xref: /openbmc/linux/arch/s390/kernel/smp.c (revision f7af616c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18 
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/irq_work.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/kprobes.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/diag.h>
42 #include <asm/switch_to.h>
43 #include <asm/facility.h>
44 #include <asm/ipl.h>
45 #include <asm/setup.h>
46 #include <asm/irq.h>
47 #include <asm/tlbflush.h>
48 #include <asm/vtimer.h>
49 #include <asm/lowcore.h>
50 #include <asm/sclp.h>
51 #include <asm/debug.h>
52 #include <asm/os_info.h>
53 #include <asm/sigp.h>
54 #include <asm/idle.h>
55 #include <asm/nmi.h>
56 #include <asm/stacktrace.h>
57 #include <asm/topology.h>
58 #include <asm/vdso.h>
59 #include "entry.h"
60 
61 enum {
62 	ec_schedule = 0,
63 	ec_call_function_single,
64 	ec_stop_cpu,
65 	ec_mcck_pending,
66 	ec_irq_work,
67 };
68 
69 enum {
70 	CPU_STATE_STANDBY,
71 	CPU_STATE_CONFIGURED,
72 };
73 
74 static DEFINE_PER_CPU(struct cpu *, cpu_device);
75 
76 struct pcpu {
77 	struct lowcore *lowcore;	/* lowcore page(s) for the cpu */
78 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
79 	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
80 	signed char state;		/* physical cpu state */
81 	signed char polarization;	/* physical polarization */
82 	u16 address;			/* physical cpu address */
83 };
84 
85 static u8 boot_core_type;
86 static struct pcpu pcpu_devices[NR_CPUS];
87 
88 unsigned int smp_cpu_mt_shift;
89 EXPORT_SYMBOL(smp_cpu_mt_shift);
90 
91 unsigned int smp_cpu_mtid;
92 EXPORT_SYMBOL(smp_cpu_mtid);
93 
94 #ifdef CONFIG_CRASH_DUMP
95 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
96 #endif
97 
98 static unsigned int smp_max_threads __initdata = -1U;
99 
100 static int __init early_nosmt(char *s)
101 {
102 	smp_max_threads = 1;
103 	return 0;
104 }
105 early_param("nosmt", early_nosmt);
106 
107 static int __init early_smt(char *s)
108 {
109 	get_option(&s, &smp_max_threads);
110 	return 0;
111 }
112 early_param("smt", early_smt);
113 
114 /*
115  * The smp_cpu_state_mutex must be held when changing the state or polarization
116  * member of a pcpu data structure within the pcpu_devices arreay.
117  */
118 DEFINE_MUTEX(smp_cpu_state_mutex);
119 
120 /*
121  * Signal processor helper functions.
122  */
123 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
124 {
125 	int cc;
126 
127 	while (1) {
128 		cc = __pcpu_sigp(addr, order, parm, NULL);
129 		if (cc != SIGP_CC_BUSY)
130 			return cc;
131 		cpu_relax();
132 	}
133 }
134 
135 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
136 {
137 	int cc, retry;
138 
139 	for (retry = 0; ; retry++) {
140 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
141 		if (cc != SIGP_CC_BUSY)
142 			break;
143 		if (retry >= 3)
144 			udelay(10);
145 	}
146 	return cc;
147 }
148 
149 static inline int pcpu_stopped(struct pcpu *pcpu)
150 {
151 	u32 status;
152 
153 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
154 			0, &status) != SIGP_CC_STATUS_STORED)
155 		return 0;
156 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
157 }
158 
159 static inline int pcpu_running(struct pcpu *pcpu)
160 {
161 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
162 			0, NULL) != SIGP_CC_STATUS_STORED)
163 		return 1;
164 	/* Status stored condition code is equivalent to cpu not running. */
165 	return 0;
166 }
167 
168 /*
169  * Find struct pcpu by cpu address.
170  */
171 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
172 {
173 	int cpu;
174 
175 	for_each_cpu(cpu, mask)
176 		if (pcpu_devices[cpu].address == address)
177 			return pcpu_devices + cpu;
178 	return NULL;
179 }
180 
181 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
182 {
183 	int order;
184 
185 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
186 		return;
187 	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
188 	pcpu->ec_clk = get_tod_clock_fast();
189 	pcpu_sigp_retry(pcpu, order, 0);
190 }
191 
192 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
193 {
194 	unsigned long async_stack, nodat_stack, mcck_stack;
195 	struct lowcore *lc;
196 
197 	if (pcpu != &pcpu_devices[0]) {
198 		pcpu->lowcore =	(struct lowcore *)
199 			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
200 		nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
201 		if (!pcpu->lowcore || !nodat_stack)
202 			goto out;
203 	} else {
204 		nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
205 	}
206 	async_stack = stack_alloc();
207 	mcck_stack = stack_alloc();
208 	if (!async_stack || !mcck_stack)
209 		goto out_stack;
210 	lc = pcpu->lowcore;
211 	memcpy(lc, &S390_lowcore, 512);
212 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
213 	lc->async_stack = async_stack + STACK_INIT_OFFSET;
214 	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
215 	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
216 	lc->cpu_nr = cpu;
217 	lc->spinlock_lockval = arch_spin_lockval(cpu);
218 	lc->spinlock_index = 0;
219 	lc->br_r1_trampoline = 0x07f1;	/* br %r1 */
220 	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
221 	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
222 	if (nmi_alloc_per_cpu(lc))
223 		goto out_stack;
224 	lowcore_ptr[cpu] = lc;
225 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
226 	return 0;
227 
228 out_stack:
229 	stack_free(mcck_stack);
230 	stack_free(async_stack);
231 out:
232 	if (pcpu != &pcpu_devices[0]) {
233 		free_pages(nodat_stack, THREAD_SIZE_ORDER);
234 		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
235 	}
236 	return -ENOMEM;
237 }
238 
239 static void pcpu_free_lowcore(struct pcpu *pcpu)
240 {
241 	unsigned long async_stack, nodat_stack, mcck_stack, lowcore;
242 
243 	nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
244 	async_stack = pcpu->lowcore->async_stack - STACK_INIT_OFFSET;
245 	mcck_stack = pcpu->lowcore->mcck_stack - STACK_INIT_OFFSET;
246 	lowcore = (unsigned long) pcpu->lowcore;
247 
248 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
249 	lowcore_ptr[pcpu - pcpu_devices] = NULL;
250 	nmi_free_per_cpu(pcpu->lowcore);
251 	stack_free(async_stack);
252 	stack_free(mcck_stack);
253 	if (pcpu == &pcpu_devices[0])
254 		return;
255 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
256 	free_pages(lowcore, LC_ORDER);
257 }
258 
259 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
260 {
261 	struct lowcore *lc = pcpu->lowcore;
262 
263 	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
264 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
265 	lc->cpu_nr = cpu;
266 	lc->spinlock_lockval = arch_spin_lockval(cpu);
267 	lc->spinlock_index = 0;
268 	lc->percpu_offset = __per_cpu_offset[cpu];
269 	lc->kernel_asce = S390_lowcore.kernel_asce;
270 	lc->user_asce = s390_invalid_asce;
271 	lc->machine_flags = S390_lowcore.machine_flags;
272 	lc->user_timer = lc->system_timer =
273 		lc->steal_timer = lc->avg_steal_timer = 0;
274 	__ctl_store(lc->cregs_save_area, 0, 15);
275 	lc->cregs_save_area[1] = lc->kernel_asce;
276 	lc->cregs_save_area[7] = lc->user_asce;
277 	save_access_regs((unsigned int *) lc->access_regs_save_area);
278 	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
279 	       sizeof(lc->stfle_fac_list));
280 	memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
281 	       sizeof(lc->alt_stfle_fac_list));
282 	arch_spin_lock_setup(cpu);
283 }
284 
285 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
286 {
287 	struct lowcore *lc = pcpu->lowcore;
288 
289 	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
290 		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
291 	lc->current_task = (unsigned long) tsk;
292 	lc->lpp = LPP_MAGIC;
293 	lc->current_pid = tsk->pid;
294 	lc->user_timer = tsk->thread.user_timer;
295 	lc->guest_timer = tsk->thread.guest_timer;
296 	lc->system_timer = tsk->thread.system_timer;
297 	lc->hardirq_timer = tsk->thread.hardirq_timer;
298 	lc->softirq_timer = tsk->thread.softirq_timer;
299 	lc->steal_timer = 0;
300 }
301 
302 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
303 {
304 	struct lowcore *lc = pcpu->lowcore;
305 
306 	lc->restart_stack = lc->nodat_stack;
307 	lc->restart_fn = (unsigned long) func;
308 	lc->restart_data = (unsigned long) data;
309 	lc->restart_source = -1UL;
310 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
311 }
312 
313 /*
314  * Call function via PSW restart on pcpu and stop the current cpu.
315  */
316 static void __pcpu_delegate(void (*func)(void*), void *data)
317 {
318 	func(data);	/* should not return */
319 }
320 
321 static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
322 						void (*func)(void *),
323 						void *data, unsigned long stack)
324 {
325 	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
326 	unsigned long source_cpu = stap();
327 
328 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
329 	if (pcpu->address == source_cpu)
330 		CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data);
331 	/* Stop target cpu (if func returns this stops the current cpu). */
332 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
333 	/* Restart func on the target cpu and stop the current cpu. */
334 	mem_assign_absolute(lc->restart_stack, stack);
335 	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
336 	mem_assign_absolute(lc->restart_data, (unsigned long) data);
337 	mem_assign_absolute(lc->restart_source, source_cpu);
338 	__bpon();
339 	asm volatile(
340 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
341 		"	brc	2,0b	# busy, try again\n"
342 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
343 		"	brc	2,1b	# busy, try again\n"
344 		: : "d" (pcpu->address), "d" (source_cpu),
345 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
346 		: "0", "1", "cc");
347 	for (;;) ;
348 }
349 
350 /*
351  * Enable additional logical cpus for multi-threading.
352  */
353 static int pcpu_set_smt(unsigned int mtid)
354 {
355 	int cc;
356 
357 	if (smp_cpu_mtid == mtid)
358 		return 0;
359 	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
360 	if (cc == 0) {
361 		smp_cpu_mtid = mtid;
362 		smp_cpu_mt_shift = 0;
363 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
364 			smp_cpu_mt_shift++;
365 		pcpu_devices[0].address = stap();
366 	}
367 	return cc;
368 }
369 
370 /*
371  * Call function on an online CPU.
372  */
373 void smp_call_online_cpu(void (*func)(void *), void *data)
374 {
375 	struct pcpu *pcpu;
376 
377 	/* Use the current cpu if it is online. */
378 	pcpu = pcpu_find_address(cpu_online_mask, stap());
379 	if (!pcpu)
380 		/* Use the first online cpu. */
381 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
382 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
383 }
384 
385 /*
386  * Call function on the ipl CPU.
387  */
388 void smp_call_ipl_cpu(void (*func)(void *), void *data)
389 {
390 	struct lowcore *lc = pcpu_devices->lowcore;
391 
392 	if (pcpu_devices[0].address == stap())
393 		lc = &S390_lowcore;
394 
395 	pcpu_delegate(&pcpu_devices[0], func, data,
396 		      lc->nodat_stack);
397 }
398 
399 int smp_find_processor_id(u16 address)
400 {
401 	int cpu;
402 
403 	for_each_present_cpu(cpu)
404 		if (pcpu_devices[cpu].address == address)
405 			return cpu;
406 	return -1;
407 }
408 
409 void schedule_mcck_handler(void)
410 {
411 	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
412 }
413 
414 bool notrace arch_vcpu_is_preempted(int cpu)
415 {
416 	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
417 		return false;
418 	if (pcpu_running(pcpu_devices + cpu))
419 		return false;
420 	return true;
421 }
422 EXPORT_SYMBOL(arch_vcpu_is_preempted);
423 
424 void notrace smp_yield_cpu(int cpu)
425 {
426 	if (!MACHINE_HAS_DIAG9C)
427 		return;
428 	diag_stat_inc_norecursion(DIAG_STAT_X09C);
429 	asm volatile("diag %0,0,0x9c"
430 		     : : "d" (pcpu_devices[cpu].address));
431 }
432 EXPORT_SYMBOL_GPL(smp_yield_cpu);
433 
434 /*
435  * Send cpus emergency shutdown signal. This gives the cpus the
436  * opportunity to complete outstanding interrupts.
437  */
438 void notrace smp_emergency_stop(void)
439 {
440 	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
441 	static cpumask_t cpumask;
442 	u64 end;
443 	int cpu;
444 
445 	arch_spin_lock(&lock);
446 	cpumask_copy(&cpumask, cpu_online_mask);
447 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
448 
449 	end = get_tod_clock() + (1000000UL << 12);
450 	for_each_cpu(cpu, &cpumask) {
451 		struct pcpu *pcpu = pcpu_devices + cpu;
452 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
453 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
454 				   0, NULL) == SIGP_CC_BUSY &&
455 		       get_tod_clock() < end)
456 			cpu_relax();
457 	}
458 	while (get_tod_clock() < end) {
459 		for_each_cpu(cpu, &cpumask)
460 			if (pcpu_stopped(pcpu_devices + cpu))
461 				cpumask_clear_cpu(cpu, &cpumask);
462 		if (cpumask_empty(&cpumask))
463 			break;
464 		cpu_relax();
465 	}
466 	arch_spin_unlock(&lock);
467 }
468 NOKPROBE_SYMBOL(smp_emergency_stop);
469 
470 /*
471  * Stop all cpus but the current one.
472  */
473 void smp_send_stop(void)
474 {
475 	int cpu;
476 
477 	/* Disable all interrupts/machine checks */
478 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
479 	trace_hardirqs_off();
480 
481 	debug_set_critical();
482 
483 	if (oops_in_progress)
484 		smp_emergency_stop();
485 
486 	/* stop all processors */
487 	for_each_online_cpu(cpu) {
488 		if (cpu == smp_processor_id())
489 			continue;
490 		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
491 		while (!pcpu_stopped(pcpu_devices + cpu))
492 			cpu_relax();
493 	}
494 }
495 
496 /*
497  * This is the main routine where commands issued by other
498  * cpus are handled.
499  */
500 static void smp_handle_ext_call(void)
501 {
502 	unsigned long bits;
503 
504 	/* handle bit signal external calls */
505 	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
506 	if (test_bit(ec_stop_cpu, &bits))
507 		smp_stop_cpu();
508 	if (test_bit(ec_schedule, &bits))
509 		scheduler_ipi();
510 	if (test_bit(ec_call_function_single, &bits))
511 		generic_smp_call_function_single_interrupt();
512 	if (test_bit(ec_mcck_pending, &bits))
513 		__s390_handle_mcck();
514 	if (test_bit(ec_irq_work, &bits))
515 		irq_work_run();
516 }
517 
518 static void do_ext_call_interrupt(struct ext_code ext_code,
519 				  unsigned int param32, unsigned long param64)
520 {
521 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
522 	smp_handle_ext_call();
523 }
524 
525 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
526 {
527 	int cpu;
528 
529 	for_each_cpu(cpu, mask)
530 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
531 }
532 
533 void arch_send_call_function_single_ipi(int cpu)
534 {
535 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
536 }
537 
538 /*
539  * this function sends a 'reschedule' IPI to another CPU.
540  * it goes straight through and wastes no time serializing
541  * anything. Worst case is that we lose a reschedule ...
542  */
543 void smp_send_reschedule(int cpu)
544 {
545 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
546 }
547 
548 #ifdef CONFIG_IRQ_WORK
549 void arch_irq_work_raise(void)
550 {
551 	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
552 }
553 #endif
554 
555 /*
556  * parameter area for the set/clear control bit callbacks
557  */
558 struct ec_creg_mask_parms {
559 	unsigned long orval;
560 	unsigned long andval;
561 	int cr;
562 };
563 
564 /*
565  * callback for setting/clearing control bits
566  */
567 static void smp_ctl_bit_callback(void *info)
568 {
569 	struct ec_creg_mask_parms *pp = info;
570 	unsigned long cregs[16];
571 
572 	__ctl_store(cregs, 0, 15);
573 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
574 	__ctl_load(cregs, 0, 15);
575 }
576 
577 /*
578  * Set a bit in a control register of all cpus
579  */
580 void smp_ctl_set_bit(int cr, int bit)
581 {
582 	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
583 
584 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
585 }
586 EXPORT_SYMBOL(smp_ctl_set_bit);
587 
588 /*
589  * Clear a bit in a control register of all cpus
590  */
591 void smp_ctl_clear_bit(int cr, int bit)
592 {
593 	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
594 
595 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
596 }
597 EXPORT_SYMBOL(smp_ctl_clear_bit);
598 
599 #ifdef CONFIG_CRASH_DUMP
600 
601 int smp_store_status(int cpu)
602 {
603 	struct pcpu *pcpu = pcpu_devices + cpu;
604 	unsigned long pa;
605 
606 	pa = __pa(&pcpu->lowcore->floating_pt_save_area);
607 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
608 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
609 		return -EIO;
610 	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
611 		return 0;
612 	pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
613 	if (MACHINE_HAS_GS)
614 		pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
615 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
616 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
617 		return -EIO;
618 	return 0;
619 }
620 
621 /*
622  * Collect CPU state of the previous, crashed system.
623  * There are four cases:
624  * 1) standard zfcp/nvme dump
625  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
626  *    The state for all CPUs except the boot CPU needs to be collected
627  *    with sigp stop-and-store-status. The boot CPU state is located in
628  *    the absolute lowcore of the memory stored in the HSA. The zcore code
629  *    will copy the boot CPU state from the HSA.
630  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
631  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
632  *    The state for all CPUs except the boot CPU needs to be collected
633  *    with sigp stop-and-store-status. The firmware or the boot-loader
634  *    stored the registers of the boot CPU in the absolute lowcore in the
635  *    memory of the old system.
636  * 3) kdump and the old kernel did not store the CPU state,
637  *    or stand-alone kdump for DASD
638  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
639  *    The state for all CPUs except the boot CPU needs to be collected
640  *    with sigp stop-and-store-status. The kexec code or the boot-loader
641  *    stored the registers of the boot CPU in the memory of the old system.
642  * 4) kdump and the old kernel stored the CPU state
643  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
644  *    This case does not exist for s390 anymore, setup_arch explicitly
645  *    deactivates the elfcorehdr= kernel parameter
646  */
647 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
648 				     bool is_boot_cpu, unsigned long page)
649 {
650 	__vector128 *vxrs = (__vector128 *) page;
651 
652 	if (is_boot_cpu)
653 		vxrs = boot_cpu_vector_save_area;
654 	else
655 		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
656 	save_area_add_vxrs(sa, vxrs);
657 }
658 
659 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
660 				     bool is_boot_cpu, unsigned long page)
661 {
662 	void *regs = (void *) page;
663 
664 	if (is_boot_cpu)
665 		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
666 	else
667 		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
668 	save_area_add_regs(sa, regs);
669 }
670 
671 void __init smp_save_dump_cpus(void)
672 {
673 	int addr, boot_cpu_addr, max_cpu_addr;
674 	struct save_area *sa;
675 	unsigned long page;
676 	bool is_boot_cpu;
677 
678 	if (!(OLDMEM_BASE || is_ipl_type_dump()))
679 		/* No previous system present, normal boot. */
680 		return;
681 	/* Allocate a page as dumping area for the store status sigps */
682 	page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
683 	if (!page)
684 		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
685 		      PAGE_SIZE, 1UL << 31);
686 
687 	/* Set multi-threading state to the previous system. */
688 	pcpu_set_smt(sclp.mtid_prev);
689 	boot_cpu_addr = stap();
690 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
691 	for (addr = 0; addr <= max_cpu_addr; addr++) {
692 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
693 		    SIGP_CC_NOT_OPERATIONAL)
694 			continue;
695 		is_boot_cpu = (addr == boot_cpu_addr);
696 		/* Allocate save area */
697 		sa = save_area_alloc(is_boot_cpu);
698 		if (!sa)
699 			panic("could not allocate memory for save area\n");
700 		if (MACHINE_HAS_VX)
701 			/* Get the vector registers */
702 			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
703 		/*
704 		 * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
705 		 * of the boot CPU are stored in the HSA. To retrieve
706 		 * these registers an SCLP request is required which is
707 		 * done by drivers/s390/char/zcore.c:init_cpu_info()
708 		 */
709 		if (!is_boot_cpu || OLDMEM_BASE)
710 			/* Get the CPU registers */
711 			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
712 	}
713 	memblock_free(page, PAGE_SIZE);
714 	diag_dma_ops.diag308_reset();
715 	pcpu_set_smt(0);
716 }
717 #endif /* CONFIG_CRASH_DUMP */
718 
719 void smp_cpu_set_polarization(int cpu, int val)
720 {
721 	pcpu_devices[cpu].polarization = val;
722 }
723 
724 int smp_cpu_get_polarization(int cpu)
725 {
726 	return pcpu_devices[cpu].polarization;
727 }
728 
729 int smp_cpu_get_cpu_address(int cpu)
730 {
731 	return pcpu_devices[cpu].address;
732 }
733 
734 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
735 {
736 	static int use_sigp_detection;
737 	int address;
738 
739 	if (use_sigp_detection || sclp_get_core_info(info, early)) {
740 		use_sigp_detection = 1;
741 		for (address = 0;
742 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
743 		     address += (1U << smp_cpu_mt_shift)) {
744 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
745 			    SIGP_CC_NOT_OPERATIONAL)
746 				continue;
747 			info->core[info->configured].core_id =
748 				address >> smp_cpu_mt_shift;
749 			info->configured++;
750 		}
751 		info->combined = info->configured;
752 	}
753 }
754 
755 static int smp_add_present_cpu(int cpu);
756 
757 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
758 			bool configured, bool early)
759 {
760 	struct pcpu *pcpu;
761 	int cpu, nr, i;
762 	u16 address;
763 
764 	nr = 0;
765 	if (sclp.has_core_type && core->type != boot_core_type)
766 		return nr;
767 	cpu = cpumask_first(avail);
768 	address = core->core_id << smp_cpu_mt_shift;
769 	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
770 		if (pcpu_find_address(cpu_present_mask, address + i))
771 			continue;
772 		pcpu = pcpu_devices + cpu;
773 		pcpu->address = address + i;
774 		if (configured)
775 			pcpu->state = CPU_STATE_CONFIGURED;
776 		else
777 			pcpu->state = CPU_STATE_STANDBY;
778 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
779 		set_cpu_present(cpu, true);
780 		if (!early && smp_add_present_cpu(cpu) != 0)
781 			set_cpu_present(cpu, false);
782 		else
783 			nr++;
784 		cpumask_clear_cpu(cpu, avail);
785 		cpu = cpumask_next(cpu, avail);
786 	}
787 	return nr;
788 }
789 
790 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
791 {
792 	struct sclp_core_entry *core;
793 	static cpumask_t avail;
794 	bool configured;
795 	u16 core_id;
796 	int nr, i;
797 
798 	get_online_cpus();
799 	mutex_lock(&smp_cpu_state_mutex);
800 	nr = 0;
801 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
802 	/*
803 	 * Add IPL core first (which got logical CPU number 0) to make sure
804 	 * that all SMT threads get subsequent logical CPU numbers.
805 	 */
806 	if (early) {
807 		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
808 		for (i = 0; i < info->configured; i++) {
809 			core = &info->core[i];
810 			if (core->core_id == core_id) {
811 				nr += smp_add_core(core, &avail, true, early);
812 				break;
813 			}
814 		}
815 	}
816 	for (i = 0; i < info->combined; i++) {
817 		configured = i < info->configured;
818 		nr += smp_add_core(&info->core[i], &avail, configured, early);
819 	}
820 	mutex_unlock(&smp_cpu_state_mutex);
821 	put_online_cpus();
822 	return nr;
823 }
824 
825 void __init smp_detect_cpus(void)
826 {
827 	unsigned int cpu, mtid, c_cpus, s_cpus;
828 	struct sclp_core_info *info;
829 	u16 address;
830 
831 	/* Get CPU information */
832 	info = memblock_alloc(sizeof(*info), 8);
833 	if (!info)
834 		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
835 		      __func__, sizeof(*info), 8);
836 	smp_get_core_info(info, 1);
837 	/* Find boot CPU type */
838 	if (sclp.has_core_type) {
839 		address = stap();
840 		for (cpu = 0; cpu < info->combined; cpu++)
841 			if (info->core[cpu].core_id == address) {
842 				/* The boot cpu dictates the cpu type. */
843 				boot_core_type = info->core[cpu].type;
844 				break;
845 			}
846 		if (cpu >= info->combined)
847 			panic("Could not find boot CPU type");
848 	}
849 
850 	/* Set multi-threading state for the current system */
851 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
852 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
853 	pcpu_set_smt(mtid);
854 
855 	/* Print number of CPUs */
856 	c_cpus = s_cpus = 0;
857 	for (cpu = 0; cpu < info->combined; cpu++) {
858 		if (sclp.has_core_type &&
859 		    info->core[cpu].type != boot_core_type)
860 			continue;
861 		if (cpu < info->configured)
862 			c_cpus += smp_cpu_mtid + 1;
863 		else
864 			s_cpus += smp_cpu_mtid + 1;
865 	}
866 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
867 
868 	/* Add CPUs present at boot */
869 	__smp_rescan_cpus(info, true);
870 	memblock_free_early((unsigned long)info, sizeof(*info));
871 }
872 
873 static void smp_init_secondary(void)
874 {
875 	int cpu = raw_smp_processor_id();
876 
877 	S390_lowcore.last_update_clock = get_tod_clock();
878 	restore_access_regs(S390_lowcore.access_regs_save_area);
879 	cpu_init();
880 	rcu_cpu_starting(cpu);
881 	preempt_disable();
882 	init_cpu_timer();
883 	vtime_init();
884 	vdso_getcpu_init();
885 	pfault_init();
886 	notify_cpu_starting(cpu);
887 	if (topology_cpu_dedicated(cpu))
888 		set_cpu_flag(CIF_DEDICATED_CPU);
889 	else
890 		clear_cpu_flag(CIF_DEDICATED_CPU);
891 	set_cpu_online(cpu, true);
892 	update_cpu_masks();
893 	inc_irq_stat(CPU_RST);
894 	local_irq_enable();
895 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
896 }
897 
898 /*
899  *	Activate a secondary processor.
900  */
901 static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
902 {
903 	S390_lowcore.restart_stack = (unsigned long) restart_stack;
904 	S390_lowcore.restart_fn = (unsigned long) do_restart;
905 	S390_lowcore.restart_data = 0;
906 	S390_lowcore.restart_source = -1UL;
907 	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
908 	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
909 	CALL_ON_STACK_NORETURN(smp_init_secondary, S390_lowcore.kernel_stack);
910 }
911 
912 /* Upping and downing of CPUs */
913 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
914 {
915 	struct pcpu *pcpu = pcpu_devices + cpu;
916 	int rc;
917 
918 	if (pcpu->state != CPU_STATE_CONFIGURED)
919 		return -EIO;
920 	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
921 	    SIGP_CC_ORDER_CODE_ACCEPTED)
922 		return -EIO;
923 
924 	rc = pcpu_alloc_lowcore(pcpu, cpu);
925 	if (rc)
926 		return rc;
927 	pcpu_prepare_secondary(pcpu, cpu);
928 	pcpu_attach_task(pcpu, tidle);
929 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
930 	/* Wait until cpu puts itself in the online & active maps */
931 	while (!cpu_online(cpu))
932 		cpu_relax();
933 	return 0;
934 }
935 
936 static unsigned int setup_possible_cpus __initdata;
937 
938 static int __init _setup_possible_cpus(char *s)
939 {
940 	get_option(&s, &setup_possible_cpus);
941 	return 0;
942 }
943 early_param("possible_cpus", _setup_possible_cpus);
944 
945 int __cpu_disable(void)
946 {
947 	unsigned long cregs[16];
948 
949 	/* Handle possible pending IPIs */
950 	smp_handle_ext_call();
951 	set_cpu_online(smp_processor_id(), false);
952 	update_cpu_masks();
953 	/* Disable pseudo page faults on this cpu. */
954 	pfault_fini();
955 	/* Disable interrupt sources via control register. */
956 	__ctl_store(cregs, 0, 15);
957 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
958 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
959 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
960 	__ctl_load(cregs, 0, 15);
961 	clear_cpu_flag(CIF_NOHZ_DELAY);
962 	return 0;
963 }
964 
965 void __cpu_die(unsigned int cpu)
966 {
967 	struct pcpu *pcpu;
968 
969 	/* Wait until target cpu is down */
970 	pcpu = pcpu_devices + cpu;
971 	while (!pcpu_stopped(pcpu))
972 		cpu_relax();
973 	pcpu_free_lowcore(pcpu);
974 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
975 	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
976 }
977 
978 void __noreturn cpu_die(void)
979 {
980 	idle_task_exit();
981 	__bpon();
982 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
983 	for (;;) ;
984 }
985 
986 void __init smp_fill_possible_mask(void)
987 {
988 	unsigned int possible, sclp_max, cpu;
989 
990 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
991 	sclp_max = min(smp_max_threads, sclp_max);
992 	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
993 	possible = setup_possible_cpus ?: nr_cpu_ids;
994 	possible = min(possible, sclp_max);
995 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
996 		set_cpu_possible(cpu, true);
997 }
998 
999 void __init smp_prepare_cpus(unsigned int max_cpus)
1000 {
1001 	/* request the 0x1201 emergency signal external interrupt */
1002 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1003 		panic("Couldn't request external interrupt 0x1201");
1004 	/* request the 0x1202 external call external interrupt */
1005 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1006 		panic("Couldn't request external interrupt 0x1202");
1007 }
1008 
1009 void __init smp_prepare_boot_cpu(void)
1010 {
1011 	struct pcpu *pcpu = pcpu_devices;
1012 
1013 	WARN_ON(!cpu_present(0) || !cpu_online(0));
1014 	pcpu->state = CPU_STATE_CONFIGURED;
1015 	pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
1016 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
1017 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1018 }
1019 
1020 void __init smp_setup_processor_id(void)
1021 {
1022 	pcpu_devices[0].address = stap();
1023 	S390_lowcore.cpu_nr = 0;
1024 	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1025 	S390_lowcore.spinlock_index = 0;
1026 }
1027 
1028 /*
1029  * the frequency of the profiling timer can be changed
1030  * by writing a multiplier value into /proc/profile.
1031  *
1032  * usually you want to run this on all CPUs ;)
1033  */
1034 int setup_profiling_timer(unsigned int multiplier)
1035 {
1036 	return 0;
1037 }
1038 
1039 static ssize_t cpu_configure_show(struct device *dev,
1040 				  struct device_attribute *attr, char *buf)
1041 {
1042 	ssize_t count;
1043 
1044 	mutex_lock(&smp_cpu_state_mutex);
1045 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1046 	mutex_unlock(&smp_cpu_state_mutex);
1047 	return count;
1048 }
1049 
1050 static ssize_t cpu_configure_store(struct device *dev,
1051 				   struct device_attribute *attr,
1052 				   const char *buf, size_t count)
1053 {
1054 	struct pcpu *pcpu;
1055 	int cpu, val, rc, i;
1056 	char delim;
1057 
1058 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1059 		return -EINVAL;
1060 	if (val != 0 && val != 1)
1061 		return -EINVAL;
1062 	get_online_cpus();
1063 	mutex_lock(&smp_cpu_state_mutex);
1064 	rc = -EBUSY;
1065 	/* disallow configuration changes of online cpus and cpu 0 */
1066 	cpu = dev->id;
1067 	cpu = smp_get_base_cpu(cpu);
1068 	if (cpu == 0)
1069 		goto out;
1070 	for (i = 0; i <= smp_cpu_mtid; i++)
1071 		if (cpu_online(cpu + i))
1072 			goto out;
1073 	pcpu = pcpu_devices + cpu;
1074 	rc = 0;
1075 	switch (val) {
1076 	case 0:
1077 		if (pcpu->state != CPU_STATE_CONFIGURED)
1078 			break;
1079 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1080 		if (rc)
1081 			break;
1082 		for (i = 0; i <= smp_cpu_mtid; i++) {
1083 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1084 				continue;
1085 			pcpu[i].state = CPU_STATE_STANDBY;
1086 			smp_cpu_set_polarization(cpu + i,
1087 						 POLARIZATION_UNKNOWN);
1088 		}
1089 		topology_expect_change();
1090 		break;
1091 	case 1:
1092 		if (pcpu->state != CPU_STATE_STANDBY)
1093 			break;
1094 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1095 		if (rc)
1096 			break;
1097 		for (i = 0; i <= smp_cpu_mtid; i++) {
1098 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1099 				continue;
1100 			pcpu[i].state = CPU_STATE_CONFIGURED;
1101 			smp_cpu_set_polarization(cpu + i,
1102 						 POLARIZATION_UNKNOWN);
1103 		}
1104 		topology_expect_change();
1105 		break;
1106 	default:
1107 		break;
1108 	}
1109 out:
1110 	mutex_unlock(&smp_cpu_state_mutex);
1111 	put_online_cpus();
1112 	return rc ? rc : count;
1113 }
1114 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1115 
1116 static ssize_t show_cpu_address(struct device *dev,
1117 				struct device_attribute *attr, char *buf)
1118 {
1119 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1120 }
1121 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1122 
1123 static struct attribute *cpu_common_attrs[] = {
1124 	&dev_attr_configure.attr,
1125 	&dev_attr_address.attr,
1126 	NULL,
1127 };
1128 
1129 static struct attribute_group cpu_common_attr_group = {
1130 	.attrs = cpu_common_attrs,
1131 };
1132 
1133 static struct attribute *cpu_online_attrs[] = {
1134 	&dev_attr_idle_count.attr,
1135 	&dev_attr_idle_time_us.attr,
1136 	NULL,
1137 };
1138 
1139 static struct attribute_group cpu_online_attr_group = {
1140 	.attrs = cpu_online_attrs,
1141 };
1142 
1143 static int smp_cpu_online(unsigned int cpu)
1144 {
1145 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1146 
1147 	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1148 }
1149 
1150 static int smp_cpu_pre_down(unsigned int cpu)
1151 {
1152 	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1153 
1154 	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1155 	return 0;
1156 }
1157 
1158 static int smp_add_present_cpu(int cpu)
1159 {
1160 	struct device *s;
1161 	struct cpu *c;
1162 	int rc;
1163 
1164 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1165 	if (!c)
1166 		return -ENOMEM;
1167 	per_cpu(cpu_device, cpu) = c;
1168 	s = &c->dev;
1169 	c->hotpluggable = 1;
1170 	rc = register_cpu(c, cpu);
1171 	if (rc)
1172 		goto out;
1173 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1174 	if (rc)
1175 		goto out_cpu;
1176 	rc = topology_cpu_init(c);
1177 	if (rc)
1178 		goto out_topology;
1179 	return 0;
1180 
1181 out_topology:
1182 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1183 out_cpu:
1184 	unregister_cpu(c);
1185 out:
1186 	return rc;
1187 }
1188 
1189 int __ref smp_rescan_cpus(void)
1190 {
1191 	struct sclp_core_info *info;
1192 	int nr;
1193 
1194 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1195 	if (!info)
1196 		return -ENOMEM;
1197 	smp_get_core_info(info, 0);
1198 	nr = __smp_rescan_cpus(info, false);
1199 	kfree(info);
1200 	if (nr)
1201 		topology_schedule_update();
1202 	return 0;
1203 }
1204 
1205 static ssize_t __ref rescan_store(struct device *dev,
1206 				  struct device_attribute *attr,
1207 				  const char *buf,
1208 				  size_t count)
1209 {
1210 	int rc;
1211 
1212 	rc = lock_device_hotplug_sysfs();
1213 	if (rc)
1214 		return rc;
1215 	rc = smp_rescan_cpus();
1216 	unlock_device_hotplug();
1217 	return rc ? rc : count;
1218 }
1219 static DEVICE_ATTR_WO(rescan);
1220 
1221 static int __init s390_smp_init(void)
1222 {
1223 	int cpu, rc = 0;
1224 
1225 	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1226 	if (rc)
1227 		return rc;
1228 	for_each_present_cpu(cpu) {
1229 		rc = smp_add_present_cpu(cpu);
1230 		if (rc)
1231 			goto out;
1232 	}
1233 
1234 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1235 			       smp_cpu_online, smp_cpu_pre_down);
1236 	rc = rc <= 0 ? rc : 0;
1237 out:
1238 	return rc;
1239 }
1240 subsys_initcall(s390_smp_init);
1241