xref: /openbmc/linux/arch/s390/kernel/smp.c (revision f42b3800)
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999,2007
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *		 Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *		 Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/cache.h>
31 #include <linux/interrupt.h>
32 #include <linux/cpu.h>
33 #include <linux/timex.h>
34 #include <linux/bootmem.h>
35 #include <asm/ipl.h>
36 #include <asm/setup.h>
37 #include <asm/sigp.h>
38 #include <asm/pgalloc.h>
39 #include <asm/irq.h>
40 #include <asm/s390_ext.h>
41 #include <asm/cpcmd.h>
42 #include <asm/tlbflush.h>
43 #include <asm/timer.h>
44 #include <asm/lowcore.h>
45 #include <asm/sclp.h>
46 #include <asm/cpu.h>
47 #include "entry.h"
48 
49 /*
50  * An array with a pointer the lowcore of every CPU.
51  */
52 struct _lowcore *lowcore_ptr[NR_CPUS];
53 EXPORT_SYMBOL(lowcore_ptr);
54 
55 cpumask_t cpu_online_map = CPU_MASK_NONE;
56 EXPORT_SYMBOL(cpu_online_map);
57 
58 cpumask_t cpu_possible_map = CPU_MASK_ALL;
59 EXPORT_SYMBOL(cpu_possible_map);
60 
61 static struct task_struct *current_set[NR_CPUS];
62 
63 static u8 smp_cpu_type;
64 static int smp_use_sigp_detection;
65 
66 enum s390_cpu_state {
67 	CPU_STATE_STANDBY,
68 	CPU_STATE_CONFIGURED,
69 };
70 
71 DEFINE_MUTEX(smp_cpu_state_mutex);
72 int smp_cpu_polarization[NR_CPUS];
73 static int smp_cpu_state[NR_CPUS];
74 static int cpu_management;
75 
76 static DEFINE_PER_CPU(struct cpu, cpu_devices);
77 
78 static void smp_ext_bitcall(int, ec_bit_sig);
79 
80 /*
81  * Structure and data for __smp_call_function_map(). This is designed to
82  * minimise static memory requirements. It also looks cleaner.
83  */
84 static DEFINE_SPINLOCK(call_lock);
85 
86 struct call_data_struct {
87 	void (*func) (void *info);
88 	void *info;
89 	cpumask_t started;
90 	cpumask_t finished;
91 	int wait;
92 };
93 
94 static struct call_data_struct *call_data;
95 
96 /*
97  * 'Call function' interrupt callback
98  */
99 static void do_call_function(void)
100 {
101 	void (*func) (void *info) = call_data->func;
102 	void *info = call_data->info;
103 	int wait = call_data->wait;
104 
105 	cpu_set(smp_processor_id(), call_data->started);
106 	(*func)(info);
107 	if (wait)
108 		cpu_set(smp_processor_id(), call_data->finished);;
109 }
110 
111 static void __smp_call_function_map(void (*func) (void *info), void *info,
112 				    int nonatomic, int wait, cpumask_t map)
113 {
114 	struct call_data_struct data;
115 	int cpu, local = 0;
116 
117 	/*
118 	 * Can deadlock when interrupts are disabled or if in wrong context.
119 	 */
120 	WARN_ON(irqs_disabled() || in_irq());
121 
122 	/*
123 	 * Check for local function call. We have to have the same call order
124 	 * as in on_each_cpu() because of machine_restart_smp().
125 	 */
126 	if (cpu_isset(smp_processor_id(), map)) {
127 		local = 1;
128 		cpu_clear(smp_processor_id(), map);
129 	}
130 
131 	cpus_and(map, map, cpu_online_map);
132 	if (cpus_empty(map))
133 		goto out;
134 
135 	data.func = func;
136 	data.info = info;
137 	data.started = CPU_MASK_NONE;
138 	data.wait = wait;
139 	if (wait)
140 		data.finished = CPU_MASK_NONE;
141 
142 	spin_lock(&call_lock);
143 	call_data = &data;
144 
145 	for_each_cpu_mask(cpu, map)
146 		smp_ext_bitcall(cpu, ec_call_function);
147 
148 	/* Wait for response */
149 	while (!cpus_equal(map, data.started))
150 		cpu_relax();
151 	if (wait)
152 		while (!cpus_equal(map, data.finished))
153 			cpu_relax();
154 	spin_unlock(&call_lock);
155 out:
156 	if (local) {
157 		local_irq_disable();
158 		func(info);
159 		local_irq_enable();
160 	}
161 }
162 
163 /*
164  * smp_call_function:
165  * @func: the function to run; this must be fast and non-blocking
166  * @info: an arbitrary pointer to pass to the function
167  * @nonatomic: unused
168  * @wait: if true, wait (atomically) until function has completed on other CPUs
169  *
170  * Run a function on all other CPUs.
171  *
172  * You must not call this function with disabled interrupts, from a
173  * hardware interrupt handler or from a bottom half.
174  */
175 int smp_call_function(void (*func) (void *info), void *info, int nonatomic,
176 		      int wait)
177 {
178 	cpumask_t map;
179 
180 	preempt_disable();
181 	map = cpu_online_map;
182 	cpu_clear(smp_processor_id(), map);
183 	__smp_call_function_map(func, info, nonatomic, wait, map);
184 	preempt_enable();
185 	return 0;
186 }
187 EXPORT_SYMBOL(smp_call_function);
188 
189 /*
190  * smp_call_function_single:
191  * @cpu: the CPU where func should run
192  * @func: the function to run; this must be fast and non-blocking
193  * @info: an arbitrary pointer to pass to the function
194  * @nonatomic: unused
195  * @wait: if true, wait (atomically) until function has completed on other CPUs
196  *
197  * Run a function on one processor.
198  *
199  * You must not call this function with disabled interrupts, from a
200  * hardware interrupt handler or from a bottom half.
201  */
202 int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
203 			     int nonatomic, int wait)
204 {
205 	preempt_disable();
206 	__smp_call_function_map(func, info, nonatomic, wait,
207 				cpumask_of_cpu(cpu));
208 	preempt_enable();
209 	return 0;
210 }
211 EXPORT_SYMBOL(smp_call_function_single);
212 
213 /**
214  * smp_call_function_mask(): Run a function on a set of other CPUs.
215  * @mask: The set of cpus to run on.  Must not include the current cpu.
216  * @func: The function to run. This must be fast and non-blocking.
217  * @info: An arbitrary pointer to pass to the function.
218  * @wait: If true, wait (atomically) until function has completed on other CPUs.
219  *
220  * Returns 0 on success, else a negative status code.
221  *
222  * If @wait is true, then returns once @func has returned; otherwise
223  * it returns just before the target cpu calls @func.
224  *
225  * You must not call this function with disabled interrupts or from a
226  * hardware interrupt handler or from a bottom half handler.
227  */
228 int smp_call_function_mask(cpumask_t mask, void (*func)(void *), void *info,
229 			   int wait)
230 {
231 	preempt_disable();
232 	cpu_clear(smp_processor_id(), mask);
233 	__smp_call_function_map(func, info, 0, wait, mask);
234 	preempt_enable();
235 	return 0;
236 }
237 EXPORT_SYMBOL(smp_call_function_mask);
238 
239 void smp_send_stop(void)
240 {
241 	int cpu, rc;
242 
243 	/* Disable all interrupts/machine checks */
244 	__load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
245 
246 	/* write magic number to zero page (absolute 0) */
247 	lowcore_ptr[smp_processor_id()]->panic_magic = __PANIC_MAGIC;
248 
249 	/* stop all processors */
250 	for_each_online_cpu(cpu) {
251 		if (cpu == smp_processor_id())
252 			continue;
253 		do {
254 			rc = signal_processor(cpu, sigp_stop);
255 		} while (rc == sigp_busy);
256 
257 		while (!smp_cpu_not_running(cpu))
258 			cpu_relax();
259 	}
260 }
261 
262 /*
263  * This is the main routine where commands issued by other
264  * cpus are handled.
265  */
266 
267 static void do_ext_call_interrupt(__u16 code)
268 {
269 	unsigned long bits;
270 
271 	/*
272 	 * handle bit signal external calls
273 	 *
274 	 * For the ec_schedule signal we have to do nothing. All the work
275 	 * is done automatically when we return from the interrupt.
276 	 */
277 	bits = xchg(&S390_lowcore.ext_call_fast, 0);
278 
279 	if (test_bit(ec_call_function, &bits))
280 		do_call_function();
281 }
282 
283 /*
284  * Send an external call sigp to another cpu and return without waiting
285  * for its completion.
286  */
287 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
288 {
289 	/*
290 	 * Set signaling bit in lowcore of target cpu and kick it
291 	 */
292 	set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
293 	while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
294 		udelay(10);
295 }
296 
297 #ifndef CONFIG_64BIT
298 /*
299  * this function sends a 'purge tlb' signal to another CPU.
300  */
301 static void smp_ptlb_callback(void *info)
302 {
303 	__tlb_flush_local();
304 }
305 
306 void smp_ptlb_all(void)
307 {
308 	on_each_cpu(smp_ptlb_callback, NULL, 0, 1);
309 }
310 EXPORT_SYMBOL(smp_ptlb_all);
311 #endif /* ! CONFIG_64BIT */
312 
313 /*
314  * this function sends a 'reschedule' IPI to another CPU.
315  * it goes straight through and wastes no time serializing
316  * anything. Worst case is that we lose a reschedule ...
317  */
318 void smp_send_reschedule(int cpu)
319 {
320 	smp_ext_bitcall(cpu, ec_schedule);
321 }
322 
323 /*
324  * parameter area for the set/clear control bit callbacks
325  */
326 struct ec_creg_mask_parms {
327 	unsigned long orvals[16];
328 	unsigned long andvals[16];
329 };
330 
331 /*
332  * callback for setting/clearing control bits
333  */
334 static void smp_ctl_bit_callback(void *info)
335 {
336 	struct ec_creg_mask_parms *pp = info;
337 	unsigned long cregs[16];
338 	int i;
339 
340 	__ctl_store(cregs, 0, 15);
341 	for (i = 0; i <= 15; i++)
342 		cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
343 	__ctl_load(cregs, 0, 15);
344 }
345 
346 /*
347  * Set a bit in a control register of all cpus
348  */
349 void smp_ctl_set_bit(int cr, int bit)
350 {
351 	struct ec_creg_mask_parms parms;
352 
353 	memset(&parms.orvals, 0, sizeof(parms.orvals));
354 	memset(&parms.andvals, 0xff, sizeof(parms.andvals));
355 	parms.orvals[cr] = 1 << bit;
356 	on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1);
357 }
358 EXPORT_SYMBOL(smp_ctl_set_bit);
359 
360 /*
361  * Clear a bit in a control register of all cpus
362  */
363 void smp_ctl_clear_bit(int cr, int bit)
364 {
365 	struct ec_creg_mask_parms parms;
366 
367 	memset(&parms.orvals, 0, sizeof(parms.orvals));
368 	memset(&parms.andvals, 0xff, sizeof(parms.andvals));
369 	parms.andvals[cr] = ~(1L << bit);
370 	on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1);
371 }
372 EXPORT_SYMBOL(smp_ctl_clear_bit);
373 
374 /*
375  * In early ipl state a temp. logically cpu number is needed, so the sigp
376  * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
377  * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
378  */
379 #define CPU_INIT_NO	1
380 
381 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_ZFCPDUMP_MODULE)
382 
383 /*
384  * zfcpdump_prefix_array holds prefix registers for the following scenario:
385  * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
386  * save its prefix registers, since they get lost, when switching from 31 bit
387  * to 64 bit.
388  */
389 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
390 	__attribute__((__section__(".data")));
391 
392 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
393 {
394 	if (ipl_info.type != IPL_TYPE_FCP_DUMP)
395 		return;
396 	if (cpu >= NR_CPUS) {
397 		printk(KERN_WARNING "Registers for cpu %i not saved since dump "
398 		       "kernel was compiled with NR_CPUS=%i\n", cpu, NR_CPUS);
399 		return;
400 	}
401 	zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
402 	__cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
403 	while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
404 	       sigp_busy)
405 		cpu_relax();
406 	memcpy(zfcpdump_save_areas[cpu],
407 	       (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
408 	       SAVE_AREA_SIZE);
409 #ifdef CONFIG_64BIT
410 	/* copy original prefix register */
411 	zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
412 #endif
413 }
414 
415 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
416 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
417 
418 #else
419 
420 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
421 
422 #endif /* CONFIG_ZFCPDUMP || CONFIG_ZFCPDUMP_MODULE */
423 
424 static int cpu_stopped(int cpu)
425 {
426 	__u32 status;
427 
428 	/* Check for stopped state */
429 	if (signal_processor_ps(&status, 0, cpu, sigp_sense) ==
430 	    sigp_status_stored) {
431 		if (status & 0x40)
432 			return 1;
433 	}
434 	return 0;
435 }
436 
437 static int cpu_known(int cpu_id)
438 {
439 	int cpu;
440 
441 	for_each_present_cpu(cpu) {
442 		if (__cpu_logical_map[cpu] == cpu_id)
443 			return 1;
444 	}
445 	return 0;
446 }
447 
448 static int smp_rescan_cpus_sigp(cpumask_t avail)
449 {
450 	int cpu_id, logical_cpu;
451 
452 	logical_cpu = first_cpu(avail);
453 	if (logical_cpu == NR_CPUS)
454 		return 0;
455 	for (cpu_id = 0; cpu_id <= 65535; cpu_id++) {
456 		if (cpu_known(cpu_id))
457 			continue;
458 		__cpu_logical_map[logical_cpu] = cpu_id;
459 		smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
460 		if (!cpu_stopped(logical_cpu))
461 			continue;
462 		cpu_set(logical_cpu, cpu_present_map);
463 		smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
464 		logical_cpu = next_cpu(logical_cpu, avail);
465 		if (logical_cpu == NR_CPUS)
466 			break;
467 	}
468 	return 0;
469 }
470 
471 static int smp_rescan_cpus_sclp(cpumask_t avail)
472 {
473 	struct sclp_cpu_info *info;
474 	int cpu_id, logical_cpu, cpu;
475 	int rc;
476 
477 	logical_cpu = first_cpu(avail);
478 	if (logical_cpu == NR_CPUS)
479 		return 0;
480 	info = kmalloc(sizeof(*info), GFP_KERNEL);
481 	if (!info)
482 		return -ENOMEM;
483 	rc = sclp_get_cpu_info(info);
484 	if (rc)
485 		goto out;
486 	for (cpu = 0; cpu < info->combined; cpu++) {
487 		if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
488 			continue;
489 		cpu_id = info->cpu[cpu].address;
490 		if (cpu_known(cpu_id))
491 			continue;
492 		__cpu_logical_map[logical_cpu] = cpu_id;
493 		smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
494 		cpu_set(logical_cpu, cpu_present_map);
495 		if (cpu >= info->configured)
496 			smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
497 		else
498 			smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
499 		logical_cpu = next_cpu(logical_cpu, avail);
500 		if (logical_cpu == NR_CPUS)
501 			break;
502 	}
503 out:
504 	kfree(info);
505 	return rc;
506 }
507 
508 static int smp_rescan_cpus(void)
509 {
510 	cpumask_t avail;
511 
512 	cpus_xor(avail, cpu_possible_map, cpu_present_map);
513 	if (smp_use_sigp_detection)
514 		return smp_rescan_cpus_sigp(avail);
515 	else
516 		return smp_rescan_cpus_sclp(avail);
517 }
518 
519 static void __init smp_detect_cpus(void)
520 {
521 	unsigned int cpu, c_cpus, s_cpus;
522 	struct sclp_cpu_info *info;
523 	u16 boot_cpu_addr, cpu_addr;
524 
525 	c_cpus = 1;
526 	s_cpus = 0;
527 	boot_cpu_addr = S390_lowcore.cpu_data.cpu_addr;
528 	info = kmalloc(sizeof(*info), GFP_KERNEL);
529 	if (!info)
530 		panic("smp_detect_cpus failed to allocate memory\n");
531 	/* Use sigp detection algorithm if sclp doesn't work. */
532 	if (sclp_get_cpu_info(info)) {
533 		smp_use_sigp_detection = 1;
534 		for (cpu = 0; cpu <= 65535; cpu++) {
535 			if (cpu == boot_cpu_addr)
536 				continue;
537 			__cpu_logical_map[CPU_INIT_NO] = cpu;
538 			if (!cpu_stopped(CPU_INIT_NO))
539 				continue;
540 			smp_get_save_area(c_cpus, cpu);
541 			c_cpus++;
542 		}
543 		goto out;
544 	}
545 
546 	if (info->has_cpu_type) {
547 		for (cpu = 0; cpu < info->combined; cpu++) {
548 			if (info->cpu[cpu].address == boot_cpu_addr) {
549 				smp_cpu_type = info->cpu[cpu].type;
550 				break;
551 			}
552 		}
553 	}
554 
555 	for (cpu = 0; cpu < info->combined; cpu++) {
556 		if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
557 			continue;
558 		cpu_addr = info->cpu[cpu].address;
559 		if (cpu_addr == boot_cpu_addr)
560 			continue;
561 		__cpu_logical_map[CPU_INIT_NO] = cpu_addr;
562 		if (!cpu_stopped(CPU_INIT_NO)) {
563 			s_cpus++;
564 			continue;
565 		}
566 		smp_get_save_area(c_cpus, cpu_addr);
567 		c_cpus++;
568 	}
569 out:
570 	kfree(info);
571 	printk(KERN_INFO "CPUs: %d configured, %d standby\n", c_cpus, s_cpus);
572 	get_online_cpus();
573 	smp_rescan_cpus();
574 	put_online_cpus();
575 }
576 
577 /*
578  *	Activate a secondary processor.
579  */
580 int __cpuinit start_secondary(void *cpuvoid)
581 {
582 	/* Setup the cpu */
583 	cpu_init();
584 	preempt_disable();
585 	/* Enable TOD clock interrupts on the secondary cpu. */
586 	init_cpu_timer();
587 #ifdef CONFIG_VIRT_TIMER
588 	/* Enable cpu timer interrupts on the secondary cpu. */
589 	init_cpu_vtimer();
590 #endif
591 	/* Enable pfault pseudo page faults on this cpu. */
592 	pfault_init();
593 
594 	/* Mark this cpu as online */
595 	cpu_set(smp_processor_id(), cpu_online_map);
596 	/* Switch on interrupts */
597 	local_irq_enable();
598 	/* Print info about this processor */
599 	print_cpu_info(&S390_lowcore.cpu_data);
600 	/* cpu_idle will call schedule for us */
601 	cpu_idle();
602 	return 0;
603 }
604 
605 static void __init smp_create_idle(unsigned int cpu)
606 {
607 	struct task_struct *p;
608 
609 	/*
610 	 *  don't care about the psw and regs settings since we'll never
611 	 *  reschedule the forked task.
612 	 */
613 	p = fork_idle(cpu);
614 	if (IS_ERR(p))
615 		panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
616 	current_set[cpu] = p;
617 	spin_lock_init(&(&per_cpu(s390_idle, cpu))->lock);
618 }
619 
620 static int __cpuinit smp_alloc_lowcore(int cpu)
621 {
622 	unsigned long async_stack, panic_stack;
623 	struct _lowcore *lowcore;
624 	int lc_order;
625 
626 	lc_order = sizeof(long) == 8 ? 1 : 0;
627 	lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
628 	if (!lowcore)
629 		return -ENOMEM;
630 	async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
631 	panic_stack = __get_free_page(GFP_KERNEL);
632 	if (!panic_stack || !async_stack)
633 		goto out;
634 	memcpy(lowcore, &S390_lowcore, 512);
635 	memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
636 	lowcore->async_stack = async_stack + ASYNC_SIZE;
637 	lowcore->panic_stack = panic_stack + PAGE_SIZE;
638 
639 #ifndef CONFIG_64BIT
640 	if (MACHINE_HAS_IEEE) {
641 		unsigned long save_area;
642 
643 		save_area = get_zeroed_page(GFP_KERNEL);
644 		if (!save_area)
645 			goto out_save_area;
646 		lowcore->extended_save_area_addr = (u32) save_area;
647 	}
648 #endif
649 	lowcore_ptr[cpu] = lowcore;
650 	return 0;
651 
652 #ifndef CONFIG_64BIT
653 out_save_area:
654 	free_page(panic_stack);
655 #endif
656 out:
657 	free_pages(async_stack, ASYNC_ORDER);
658 	free_pages((unsigned long) lowcore, lc_order);
659 	return -ENOMEM;
660 }
661 
662 #ifdef CONFIG_HOTPLUG_CPU
663 static void smp_free_lowcore(int cpu)
664 {
665 	struct _lowcore *lowcore;
666 	int lc_order;
667 
668 	lc_order = sizeof(long) == 8 ? 1 : 0;
669 	lowcore = lowcore_ptr[cpu];
670 #ifndef CONFIG_64BIT
671 	if (MACHINE_HAS_IEEE)
672 		free_page((unsigned long) lowcore->extended_save_area_addr);
673 #endif
674 	free_page(lowcore->panic_stack - PAGE_SIZE);
675 	free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
676 	free_pages((unsigned long) lowcore, lc_order);
677 	lowcore_ptr[cpu] = NULL;
678 }
679 #endif /* CONFIG_HOTPLUG_CPU */
680 
681 /* Upping and downing of CPUs */
682 int __cpuinit __cpu_up(unsigned int cpu)
683 {
684 	struct task_struct *idle;
685 	struct _lowcore *cpu_lowcore;
686 	struct stack_frame *sf;
687 	sigp_ccode ccode;
688 
689 	if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
690 		return -EIO;
691 	if (smp_alloc_lowcore(cpu))
692 		return -ENOMEM;
693 
694 	ccode = signal_processor_p((__u32)(unsigned long)(lowcore_ptr[cpu]),
695 				   cpu, sigp_set_prefix);
696 	if (ccode) {
697 		printk("sigp_set_prefix failed for cpu %d "
698 		       "with condition code %d\n",
699 		       (int) cpu, (int) ccode);
700 		return -EIO;
701 	}
702 
703 	idle = current_set[cpu];
704 	cpu_lowcore = lowcore_ptr[cpu];
705 	cpu_lowcore->kernel_stack = (unsigned long)
706 		task_stack_page(idle) + THREAD_SIZE;
707 	cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
708 	sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
709 				     - sizeof(struct pt_regs)
710 				     - sizeof(struct stack_frame));
711 	memset(sf, 0, sizeof(struct stack_frame));
712 	sf->gprs[9] = (unsigned long) sf;
713 	cpu_lowcore->save_area[15] = (unsigned long) sf;
714 	__ctl_store(cpu_lowcore->cregs_save_area[0], 0, 15);
715 	asm volatile(
716 		"	stam	0,15,0(%0)"
717 		: : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
718 	cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
719 	cpu_lowcore->current_task = (unsigned long) idle;
720 	cpu_lowcore->cpu_data.cpu_nr = cpu;
721 	cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
722 	cpu_lowcore->ipl_device = S390_lowcore.ipl_device;
723 	eieio();
724 
725 	while (signal_processor(cpu, sigp_restart) == sigp_busy)
726 		udelay(10);
727 
728 	while (!cpu_online(cpu))
729 		cpu_relax();
730 	return 0;
731 }
732 
733 static int __init setup_possible_cpus(char *s)
734 {
735 	int pcpus, cpu;
736 
737 	pcpus = simple_strtoul(s, NULL, 0);
738 	cpu_possible_map = cpumask_of_cpu(0);
739 	for (cpu = 1; cpu < pcpus && cpu < NR_CPUS; cpu++)
740 		cpu_set(cpu, cpu_possible_map);
741 	return 0;
742 }
743 early_param("possible_cpus", setup_possible_cpus);
744 
745 #ifdef CONFIG_HOTPLUG_CPU
746 
747 int __cpu_disable(void)
748 {
749 	struct ec_creg_mask_parms cr_parms;
750 	int cpu = smp_processor_id();
751 
752 	cpu_clear(cpu, cpu_online_map);
753 
754 	/* Disable pfault pseudo page faults on this cpu. */
755 	pfault_fini();
756 
757 	memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
758 	memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
759 
760 	/* disable all external interrupts */
761 	cr_parms.orvals[0] = 0;
762 	cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
763 				1 << 11 | 1 << 10 | 1 <<  6 | 1 <<  4);
764 	/* disable all I/O interrupts */
765 	cr_parms.orvals[6] = 0;
766 	cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
767 				1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
768 	/* disable most machine checks */
769 	cr_parms.orvals[14] = 0;
770 	cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
771 				 1 << 25 | 1 << 24);
772 
773 	smp_ctl_bit_callback(&cr_parms);
774 
775 	return 0;
776 }
777 
778 void __cpu_die(unsigned int cpu)
779 {
780 	/* Wait until target cpu is down */
781 	while (!smp_cpu_not_running(cpu))
782 		cpu_relax();
783 	smp_free_lowcore(cpu);
784 	printk(KERN_INFO "Processor %d spun down\n", cpu);
785 }
786 
787 void cpu_die(void)
788 {
789 	idle_task_exit();
790 	signal_processor(smp_processor_id(), sigp_stop);
791 	BUG();
792 	for (;;);
793 }
794 
795 #endif /* CONFIG_HOTPLUG_CPU */
796 
797 void __init smp_prepare_cpus(unsigned int max_cpus)
798 {
799 #ifndef CONFIG_64BIT
800 	unsigned long save_area = 0;
801 #endif
802 	unsigned long async_stack, panic_stack;
803 	struct _lowcore *lowcore;
804 	unsigned int cpu;
805 	int lc_order;
806 
807 	smp_detect_cpus();
808 
809 	/* request the 0x1201 emergency signal external interrupt */
810 	if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
811 		panic("Couldn't request external interrupt 0x1201");
812 	print_cpu_info(&S390_lowcore.cpu_data);
813 
814 	/* Reallocate current lowcore, but keep its contents. */
815 	lc_order = sizeof(long) == 8 ? 1 : 0;
816 	lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
817 	panic_stack = __get_free_page(GFP_KERNEL);
818 	async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
819 #ifndef CONFIG_64BIT
820 	if (MACHINE_HAS_IEEE)
821 		save_area = get_zeroed_page(GFP_KERNEL);
822 #endif
823 	local_irq_disable();
824 	local_mcck_disable();
825 	lowcore_ptr[smp_processor_id()] = lowcore;
826 	*lowcore = S390_lowcore;
827 	lowcore->panic_stack = panic_stack + PAGE_SIZE;
828 	lowcore->async_stack = async_stack + ASYNC_SIZE;
829 #ifndef CONFIG_64BIT
830 	if (MACHINE_HAS_IEEE)
831 		lowcore->extended_save_area_addr = (u32) save_area;
832 #endif
833 	set_prefix((u32)(unsigned long) lowcore);
834 	local_mcck_enable();
835 	local_irq_enable();
836 	for_each_possible_cpu(cpu)
837 		if (cpu != smp_processor_id())
838 			smp_create_idle(cpu);
839 }
840 
841 void __init smp_prepare_boot_cpu(void)
842 {
843 	BUG_ON(smp_processor_id() != 0);
844 
845 	current_thread_info()->cpu = 0;
846 	cpu_set(0, cpu_present_map);
847 	cpu_set(0, cpu_online_map);
848 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
849 	current_set[0] = current;
850 	smp_cpu_state[0] = CPU_STATE_CONFIGURED;
851 	smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
852 	spin_lock_init(&(&__get_cpu_var(s390_idle))->lock);
853 }
854 
855 void __init smp_cpus_done(unsigned int max_cpus)
856 {
857 }
858 
859 /*
860  * the frequency of the profiling timer can be changed
861  * by writing a multiplier value into /proc/profile.
862  *
863  * usually you want to run this on all CPUs ;)
864  */
865 int setup_profiling_timer(unsigned int multiplier)
866 {
867 	return 0;
868 }
869 
870 #ifdef CONFIG_HOTPLUG_CPU
871 static ssize_t cpu_configure_show(struct sys_device *dev, char *buf)
872 {
873 	ssize_t count;
874 
875 	mutex_lock(&smp_cpu_state_mutex);
876 	count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
877 	mutex_unlock(&smp_cpu_state_mutex);
878 	return count;
879 }
880 
881 static ssize_t cpu_configure_store(struct sys_device *dev, const char *buf,
882 				   size_t count)
883 {
884 	int cpu = dev->id;
885 	int val, rc;
886 	char delim;
887 
888 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
889 		return -EINVAL;
890 	if (val != 0 && val != 1)
891 		return -EINVAL;
892 
893 	mutex_lock(&smp_cpu_state_mutex);
894 	get_online_cpus();
895 	rc = -EBUSY;
896 	if (cpu_online(cpu))
897 		goto out;
898 	rc = 0;
899 	switch (val) {
900 	case 0:
901 		if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
902 			rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
903 			if (!rc) {
904 				smp_cpu_state[cpu] = CPU_STATE_STANDBY;
905 				smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
906 			}
907 		}
908 		break;
909 	case 1:
910 		if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
911 			rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
912 			if (!rc) {
913 				smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
914 				smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
915 			}
916 		}
917 		break;
918 	default:
919 		break;
920 	}
921 out:
922 	put_online_cpus();
923 	mutex_unlock(&smp_cpu_state_mutex);
924 	return rc ? rc : count;
925 }
926 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
927 #endif /* CONFIG_HOTPLUG_CPU */
928 
929 static ssize_t cpu_polarization_show(struct sys_device *dev, char *buf)
930 {
931 	int cpu = dev->id;
932 	ssize_t count;
933 
934 	mutex_lock(&smp_cpu_state_mutex);
935 	switch (smp_cpu_polarization[cpu]) {
936 	case POLARIZATION_HRZ:
937 		count = sprintf(buf, "horizontal\n");
938 		break;
939 	case POLARIZATION_VL:
940 		count = sprintf(buf, "vertical:low\n");
941 		break;
942 	case POLARIZATION_VM:
943 		count = sprintf(buf, "vertical:medium\n");
944 		break;
945 	case POLARIZATION_VH:
946 		count = sprintf(buf, "vertical:high\n");
947 		break;
948 	default:
949 		count = sprintf(buf, "unknown\n");
950 		break;
951 	}
952 	mutex_unlock(&smp_cpu_state_mutex);
953 	return count;
954 }
955 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
956 
957 static ssize_t show_cpu_address(struct sys_device *dev, char *buf)
958 {
959 	return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
960 }
961 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
962 
963 
964 static struct attribute *cpu_common_attrs[] = {
965 #ifdef CONFIG_HOTPLUG_CPU
966 	&attr_configure.attr,
967 #endif
968 	&attr_address.attr,
969 	&attr_polarization.attr,
970 	NULL,
971 };
972 
973 static struct attribute_group cpu_common_attr_group = {
974 	.attrs = cpu_common_attrs,
975 };
976 
977 static ssize_t show_capability(struct sys_device *dev, char *buf)
978 {
979 	unsigned int capability;
980 	int rc;
981 
982 	rc = get_cpu_capability(&capability);
983 	if (rc)
984 		return rc;
985 	return sprintf(buf, "%u\n", capability);
986 }
987 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
988 
989 static ssize_t show_idle_count(struct sys_device *dev, char *buf)
990 {
991 	struct s390_idle_data *idle;
992 	unsigned long long idle_count;
993 
994 	idle = &per_cpu(s390_idle, dev->id);
995 	spin_lock_irq(&idle->lock);
996 	idle_count = idle->idle_count;
997 	spin_unlock_irq(&idle->lock);
998 	return sprintf(buf, "%llu\n", idle_count);
999 }
1000 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
1001 
1002 static ssize_t show_idle_time(struct sys_device *dev, char *buf)
1003 {
1004 	struct s390_idle_data *idle;
1005 	unsigned long long new_time;
1006 
1007 	idle = &per_cpu(s390_idle, dev->id);
1008 	spin_lock_irq(&idle->lock);
1009 	if (idle->in_idle) {
1010 		new_time = get_clock();
1011 		idle->idle_time += new_time - idle->idle_enter;
1012 		idle->idle_enter = new_time;
1013 	}
1014 	new_time = idle->idle_time;
1015 	spin_unlock_irq(&idle->lock);
1016 	return sprintf(buf, "%llu\n", new_time >> 12);
1017 }
1018 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
1019 
1020 static struct attribute *cpu_online_attrs[] = {
1021 	&attr_capability.attr,
1022 	&attr_idle_count.attr,
1023 	&attr_idle_time_us.attr,
1024 	NULL,
1025 };
1026 
1027 static struct attribute_group cpu_online_attr_group = {
1028 	.attrs = cpu_online_attrs,
1029 };
1030 
1031 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
1032 				    unsigned long action, void *hcpu)
1033 {
1034 	unsigned int cpu = (unsigned int)(long)hcpu;
1035 	struct cpu *c = &per_cpu(cpu_devices, cpu);
1036 	struct sys_device *s = &c->sysdev;
1037 	struct s390_idle_data *idle;
1038 
1039 	switch (action) {
1040 	case CPU_ONLINE:
1041 	case CPU_ONLINE_FROZEN:
1042 		idle = &per_cpu(s390_idle, cpu);
1043 		spin_lock_irq(&idle->lock);
1044 		idle->idle_enter = 0;
1045 		idle->idle_time = 0;
1046 		idle->idle_count = 0;
1047 		spin_unlock_irq(&idle->lock);
1048 		if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
1049 			return NOTIFY_BAD;
1050 		break;
1051 	case CPU_DEAD:
1052 	case CPU_DEAD_FROZEN:
1053 		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1054 		break;
1055 	}
1056 	return NOTIFY_OK;
1057 }
1058 
1059 static struct notifier_block __cpuinitdata smp_cpu_nb = {
1060 	.notifier_call = smp_cpu_notify,
1061 };
1062 
1063 static int __devinit smp_add_present_cpu(int cpu)
1064 {
1065 	struct cpu *c = &per_cpu(cpu_devices, cpu);
1066 	struct sys_device *s = &c->sysdev;
1067 	int rc;
1068 
1069 	c->hotpluggable = 1;
1070 	rc = register_cpu(c, cpu);
1071 	if (rc)
1072 		goto out;
1073 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1074 	if (rc)
1075 		goto out_cpu;
1076 	if (!cpu_online(cpu))
1077 		goto out;
1078 	rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1079 	if (!rc)
1080 		return 0;
1081 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1082 out_cpu:
1083 #ifdef CONFIG_HOTPLUG_CPU
1084 	unregister_cpu(c);
1085 #endif
1086 out:
1087 	return rc;
1088 }
1089 
1090 #ifdef CONFIG_HOTPLUG_CPU
1091 static ssize_t __ref rescan_store(struct sys_device *dev,
1092 				  const char *buf, size_t count)
1093 {
1094 	cpumask_t newcpus;
1095 	int cpu;
1096 	int rc;
1097 
1098 	mutex_lock(&smp_cpu_state_mutex);
1099 	get_online_cpus();
1100 	newcpus = cpu_present_map;
1101 	rc = smp_rescan_cpus();
1102 	if (rc)
1103 		goto out;
1104 	cpus_andnot(newcpus, cpu_present_map, newcpus);
1105 	for_each_cpu_mask(cpu, newcpus) {
1106 		rc = smp_add_present_cpu(cpu);
1107 		if (rc)
1108 			cpu_clear(cpu, cpu_present_map);
1109 	}
1110 	rc = 0;
1111 out:
1112 	put_online_cpus();
1113 	mutex_unlock(&smp_cpu_state_mutex);
1114 	if (!cpus_empty(newcpus))
1115 		topology_schedule_update();
1116 	return rc ? rc : count;
1117 }
1118 static SYSDEV_ATTR(rescan, 0200, NULL, rescan_store);
1119 #endif /* CONFIG_HOTPLUG_CPU */
1120 
1121 static ssize_t dispatching_show(struct sys_device *dev, char *buf)
1122 {
1123 	ssize_t count;
1124 
1125 	mutex_lock(&smp_cpu_state_mutex);
1126 	count = sprintf(buf, "%d\n", cpu_management);
1127 	mutex_unlock(&smp_cpu_state_mutex);
1128 	return count;
1129 }
1130 
1131 static ssize_t dispatching_store(struct sys_device *dev, const char *buf,
1132 				 size_t count)
1133 {
1134 	int val, rc;
1135 	char delim;
1136 
1137 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1138 		return -EINVAL;
1139 	if (val != 0 && val != 1)
1140 		return -EINVAL;
1141 	rc = 0;
1142 	mutex_lock(&smp_cpu_state_mutex);
1143 	get_online_cpus();
1144 	if (cpu_management == val)
1145 		goto out;
1146 	rc = topology_set_cpu_management(val);
1147 	if (!rc)
1148 		cpu_management = val;
1149 out:
1150 	put_online_cpus();
1151 	mutex_unlock(&smp_cpu_state_mutex);
1152 	return rc ? rc : count;
1153 }
1154 static SYSDEV_ATTR(dispatching, 0644, dispatching_show, dispatching_store);
1155 
1156 static int __init topology_init(void)
1157 {
1158 	int cpu;
1159 	int rc;
1160 
1161 	register_cpu_notifier(&smp_cpu_nb);
1162 
1163 #ifdef CONFIG_HOTPLUG_CPU
1164 	rc = sysfs_create_file(&cpu_sysdev_class.kset.kobj,
1165 			       &attr_rescan.attr);
1166 	if (rc)
1167 		return rc;
1168 #endif
1169 	rc = sysfs_create_file(&cpu_sysdev_class.kset.kobj,
1170 			       &attr_dispatching.attr);
1171 	if (rc)
1172 		return rc;
1173 	for_each_present_cpu(cpu) {
1174 		rc = smp_add_present_cpu(cpu);
1175 		if (rc)
1176 			return rc;
1177 	}
1178 	return 0;
1179 }
1180 subsys_initcall(topology_init);
1181