1 /* 2 * Time of day based timer functions. 3 * 4 * S390 version 5 * Copyright IBM Corp. 1999, 2008 6 * Author(s): Hartmut Penner (hp@de.ibm.com), 7 * Martin Schwidefsky (schwidefsky@de.ibm.com), 8 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) 9 * 10 * Derived from "arch/i386/kernel/time.c" 11 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 12 */ 13 14 #define KMSG_COMPONENT "time" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/kernel_stat.h> 18 #include <linux/errno.h> 19 #include <linux/export.h> 20 #include <linux/sched.h> 21 #include <linux/sched/clock.h> 22 #include <linux/kernel.h> 23 #include <linux/param.h> 24 #include <linux/string.h> 25 #include <linux/mm.h> 26 #include <linux/interrupt.h> 27 #include <linux/cpu.h> 28 #include <linux/stop_machine.h> 29 #include <linux/time.h> 30 #include <linux/device.h> 31 #include <linux/delay.h> 32 #include <linux/init.h> 33 #include <linux/smp.h> 34 #include <linux/types.h> 35 #include <linux/profile.h> 36 #include <linux/timex.h> 37 #include <linux/notifier.h> 38 #include <linux/timekeeper_internal.h> 39 #include <linux/clockchips.h> 40 #include <linux/gfp.h> 41 #include <linux/kprobes.h> 42 #include <linux/uaccess.h> 43 #include <asm/facility.h> 44 #include <asm/delay.h> 45 #include <asm/div64.h> 46 #include <asm/vdso.h> 47 #include <asm/irq.h> 48 #include <asm/irq_regs.h> 49 #include <asm/vtimer.h> 50 #include <asm/stp.h> 51 #include <asm/cio.h> 52 #include "entry.h" 53 54 u64 sched_clock_base_cc = -1; /* Force to data section. */ 55 EXPORT_SYMBOL_GPL(sched_clock_base_cc); 56 57 static DEFINE_PER_CPU(struct clock_event_device, comparators); 58 59 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier); 60 EXPORT_SYMBOL(s390_epoch_delta_notifier); 61 62 unsigned char ptff_function_mask[16]; 63 64 static unsigned long long lpar_offset; 65 static unsigned long long initial_leap_seconds; 66 static unsigned long long tod_steering_end; 67 static long long tod_steering_delta; 68 69 /* 70 * Get time offsets with PTFF 71 */ 72 void __init time_early_init(void) 73 { 74 struct ptff_qto qto; 75 struct ptff_qui qui; 76 77 /* Initialize TOD steering parameters */ 78 tod_steering_end = sched_clock_base_cc; 79 vdso_data->ts_end = tod_steering_end; 80 81 if (!test_facility(28)) 82 return; 83 84 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF); 85 86 /* get LPAR offset */ 87 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 88 lpar_offset = qto.tod_epoch_difference; 89 90 /* get initial leap seconds */ 91 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0) 92 initial_leap_seconds = (unsigned long long) 93 ((long) qui.old_leap * 4096000000L); 94 } 95 96 /* 97 * Scheduler clock - returns current time in nanosec units. 98 */ 99 unsigned long long notrace sched_clock(void) 100 { 101 return tod_to_ns(get_tod_clock_monotonic()); 102 } 103 NOKPROBE_SYMBOL(sched_clock); 104 105 /* 106 * Monotonic_clock - returns # of nanoseconds passed since time_init() 107 */ 108 unsigned long long monotonic_clock(void) 109 { 110 return sched_clock(); 111 } 112 EXPORT_SYMBOL(monotonic_clock); 113 114 static void tod_to_timeval(__u64 todval, struct timespec64 *xt) 115 { 116 unsigned long long sec; 117 118 sec = todval >> 12; 119 do_div(sec, 1000000); 120 xt->tv_sec = sec; 121 todval -= (sec * 1000000) << 12; 122 xt->tv_nsec = ((todval * 1000) >> 12); 123 } 124 125 void clock_comparator_work(void) 126 { 127 struct clock_event_device *cd; 128 129 S390_lowcore.clock_comparator = -1ULL; 130 cd = this_cpu_ptr(&comparators); 131 cd->event_handler(cd); 132 } 133 134 static int s390_next_event(unsigned long delta, 135 struct clock_event_device *evt) 136 { 137 S390_lowcore.clock_comparator = get_tod_clock() + delta; 138 set_clock_comparator(S390_lowcore.clock_comparator); 139 return 0; 140 } 141 142 /* 143 * Set up lowcore and control register of the current cpu to 144 * enable TOD clock and clock comparator interrupts. 145 */ 146 void init_cpu_timer(void) 147 { 148 struct clock_event_device *cd; 149 int cpu; 150 151 S390_lowcore.clock_comparator = -1ULL; 152 set_clock_comparator(S390_lowcore.clock_comparator); 153 154 cpu = smp_processor_id(); 155 cd = &per_cpu(comparators, cpu); 156 cd->name = "comparator"; 157 cd->features = CLOCK_EVT_FEAT_ONESHOT; 158 cd->mult = 16777; 159 cd->shift = 12; 160 cd->min_delta_ns = 1; 161 cd->max_delta_ns = LONG_MAX; 162 cd->rating = 400; 163 cd->cpumask = cpumask_of(cpu); 164 cd->set_next_event = s390_next_event; 165 166 clockevents_register_device(cd); 167 168 /* Enable clock comparator timer interrupt. */ 169 __ctl_set_bit(0,11); 170 171 /* Always allow the timing alert external interrupt. */ 172 __ctl_set_bit(0, 4); 173 } 174 175 static void clock_comparator_interrupt(struct ext_code ext_code, 176 unsigned int param32, 177 unsigned long param64) 178 { 179 inc_irq_stat(IRQEXT_CLK); 180 if (S390_lowcore.clock_comparator == -1ULL) 181 set_clock_comparator(S390_lowcore.clock_comparator); 182 } 183 184 static void stp_timing_alert(struct stp_irq_parm *); 185 186 static void timing_alert_interrupt(struct ext_code ext_code, 187 unsigned int param32, unsigned long param64) 188 { 189 inc_irq_stat(IRQEXT_TLA); 190 if (param32 & 0x00038000) 191 stp_timing_alert((struct stp_irq_parm *) ¶m32); 192 } 193 194 static void stp_reset(void); 195 196 void read_persistent_clock64(struct timespec64 *ts) 197 { 198 __u64 clock; 199 200 clock = get_tod_clock() - initial_leap_seconds; 201 tod_to_timeval(clock - TOD_UNIX_EPOCH, ts); 202 } 203 204 void read_boot_clock64(struct timespec64 *ts) 205 { 206 __u64 clock; 207 208 clock = sched_clock_base_cc - initial_leap_seconds; 209 tod_to_timeval(clock - TOD_UNIX_EPOCH, ts); 210 } 211 212 static u64 read_tod_clock(struct clocksource *cs) 213 { 214 unsigned long long now, adj; 215 216 preempt_disable(); /* protect from changes to steering parameters */ 217 now = get_tod_clock(); 218 adj = tod_steering_end - now; 219 if (unlikely((s64) adj >= 0)) 220 /* 221 * manually steer by 1 cycle every 2^16 cycles. This 222 * corresponds to shifting the tod delta by 15. 1s is 223 * therefore steered in ~9h. The adjust will decrease 224 * over time, until it finally reaches 0. 225 */ 226 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15); 227 preempt_enable(); 228 return now; 229 } 230 231 static struct clocksource clocksource_tod = { 232 .name = "tod", 233 .rating = 400, 234 .read = read_tod_clock, 235 .mask = -1ULL, 236 .mult = 1000, 237 .shift = 12, 238 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 239 }; 240 241 struct clocksource * __init clocksource_default_clock(void) 242 { 243 return &clocksource_tod; 244 } 245 246 void update_vsyscall(struct timekeeper *tk) 247 { 248 u64 nsecps; 249 250 if (tk->tkr_mono.clock != &clocksource_tod) 251 return; 252 253 /* Make userspace gettimeofday spin until we're done. */ 254 ++vdso_data->tb_update_count; 255 smp_wmb(); 256 vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last; 257 vdso_data->xtime_clock_sec = tk->xtime_sec; 258 vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec; 259 vdso_data->wtom_clock_sec = 260 tk->xtime_sec + tk->wall_to_monotonic.tv_sec; 261 vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec + 262 + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift); 263 nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift; 264 while (vdso_data->wtom_clock_nsec >= nsecps) { 265 vdso_data->wtom_clock_nsec -= nsecps; 266 vdso_data->wtom_clock_sec++; 267 } 268 269 vdso_data->xtime_coarse_sec = tk->xtime_sec; 270 vdso_data->xtime_coarse_nsec = 271 (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 272 vdso_data->wtom_coarse_sec = 273 vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec; 274 vdso_data->wtom_coarse_nsec = 275 vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec; 276 while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) { 277 vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC; 278 vdso_data->wtom_coarse_sec++; 279 } 280 281 vdso_data->tk_mult = tk->tkr_mono.mult; 282 vdso_data->tk_shift = tk->tkr_mono.shift; 283 smp_wmb(); 284 ++vdso_data->tb_update_count; 285 } 286 287 extern struct timezone sys_tz; 288 289 void update_vsyscall_tz(void) 290 { 291 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 292 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 293 } 294 295 /* 296 * Initialize the TOD clock and the CPU timer of 297 * the boot cpu. 298 */ 299 void __init time_init(void) 300 { 301 /* Reset time synchronization interfaces. */ 302 stp_reset(); 303 304 /* request the clock comparator external interrupt */ 305 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt)) 306 panic("Couldn't request external interrupt 0x1004"); 307 308 /* request the timing alert external interrupt */ 309 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt)) 310 panic("Couldn't request external interrupt 0x1406"); 311 312 if (__clocksource_register(&clocksource_tod) != 0) 313 panic("Could not register TOD clock source"); 314 315 /* Enable TOD clock interrupts on the boot cpu. */ 316 init_cpu_timer(); 317 318 /* Enable cpu timer interrupts on the boot cpu. */ 319 vtime_init(); 320 } 321 322 static DEFINE_PER_CPU(atomic_t, clock_sync_word); 323 static DEFINE_MUTEX(clock_sync_mutex); 324 static unsigned long clock_sync_flags; 325 326 #define CLOCK_SYNC_HAS_STP 0 327 #define CLOCK_SYNC_STP 1 328 329 /* 330 * The get_clock function for the physical clock. It will get the current 331 * TOD clock, subtract the LPAR offset and write the result to *clock. 332 * The function returns 0 if the clock is in sync with the external time 333 * source. If the clock mode is local it will return -EOPNOTSUPP and 334 * -EAGAIN if the clock is not in sync with the external reference. 335 */ 336 int get_phys_clock(unsigned long long *clock) 337 { 338 atomic_t *sw_ptr; 339 unsigned int sw0, sw1; 340 341 sw_ptr = &get_cpu_var(clock_sync_word); 342 sw0 = atomic_read(sw_ptr); 343 *clock = get_tod_clock() - lpar_offset; 344 sw1 = atomic_read(sw_ptr); 345 put_cpu_var(clock_sync_word); 346 if (sw0 == sw1 && (sw0 & 0x80000000U)) 347 /* Success: time is in sync. */ 348 return 0; 349 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 350 return -EOPNOTSUPP; 351 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags)) 352 return -EACCES; 353 return -EAGAIN; 354 } 355 EXPORT_SYMBOL(get_phys_clock); 356 357 /* 358 * Make get_phys_clock() return -EAGAIN. 359 */ 360 static void disable_sync_clock(void *dummy) 361 { 362 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 363 /* 364 * Clear the in-sync bit 2^31. All get_phys_clock calls will 365 * fail until the sync bit is turned back on. In addition 366 * increase the "sequence" counter to avoid the race of an 367 * stp event and the complete recovery against get_phys_clock. 368 */ 369 atomic_andnot(0x80000000, sw_ptr); 370 atomic_inc(sw_ptr); 371 } 372 373 /* 374 * Make get_phys_clock() return 0 again. 375 * Needs to be called from a context disabled for preemption. 376 */ 377 static void enable_sync_clock(void) 378 { 379 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word); 380 atomic_or(0x80000000, sw_ptr); 381 } 382 383 /* 384 * Function to check if the clock is in sync. 385 */ 386 static inline int check_sync_clock(void) 387 { 388 atomic_t *sw_ptr; 389 int rc; 390 391 sw_ptr = &get_cpu_var(clock_sync_word); 392 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0; 393 put_cpu_var(clock_sync_word); 394 return rc; 395 } 396 397 /* 398 * Apply clock delta to the global data structures. 399 * This is called once on the CPU that performed the clock sync. 400 */ 401 static void clock_sync_global(unsigned long long delta) 402 { 403 unsigned long now, adj; 404 struct ptff_qto qto; 405 406 /* Fixup the monotonic sched clock. */ 407 sched_clock_base_cc += delta; 408 /* Adjust TOD steering parameters. */ 409 vdso_data->tb_update_count++; 410 now = get_tod_clock(); 411 adj = tod_steering_end - now; 412 if (unlikely((s64) adj >= 0)) 413 /* Calculate how much of the old adjustment is left. */ 414 tod_steering_delta = (tod_steering_delta < 0) ? 415 -(adj >> 15) : (adj >> 15); 416 tod_steering_delta += delta; 417 if ((abs(tod_steering_delta) >> 48) != 0) 418 panic("TOD clock sync offset %lli is too large to drift\n", 419 tod_steering_delta); 420 tod_steering_end = now + (abs(tod_steering_delta) << 15); 421 vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1; 422 vdso_data->ts_end = tod_steering_end; 423 vdso_data->tb_update_count++; 424 /* Update LPAR offset. */ 425 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0) 426 lpar_offset = qto.tod_epoch_difference; 427 /* Call the TOD clock change notifier. */ 428 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta); 429 } 430 431 /* 432 * Apply clock delta to the per-CPU data structures of this CPU. 433 * This is called for each online CPU after the call to clock_sync_global. 434 */ 435 static void clock_sync_local(unsigned long long delta) 436 { 437 /* Add the delta to the clock comparator. */ 438 if (S390_lowcore.clock_comparator != -1ULL) { 439 S390_lowcore.clock_comparator += delta; 440 set_clock_comparator(S390_lowcore.clock_comparator); 441 } 442 /* Adjust the last_update_clock time-stamp. */ 443 S390_lowcore.last_update_clock += delta; 444 } 445 446 /* Single threaded workqueue used for stp sync events */ 447 static struct workqueue_struct *time_sync_wq; 448 449 static void __init time_init_wq(void) 450 { 451 if (time_sync_wq) 452 return; 453 time_sync_wq = create_singlethread_workqueue("timesync"); 454 } 455 456 struct clock_sync_data { 457 atomic_t cpus; 458 int in_sync; 459 unsigned long long clock_delta; 460 }; 461 462 /* 463 * Server Time Protocol (STP) code. 464 */ 465 static bool stp_online; 466 static struct stp_sstpi stp_info; 467 static void *stp_page; 468 469 static void stp_work_fn(struct work_struct *work); 470 static DEFINE_MUTEX(stp_work_mutex); 471 static DECLARE_WORK(stp_work, stp_work_fn); 472 static struct timer_list stp_timer; 473 474 static int __init early_parse_stp(char *p) 475 { 476 return kstrtobool(p, &stp_online); 477 } 478 early_param("stp", early_parse_stp); 479 480 /* 481 * Reset STP attachment. 482 */ 483 static void __init stp_reset(void) 484 { 485 int rc; 486 487 stp_page = (void *) get_zeroed_page(GFP_ATOMIC); 488 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 489 if (rc == 0) 490 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags); 491 else if (stp_online) { 492 pr_warn("The real or virtual hardware system does not provide an STP interface\n"); 493 free_page((unsigned long) stp_page); 494 stp_page = NULL; 495 stp_online = false; 496 } 497 } 498 499 static void stp_timeout(unsigned long dummy) 500 { 501 queue_work(time_sync_wq, &stp_work); 502 } 503 504 static int __init stp_init(void) 505 { 506 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 507 return 0; 508 setup_timer(&stp_timer, stp_timeout, 0UL); 509 time_init_wq(); 510 if (!stp_online) 511 return 0; 512 queue_work(time_sync_wq, &stp_work); 513 return 0; 514 } 515 516 arch_initcall(stp_init); 517 518 /* 519 * STP timing alert. There are three causes: 520 * 1) timing status change 521 * 2) link availability change 522 * 3) time control parameter change 523 * In all three cases we are only interested in the clock source state. 524 * If a STP clock source is now available use it. 525 */ 526 static void stp_timing_alert(struct stp_irq_parm *intparm) 527 { 528 if (intparm->tsc || intparm->lac || intparm->tcpc) 529 queue_work(time_sync_wq, &stp_work); 530 } 531 532 /* 533 * STP sync check machine check. This is called when the timing state 534 * changes from the synchronized state to the unsynchronized state. 535 * After a STP sync check the clock is not in sync. The machine check 536 * is broadcasted to all cpus at the same time. 537 */ 538 int stp_sync_check(void) 539 { 540 disable_sync_clock(NULL); 541 return 1; 542 } 543 544 /* 545 * STP island condition machine check. This is called when an attached 546 * server attempts to communicate over an STP link and the servers 547 * have matching CTN ids and have a valid stratum-1 configuration 548 * but the configurations do not match. 549 */ 550 int stp_island_check(void) 551 { 552 disable_sync_clock(NULL); 553 return 1; 554 } 555 556 void stp_queue_work(void) 557 { 558 queue_work(time_sync_wq, &stp_work); 559 } 560 561 static int stp_sync_clock(void *data) 562 { 563 struct clock_sync_data *sync = data; 564 unsigned long long clock_delta; 565 static int first; 566 int rc; 567 568 enable_sync_clock(); 569 if (xchg(&first, 1) == 0) { 570 /* Wait until all other cpus entered the sync function. */ 571 while (atomic_read(&sync->cpus) != 0) 572 cpu_relax(); 573 rc = 0; 574 if (stp_info.todoff[0] || stp_info.todoff[1] || 575 stp_info.todoff[2] || stp_info.todoff[3] || 576 stp_info.tmd != 2) { 577 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0, 578 &clock_delta); 579 if (rc == 0) { 580 sync->clock_delta = clock_delta; 581 clock_sync_global(clock_delta); 582 rc = chsc_sstpi(stp_page, &stp_info, 583 sizeof(struct stp_sstpi)); 584 if (rc == 0 && stp_info.tmd != 2) 585 rc = -EAGAIN; 586 } 587 } 588 sync->in_sync = rc ? -EAGAIN : 1; 589 xchg(&first, 0); 590 } else { 591 /* Slave */ 592 atomic_dec(&sync->cpus); 593 /* Wait for in_sync to be set. */ 594 while (READ_ONCE(sync->in_sync) == 0) 595 __udelay(1); 596 } 597 if (sync->in_sync != 1) 598 /* Didn't work. Clear per-cpu in sync bit again. */ 599 disable_sync_clock(NULL); 600 /* Apply clock delta to per-CPU fields of this CPU. */ 601 clock_sync_local(sync->clock_delta); 602 603 return 0; 604 } 605 606 /* 607 * STP work. Check for the STP state and take over the clock 608 * synchronization if the STP clock source is usable. 609 */ 610 static void stp_work_fn(struct work_struct *work) 611 { 612 struct clock_sync_data stp_sync; 613 int rc; 614 615 /* prevent multiple execution. */ 616 mutex_lock(&stp_work_mutex); 617 618 if (!stp_online) { 619 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL); 620 del_timer_sync(&stp_timer); 621 goto out_unlock; 622 } 623 624 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL); 625 if (rc) 626 goto out_unlock; 627 628 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi)); 629 if (rc || stp_info.c == 0) 630 goto out_unlock; 631 632 /* Skip synchronization if the clock is already in sync. */ 633 if (check_sync_clock()) 634 goto out_unlock; 635 636 memset(&stp_sync, 0, sizeof(stp_sync)); 637 get_online_cpus(); 638 atomic_set(&stp_sync.cpus, num_online_cpus() - 1); 639 stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask); 640 put_online_cpus(); 641 642 if (!check_sync_clock()) 643 /* 644 * There is a usable clock but the synchonization failed. 645 * Retry after a second. 646 */ 647 mod_timer(&stp_timer, jiffies + HZ); 648 649 out_unlock: 650 mutex_unlock(&stp_work_mutex); 651 } 652 653 /* 654 * STP subsys sysfs interface functions 655 */ 656 static struct bus_type stp_subsys = { 657 .name = "stp", 658 .dev_name = "stp", 659 }; 660 661 static ssize_t stp_ctn_id_show(struct device *dev, 662 struct device_attribute *attr, 663 char *buf) 664 { 665 if (!stp_online) 666 return -ENODATA; 667 return sprintf(buf, "%016llx\n", 668 *(unsigned long long *) stp_info.ctnid); 669 } 670 671 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL); 672 673 static ssize_t stp_ctn_type_show(struct device *dev, 674 struct device_attribute *attr, 675 char *buf) 676 { 677 if (!stp_online) 678 return -ENODATA; 679 return sprintf(buf, "%i\n", stp_info.ctn); 680 } 681 682 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL); 683 684 static ssize_t stp_dst_offset_show(struct device *dev, 685 struct device_attribute *attr, 686 char *buf) 687 { 688 if (!stp_online || !(stp_info.vbits & 0x2000)) 689 return -ENODATA; 690 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto); 691 } 692 693 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL); 694 695 static ssize_t stp_leap_seconds_show(struct device *dev, 696 struct device_attribute *attr, 697 char *buf) 698 { 699 if (!stp_online || !(stp_info.vbits & 0x8000)) 700 return -ENODATA; 701 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps); 702 } 703 704 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL); 705 706 static ssize_t stp_stratum_show(struct device *dev, 707 struct device_attribute *attr, 708 char *buf) 709 { 710 if (!stp_online) 711 return -ENODATA; 712 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum); 713 } 714 715 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL); 716 717 static ssize_t stp_time_offset_show(struct device *dev, 718 struct device_attribute *attr, 719 char *buf) 720 { 721 if (!stp_online || !(stp_info.vbits & 0x0800)) 722 return -ENODATA; 723 return sprintf(buf, "%i\n", (int) stp_info.tto); 724 } 725 726 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL); 727 728 static ssize_t stp_time_zone_offset_show(struct device *dev, 729 struct device_attribute *attr, 730 char *buf) 731 { 732 if (!stp_online || !(stp_info.vbits & 0x4000)) 733 return -ENODATA; 734 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo); 735 } 736 737 static DEVICE_ATTR(time_zone_offset, 0400, 738 stp_time_zone_offset_show, NULL); 739 740 static ssize_t stp_timing_mode_show(struct device *dev, 741 struct device_attribute *attr, 742 char *buf) 743 { 744 if (!stp_online) 745 return -ENODATA; 746 return sprintf(buf, "%i\n", stp_info.tmd); 747 } 748 749 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL); 750 751 static ssize_t stp_timing_state_show(struct device *dev, 752 struct device_attribute *attr, 753 char *buf) 754 { 755 if (!stp_online) 756 return -ENODATA; 757 return sprintf(buf, "%i\n", stp_info.tst); 758 } 759 760 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL); 761 762 static ssize_t stp_online_show(struct device *dev, 763 struct device_attribute *attr, 764 char *buf) 765 { 766 return sprintf(buf, "%i\n", stp_online); 767 } 768 769 static ssize_t stp_online_store(struct device *dev, 770 struct device_attribute *attr, 771 const char *buf, size_t count) 772 { 773 unsigned int value; 774 775 value = simple_strtoul(buf, NULL, 0); 776 if (value != 0 && value != 1) 777 return -EINVAL; 778 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags)) 779 return -EOPNOTSUPP; 780 mutex_lock(&clock_sync_mutex); 781 stp_online = value; 782 if (stp_online) 783 set_bit(CLOCK_SYNC_STP, &clock_sync_flags); 784 else 785 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags); 786 queue_work(time_sync_wq, &stp_work); 787 mutex_unlock(&clock_sync_mutex); 788 return count; 789 } 790 791 /* 792 * Can't use DEVICE_ATTR because the attribute should be named 793 * stp/online but dev_attr_online already exists in this file .. 794 */ 795 static struct device_attribute dev_attr_stp_online = { 796 .attr = { .name = "online", .mode = 0600 }, 797 .show = stp_online_show, 798 .store = stp_online_store, 799 }; 800 801 static struct device_attribute *stp_attributes[] = { 802 &dev_attr_ctn_id, 803 &dev_attr_ctn_type, 804 &dev_attr_dst_offset, 805 &dev_attr_leap_seconds, 806 &dev_attr_stp_online, 807 &dev_attr_stratum, 808 &dev_attr_time_offset, 809 &dev_attr_time_zone_offset, 810 &dev_attr_timing_mode, 811 &dev_attr_timing_state, 812 NULL 813 }; 814 815 static int __init stp_init_sysfs(void) 816 { 817 struct device_attribute **attr; 818 int rc; 819 820 rc = subsys_system_register(&stp_subsys, NULL); 821 if (rc) 822 goto out; 823 for (attr = stp_attributes; *attr; attr++) { 824 rc = device_create_file(stp_subsys.dev_root, *attr); 825 if (rc) 826 goto out_unreg; 827 } 828 return 0; 829 out_unreg: 830 for (; attr >= stp_attributes; attr--) 831 device_remove_file(stp_subsys.dev_root, *attr); 832 bus_unregister(&stp_subsys); 833 out: 834 return rc; 835 } 836 837 device_initcall(stp_init_sysfs); 838