354 sysdev_remove_file(dev, *attr); 1355 sysdev_unregister(dev); 1356 out: 1357 return rc; 1358 } 1359 1360 static void __init etr_unregister_port(struct sys_device *dev) 1361 { 1362 struct sysdev_attribute **attr; 1363 1364 for (attr = etr_port_attributes; *attr; attr++) 1365 sysdev_remove_file(dev, *attr); 1366 sysdev_unregister(dev); 1367 } 1368 1369 static int __init etr_init_sysfs(void) 1370 { 1371 int rc; 1372 1373 rc = sysdev_class_register(&etr_sysclass); 1374 if (rc) 1375 goto out; 1376 rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port); 1377 if (rc) 1378 goto out_unreg_class; 1379 rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode); 1380 if (rc) 1381 goto out_remove_stepping_port; 1382 rc = etr_register_port(&etr_port0_dev); 1383 if (rc) 1384 goto out_remove_stepping_mode; 1385 rc = etr_register_port(&etr_port1_dev); 1386 if (rc) 1387 goto out_remove_port0; 1388 return 0; 1389 1390 out_remove_port0: 1391 etr_unregister_port(&etr_port0_dev); 1392 out_remove_stepping_mode: 1393 sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode); 1394 out_remove_stepping_port: 1395 sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port); 1396 out_unreg_class: 1397 sysdev_class_unregister(&etr_sysclass); 1398 out: 1399 return rc; 1400 } 1401 1402 device_initcall(etr_init_sysfs); 1403 1404 /* 1405 * Server Time Protocol (STP) code. 1406 */ 1407 static int stp_online; 1408 static struct stp_sstpi stp_info; 1409 static void *stp_page; 1410 1411 static void stp_work_fn(struct work_struct *work); 1412 static DEFINE_MUTEX(stp_work_mutex); 1413 static DECLARE_WORK(stp_work, stp_work_fn); 1414 static struct timer_list stp_timer; 1415 1416 static int __init early_parse_stp(char *p) 1417 { 1418 if (strncmp(p, "off", 3) == 0) 1419 stp_online = 0; 1420 else if (strncmp(p, "on", 2) == 0) 1421 stp_online = 1; 1422 return 0; 1423 } 1424 early_param("stp", early_parse_stp); 1425 1426 /* 1427 * Reset STP attachment. 1428 */ 1429 static void __init stp_reset(void) 1430 { 1431 int rc; 1432 1433 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 1434 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000); 1435 if (rc == 0) 1436 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 1437 else if (stp_online) { 1438 pr_warning("The real or virtual hardware system does " 1439 "not provide an STP interface\n"); 1440 free_page((unsigned long) stp_page); 1441 stp_page = NULL; 1442 stp_online = 0; 1443 } 1444 } 1445 1446 static void stp_timeout(unsigned long dummy) 1447 { 1448 queue_work(time_sync_wq, &stp_work); 1449 } 1450 1451 static int __init stp_init(void) 1452 { 1453 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 1454 return 0; 1455 setup_timer(&stp_timer, stp_timeout, 0UL); 1456 time_init_wq(); 1457 if (!stp_online) 1458 return 0; 1459 queue_work(time_sync_wq, &stp_work); 1460 return 0; 1461 } 1462 1463 arch_initcall(stp_init); 1464 1465 /* 1466 * STP timing alert. There are three causes: 1467 * 1) timing status change 1468 * 2) link availability change 1469 * 3) time control parameter change 1470 * In all three cases we are only interested in the clock source state. 1471 * If a STP clock source is now available use it. 1472 */ 1473 static void stp_timing_alert(struct stp_irq_parm *intparm) 1474 { 1475 if (intparm->tsc || intparm->lac || intparm->tcpc) 1476 queue_work(time_sync_wq, &stp_work); 1477 } 1478 1479 /* 1480 * STP sync check machine check. This is called when the timing state 1481 * changes from the synchronized state to the unsynchronized state. 1482 * After a STP sync check the clock is not in sync. The machine check 1483 * is broadcasted to all cpus at the same time. 1484 */ 1485 void stp_sync_check(void) 1486 { 1487 disable_sync_clock(NULL); 1488 queue_work(time_sync_wq, &stp_work); 1489 } 1490 1491 /* 1492 * STP island condition machine check. This is called when an attached 1493 * server attempts to communicate over an STP link and the servers 1494 * have matching CTN ids and have a valid stratum-1 configuration 1495 * but the configurations do not match. 1496 */ 1497 void stp_island_check(void) 1498 { 1499 disable_sync_clock(NULL); 1500 queue_work(time_sync_wq, &stp_work); 1501 } 1502 1503 1504 static int stp_sync_clock(void *data) 1505 { 1506 static int first; 1507 unsigned long long old_clock, delta; 1508 struct clock_sync_data *stp_sync; 1509 int rc; 1510 1511 stp_sync = data; 1512 1513 if (xchg(&first, 1) == 1) { 1514 /* Slave */ 1515 clock_sync_cpu(stp_sync); 1516 return 0; 1517 } 1518 1519 /* Wait until all other cpus entered the sync function. */ 1520 while (atomic_read(&stp_sync->cpus) != 0) 1521 cpu_relax(); 1522 1523 enable_sync_clock(); 1524 1525 rc = 0; 1526 if (stp_info.todoff[0] || stp_info.todoff[1] || 1527 stp_info.todoff[2] || stp_info.todoff[3] || 1528 stp_info.tmd != 2) { 1529 old_clock = get_clock(); 1530 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0); 1531 if (rc == 0) { 1532 delta = adjust_time(old_clock, get_clock(), 0); 1533 fixup_clock_comparator(delta); 1534 rc = chsc_sstpi(stp_page, &stp_info, 1535 sizeof(struct stp_sstpi)); 1536 if (rc == 0 && stp_info.tmd != 2) 1537 rc = -EAGAIN; 1538 } 1539 } 1540 if (rc) { 1541 disable_sync_clock(NULL); 1542 stp_sync->in_sync = -EAGAIN; 1543 } else 1544 stp_sync->in_sync = 1; 1545 xchg(&first, 0); 1546 return 0; 1547 } 1548 1549 /* 1550 * STP work. Check for the STP state and take over the clock 1551 * synchronization if the STP clock source is usable. 1552 */ 1553 static void stp_work_fn(struct work_struct *work) 1554 { 1555 struct clock_sync_data stp_sync; 1556 int rc; 1557 1558 /* prevent multiple execution. */ 1559 mutex_lock(&stp_work_mutex); 1560 1561 if (!stp_online) { 1562 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000); 1563 del_timer_sync(&stp_timer); 1564 goto out_unlock; 1565 } 1566 1567 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0); 1568 if (rc) 1569 goto out_unlock; 1570 1571 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 1572 if (rc || stp_info.c == 0) 1573 goto out_unlock; 1574 1575 /* Skip synchronization if the clock is already in sync. */ 1576 if (check_sync_clock()) 1577 goto out_unlock; 1578 1579 memset(&stp_sync, 0, sizeof(stp_sync)); 1580 get_online_cpus(); 1581 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 1582 stop_machine(stp_sync_clock, &stp_sync, &cpu_online_map); 1583 put_online_cpus(); 1584 1585 if (!check_sync_clock()) 1586 /* 1587 * There is a usable clock but the synchonization failed. 1588 * Retry after a second. 1589 */ 1590 mod_timer(&stp_timer, jiffies + HZ); 1591 1592 out_unlock: 1593 mutex_unlock(&stp_work_mutex); 1594 } 1595 1596 /* 1597 * STP class sysfs interface functions 1598 */ 1599 static struct sysdev_class stp_sysclass = { 1600 .name = "stp", 1601 }; 1602 1603 static ssize_t stp_ctn_id_show(struct sysdev_class *class, 1604 struct sysdev_class_attribute *attr, 1605 char *buf) 1606 { 1607 if (!stp_online) 1608 return -ENODATA; 1609 return sprintf(buf, "%016llx\n", 1610 *(unsigned long long *) stp_info.ctnid); 1611 } 1612 1613 static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL); 1614 1615 static ssize_t stp_ctn_type_show(struct sysdev_class *class, 1616 struct sysdev_class_attribute *attr, 1617 char *buf) 1618 { 1619 if (!stp_online) 1620 return -ENODATA; 1621 return sprintf(buf, "%i\n", stp_info.ctn); 1622 } 1623 1624 static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL); 1625 1626 static ssize_t stp_dst_offset_show(struct sysdev_class *class, 1627 struct sysdev_class_attribute *attr, 1628 char *buf) 1629 { 1630 if (!stp_online || !(stp_info.vbits & 0x2000)) 1631 return -ENODATA; 1632 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); 1633 } 1634 1635 static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL); 1636 1637 static ssize_t stp_leap_seconds_show(struct sysdev_class *class, 1638 struct sysdev_class_attribute *attr, 1639 char *buf) 1640 { 1641 if (!stp_online || !(stp_info.vbits & 0x8000)) 1642 return -ENODATA; 1643 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); 1644 } 1645 1646 static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL); 1647 1648 static ssize_t stp_stratum_show(struct sysdev_class *class, 1649 struct sysdev_class_attribute *attr, 1650 char *buf) 1651 { 1652 if (!stp_online) 1653 return -ENODATA; 1654 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); 1655 } 1656 1657 static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL); 1658 1659 static ssize_t stp_time_offset_show(struct sysdev_class *class, 1660 struct sysdev_class_attribute *attr, 1661 char *buf) 1662 { 1663 if (!stp_online || !(stp_info.vbits & 0x0800)) 1664 return -ENODATA; 1665 return sprintf(buf, "%i\n", (int) stp_info.tto); 1666 } 1667 1668 static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL); 1669 1670 static ssize_t stp_time_zone_offset_show(struct sysdev_class *class, 1671 struct sysdev_class_attribute *attr, 1672 char *buf) 1673 { 1674 if (!stp_online || !(stp_info.vbits & 0x4000)) 1675 return -ENODATA; 1676 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); 1677 } 1678 1679 static SYSDEV_CLASS_ATTR(time_zone_offset, 0400, 1680 stp_time_zone_offset_show, NULL); 1681 1682 static ssize_t stp_timing_mode_show(struct sysdev_class *class, 1683 struct sysdev_class_attribute *attr, 1684 char *buf) 1685 { 1686 if (!stp_online) 1687 return -ENODATA; 1688 return sprintf(buf, "%i\n", stp_info.tmd); 1689 } 1690 1691 static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL); 1692 1693 static ssize_t stp_timing_state_show(struct sysdev_class *class, 1694 struct sysdev_class_attribute *attr, 1695 char *buf) 1696 { 1697 if (!stp_online) 1698 return -ENODATA; 1699 return sprintf(buf, "%i\n", stp_info.tst); 1700 } 1701 1702 static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL); 1703 1704 static ssize_t stp_online_show(struct sysdev_class *class, 1705 struct sysdev_class_attribute *attr, 1706 char *buf) 1707 { 1708 return sprintf(buf, "%i\n", stp_online); 1709 } 1710 1711 static ssize_t stp_online_store(struct sysdev_class *class, 1712 struct sysdev_class_attribute *attr, 1713 const char *buf, size_t count) 1714 { 1715 unsigned int value; 1716 1717 value = simple_strtoul(buf, NULL, 0); 1718 if (value != 0 && value != 1) 1719 return -EINVAL; 1720 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 1721 return -EOPNOTSUPP; 1722 mutex_lock(&clock_sync_mutex); 1723 stp_online = value; 1724 if (stp_online) 1725 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 1726 else 1727 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 1728 queue_work(time_sync_wq, &stp_work); 1729 mutex_unlock(&clock_sync_mutex); 1730 return count; 1731 } 1732 1733 /* 1734 * Can't use SYSDEV_CLASS_ATTR because the attribute should be named 1735 * stp/online but attr_online already exists in this file .. 1736 */ 1737 static struct sysdev_class_attribute attr_stp_online = { 1738 .attr = { .name = "online", .mode = 0600 }, 1739 .show = stp_online_show, 1740 .store = stp_online_store, 1741 }; 1742 1743 static struct sysdev_class_attribute *stp_attributes[] = { 1744 &attr_ctn_id, 1745 &attr_ctn_type, 1746 &attr_dst_offset, 1747 &attr_leap_seconds, 1748 &attr_stp_online, 1749 &attr_stratum, 1750 &attr_time_offset, 1751 &attr_time_zone_offset, 1752 &attr_timing_mode, 1753 &attr_timing_state, 1754 NULL 1755 }; 1756 1757 static int __init stp_init_sysfs(void) 1758 { 1759 struct sysdev_class_attribute **attr; 1760 int rc; 1761 1762 rc = sysdev_class_register(&stp_sysclass); 1763 if (rc) 1764 goto out; 1765 for (attr = stp_attributes; *attr; attr++) { 1766 rc = sysdev_class_create_file(&stp_sysclass, *attr); 1767 if (rc) 1768 goto out_unreg; 1769 } 1770 return 0; 1771 out_unreg: 1772 for (; attr >= stp_attributes; attr--) 1773 sysdev_class_remove_file(&stp_sysclass, *attr); 1774 sysdev_class_unregister(&stp_sysclass); 1775 out: 1776 return rc; 1777 } 1778 1779 device_initcall(stp_init_sysfs); 1780