xref: /openbmc/linux/arch/s390/kernel/time.c (revision 0edbfea5)
1 /*
2  *    Time of day based timer functions.
3  *
4  *  S390 version
5  *    Copyright IBM Corp. 1999, 2008
6  *    Author(s): Hartmut Penner (hp@de.ibm.com),
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
8  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
9  *
10  *  Derived from "arch/i386/kernel/time.c"
11  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
12  */
13 
14 #define KMSG_COMPONENT "time"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16 
17 #include <linux/kernel_stat.h>
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/cpu.h>
27 #include <linux/stop_machine.h>
28 #include <linux/time.h>
29 #include <linux/device.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/smp.h>
33 #include <linux/types.h>
34 #include <linux/profile.h>
35 #include <linux/timex.h>
36 #include <linux/notifier.h>
37 #include <linux/timekeeper_internal.h>
38 #include <linux/clockchips.h>
39 #include <linux/gfp.h>
40 #include <linux/kprobes.h>
41 #include <asm/uaccess.h>
42 #include <asm/delay.h>
43 #include <asm/div64.h>
44 #include <asm/vdso.h>
45 #include <asm/irq.h>
46 #include <asm/irq_regs.h>
47 #include <asm/vtimer.h>
48 #include <asm/etr.h>
49 #include <asm/cio.h>
50 #include "entry.h"
51 
52 /* change this if you have some constant time drift */
53 #define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
54 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
55 
56 u64 sched_clock_base_cc = -1;	/* Force to data section. */
57 EXPORT_SYMBOL_GPL(sched_clock_base_cc);
58 
59 static DEFINE_PER_CPU(struct clock_event_device, comparators);
60 
61 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
62 EXPORT_SYMBOL(s390_epoch_delta_notifier);
63 
64 /*
65  * Scheduler clock - returns current time in nanosec units.
66  */
67 unsigned long long notrace sched_clock(void)
68 {
69 	return tod_to_ns(get_tod_clock_monotonic());
70 }
71 NOKPROBE_SYMBOL(sched_clock);
72 
73 /*
74  * Monotonic_clock - returns # of nanoseconds passed since time_init()
75  */
76 unsigned long long monotonic_clock(void)
77 {
78 	return sched_clock();
79 }
80 EXPORT_SYMBOL(monotonic_clock);
81 
82 void tod_to_timeval(__u64 todval, struct timespec64 *xt)
83 {
84 	unsigned long long sec;
85 
86 	sec = todval >> 12;
87 	do_div(sec, 1000000);
88 	xt->tv_sec = sec;
89 	todval -= (sec * 1000000) << 12;
90 	xt->tv_nsec = ((todval * 1000) >> 12);
91 }
92 EXPORT_SYMBOL(tod_to_timeval);
93 
94 void clock_comparator_work(void)
95 {
96 	struct clock_event_device *cd;
97 
98 	S390_lowcore.clock_comparator = -1ULL;
99 	cd = this_cpu_ptr(&comparators);
100 	cd->event_handler(cd);
101 }
102 
103 /*
104  * Fixup the clock comparator.
105  */
106 static void fixup_clock_comparator(unsigned long long delta)
107 {
108 	/* If nobody is waiting there's nothing to fix. */
109 	if (S390_lowcore.clock_comparator == -1ULL)
110 		return;
111 	S390_lowcore.clock_comparator += delta;
112 	set_clock_comparator(S390_lowcore.clock_comparator);
113 }
114 
115 static int s390_next_event(unsigned long delta,
116 			   struct clock_event_device *evt)
117 {
118 	S390_lowcore.clock_comparator = get_tod_clock() + delta;
119 	set_clock_comparator(S390_lowcore.clock_comparator);
120 	return 0;
121 }
122 
123 /*
124  * Set up lowcore and control register of the current cpu to
125  * enable TOD clock and clock comparator interrupts.
126  */
127 void init_cpu_timer(void)
128 {
129 	struct clock_event_device *cd;
130 	int cpu;
131 
132 	S390_lowcore.clock_comparator = -1ULL;
133 	set_clock_comparator(S390_lowcore.clock_comparator);
134 
135 	cpu = smp_processor_id();
136 	cd = &per_cpu(comparators, cpu);
137 	cd->name		= "comparator";
138 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
139 	cd->mult		= 16777;
140 	cd->shift		= 12;
141 	cd->min_delta_ns	= 1;
142 	cd->max_delta_ns	= LONG_MAX;
143 	cd->rating		= 400;
144 	cd->cpumask		= cpumask_of(cpu);
145 	cd->set_next_event	= s390_next_event;
146 
147 	clockevents_register_device(cd);
148 
149 	/* Enable clock comparator timer interrupt. */
150 	__ctl_set_bit(0,11);
151 
152 	/* Always allow the timing alert external interrupt. */
153 	__ctl_set_bit(0, 4);
154 }
155 
156 static void clock_comparator_interrupt(struct ext_code ext_code,
157 				       unsigned int param32,
158 				       unsigned long param64)
159 {
160 	inc_irq_stat(IRQEXT_CLK);
161 	if (S390_lowcore.clock_comparator == -1ULL)
162 		set_clock_comparator(S390_lowcore.clock_comparator);
163 }
164 
165 static void etr_timing_alert(struct etr_irq_parm *);
166 static void stp_timing_alert(struct stp_irq_parm *);
167 
168 static void timing_alert_interrupt(struct ext_code ext_code,
169 				   unsigned int param32, unsigned long param64)
170 {
171 	inc_irq_stat(IRQEXT_TLA);
172 	if (param32 & 0x00c40000)
173 		etr_timing_alert((struct etr_irq_parm *) &param32);
174 	if (param32 & 0x00038000)
175 		stp_timing_alert((struct stp_irq_parm *) &param32);
176 }
177 
178 static void etr_reset(void);
179 static void stp_reset(void);
180 
181 void read_persistent_clock64(struct timespec64 *ts)
182 {
183 	tod_to_timeval(get_tod_clock() - TOD_UNIX_EPOCH, ts);
184 }
185 
186 void read_boot_clock64(struct timespec64 *ts)
187 {
188 	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
189 }
190 
191 static cycle_t read_tod_clock(struct clocksource *cs)
192 {
193 	return get_tod_clock();
194 }
195 
196 static struct clocksource clocksource_tod = {
197 	.name		= "tod",
198 	.rating		= 400,
199 	.read		= read_tod_clock,
200 	.mask		= -1ULL,
201 	.mult		= 1000,
202 	.shift		= 12,
203 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
204 };
205 
206 struct clocksource * __init clocksource_default_clock(void)
207 {
208 	return &clocksource_tod;
209 }
210 
211 void update_vsyscall(struct timekeeper *tk)
212 {
213 	u64 nsecps;
214 
215 	if (tk->tkr_mono.clock != &clocksource_tod)
216 		return;
217 
218 	/* Make userspace gettimeofday spin until we're done. */
219 	++vdso_data->tb_update_count;
220 	smp_wmb();
221 	vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
222 	vdso_data->xtime_clock_sec = tk->xtime_sec;
223 	vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
224 	vdso_data->wtom_clock_sec =
225 		tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
226 	vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
227 		+ ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
228 	nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
229 	while (vdso_data->wtom_clock_nsec >= nsecps) {
230 		vdso_data->wtom_clock_nsec -= nsecps;
231 		vdso_data->wtom_clock_sec++;
232 	}
233 
234 	vdso_data->xtime_coarse_sec = tk->xtime_sec;
235 	vdso_data->xtime_coarse_nsec =
236 		(long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
237 	vdso_data->wtom_coarse_sec =
238 		vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
239 	vdso_data->wtom_coarse_nsec =
240 		vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
241 	while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
242 		vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
243 		vdso_data->wtom_coarse_sec++;
244 	}
245 
246 	vdso_data->tk_mult = tk->tkr_mono.mult;
247 	vdso_data->tk_shift = tk->tkr_mono.shift;
248 	smp_wmb();
249 	++vdso_data->tb_update_count;
250 }
251 
252 extern struct timezone sys_tz;
253 
254 void update_vsyscall_tz(void)
255 {
256 	/* Make userspace gettimeofday spin until we're done. */
257 	++vdso_data->tb_update_count;
258 	smp_wmb();
259 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
260 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
261 	smp_wmb();
262 	++vdso_data->tb_update_count;
263 }
264 
265 /*
266  * Initialize the TOD clock and the CPU timer of
267  * the boot cpu.
268  */
269 void __init time_init(void)
270 {
271 	/* Reset time synchronization interfaces. */
272 	etr_reset();
273 	stp_reset();
274 
275 	/* request the clock comparator external interrupt */
276 	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
277 		panic("Couldn't request external interrupt 0x1004");
278 
279 	/* request the timing alert external interrupt */
280 	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
281 		panic("Couldn't request external interrupt 0x1406");
282 
283 	if (__clocksource_register(&clocksource_tod) != 0)
284 		panic("Could not register TOD clock source");
285 
286 	/* Enable TOD clock interrupts on the boot cpu. */
287 	init_cpu_timer();
288 
289 	/* Enable cpu timer interrupts on the boot cpu. */
290 	vtime_init();
291 }
292 
293 /*
294  * The time is "clock". old is what we think the time is.
295  * Adjust the value by a multiple of jiffies and add the delta to ntp.
296  * "delay" is an approximation how long the synchronization took. If
297  * the time correction is positive, then "delay" is subtracted from
298  * the time difference and only the remaining part is passed to ntp.
299  */
300 static unsigned long long adjust_time(unsigned long long old,
301 				      unsigned long long clock,
302 				      unsigned long long delay)
303 {
304 	unsigned long long delta, ticks;
305 	struct timex adjust;
306 
307 	if (clock > old) {
308 		/* It is later than we thought. */
309 		delta = ticks = clock - old;
310 		delta = ticks = (delta < delay) ? 0 : delta - delay;
311 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
312 		adjust.offset = ticks * (1000000 / HZ);
313 	} else {
314 		/* It is earlier than we thought. */
315 		delta = ticks = old - clock;
316 		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
317 		delta = -delta;
318 		adjust.offset = -ticks * (1000000 / HZ);
319 	}
320 	sched_clock_base_cc += delta;
321 	if (adjust.offset != 0) {
322 		pr_notice("The ETR interface has adjusted the clock "
323 			  "by %li microseconds\n", adjust.offset);
324 		adjust.modes = ADJ_OFFSET_SINGLESHOT;
325 		do_adjtimex(&adjust);
326 	}
327 	return delta;
328 }
329 
330 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
331 static DEFINE_MUTEX(clock_sync_mutex);
332 static unsigned long clock_sync_flags;
333 
334 #define CLOCK_SYNC_HAS_ETR	0
335 #define CLOCK_SYNC_HAS_STP	1
336 #define CLOCK_SYNC_ETR		2
337 #define CLOCK_SYNC_STP		3
338 
339 /*
340  * The synchronous get_clock function. It will write the current clock
341  * value to the clock pointer and return 0 if the clock is in sync with
342  * the external time source. If the clock mode is local it will return
343  * -EOPNOTSUPP and -EAGAIN if the clock is not in sync with the external
344  * reference.
345  */
346 int get_sync_clock(unsigned long long *clock)
347 {
348 	atomic_t *sw_ptr;
349 	unsigned int sw0, sw1;
350 
351 	sw_ptr = &get_cpu_var(clock_sync_word);
352 	sw0 = atomic_read(sw_ptr);
353 	*clock = get_tod_clock();
354 	sw1 = atomic_read(sw_ptr);
355 	put_cpu_var(clock_sync_word);
356 	if (sw0 == sw1 && (sw0 & 0x80000000U))
357 		/* Success: time is in sync. */
358 		return 0;
359 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
360 	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
361 		return -EOPNOTSUPP;
362 	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
363 	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
364 		return -EACCES;
365 	return -EAGAIN;
366 }
367 EXPORT_SYMBOL(get_sync_clock);
368 
369 /*
370  * Make get_sync_clock return -EAGAIN.
371  */
372 static void disable_sync_clock(void *dummy)
373 {
374 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
375 	/*
376 	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
377 	 * fail until the sync bit is turned back on. In addition
378 	 * increase the "sequence" counter to avoid the race of an
379 	 * etr event and the complete recovery against get_sync_clock.
380 	 */
381 	atomic_andnot(0x80000000, sw_ptr);
382 	atomic_inc(sw_ptr);
383 }
384 
385 /*
386  * Make get_sync_clock return 0 again.
387  * Needs to be called from a context disabled for preemption.
388  */
389 static void enable_sync_clock(void)
390 {
391 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
392 	atomic_or(0x80000000, sw_ptr);
393 }
394 
395 /*
396  * Function to check if the clock is in sync.
397  */
398 static inline int check_sync_clock(void)
399 {
400 	atomic_t *sw_ptr;
401 	int rc;
402 
403 	sw_ptr = &get_cpu_var(clock_sync_word);
404 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
405 	put_cpu_var(clock_sync_word);
406 	return rc;
407 }
408 
409 /* Single threaded workqueue used for etr and stp sync events */
410 static struct workqueue_struct *time_sync_wq;
411 
412 static void __init time_init_wq(void)
413 {
414 	if (time_sync_wq)
415 		return;
416 	time_sync_wq = create_singlethread_workqueue("timesync");
417 }
418 
419 /*
420  * External Time Reference (ETR) code.
421  */
422 static int etr_port0_online;
423 static int etr_port1_online;
424 static int etr_steai_available;
425 
426 static int __init early_parse_etr(char *p)
427 {
428 	if (strncmp(p, "off", 3) == 0)
429 		etr_port0_online = etr_port1_online = 0;
430 	else if (strncmp(p, "port0", 5) == 0)
431 		etr_port0_online = 1;
432 	else if (strncmp(p, "port1", 5) == 0)
433 		etr_port1_online = 1;
434 	else if (strncmp(p, "on", 2) == 0)
435 		etr_port0_online = etr_port1_online = 1;
436 	return 0;
437 }
438 early_param("etr", early_parse_etr);
439 
440 enum etr_event {
441 	ETR_EVENT_PORT0_CHANGE,
442 	ETR_EVENT_PORT1_CHANGE,
443 	ETR_EVENT_PORT_ALERT,
444 	ETR_EVENT_SYNC_CHECK,
445 	ETR_EVENT_SWITCH_LOCAL,
446 	ETR_EVENT_UPDATE,
447 };
448 
449 /*
450  * Valid bit combinations of the eacr register are (x = don't care):
451  * e0 e1 dp p0 p1 ea es sl
452  *  0  0  x  0	0  0  0  0  initial, disabled state
453  *  0  0  x  0	1  1  0  0  port 1 online
454  *  0  0  x  1	0  1  0  0  port 0 online
455  *  0  0  x  1	1  1  0  0  both ports online
456  *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
457  *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
458  *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
459  *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
460  *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
461  *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
462  *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
463  *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
464  *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
465  *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
466  *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
467  *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
468  *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
469  *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
470  *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
471  *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
472  */
473 static struct etr_eacr etr_eacr;
474 static u64 etr_tolec;			/* time of last eacr update */
475 static struct etr_aib etr_port0;
476 static int etr_port0_uptodate;
477 static struct etr_aib etr_port1;
478 static int etr_port1_uptodate;
479 static unsigned long etr_events;
480 static struct timer_list etr_timer;
481 
482 static void etr_timeout(unsigned long dummy);
483 static void etr_work_fn(struct work_struct *work);
484 static DEFINE_MUTEX(etr_work_mutex);
485 static DECLARE_WORK(etr_work, etr_work_fn);
486 
487 /*
488  * Reset ETR attachment.
489  */
490 static void etr_reset(void)
491 {
492 	etr_eacr =  (struct etr_eacr) {
493 		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
494 		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
495 		.es = 0, .sl = 0 };
496 	if (etr_setr(&etr_eacr) == 0) {
497 		etr_tolec = get_tod_clock();
498 		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
499 		if (etr_port0_online && etr_port1_online)
500 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
501 	} else if (etr_port0_online || etr_port1_online) {
502 		pr_warn("The real or virtual hardware system does not provide an ETR interface\n");
503 		etr_port0_online = etr_port1_online = 0;
504 	}
505 }
506 
507 static int __init etr_init(void)
508 {
509 	struct etr_aib aib;
510 
511 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
512 		return 0;
513 	time_init_wq();
514 	/* Check if this machine has the steai instruction. */
515 	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
516 		etr_steai_available = 1;
517 	setup_timer(&etr_timer, etr_timeout, 0UL);
518 	if (etr_port0_online) {
519 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
520 		queue_work(time_sync_wq, &etr_work);
521 	}
522 	if (etr_port1_online) {
523 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
524 		queue_work(time_sync_wq, &etr_work);
525 	}
526 	return 0;
527 }
528 
529 arch_initcall(etr_init);
530 
531 /*
532  * Two sorts of ETR machine checks. The architecture reads:
533  * "When a machine-check niterruption occurs and if a switch-to-local or
534  *  ETR-sync-check interrupt request is pending but disabled, this pending
535  *  disabled interruption request is indicated and is cleared".
536  * Which means that we can get etr_switch_to_local events from the machine
537  * check handler although the interruption condition is disabled. Lovely..
538  */
539 
540 /*
541  * Switch to local machine check. This is called when the last usable
542  * ETR port goes inactive. After switch to local the clock is not in sync.
543  */
544 int etr_switch_to_local(void)
545 {
546 	if (!etr_eacr.sl)
547 		return 0;
548 	disable_sync_clock(NULL);
549 	if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
550 		etr_eacr.es = etr_eacr.sl = 0;
551 		etr_setr(&etr_eacr);
552 		return 1;
553 	}
554 	return 0;
555 }
556 
557 /*
558  * ETR sync check machine check. This is called when the ETR OTE and the
559  * local clock OTE are farther apart than the ETR sync check tolerance.
560  * After a ETR sync check the clock is not in sync. The machine check
561  * is broadcasted to all cpus at the same time.
562  */
563 int etr_sync_check(void)
564 {
565 	if (!etr_eacr.es)
566 		return 0;
567 	disable_sync_clock(NULL);
568 	if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
569 		etr_eacr.es = 0;
570 		etr_setr(&etr_eacr);
571 		return 1;
572 	}
573 	return 0;
574 }
575 
576 void etr_queue_work(void)
577 {
578 	queue_work(time_sync_wq, &etr_work);
579 }
580 
581 /*
582  * ETR timing alert. There are two causes:
583  * 1) port state change, check the usability of the port
584  * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
585  *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
586  *    or ETR-data word 4 (edf4) has changed.
587  */
588 static void etr_timing_alert(struct etr_irq_parm *intparm)
589 {
590 	if (intparm->pc0)
591 		/* ETR port 0 state change. */
592 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
593 	if (intparm->pc1)
594 		/* ETR port 1 state change. */
595 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
596 	if (intparm->eai)
597 		/*
598 		 * ETR port alert on either port 0, 1 or both.
599 		 * Both ports are not up-to-date now.
600 		 */
601 		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
602 	queue_work(time_sync_wq, &etr_work);
603 }
604 
605 static void etr_timeout(unsigned long dummy)
606 {
607 	set_bit(ETR_EVENT_UPDATE, &etr_events);
608 	queue_work(time_sync_wq, &etr_work);
609 }
610 
611 /*
612  * Check if the etr mode is pss.
613  */
614 static inline int etr_mode_is_pps(struct etr_eacr eacr)
615 {
616 	return eacr.es && !eacr.sl;
617 }
618 
619 /*
620  * Check if the etr mode is etr.
621  */
622 static inline int etr_mode_is_etr(struct etr_eacr eacr)
623 {
624 	return eacr.es && eacr.sl;
625 }
626 
627 /*
628  * Check if the port can be used for TOD synchronization.
629  * For PPS mode the port has to receive OTEs. For ETR mode
630  * the port has to receive OTEs, the ETR stepping bit has to
631  * be zero and the validity bits for data frame 1, 2, and 3
632  * have to be 1.
633  */
634 static int etr_port_valid(struct etr_aib *aib, int port)
635 {
636 	unsigned int psc;
637 
638 	/* Check that this port is receiving OTEs. */
639 	if (aib->tsp == 0)
640 		return 0;
641 
642 	psc = port ? aib->esw.psc1 : aib->esw.psc0;
643 	if (psc == etr_lpsc_pps_mode)
644 		return 1;
645 	if (psc == etr_lpsc_operational_step)
646 		return !aib->esw.y && aib->slsw.v1 &&
647 			aib->slsw.v2 && aib->slsw.v3;
648 	return 0;
649 }
650 
651 /*
652  * Check if two ports are on the same network.
653  */
654 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
655 {
656 	// FIXME: any other fields we have to compare?
657 	return aib1->edf1.net_id == aib2->edf1.net_id;
658 }
659 
660 /*
661  * Wrapper for etr_stei that converts physical port states
662  * to logical port states to be consistent with the output
663  * of stetr (see etr_psc vs. etr_lpsc).
664  */
665 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
666 {
667 	BUG_ON(etr_steai(aib, func) != 0);
668 	/* Convert port state to logical port state. */
669 	if (aib->esw.psc0 == 1)
670 		aib->esw.psc0 = 2;
671 	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
672 		aib->esw.psc0 = 1;
673 	if (aib->esw.psc1 == 1)
674 		aib->esw.psc1 = 2;
675 	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
676 		aib->esw.psc1 = 1;
677 }
678 
679 /*
680  * Check if the aib a2 is still connected to the same attachment as
681  * aib a1, the etv values differ by one and a2 is valid.
682  */
683 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
684 {
685 	int state_a1, state_a2;
686 
687 	/* Paranoia check: e0/e1 should better be the same. */
688 	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
689 	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
690 		return 0;
691 
692 	/* Still connected to the same etr ? */
693 	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
694 	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
695 	if (state_a1 == etr_lpsc_operational_step) {
696 		if (state_a2 != etr_lpsc_operational_step ||
697 		    a1->edf1.net_id != a2->edf1.net_id ||
698 		    a1->edf1.etr_id != a2->edf1.etr_id ||
699 		    a1->edf1.etr_pn != a2->edf1.etr_pn)
700 			return 0;
701 	} else if (state_a2 != etr_lpsc_pps_mode)
702 		return 0;
703 
704 	/* The ETV value of a2 needs to be ETV of a1 + 1. */
705 	if (a1->edf2.etv + 1 != a2->edf2.etv)
706 		return 0;
707 
708 	if (!etr_port_valid(a2, p))
709 		return 0;
710 
711 	return 1;
712 }
713 
714 struct clock_sync_data {
715 	atomic_t cpus;
716 	int in_sync;
717 	unsigned long long fixup_cc;
718 	int etr_port;
719 	struct etr_aib *etr_aib;
720 };
721 
722 static void clock_sync_cpu(struct clock_sync_data *sync)
723 {
724 	atomic_dec(&sync->cpus);
725 	enable_sync_clock();
726 	/*
727 	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
728 	 * is called on all other cpus while the TOD clocks is stopped.
729 	 * __udelay will stop the cpu on an enabled wait psw until the
730 	 * TOD is running again.
731 	 */
732 	while (sync->in_sync == 0) {
733 		__udelay(1);
734 		/*
735 		 * A different cpu changes *in_sync. Therefore use
736 		 * barrier() to force memory access.
737 		 */
738 		barrier();
739 	}
740 	if (sync->in_sync != 1)
741 		/* Didn't work. Clear per-cpu in sync bit again. */
742 		disable_sync_clock(NULL);
743 	/*
744 	 * This round of TOD syncing is done. Set the clock comparator
745 	 * to the next tick and let the processor continue.
746 	 */
747 	fixup_clock_comparator(sync->fixup_cc);
748 }
749 
750 /*
751  * Sync the TOD clock using the port referred to by aibp. This port
752  * has to be enabled and the other port has to be disabled. The
753  * last eacr update has to be more than 1.6 seconds in the past.
754  */
755 static int etr_sync_clock(void *data)
756 {
757 	static int first;
758 	unsigned long long clock, old_clock, clock_delta, delay, delta;
759 	struct clock_sync_data *etr_sync;
760 	struct etr_aib *sync_port, *aib;
761 	int port;
762 	int rc;
763 
764 	etr_sync = data;
765 
766 	if (xchg(&first, 1) == 1) {
767 		/* Slave */
768 		clock_sync_cpu(etr_sync);
769 		return 0;
770 	}
771 
772 	/* Wait until all other cpus entered the sync function. */
773 	while (atomic_read(&etr_sync->cpus) != 0)
774 		cpu_relax();
775 
776 	port = etr_sync->etr_port;
777 	aib = etr_sync->etr_aib;
778 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
779 	enable_sync_clock();
780 
781 	/* Set clock to next OTE. */
782 	__ctl_set_bit(14, 21);
783 	__ctl_set_bit(0, 29);
784 	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
785 	old_clock = get_tod_clock();
786 	if (set_tod_clock(clock) == 0) {
787 		__udelay(1);	/* Wait for the clock to start. */
788 		__ctl_clear_bit(0, 29);
789 		__ctl_clear_bit(14, 21);
790 		etr_stetr(aib);
791 		/* Adjust Linux timing variables. */
792 		delay = (unsigned long long)
793 			(aib->edf2.etv - sync_port->edf2.etv) << 32;
794 		delta = adjust_time(old_clock, clock, delay);
795 		clock_delta = clock - old_clock;
796 		atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0,
797 					   &clock_delta);
798 		etr_sync->fixup_cc = delta;
799 		fixup_clock_comparator(delta);
800 		/* Verify that the clock is properly set. */
801 		if (!etr_aib_follows(sync_port, aib, port)) {
802 			/* Didn't work. */
803 			disable_sync_clock(NULL);
804 			etr_sync->in_sync = -EAGAIN;
805 			rc = -EAGAIN;
806 		} else {
807 			etr_sync->in_sync = 1;
808 			rc = 0;
809 		}
810 	} else {
811 		/* Could not set the clock ?!? */
812 		__ctl_clear_bit(0, 29);
813 		__ctl_clear_bit(14, 21);
814 		disable_sync_clock(NULL);
815 		etr_sync->in_sync = -EAGAIN;
816 		rc = -EAGAIN;
817 	}
818 	xchg(&first, 0);
819 	return rc;
820 }
821 
822 static int etr_sync_clock_stop(struct etr_aib *aib, int port)
823 {
824 	struct clock_sync_data etr_sync;
825 	struct etr_aib *sync_port;
826 	int follows;
827 	int rc;
828 
829 	/* Check if the current aib is adjacent to the sync port aib. */
830 	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
831 	follows = etr_aib_follows(sync_port, aib, port);
832 	memcpy(sync_port, aib, sizeof(*aib));
833 	if (!follows)
834 		return -EAGAIN;
835 	memset(&etr_sync, 0, sizeof(etr_sync));
836 	etr_sync.etr_aib = aib;
837 	etr_sync.etr_port = port;
838 	get_online_cpus();
839 	atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
840 	rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
841 	put_online_cpus();
842 	return rc;
843 }
844 
845 /*
846  * Handle the immediate effects of the different events.
847  * The port change event is used for online/offline changes.
848  */
849 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
850 {
851 	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
852 		eacr.es = 0;
853 	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
854 		eacr.es = eacr.sl = 0;
855 	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
856 		etr_port0_uptodate = etr_port1_uptodate = 0;
857 
858 	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
859 		if (eacr.e0)
860 			/*
861 			 * Port change of an enabled port. We have to
862 			 * assume that this can have caused an stepping
863 			 * port switch.
864 			 */
865 			etr_tolec = get_tod_clock();
866 		eacr.p0 = etr_port0_online;
867 		if (!eacr.p0)
868 			eacr.e0 = 0;
869 		etr_port0_uptodate = 0;
870 	}
871 	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
872 		if (eacr.e1)
873 			/*
874 			 * Port change of an enabled port. We have to
875 			 * assume that this can have caused an stepping
876 			 * port switch.
877 			 */
878 			etr_tolec = get_tod_clock();
879 		eacr.p1 = etr_port1_online;
880 		if (!eacr.p1)
881 			eacr.e1 = 0;
882 		etr_port1_uptodate = 0;
883 	}
884 	clear_bit(ETR_EVENT_UPDATE, &etr_events);
885 	return eacr;
886 }
887 
888 /*
889  * Set up a timer that expires after the etr_tolec + 1.6 seconds if
890  * one of the ports needs an update.
891  */
892 static void etr_set_tolec_timeout(unsigned long long now)
893 {
894 	unsigned long micros;
895 
896 	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
897 	    (!etr_eacr.p1 || etr_port1_uptodate))
898 		return;
899 	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
900 	micros = (micros > 1600000) ? 0 : 1600000 - micros;
901 	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
902 }
903 
904 /*
905  * Set up a time that expires after 1/2 second.
906  */
907 static void etr_set_sync_timeout(void)
908 {
909 	mod_timer(&etr_timer, jiffies + HZ/2);
910 }
911 
912 /*
913  * Update the aib information for one or both ports.
914  */
915 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
916 					 struct etr_eacr eacr)
917 {
918 	/* With both ports disabled the aib information is useless. */
919 	if (!eacr.e0 && !eacr.e1)
920 		return eacr;
921 
922 	/* Update port0 or port1 with aib stored in etr_work_fn. */
923 	if (aib->esw.q == 0) {
924 		/* Information for port 0 stored. */
925 		if (eacr.p0 && !etr_port0_uptodate) {
926 			etr_port0 = *aib;
927 			if (etr_port0_online)
928 				etr_port0_uptodate = 1;
929 		}
930 	} else {
931 		/* Information for port 1 stored. */
932 		if (eacr.p1 && !etr_port1_uptodate) {
933 			etr_port1 = *aib;
934 			if (etr_port0_online)
935 				etr_port1_uptodate = 1;
936 		}
937 	}
938 
939 	/*
940 	 * Do not try to get the alternate port aib if the clock
941 	 * is not in sync yet.
942 	 */
943 	if (!eacr.es || !check_sync_clock())
944 		return eacr;
945 
946 	/*
947 	 * If steai is available we can get the information about
948 	 * the other port immediately. If only stetr is available the
949 	 * data-port bit toggle has to be used.
950 	 */
951 	if (etr_steai_available) {
952 		if (eacr.p0 && !etr_port0_uptodate) {
953 			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
954 			etr_port0_uptodate = 1;
955 		}
956 		if (eacr.p1 && !etr_port1_uptodate) {
957 			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
958 			etr_port1_uptodate = 1;
959 		}
960 	} else {
961 		/*
962 		 * One port was updated above, if the other
963 		 * port is not uptodate toggle dp bit.
964 		 */
965 		if ((eacr.p0 && !etr_port0_uptodate) ||
966 		    (eacr.p1 && !etr_port1_uptodate))
967 			eacr.dp ^= 1;
968 		else
969 			eacr.dp = 0;
970 	}
971 	return eacr;
972 }
973 
974 /*
975  * Write new etr control register if it differs from the current one.
976  * Return 1 if etr_tolec has been updated as well.
977  */
978 static void etr_update_eacr(struct etr_eacr eacr)
979 {
980 	int dp_changed;
981 
982 	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
983 		/* No change, return. */
984 		return;
985 	/*
986 	 * The disable of an active port of the change of the data port
987 	 * bit can/will cause a change in the data port.
988 	 */
989 	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
990 		(etr_eacr.dp ^ eacr.dp) != 0;
991 	etr_eacr = eacr;
992 	etr_setr(&etr_eacr);
993 	if (dp_changed)
994 		etr_tolec = get_tod_clock();
995 }
996 
997 /*
998  * ETR work. In this function you'll find the main logic. In
999  * particular this is the only function that calls etr_update_eacr(),
1000  * it "controls" the etr control register.
1001  */
1002 static void etr_work_fn(struct work_struct *work)
1003 {
1004 	unsigned long long now;
1005 	struct etr_eacr eacr;
1006 	struct etr_aib aib;
1007 	int sync_port;
1008 
1009 	/* prevent multiple execution. */
1010 	mutex_lock(&etr_work_mutex);
1011 
1012 	/* Create working copy of etr_eacr. */
1013 	eacr = etr_eacr;
1014 
1015 	/* Check for the different events and their immediate effects. */
1016 	eacr = etr_handle_events(eacr);
1017 
1018 	/* Check if ETR is supposed to be active. */
1019 	eacr.ea = eacr.p0 || eacr.p1;
1020 	if (!eacr.ea) {
1021 		/* Both ports offline. Reset everything. */
1022 		eacr.dp = eacr.es = eacr.sl = 0;
1023 		on_each_cpu(disable_sync_clock, NULL, 1);
1024 		del_timer_sync(&etr_timer);
1025 		etr_update_eacr(eacr);
1026 		goto out_unlock;
1027 	}
1028 
1029 	/* Store aib to get the current ETR status word. */
1030 	BUG_ON(etr_stetr(&aib) != 0);
1031 	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
1032 	now = get_tod_clock();
1033 
1034 	/*
1035 	 * Update the port information if the last stepping port change
1036 	 * or data port change is older than 1.6 seconds.
1037 	 */
1038 	if (now >= etr_tolec + (1600000 << 12))
1039 		eacr = etr_handle_update(&aib, eacr);
1040 
1041 	/*
1042 	 * Select ports to enable. The preferred synchronization mode is PPS.
1043 	 * If a port can be enabled depends on a number of things:
1044 	 * 1) The port needs to be online and uptodate. A port is not
1045 	 *    disabled just because it is not uptodate, but it is only
1046 	 *    enabled if it is uptodate.
1047 	 * 2) The port needs to have the same mode (pps / etr).
1048 	 * 3) The port needs to be usable -> etr_port_valid() == 1
1049 	 * 4) To enable the second port the clock needs to be in sync.
1050 	 * 5) If both ports are useable and are ETR ports, the network id
1051 	 *    has to be the same.
1052 	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1053 	 */
1054 	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1055 		eacr.sl = 0;
1056 		eacr.e0 = 1;
1057 		if (!etr_mode_is_pps(etr_eacr))
1058 			eacr.es = 0;
1059 		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1060 			eacr.e1 = 0;
1061 		// FIXME: uptodate checks ?
1062 		else if (etr_port0_uptodate && etr_port1_uptodate)
1063 			eacr.e1 = 1;
1064 		sync_port = (etr_port0_uptodate &&
1065 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1066 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1067 		eacr.sl = 0;
1068 		eacr.e0 = 0;
1069 		eacr.e1 = 1;
1070 		if (!etr_mode_is_pps(etr_eacr))
1071 			eacr.es = 0;
1072 		sync_port = (etr_port1_uptodate &&
1073 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1074 	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1075 		eacr.sl = 1;
1076 		eacr.e0 = 1;
1077 		if (!etr_mode_is_etr(etr_eacr))
1078 			eacr.es = 0;
1079 		if (!eacr.es || !eacr.p1 ||
1080 		    aib.esw.psc1 != etr_lpsc_operational_alt)
1081 			eacr.e1 = 0;
1082 		else if (etr_port0_uptodate && etr_port1_uptodate &&
1083 			 etr_compare_network(&etr_port0, &etr_port1))
1084 			eacr.e1 = 1;
1085 		sync_port = (etr_port0_uptodate &&
1086 			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1087 	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1088 		eacr.sl = 1;
1089 		eacr.e0 = 0;
1090 		eacr.e1 = 1;
1091 		if (!etr_mode_is_etr(etr_eacr))
1092 			eacr.es = 0;
1093 		sync_port = (etr_port1_uptodate &&
1094 			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1095 	} else {
1096 		/* Both ports not usable. */
1097 		eacr.es = eacr.sl = 0;
1098 		sync_port = -1;
1099 	}
1100 
1101 	/*
1102 	 * If the clock is in sync just update the eacr and return.
1103 	 * If there is no valid sync port wait for a port update.
1104 	 */
1105 	if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1106 		etr_update_eacr(eacr);
1107 		etr_set_tolec_timeout(now);
1108 		goto out_unlock;
1109 	}
1110 
1111 	/*
1112 	 * Prepare control register for clock syncing
1113 	 * (reset data port bit, set sync check control.
1114 	 */
1115 	eacr.dp = 0;
1116 	eacr.es = 1;
1117 
1118 	/*
1119 	 * Update eacr and try to synchronize the clock. If the update
1120 	 * of eacr caused a stepping port switch (or if we have to
1121 	 * assume that a stepping port switch has occurred) or the
1122 	 * clock syncing failed, reset the sync check control bit
1123 	 * and set up a timer to try again after 0.5 seconds
1124 	 */
1125 	etr_update_eacr(eacr);
1126 	if (now < etr_tolec + (1600000 << 12) ||
1127 	    etr_sync_clock_stop(&aib, sync_port) != 0) {
1128 		/* Sync failed. Try again in 1/2 second. */
1129 		eacr.es = 0;
1130 		etr_update_eacr(eacr);
1131 		etr_set_sync_timeout();
1132 	} else
1133 		etr_set_tolec_timeout(now);
1134 out_unlock:
1135 	mutex_unlock(&etr_work_mutex);
1136 }
1137 
1138 /*
1139  * Sysfs interface functions
1140  */
1141 static struct bus_type etr_subsys = {
1142 	.name		= "etr",
1143 	.dev_name	= "etr",
1144 };
1145 
1146 static struct device etr_port0_dev = {
1147 	.id	= 0,
1148 	.bus	= &etr_subsys,
1149 };
1150 
1151 static struct device etr_port1_dev = {
1152 	.id	= 1,
1153 	.bus	= &etr_subsys,
1154 };
1155 
1156 /*
1157  * ETR subsys attributes
1158  */
1159 static ssize_t etr_stepping_port_show(struct device *dev,
1160 					struct device_attribute *attr,
1161 					char *buf)
1162 {
1163 	return sprintf(buf, "%i\n", etr_port0.esw.p);
1164 }
1165 
1166 static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1167 
1168 static ssize_t etr_stepping_mode_show(struct device *dev,
1169 					struct device_attribute *attr,
1170 					char *buf)
1171 {
1172 	char *mode_str;
1173 
1174 	if (etr_mode_is_pps(etr_eacr))
1175 		mode_str = "pps";
1176 	else if (etr_mode_is_etr(etr_eacr))
1177 		mode_str = "etr";
1178 	else
1179 		mode_str = "local";
1180 	return sprintf(buf, "%s\n", mode_str);
1181 }
1182 
1183 static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1184 
1185 /*
1186  * ETR port attributes
1187  */
1188 static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
1189 {
1190 	if (dev == &etr_port0_dev)
1191 		return etr_port0_online ? &etr_port0 : NULL;
1192 	else
1193 		return etr_port1_online ? &etr_port1 : NULL;
1194 }
1195 
1196 static ssize_t etr_online_show(struct device *dev,
1197 				struct device_attribute *attr,
1198 				char *buf)
1199 {
1200 	unsigned int online;
1201 
1202 	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1203 	return sprintf(buf, "%i\n", online);
1204 }
1205 
1206 static ssize_t etr_online_store(struct device *dev,
1207 				struct device_attribute *attr,
1208 				const char *buf, size_t count)
1209 {
1210 	unsigned int value;
1211 
1212 	value = simple_strtoul(buf, NULL, 0);
1213 	if (value != 0 && value != 1)
1214 		return -EINVAL;
1215 	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1216 		return -EOPNOTSUPP;
1217 	mutex_lock(&clock_sync_mutex);
1218 	if (dev == &etr_port0_dev) {
1219 		if (etr_port0_online == value)
1220 			goto out;	/* Nothing to do. */
1221 		etr_port0_online = value;
1222 		if (etr_port0_online && etr_port1_online)
1223 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1224 		else
1225 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1226 		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1227 		queue_work(time_sync_wq, &etr_work);
1228 	} else {
1229 		if (etr_port1_online == value)
1230 			goto out;	/* Nothing to do. */
1231 		etr_port1_online = value;
1232 		if (etr_port0_online && etr_port1_online)
1233 			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1234 		else
1235 			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1236 		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1237 		queue_work(time_sync_wq, &etr_work);
1238 	}
1239 out:
1240 	mutex_unlock(&clock_sync_mutex);
1241 	return count;
1242 }
1243 
1244 static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
1245 
1246 static ssize_t etr_stepping_control_show(struct device *dev,
1247 					struct device_attribute *attr,
1248 					char *buf)
1249 {
1250 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1251 		       etr_eacr.e0 : etr_eacr.e1);
1252 }
1253 
1254 static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1255 
1256 static ssize_t etr_mode_code_show(struct device *dev,
1257 				struct device_attribute *attr, char *buf)
1258 {
1259 	if (!etr_port0_online && !etr_port1_online)
1260 		/* Status word is not uptodate if both ports are offline. */
1261 		return -ENODATA;
1262 	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1263 		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1264 }
1265 
1266 static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1267 
1268 static ssize_t etr_untuned_show(struct device *dev,
1269 				struct device_attribute *attr, char *buf)
1270 {
1271 	struct etr_aib *aib = etr_aib_from_dev(dev);
1272 
1273 	if (!aib || !aib->slsw.v1)
1274 		return -ENODATA;
1275 	return sprintf(buf, "%i\n", aib->edf1.u);
1276 }
1277 
1278 static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
1279 
1280 static ssize_t etr_network_id_show(struct device *dev,
1281 				struct device_attribute *attr, char *buf)
1282 {
1283 	struct etr_aib *aib = etr_aib_from_dev(dev);
1284 
1285 	if (!aib || !aib->slsw.v1)
1286 		return -ENODATA;
1287 	return sprintf(buf, "%i\n", aib->edf1.net_id);
1288 }
1289 
1290 static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
1291 
1292 static ssize_t etr_id_show(struct device *dev,
1293 			struct device_attribute *attr, char *buf)
1294 {
1295 	struct etr_aib *aib = etr_aib_from_dev(dev);
1296 
1297 	if (!aib || !aib->slsw.v1)
1298 		return -ENODATA;
1299 	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1300 }
1301 
1302 static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
1303 
1304 static ssize_t etr_port_number_show(struct device *dev,
1305 			struct device_attribute *attr, char *buf)
1306 {
1307 	struct etr_aib *aib = etr_aib_from_dev(dev);
1308 
1309 	if (!aib || !aib->slsw.v1)
1310 		return -ENODATA;
1311 	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1312 }
1313 
1314 static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
1315 
1316 static ssize_t etr_coupled_show(struct device *dev,
1317 			struct device_attribute *attr, char *buf)
1318 {
1319 	struct etr_aib *aib = etr_aib_from_dev(dev);
1320 
1321 	if (!aib || !aib->slsw.v3)
1322 		return -ENODATA;
1323 	return sprintf(buf, "%i\n", aib->edf3.c);
1324 }
1325 
1326 static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
1327 
1328 static ssize_t etr_local_time_show(struct device *dev,
1329 			struct device_attribute *attr, char *buf)
1330 {
1331 	struct etr_aib *aib = etr_aib_from_dev(dev);
1332 
1333 	if (!aib || !aib->slsw.v3)
1334 		return -ENODATA;
1335 	return sprintf(buf, "%i\n", aib->edf3.blto);
1336 }
1337 
1338 static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
1339 
1340 static ssize_t etr_utc_offset_show(struct device *dev,
1341 			struct device_attribute *attr, char *buf)
1342 {
1343 	struct etr_aib *aib = etr_aib_from_dev(dev);
1344 
1345 	if (!aib || !aib->slsw.v3)
1346 		return -ENODATA;
1347 	return sprintf(buf, "%i\n", aib->edf3.buo);
1348 }
1349 
1350 static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1351 
1352 static struct device_attribute *etr_port_attributes[] = {
1353 	&dev_attr_online,
1354 	&dev_attr_stepping_control,
1355 	&dev_attr_state_code,
1356 	&dev_attr_untuned,
1357 	&dev_attr_network,
1358 	&dev_attr_id,
1359 	&dev_attr_port,
1360 	&dev_attr_coupled,
1361 	&dev_attr_local_time,
1362 	&dev_attr_utc_offset,
1363 	NULL
1364 };
1365 
1366 static int __init etr_register_port(struct device *dev)
1367 {
1368 	struct device_attribute **attr;
1369 	int rc;
1370 
1371 	rc = device_register(dev);
1372 	if (rc)
1373 		goto out;
1374 	for (attr = etr_port_attributes; *attr; attr++) {
1375 		rc = device_create_file(dev, *attr);
1376 		if (rc)
1377 			goto out_unreg;
1378 	}
1379 	return 0;
1380 out_unreg:
1381 	for (; attr >= etr_port_attributes; attr--)
1382 		device_remove_file(dev, *attr);
1383 	device_unregister(dev);
1384 out:
1385 	return rc;
1386 }
1387 
1388 static void __init etr_unregister_port(struct device *dev)
1389 {
1390 	struct device_attribute **attr;
1391 
1392 	for (attr = etr_port_attributes; *attr; attr++)
1393 		device_remove_file(dev, *attr);
1394 	device_unregister(dev);
1395 }
1396 
1397 static int __init etr_init_sysfs(void)
1398 {
1399 	int rc;
1400 
1401 	rc = subsys_system_register(&etr_subsys, NULL);
1402 	if (rc)
1403 		goto out;
1404 	rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1405 	if (rc)
1406 		goto out_unreg_subsys;
1407 	rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1408 	if (rc)
1409 		goto out_remove_stepping_port;
1410 	rc = etr_register_port(&etr_port0_dev);
1411 	if (rc)
1412 		goto out_remove_stepping_mode;
1413 	rc = etr_register_port(&etr_port1_dev);
1414 	if (rc)
1415 		goto out_remove_port0;
1416 	return 0;
1417 
1418 out_remove_port0:
1419 	etr_unregister_port(&etr_port0_dev);
1420 out_remove_stepping_mode:
1421 	device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1422 out_remove_stepping_port:
1423 	device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1424 out_unreg_subsys:
1425 	bus_unregister(&etr_subsys);
1426 out:
1427 	return rc;
1428 }
1429 
1430 device_initcall(etr_init_sysfs);
1431 
1432 /*
1433  * Server Time Protocol (STP) code.
1434  */
1435 static bool stp_online;
1436 static struct stp_sstpi stp_info;
1437 static void *stp_page;
1438 
1439 static void stp_work_fn(struct work_struct *work);
1440 static DEFINE_MUTEX(stp_work_mutex);
1441 static DECLARE_WORK(stp_work, stp_work_fn);
1442 static struct timer_list stp_timer;
1443 
1444 static int __init early_parse_stp(char *p)
1445 {
1446 	return kstrtobool(p, &stp_online);
1447 }
1448 early_param("stp", early_parse_stp);
1449 
1450 /*
1451  * Reset STP attachment.
1452  */
1453 static void __init stp_reset(void)
1454 {
1455 	int rc;
1456 
1457 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1458 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1459 	if (rc == 0)
1460 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1461 	else if (stp_online) {
1462 		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
1463 		free_page((unsigned long) stp_page);
1464 		stp_page = NULL;
1465 		stp_online = 0;
1466 	}
1467 }
1468 
1469 static void stp_timeout(unsigned long dummy)
1470 {
1471 	queue_work(time_sync_wq, &stp_work);
1472 }
1473 
1474 static int __init stp_init(void)
1475 {
1476 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1477 		return 0;
1478 	setup_timer(&stp_timer, stp_timeout, 0UL);
1479 	time_init_wq();
1480 	if (!stp_online)
1481 		return 0;
1482 	queue_work(time_sync_wq, &stp_work);
1483 	return 0;
1484 }
1485 
1486 arch_initcall(stp_init);
1487 
1488 /*
1489  * STP timing alert. There are three causes:
1490  * 1) timing status change
1491  * 2) link availability change
1492  * 3) time control parameter change
1493  * In all three cases we are only interested in the clock source state.
1494  * If a STP clock source is now available use it.
1495  */
1496 static void stp_timing_alert(struct stp_irq_parm *intparm)
1497 {
1498 	if (intparm->tsc || intparm->lac || intparm->tcpc)
1499 		queue_work(time_sync_wq, &stp_work);
1500 }
1501 
1502 /*
1503  * STP sync check machine check. This is called when the timing state
1504  * changes from the synchronized state to the unsynchronized state.
1505  * After a STP sync check the clock is not in sync. The machine check
1506  * is broadcasted to all cpus at the same time.
1507  */
1508 int stp_sync_check(void)
1509 {
1510 	disable_sync_clock(NULL);
1511 	return 1;
1512 }
1513 
1514 /*
1515  * STP island condition machine check. This is called when an attached
1516  * server  attempts to communicate over an STP link and the servers
1517  * have matching CTN ids and have a valid stratum-1 configuration
1518  * but the configurations do not match.
1519  */
1520 int stp_island_check(void)
1521 {
1522 	disable_sync_clock(NULL);
1523 	return 1;
1524 }
1525 
1526 void stp_queue_work(void)
1527 {
1528 	queue_work(time_sync_wq, &stp_work);
1529 }
1530 
1531 static int stp_sync_clock(void *data)
1532 {
1533 	static int first;
1534 	unsigned long long old_clock, delta, new_clock, clock_delta;
1535 	struct clock_sync_data *stp_sync;
1536 	int rc;
1537 
1538 	stp_sync = data;
1539 
1540 	if (xchg(&first, 1) == 1) {
1541 		/* Slave */
1542 		clock_sync_cpu(stp_sync);
1543 		return 0;
1544 	}
1545 
1546 	/* Wait until all other cpus entered the sync function. */
1547 	while (atomic_read(&stp_sync->cpus) != 0)
1548 		cpu_relax();
1549 
1550 	enable_sync_clock();
1551 
1552 	rc = 0;
1553 	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1554 	    stp_info.todoff[2] || stp_info.todoff[3] ||
1555 	    stp_info.tmd != 2) {
1556 		old_clock = get_tod_clock();
1557 		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1558 		if (rc == 0) {
1559 			new_clock = get_tod_clock();
1560 			delta = adjust_time(old_clock, new_clock, 0);
1561 			clock_delta = new_clock - old_clock;
1562 			atomic_notifier_call_chain(&s390_epoch_delta_notifier,
1563 						   0, &clock_delta);
1564 			fixup_clock_comparator(delta);
1565 			rc = chsc_sstpi(stp_page, &stp_info,
1566 					sizeof(struct stp_sstpi));
1567 			if (rc == 0 && stp_info.tmd != 2)
1568 				rc = -EAGAIN;
1569 		}
1570 	}
1571 	if (rc) {
1572 		disable_sync_clock(NULL);
1573 		stp_sync->in_sync = -EAGAIN;
1574 	} else
1575 		stp_sync->in_sync = 1;
1576 	xchg(&first, 0);
1577 	return 0;
1578 }
1579 
1580 /*
1581  * STP work. Check for the STP state and take over the clock
1582  * synchronization if the STP clock source is usable.
1583  */
1584 static void stp_work_fn(struct work_struct *work)
1585 {
1586 	struct clock_sync_data stp_sync;
1587 	int rc;
1588 
1589 	/* prevent multiple execution. */
1590 	mutex_lock(&stp_work_mutex);
1591 
1592 	if (!stp_online) {
1593 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1594 		del_timer_sync(&stp_timer);
1595 		goto out_unlock;
1596 	}
1597 
1598 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1599 	if (rc)
1600 		goto out_unlock;
1601 
1602 	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1603 	if (rc || stp_info.c == 0)
1604 		goto out_unlock;
1605 
1606 	/* Skip synchronization if the clock is already in sync. */
1607 	if (check_sync_clock())
1608 		goto out_unlock;
1609 
1610 	memset(&stp_sync, 0, sizeof(stp_sync));
1611 	get_online_cpus();
1612 	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1613 	stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1614 	put_online_cpus();
1615 
1616 	if (!check_sync_clock())
1617 		/*
1618 		 * There is a usable clock but the synchonization failed.
1619 		 * Retry after a second.
1620 		 */
1621 		mod_timer(&stp_timer, jiffies + HZ);
1622 
1623 out_unlock:
1624 	mutex_unlock(&stp_work_mutex);
1625 }
1626 
1627 /*
1628  * STP subsys sysfs interface functions
1629  */
1630 static struct bus_type stp_subsys = {
1631 	.name		= "stp",
1632 	.dev_name	= "stp",
1633 };
1634 
1635 static ssize_t stp_ctn_id_show(struct device *dev,
1636 				struct device_attribute *attr,
1637 				char *buf)
1638 {
1639 	if (!stp_online)
1640 		return -ENODATA;
1641 	return sprintf(buf, "%016llx\n",
1642 		       *(unsigned long long *) stp_info.ctnid);
1643 }
1644 
1645 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1646 
1647 static ssize_t stp_ctn_type_show(struct device *dev,
1648 				struct device_attribute *attr,
1649 				char *buf)
1650 {
1651 	if (!stp_online)
1652 		return -ENODATA;
1653 	return sprintf(buf, "%i\n", stp_info.ctn);
1654 }
1655 
1656 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1657 
1658 static ssize_t stp_dst_offset_show(struct device *dev,
1659 				   struct device_attribute *attr,
1660 				   char *buf)
1661 {
1662 	if (!stp_online || !(stp_info.vbits & 0x2000))
1663 		return -ENODATA;
1664 	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1665 }
1666 
1667 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1668 
1669 static ssize_t stp_leap_seconds_show(struct device *dev,
1670 					struct device_attribute *attr,
1671 					char *buf)
1672 {
1673 	if (!stp_online || !(stp_info.vbits & 0x8000))
1674 		return -ENODATA;
1675 	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1676 }
1677 
1678 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1679 
1680 static ssize_t stp_stratum_show(struct device *dev,
1681 				struct device_attribute *attr,
1682 				char *buf)
1683 {
1684 	if (!stp_online)
1685 		return -ENODATA;
1686 	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1687 }
1688 
1689 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
1690 
1691 static ssize_t stp_time_offset_show(struct device *dev,
1692 				struct device_attribute *attr,
1693 				char *buf)
1694 {
1695 	if (!stp_online || !(stp_info.vbits & 0x0800))
1696 		return -ENODATA;
1697 	return sprintf(buf, "%i\n", (int) stp_info.tto);
1698 }
1699 
1700 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1701 
1702 static ssize_t stp_time_zone_offset_show(struct device *dev,
1703 				struct device_attribute *attr,
1704 				char *buf)
1705 {
1706 	if (!stp_online || !(stp_info.vbits & 0x4000))
1707 		return -ENODATA;
1708 	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1709 }
1710 
1711 static DEVICE_ATTR(time_zone_offset, 0400,
1712 			 stp_time_zone_offset_show, NULL);
1713 
1714 static ssize_t stp_timing_mode_show(struct device *dev,
1715 				struct device_attribute *attr,
1716 				char *buf)
1717 {
1718 	if (!stp_online)
1719 		return -ENODATA;
1720 	return sprintf(buf, "%i\n", stp_info.tmd);
1721 }
1722 
1723 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1724 
1725 static ssize_t stp_timing_state_show(struct device *dev,
1726 				struct device_attribute *attr,
1727 				char *buf)
1728 {
1729 	if (!stp_online)
1730 		return -ENODATA;
1731 	return sprintf(buf, "%i\n", stp_info.tst);
1732 }
1733 
1734 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1735 
1736 static ssize_t stp_online_show(struct device *dev,
1737 				struct device_attribute *attr,
1738 				char *buf)
1739 {
1740 	return sprintf(buf, "%i\n", stp_online);
1741 }
1742 
1743 static ssize_t stp_online_store(struct device *dev,
1744 				struct device_attribute *attr,
1745 				const char *buf, size_t count)
1746 {
1747 	unsigned int value;
1748 
1749 	value = simple_strtoul(buf, NULL, 0);
1750 	if (value != 0 && value != 1)
1751 		return -EINVAL;
1752 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1753 		return -EOPNOTSUPP;
1754 	mutex_lock(&clock_sync_mutex);
1755 	stp_online = value;
1756 	if (stp_online)
1757 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1758 	else
1759 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1760 	queue_work(time_sync_wq, &stp_work);
1761 	mutex_unlock(&clock_sync_mutex);
1762 	return count;
1763 }
1764 
1765 /*
1766  * Can't use DEVICE_ATTR because the attribute should be named
1767  * stp/online but dev_attr_online already exists in this file ..
1768  */
1769 static struct device_attribute dev_attr_stp_online = {
1770 	.attr = { .name = "online", .mode = 0600 },
1771 	.show	= stp_online_show,
1772 	.store	= stp_online_store,
1773 };
1774 
1775 static struct device_attribute *stp_attributes[] = {
1776 	&dev_attr_ctn_id,
1777 	&dev_attr_ctn_type,
1778 	&dev_attr_dst_offset,
1779 	&dev_attr_leap_seconds,
1780 	&dev_attr_stp_online,
1781 	&dev_attr_stratum,
1782 	&dev_attr_time_offset,
1783 	&dev_attr_time_zone_offset,
1784 	&dev_attr_timing_mode,
1785 	&dev_attr_timing_state,
1786 	NULL
1787 };
1788 
1789 static int __init stp_init_sysfs(void)
1790 {
1791 	struct device_attribute **attr;
1792 	int rc;
1793 
1794 	rc = subsys_system_register(&stp_subsys, NULL);
1795 	if (rc)
1796 		goto out;
1797 	for (attr = stp_attributes; *attr; attr++) {
1798 		rc = device_create_file(stp_subsys.dev_root, *attr);
1799 		if (rc)
1800 			goto out_unreg;
1801 	}
1802 	return 0;
1803 out_unreg:
1804 	for (; attr >= stp_attributes; attr--)
1805 		device_remove_file(stp_subsys.dev_root, *attr);
1806 	bus_unregister(&stp_subsys);
1807 out:
1808 	return rc;
1809 }
1810 
1811 device_initcall(stp_init_sysfs);
1812