xref: /openbmc/linux/arch/s390/kernel/smp.c (revision fd589a8f)
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999, 2009
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *		 Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *		 Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22 
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/spinlock.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/delay.h>
33 #include <linux/cache.h>
34 #include <linux/interrupt.h>
35 #include <linux/irqflags.h>
36 #include <linux/cpu.h>
37 #include <linux/timex.h>
38 #include <linux/bootmem.h>
39 #include <asm/ipl.h>
40 #include <asm/setup.h>
41 #include <asm/sigp.h>
42 #include <asm/pgalloc.h>
43 #include <asm/irq.h>
44 #include <asm/s390_ext.h>
45 #include <asm/cpcmd.h>
46 #include <asm/tlbflush.h>
47 #include <asm/timer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/cputime.h>
51 #include <asm/vdso.h>
52 #include <asm/cpu.h>
53 #include "entry.h"
54 
55 static struct task_struct *current_set[NR_CPUS];
56 
57 static u8 smp_cpu_type;
58 static int smp_use_sigp_detection;
59 
60 enum s390_cpu_state {
61 	CPU_STATE_STANDBY,
62 	CPU_STATE_CONFIGURED,
63 };
64 
65 DEFINE_MUTEX(smp_cpu_state_mutex);
66 int smp_cpu_polarization[NR_CPUS];
67 static int smp_cpu_state[NR_CPUS];
68 static int cpu_management;
69 
70 static DEFINE_PER_CPU(struct cpu, cpu_devices);
71 
72 static void smp_ext_bitcall(int, ec_bit_sig);
73 
74 static int cpu_stopped(int cpu)
75 {
76 	__u32 status;
77 
78 	switch (signal_processor_ps(&status, 0, cpu, sigp_sense)) {
79 	case sigp_order_code_accepted:
80 	case sigp_status_stored:
81 		/* Check for stopped and check stop state */
82 		if (status & 0x50)
83 			return 1;
84 		break;
85 	default:
86 		break;
87 	}
88 	return 0;
89 }
90 
91 void smp_send_stop(void)
92 {
93 	int cpu, rc;
94 
95 	/* Disable all interrupts/machine checks */
96 	__load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
97 	trace_hardirqs_off();
98 
99 	/* stop all processors */
100 	for_each_online_cpu(cpu) {
101 		if (cpu == smp_processor_id())
102 			continue;
103 		do {
104 			rc = signal_processor(cpu, sigp_stop);
105 		} while (rc == sigp_busy);
106 
107 		while (!cpu_stopped(cpu))
108 			cpu_relax();
109 	}
110 }
111 
112 /*
113  * This is the main routine where commands issued by other
114  * cpus are handled.
115  */
116 
117 static void do_ext_call_interrupt(__u16 code)
118 {
119 	unsigned long bits;
120 
121 	/*
122 	 * handle bit signal external calls
123 	 *
124 	 * For the ec_schedule signal we have to do nothing. All the work
125 	 * is done automatically when we return from the interrupt.
126 	 */
127 	bits = xchg(&S390_lowcore.ext_call_fast, 0);
128 
129 	if (test_bit(ec_call_function, &bits))
130 		generic_smp_call_function_interrupt();
131 
132 	if (test_bit(ec_call_function_single, &bits))
133 		generic_smp_call_function_single_interrupt();
134 }
135 
136 /*
137  * Send an external call sigp to another cpu and return without waiting
138  * for its completion.
139  */
140 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
141 {
142 	/*
143 	 * Set signaling bit in lowcore of target cpu and kick it
144 	 */
145 	set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
146 	while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
147 		udelay(10);
148 }
149 
150 void arch_send_call_function_ipi(cpumask_t mask)
151 {
152 	int cpu;
153 
154 	for_each_cpu_mask(cpu, mask)
155 		smp_ext_bitcall(cpu, ec_call_function);
156 }
157 
158 void arch_send_call_function_single_ipi(int cpu)
159 {
160 	smp_ext_bitcall(cpu, ec_call_function_single);
161 }
162 
163 #ifndef CONFIG_64BIT
164 /*
165  * this function sends a 'purge tlb' signal to another CPU.
166  */
167 static void smp_ptlb_callback(void *info)
168 {
169 	__tlb_flush_local();
170 }
171 
172 void smp_ptlb_all(void)
173 {
174 	on_each_cpu(smp_ptlb_callback, NULL, 1);
175 }
176 EXPORT_SYMBOL(smp_ptlb_all);
177 #endif /* ! CONFIG_64BIT */
178 
179 /*
180  * this function sends a 'reschedule' IPI to another CPU.
181  * it goes straight through and wastes no time serializing
182  * anything. Worst case is that we lose a reschedule ...
183  */
184 void smp_send_reschedule(int cpu)
185 {
186 	smp_ext_bitcall(cpu, ec_schedule);
187 }
188 
189 /*
190  * parameter area for the set/clear control bit callbacks
191  */
192 struct ec_creg_mask_parms {
193 	unsigned long orvals[16];
194 	unsigned long andvals[16];
195 };
196 
197 /*
198  * callback for setting/clearing control bits
199  */
200 static void smp_ctl_bit_callback(void *info)
201 {
202 	struct ec_creg_mask_parms *pp = info;
203 	unsigned long cregs[16];
204 	int i;
205 
206 	__ctl_store(cregs, 0, 15);
207 	for (i = 0; i <= 15; i++)
208 		cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
209 	__ctl_load(cregs, 0, 15);
210 }
211 
212 /*
213  * Set a bit in a control register of all cpus
214  */
215 void smp_ctl_set_bit(int cr, int bit)
216 {
217 	struct ec_creg_mask_parms parms;
218 
219 	memset(&parms.orvals, 0, sizeof(parms.orvals));
220 	memset(&parms.andvals, 0xff, sizeof(parms.andvals));
221 	parms.orvals[cr] = 1 << bit;
222 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
223 }
224 EXPORT_SYMBOL(smp_ctl_set_bit);
225 
226 /*
227  * Clear a bit in a control register of all cpus
228  */
229 void smp_ctl_clear_bit(int cr, int bit)
230 {
231 	struct ec_creg_mask_parms parms;
232 
233 	memset(&parms.orvals, 0, sizeof(parms.orvals));
234 	memset(&parms.andvals, 0xff, sizeof(parms.andvals));
235 	parms.andvals[cr] = ~(1L << bit);
236 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
237 }
238 EXPORT_SYMBOL(smp_ctl_clear_bit);
239 
240 /*
241  * In early ipl state a temp. logically cpu number is needed, so the sigp
242  * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
243  * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
244  */
245 #define CPU_INIT_NO	1
246 
247 #ifdef CONFIG_ZFCPDUMP
248 
249 /*
250  * zfcpdump_prefix_array holds prefix registers for the following scenario:
251  * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
252  * save its prefix registers, since they get lost, when switching from 31 bit
253  * to 64 bit.
254  */
255 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
256 	__attribute__((__section__(".data")));
257 
258 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
259 {
260 	if (ipl_info.type != IPL_TYPE_FCP_DUMP)
261 		return;
262 	if (cpu >= NR_CPUS) {
263 		pr_warning("CPU %i exceeds the maximum %i and is excluded from "
264 			   "the dump\n", cpu, NR_CPUS - 1);
265 		return;
266 	}
267 	zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
268 	__cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
269 	while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
270 	       sigp_busy)
271 		cpu_relax();
272 	memcpy(zfcpdump_save_areas[cpu],
273 	       (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
274 	       SAVE_AREA_SIZE);
275 #ifdef CONFIG_64BIT
276 	/* copy original prefix register */
277 	zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
278 #endif
279 }
280 
281 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
282 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
283 
284 #else
285 
286 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
287 
288 #endif /* CONFIG_ZFCPDUMP */
289 
290 static int cpu_known(int cpu_id)
291 {
292 	int cpu;
293 
294 	for_each_present_cpu(cpu) {
295 		if (__cpu_logical_map[cpu] == cpu_id)
296 			return 1;
297 	}
298 	return 0;
299 }
300 
301 static int smp_rescan_cpus_sigp(cpumask_t avail)
302 {
303 	int cpu_id, logical_cpu;
304 
305 	logical_cpu = cpumask_first(&avail);
306 	if (logical_cpu >= nr_cpu_ids)
307 		return 0;
308 	for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
309 		if (cpu_known(cpu_id))
310 			continue;
311 		__cpu_logical_map[logical_cpu] = cpu_id;
312 		smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
313 		if (!cpu_stopped(logical_cpu))
314 			continue;
315 		cpu_set(logical_cpu, cpu_present_map);
316 		smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
317 		logical_cpu = cpumask_next(logical_cpu, &avail);
318 		if (logical_cpu >= nr_cpu_ids)
319 			break;
320 	}
321 	return 0;
322 }
323 
324 static int smp_rescan_cpus_sclp(cpumask_t avail)
325 {
326 	struct sclp_cpu_info *info;
327 	int cpu_id, logical_cpu, cpu;
328 	int rc;
329 
330 	logical_cpu = cpumask_first(&avail);
331 	if (logical_cpu >= nr_cpu_ids)
332 		return 0;
333 	info = kmalloc(sizeof(*info), GFP_KERNEL);
334 	if (!info)
335 		return -ENOMEM;
336 	rc = sclp_get_cpu_info(info);
337 	if (rc)
338 		goto out;
339 	for (cpu = 0; cpu < info->combined; cpu++) {
340 		if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
341 			continue;
342 		cpu_id = info->cpu[cpu].address;
343 		if (cpu_known(cpu_id))
344 			continue;
345 		__cpu_logical_map[logical_cpu] = cpu_id;
346 		smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
347 		cpu_set(logical_cpu, cpu_present_map);
348 		if (cpu >= info->configured)
349 			smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
350 		else
351 			smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
352 		logical_cpu = cpumask_next(logical_cpu, &avail);
353 		if (logical_cpu >= nr_cpu_ids)
354 			break;
355 	}
356 out:
357 	kfree(info);
358 	return rc;
359 }
360 
361 static int __smp_rescan_cpus(void)
362 {
363 	cpumask_t avail;
364 
365 	cpus_xor(avail, cpu_possible_map, cpu_present_map);
366 	if (smp_use_sigp_detection)
367 		return smp_rescan_cpus_sigp(avail);
368 	else
369 		return smp_rescan_cpus_sclp(avail);
370 }
371 
372 static void __init smp_detect_cpus(void)
373 {
374 	unsigned int cpu, c_cpus, s_cpus;
375 	struct sclp_cpu_info *info;
376 	u16 boot_cpu_addr, cpu_addr;
377 
378 	c_cpus = 1;
379 	s_cpus = 0;
380 	boot_cpu_addr = __cpu_logical_map[0];
381 	info = kmalloc(sizeof(*info), GFP_KERNEL);
382 	if (!info)
383 		panic("smp_detect_cpus failed to allocate memory\n");
384 	/* Use sigp detection algorithm if sclp doesn't work. */
385 	if (sclp_get_cpu_info(info)) {
386 		smp_use_sigp_detection = 1;
387 		for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
388 			if (cpu == boot_cpu_addr)
389 				continue;
390 			__cpu_logical_map[CPU_INIT_NO] = cpu;
391 			if (!cpu_stopped(CPU_INIT_NO))
392 				continue;
393 			smp_get_save_area(c_cpus, cpu);
394 			c_cpus++;
395 		}
396 		goto out;
397 	}
398 
399 	if (info->has_cpu_type) {
400 		for (cpu = 0; cpu < info->combined; cpu++) {
401 			if (info->cpu[cpu].address == boot_cpu_addr) {
402 				smp_cpu_type = info->cpu[cpu].type;
403 				break;
404 			}
405 		}
406 	}
407 
408 	for (cpu = 0; cpu < info->combined; cpu++) {
409 		if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
410 			continue;
411 		cpu_addr = info->cpu[cpu].address;
412 		if (cpu_addr == boot_cpu_addr)
413 			continue;
414 		__cpu_logical_map[CPU_INIT_NO] = cpu_addr;
415 		if (!cpu_stopped(CPU_INIT_NO)) {
416 			s_cpus++;
417 			continue;
418 		}
419 		smp_get_save_area(c_cpus, cpu_addr);
420 		c_cpus++;
421 	}
422 out:
423 	kfree(info);
424 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
425 	get_online_cpus();
426 	__smp_rescan_cpus();
427 	put_online_cpus();
428 }
429 
430 /*
431  *	Activate a secondary processor.
432  */
433 int __cpuinit start_secondary(void *cpuvoid)
434 {
435 	/* Setup the cpu */
436 	cpu_init();
437 	preempt_disable();
438 	/* Enable TOD clock interrupts on the secondary cpu. */
439 	init_cpu_timer();
440 	/* Enable cpu timer interrupts on the secondary cpu. */
441 	init_cpu_vtimer();
442 	/* Enable pfault pseudo page faults on this cpu. */
443 	pfault_init();
444 
445 	/* call cpu notifiers */
446 	notify_cpu_starting(smp_processor_id());
447 	/* Mark this cpu as online */
448 	ipi_call_lock();
449 	cpu_set(smp_processor_id(), cpu_online_map);
450 	ipi_call_unlock();
451 	/* Switch on interrupts */
452 	local_irq_enable();
453 	/* Print info about this processor */
454 	print_cpu_info();
455 	/* cpu_idle will call schedule for us */
456 	cpu_idle();
457 	return 0;
458 }
459 
460 static void __init smp_create_idle(unsigned int cpu)
461 {
462 	struct task_struct *p;
463 
464 	/*
465 	 *  don't care about the psw and regs settings since we'll never
466 	 *  reschedule the forked task.
467 	 */
468 	p = fork_idle(cpu);
469 	if (IS_ERR(p))
470 		panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
471 	current_set[cpu] = p;
472 }
473 
474 static int __cpuinit smp_alloc_lowcore(int cpu)
475 {
476 	unsigned long async_stack, panic_stack;
477 	struct _lowcore *lowcore;
478 	int lc_order;
479 
480 	lc_order = sizeof(long) == 8 ? 1 : 0;
481 	lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
482 	if (!lowcore)
483 		return -ENOMEM;
484 	async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
485 	panic_stack = __get_free_page(GFP_KERNEL);
486 	if (!panic_stack || !async_stack)
487 		goto out;
488 	memcpy(lowcore, &S390_lowcore, 512);
489 	memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
490 	lowcore->async_stack = async_stack + ASYNC_SIZE;
491 	lowcore->panic_stack = panic_stack + PAGE_SIZE;
492 
493 #ifndef CONFIG_64BIT
494 	if (MACHINE_HAS_IEEE) {
495 		unsigned long save_area;
496 
497 		save_area = get_zeroed_page(GFP_KERNEL);
498 		if (!save_area)
499 			goto out;
500 		lowcore->extended_save_area_addr = (u32) save_area;
501 	}
502 #else
503 	if (vdso_alloc_per_cpu(cpu, lowcore))
504 		goto out;
505 #endif
506 	lowcore_ptr[cpu] = lowcore;
507 	return 0;
508 
509 out:
510 	free_page(panic_stack);
511 	free_pages(async_stack, ASYNC_ORDER);
512 	free_pages((unsigned long) lowcore, lc_order);
513 	return -ENOMEM;
514 }
515 
516 static void smp_free_lowcore(int cpu)
517 {
518 	struct _lowcore *lowcore;
519 	int lc_order;
520 
521 	lc_order = sizeof(long) == 8 ? 1 : 0;
522 	lowcore = lowcore_ptr[cpu];
523 #ifndef CONFIG_64BIT
524 	if (MACHINE_HAS_IEEE)
525 		free_page((unsigned long) lowcore->extended_save_area_addr);
526 #else
527 	vdso_free_per_cpu(cpu, lowcore);
528 #endif
529 	free_page(lowcore->panic_stack - PAGE_SIZE);
530 	free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
531 	free_pages((unsigned long) lowcore, lc_order);
532 	lowcore_ptr[cpu] = NULL;
533 }
534 
535 /* Upping and downing of CPUs */
536 int __cpuinit __cpu_up(unsigned int cpu)
537 {
538 	struct task_struct *idle;
539 	struct _lowcore *cpu_lowcore;
540 	struct stack_frame *sf;
541 	sigp_ccode ccode;
542 	u32 lowcore;
543 
544 	if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
545 		return -EIO;
546 	if (smp_alloc_lowcore(cpu))
547 		return -ENOMEM;
548 	do {
549 		ccode = signal_processor(cpu, sigp_initial_cpu_reset);
550 		if (ccode == sigp_busy)
551 			udelay(10);
552 		if (ccode == sigp_not_operational)
553 			goto err_out;
554 	} while (ccode == sigp_busy);
555 
556 	lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
557 	while (signal_processor_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
558 		udelay(10);
559 
560 	idle = current_set[cpu];
561 	cpu_lowcore = lowcore_ptr[cpu];
562 	cpu_lowcore->kernel_stack = (unsigned long)
563 		task_stack_page(idle) + THREAD_SIZE;
564 	cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
565 	sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
566 				     - sizeof(struct pt_regs)
567 				     - sizeof(struct stack_frame));
568 	memset(sf, 0, sizeof(struct stack_frame));
569 	sf->gprs[9] = (unsigned long) sf;
570 	cpu_lowcore->save_area[15] = (unsigned long) sf;
571 	__ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
572 	asm volatile(
573 		"	stam	0,15,0(%0)"
574 		: : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
575 	cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
576 	cpu_lowcore->current_task = (unsigned long) idle;
577 	cpu_lowcore->cpu_nr = cpu;
578 	cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
579 	cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
580 	cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
581 	eieio();
582 
583 	while (signal_processor(cpu, sigp_restart) == sigp_busy)
584 		udelay(10);
585 
586 	while (!cpu_online(cpu))
587 		cpu_relax();
588 	return 0;
589 
590 err_out:
591 	smp_free_lowcore(cpu);
592 	return -EIO;
593 }
594 
595 static int __init setup_possible_cpus(char *s)
596 {
597 	int pcpus, cpu;
598 
599 	pcpus = simple_strtoul(s, NULL, 0);
600 	init_cpu_possible(cpumask_of(0));
601 	for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
602 		set_cpu_possible(cpu, true);
603 	return 0;
604 }
605 early_param("possible_cpus", setup_possible_cpus);
606 
607 #ifdef CONFIG_HOTPLUG_CPU
608 
609 int __cpu_disable(void)
610 {
611 	struct ec_creg_mask_parms cr_parms;
612 	int cpu = smp_processor_id();
613 
614 	cpu_clear(cpu, cpu_online_map);
615 
616 	/* Disable pfault pseudo page faults on this cpu. */
617 	pfault_fini();
618 
619 	memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
620 	memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
621 
622 	/* disable all external interrupts */
623 	cr_parms.orvals[0] = 0;
624 	cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
625 				1 << 11 | 1 << 10 | 1 <<  6 | 1 <<  4);
626 	/* disable all I/O interrupts */
627 	cr_parms.orvals[6] = 0;
628 	cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
629 				1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
630 	/* disable most machine checks */
631 	cr_parms.orvals[14] = 0;
632 	cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
633 				 1 << 25 | 1 << 24);
634 
635 	smp_ctl_bit_callback(&cr_parms);
636 
637 	return 0;
638 }
639 
640 void __cpu_die(unsigned int cpu)
641 {
642 	/* Wait until target cpu is down */
643 	while (!cpu_stopped(cpu))
644 		cpu_relax();
645 	smp_free_lowcore(cpu);
646 	pr_info("Processor %d stopped\n", cpu);
647 }
648 
649 void cpu_die(void)
650 {
651 	idle_task_exit();
652 	signal_processor(smp_processor_id(), sigp_stop);
653 	BUG();
654 	for (;;);
655 }
656 
657 #endif /* CONFIG_HOTPLUG_CPU */
658 
659 void __init smp_prepare_cpus(unsigned int max_cpus)
660 {
661 #ifndef CONFIG_64BIT
662 	unsigned long save_area = 0;
663 #endif
664 	unsigned long async_stack, panic_stack;
665 	struct _lowcore *lowcore;
666 	unsigned int cpu;
667 	int lc_order;
668 
669 	smp_detect_cpus();
670 
671 	/* request the 0x1201 emergency signal external interrupt */
672 	if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
673 		panic("Couldn't request external interrupt 0x1201");
674 	print_cpu_info();
675 
676 	/* Reallocate current lowcore, but keep its contents. */
677 	lc_order = sizeof(long) == 8 ? 1 : 0;
678 	lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
679 	panic_stack = __get_free_page(GFP_KERNEL);
680 	async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
681 	BUG_ON(!lowcore || !panic_stack || !async_stack);
682 #ifndef CONFIG_64BIT
683 	if (MACHINE_HAS_IEEE)
684 		save_area = get_zeroed_page(GFP_KERNEL);
685 #endif
686 	local_irq_disable();
687 	local_mcck_disable();
688 	lowcore_ptr[smp_processor_id()] = lowcore;
689 	*lowcore = S390_lowcore;
690 	lowcore->panic_stack = panic_stack + PAGE_SIZE;
691 	lowcore->async_stack = async_stack + ASYNC_SIZE;
692 #ifndef CONFIG_64BIT
693 	if (MACHINE_HAS_IEEE)
694 		lowcore->extended_save_area_addr = (u32) save_area;
695 #endif
696 	set_prefix((u32)(unsigned long) lowcore);
697 	local_mcck_enable();
698 	local_irq_enable();
699 #ifdef CONFIG_64BIT
700 	if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
701 		BUG();
702 #endif
703 	for_each_possible_cpu(cpu)
704 		if (cpu != smp_processor_id())
705 			smp_create_idle(cpu);
706 }
707 
708 void __init smp_prepare_boot_cpu(void)
709 {
710 	BUG_ON(smp_processor_id() != 0);
711 
712 	current_thread_info()->cpu = 0;
713 	cpu_set(0, cpu_present_map);
714 	cpu_set(0, cpu_online_map);
715 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
716 	current_set[0] = current;
717 	smp_cpu_state[0] = CPU_STATE_CONFIGURED;
718 	smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
719 }
720 
721 void __init smp_cpus_done(unsigned int max_cpus)
722 {
723 }
724 
725 /*
726  * the frequency of the profiling timer can be changed
727  * by writing a multiplier value into /proc/profile.
728  *
729  * usually you want to run this on all CPUs ;)
730  */
731 int setup_profiling_timer(unsigned int multiplier)
732 {
733 	return 0;
734 }
735 
736 #ifdef CONFIG_HOTPLUG_CPU
737 static ssize_t cpu_configure_show(struct sys_device *dev,
738 				struct sysdev_attribute *attr, char *buf)
739 {
740 	ssize_t count;
741 
742 	mutex_lock(&smp_cpu_state_mutex);
743 	count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
744 	mutex_unlock(&smp_cpu_state_mutex);
745 	return count;
746 }
747 
748 static ssize_t cpu_configure_store(struct sys_device *dev,
749 				  struct sysdev_attribute *attr,
750 				  const char *buf, size_t count)
751 {
752 	int cpu = dev->id;
753 	int val, rc;
754 	char delim;
755 
756 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
757 		return -EINVAL;
758 	if (val != 0 && val != 1)
759 		return -EINVAL;
760 
761 	get_online_cpus();
762 	mutex_lock(&smp_cpu_state_mutex);
763 	rc = -EBUSY;
764 	if (cpu_online(cpu))
765 		goto out;
766 	rc = 0;
767 	switch (val) {
768 	case 0:
769 		if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
770 			rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
771 			if (!rc) {
772 				smp_cpu_state[cpu] = CPU_STATE_STANDBY;
773 				smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
774 			}
775 		}
776 		break;
777 	case 1:
778 		if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
779 			rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
780 			if (!rc) {
781 				smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
782 				smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
783 			}
784 		}
785 		break;
786 	default:
787 		break;
788 	}
789 out:
790 	mutex_unlock(&smp_cpu_state_mutex);
791 	put_online_cpus();
792 	return rc ? rc : count;
793 }
794 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
795 #endif /* CONFIG_HOTPLUG_CPU */
796 
797 static ssize_t cpu_polarization_show(struct sys_device *dev,
798 				     struct sysdev_attribute *attr, char *buf)
799 {
800 	int cpu = dev->id;
801 	ssize_t count;
802 
803 	mutex_lock(&smp_cpu_state_mutex);
804 	switch (smp_cpu_polarization[cpu]) {
805 	case POLARIZATION_HRZ:
806 		count = sprintf(buf, "horizontal\n");
807 		break;
808 	case POLARIZATION_VL:
809 		count = sprintf(buf, "vertical:low\n");
810 		break;
811 	case POLARIZATION_VM:
812 		count = sprintf(buf, "vertical:medium\n");
813 		break;
814 	case POLARIZATION_VH:
815 		count = sprintf(buf, "vertical:high\n");
816 		break;
817 	default:
818 		count = sprintf(buf, "unknown\n");
819 		break;
820 	}
821 	mutex_unlock(&smp_cpu_state_mutex);
822 	return count;
823 }
824 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
825 
826 static ssize_t show_cpu_address(struct sys_device *dev,
827 				struct sysdev_attribute *attr, char *buf)
828 {
829 	return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
830 }
831 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
832 
833 
834 static struct attribute *cpu_common_attrs[] = {
835 #ifdef CONFIG_HOTPLUG_CPU
836 	&attr_configure.attr,
837 #endif
838 	&attr_address.attr,
839 	&attr_polarization.attr,
840 	NULL,
841 };
842 
843 static struct attribute_group cpu_common_attr_group = {
844 	.attrs = cpu_common_attrs,
845 };
846 
847 static ssize_t show_capability(struct sys_device *dev,
848 				struct sysdev_attribute *attr, char *buf)
849 {
850 	unsigned int capability;
851 	int rc;
852 
853 	rc = get_cpu_capability(&capability);
854 	if (rc)
855 		return rc;
856 	return sprintf(buf, "%u\n", capability);
857 }
858 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
859 
860 static ssize_t show_idle_count(struct sys_device *dev,
861 				struct sysdev_attribute *attr, char *buf)
862 {
863 	struct s390_idle_data *idle;
864 	unsigned long long idle_count;
865 	unsigned int sequence;
866 
867 	idle = &per_cpu(s390_idle, dev->id);
868 repeat:
869 	sequence = idle->sequence;
870 	smp_rmb();
871 	if (sequence & 1)
872 		goto repeat;
873 	idle_count = idle->idle_count;
874 	if (idle->idle_enter)
875 		idle_count++;
876 	smp_rmb();
877 	if (idle->sequence != sequence)
878 		goto repeat;
879 	return sprintf(buf, "%llu\n", idle_count);
880 }
881 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
882 
883 static ssize_t show_idle_time(struct sys_device *dev,
884 				struct sysdev_attribute *attr, char *buf)
885 {
886 	struct s390_idle_data *idle;
887 	unsigned long long now, idle_time, idle_enter;
888 	unsigned int sequence;
889 
890 	idle = &per_cpu(s390_idle, dev->id);
891 	now = get_clock();
892 repeat:
893 	sequence = idle->sequence;
894 	smp_rmb();
895 	if (sequence & 1)
896 		goto repeat;
897 	idle_time = idle->idle_time;
898 	idle_enter = idle->idle_enter;
899 	if (idle_enter != 0ULL && idle_enter < now)
900 		idle_time += now - idle_enter;
901 	smp_rmb();
902 	if (idle->sequence != sequence)
903 		goto repeat;
904 	return sprintf(buf, "%llu\n", idle_time >> 12);
905 }
906 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
907 
908 static struct attribute *cpu_online_attrs[] = {
909 	&attr_capability.attr,
910 	&attr_idle_count.attr,
911 	&attr_idle_time_us.attr,
912 	NULL,
913 };
914 
915 static struct attribute_group cpu_online_attr_group = {
916 	.attrs = cpu_online_attrs,
917 };
918 
919 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
920 				    unsigned long action, void *hcpu)
921 {
922 	unsigned int cpu = (unsigned int)(long)hcpu;
923 	struct cpu *c = &per_cpu(cpu_devices, cpu);
924 	struct sys_device *s = &c->sysdev;
925 	struct s390_idle_data *idle;
926 
927 	switch (action) {
928 	case CPU_ONLINE:
929 	case CPU_ONLINE_FROZEN:
930 		idle = &per_cpu(s390_idle, cpu);
931 		memset(idle, 0, sizeof(struct s390_idle_data));
932 		if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
933 			return NOTIFY_BAD;
934 		break;
935 	case CPU_DEAD:
936 	case CPU_DEAD_FROZEN:
937 		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
938 		break;
939 	}
940 	return NOTIFY_OK;
941 }
942 
943 static struct notifier_block __cpuinitdata smp_cpu_nb = {
944 	.notifier_call = smp_cpu_notify,
945 };
946 
947 static int __devinit smp_add_present_cpu(int cpu)
948 {
949 	struct cpu *c = &per_cpu(cpu_devices, cpu);
950 	struct sys_device *s = &c->sysdev;
951 	int rc;
952 
953 	c->hotpluggable = 1;
954 	rc = register_cpu(c, cpu);
955 	if (rc)
956 		goto out;
957 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
958 	if (rc)
959 		goto out_cpu;
960 	if (!cpu_online(cpu))
961 		goto out;
962 	rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
963 	if (!rc)
964 		return 0;
965 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
966 out_cpu:
967 #ifdef CONFIG_HOTPLUG_CPU
968 	unregister_cpu(c);
969 #endif
970 out:
971 	return rc;
972 }
973 
974 #ifdef CONFIG_HOTPLUG_CPU
975 
976 int __ref smp_rescan_cpus(void)
977 {
978 	cpumask_t newcpus;
979 	int cpu;
980 	int rc;
981 
982 	get_online_cpus();
983 	mutex_lock(&smp_cpu_state_mutex);
984 	newcpus = cpu_present_map;
985 	rc = __smp_rescan_cpus();
986 	if (rc)
987 		goto out;
988 	cpus_andnot(newcpus, cpu_present_map, newcpus);
989 	for_each_cpu_mask(cpu, newcpus) {
990 		rc = smp_add_present_cpu(cpu);
991 		if (rc)
992 			cpu_clear(cpu, cpu_present_map);
993 	}
994 	rc = 0;
995 out:
996 	mutex_unlock(&smp_cpu_state_mutex);
997 	put_online_cpus();
998 	if (!cpus_empty(newcpus))
999 		topology_schedule_update();
1000 	return rc;
1001 }
1002 
1003 static ssize_t __ref rescan_store(struct sysdev_class *class, const char *buf,
1004 				  size_t count)
1005 {
1006 	int rc;
1007 
1008 	rc = smp_rescan_cpus();
1009 	return rc ? rc : count;
1010 }
1011 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
1012 #endif /* CONFIG_HOTPLUG_CPU */
1013 
1014 static ssize_t dispatching_show(struct sysdev_class *class, char *buf)
1015 {
1016 	ssize_t count;
1017 
1018 	mutex_lock(&smp_cpu_state_mutex);
1019 	count = sprintf(buf, "%d\n", cpu_management);
1020 	mutex_unlock(&smp_cpu_state_mutex);
1021 	return count;
1022 }
1023 
1024 static ssize_t dispatching_store(struct sysdev_class *dev, const char *buf,
1025 				 size_t count)
1026 {
1027 	int val, rc;
1028 	char delim;
1029 
1030 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1031 		return -EINVAL;
1032 	if (val != 0 && val != 1)
1033 		return -EINVAL;
1034 	rc = 0;
1035 	get_online_cpus();
1036 	mutex_lock(&smp_cpu_state_mutex);
1037 	if (cpu_management == val)
1038 		goto out;
1039 	rc = topology_set_cpu_management(val);
1040 	if (!rc)
1041 		cpu_management = val;
1042 out:
1043 	mutex_unlock(&smp_cpu_state_mutex);
1044 	put_online_cpus();
1045 	return rc ? rc : count;
1046 }
1047 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1048 			 dispatching_store);
1049 
1050 /*
1051  * If the resume kernel runs on another cpu than the suspended kernel,
1052  * we have to switch the cpu IDs in the logical map.
1053  */
1054 void smp_switch_boot_cpu_in_resume(u32 resume_phys_cpu_id,
1055 				   struct _lowcore *suspend_lowcore)
1056 {
1057 	int cpu, suspend_cpu_id, resume_cpu_id;
1058 	u32 suspend_phys_cpu_id;
1059 
1060 	suspend_phys_cpu_id = __cpu_logical_map[suspend_lowcore->cpu_nr];
1061 	suspend_cpu_id = suspend_lowcore->cpu_nr;
1062 
1063 	for_each_present_cpu(cpu) {
1064 		if (__cpu_logical_map[cpu] == resume_phys_cpu_id) {
1065 			resume_cpu_id = cpu;
1066 			goto found;
1067 		}
1068 	}
1069 	panic("Could not find resume cpu in logical map.\n");
1070 
1071 found:
1072 	printk("Resume  cpu ID: %i/%i\n", resume_phys_cpu_id, resume_cpu_id);
1073 	printk("Suspend cpu ID: %i/%i\n", suspend_phys_cpu_id, suspend_cpu_id);
1074 
1075 	__cpu_logical_map[resume_cpu_id] = suspend_phys_cpu_id;
1076 	__cpu_logical_map[suspend_cpu_id] = resume_phys_cpu_id;
1077 
1078 	lowcore_ptr[suspend_cpu_id]->cpu_addr = resume_phys_cpu_id;
1079 }
1080 
1081 u32 smp_get_phys_cpu_id(void)
1082 {
1083 	return __cpu_logical_map[smp_processor_id()];
1084 }
1085 
1086 static int __init topology_init(void)
1087 {
1088 	int cpu;
1089 	int rc;
1090 
1091 	register_cpu_notifier(&smp_cpu_nb);
1092 
1093 #ifdef CONFIG_HOTPLUG_CPU
1094 	rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1095 	if (rc)
1096 		return rc;
1097 #endif
1098 	rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1099 	if (rc)
1100 		return rc;
1101 	for_each_present_cpu(cpu) {
1102 		rc = smp_add_present_cpu(cpu);
1103 		if (rc)
1104 			return rc;
1105 	}
1106 	return 0;
1107 }
1108 subsys_initcall(topology_init);
1109