1 /* 2 * arch/s390/kernel/smp.c 3 * 4 * Copyright IBM Corp. 1999, 2009 5 * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com), 6 * Martin Schwidefsky (schwidefsky@de.ibm.com) 7 * Heiko Carstens (heiko.carstens@de.ibm.com) 8 * 9 * based on other smp stuff by 10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net> 11 * (c) 1998 Ingo Molnar 12 * 13 * We work with logical cpu numbering everywhere we can. The only 14 * functions using the real cpu address (got from STAP) are the sigp 15 * functions. For all other functions we use the identity mapping. 16 * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is 17 * used e.g. to find the idle task belonging to a logical cpu. Every array 18 * in the kernel is sorted by the logical cpu number and not by the physical 19 * one which is causing all the confusion with __cpu_logical_map and 20 * cpu_number_map in other architectures. 21 */ 22 23 #define KMSG_COMPONENT "cpu" 24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 25 26 #include <linux/module.h> 27 #include <linux/init.h> 28 #include <linux/mm.h> 29 #include <linux/err.h> 30 #include <linux/spinlock.h> 31 #include <linux/kernel_stat.h> 32 #include <linux/delay.h> 33 #include <linux/cache.h> 34 #include <linux/interrupt.h> 35 #include <linux/irqflags.h> 36 #include <linux/cpu.h> 37 #include <linux/timex.h> 38 #include <linux/bootmem.h> 39 #include <asm/ipl.h> 40 #include <asm/setup.h> 41 #include <asm/sigp.h> 42 #include <asm/pgalloc.h> 43 #include <asm/irq.h> 44 #include <asm/s390_ext.h> 45 #include <asm/cpcmd.h> 46 #include <asm/tlbflush.h> 47 #include <asm/timer.h> 48 #include <asm/lowcore.h> 49 #include <asm/sclp.h> 50 #include <asm/cputime.h> 51 #include <asm/vdso.h> 52 #include <asm/cpu.h> 53 #include "entry.h" 54 55 static struct task_struct *current_set[NR_CPUS]; 56 57 static u8 smp_cpu_type; 58 static int smp_use_sigp_detection; 59 60 enum s390_cpu_state { 61 CPU_STATE_STANDBY, 62 CPU_STATE_CONFIGURED, 63 }; 64 65 DEFINE_MUTEX(smp_cpu_state_mutex); 66 int smp_cpu_polarization[NR_CPUS]; 67 static int smp_cpu_state[NR_CPUS]; 68 static int cpu_management; 69 70 static DEFINE_PER_CPU(struct cpu, cpu_devices); 71 72 static void smp_ext_bitcall(int, ec_bit_sig); 73 74 static int cpu_stopped(int cpu) 75 { 76 __u32 status; 77 78 switch (signal_processor_ps(&status, 0, cpu, sigp_sense)) { 79 case sigp_order_code_accepted: 80 case sigp_status_stored: 81 /* Check for stopped and check stop state */ 82 if (status & 0x50) 83 return 1; 84 break; 85 default: 86 break; 87 } 88 return 0; 89 } 90 91 void smp_send_stop(void) 92 { 93 int cpu, rc; 94 95 /* Disable all interrupts/machine checks */ 96 __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK); 97 trace_hardirqs_off(); 98 99 /* stop all processors */ 100 for_each_online_cpu(cpu) { 101 if (cpu == smp_processor_id()) 102 continue; 103 do { 104 rc = signal_processor(cpu, sigp_stop); 105 } while (rc == sigp_busy); 106 107 while (!cpu_stopped(cpu)) 108 cpu_relax(); 109 } 110 } 111 112 /* 113 * This is the main routine where commands issued by other 114 * cpus are handled. 115 */ 116 117 static void do_ext_call_interrupt(__u16 code) 118 { 119 unsigned long bits; 120 121 /* 122 * handle bit signal external calls 123 * 124 * For the ec_schedule signal we have to do nothing. All the work 125 * is done automatically when we return from the interrupt. 126 */ 127 bits = xchg(&S390_lowcore.ext_call_fast, 0); 128 129 if (test_bit(ec_call_function, &bits)) 130 generic_smp_call_function_interrupt(); 131 132 if (test_bit(ec_call_function_single, &bits)) 133 generic_smp_call_function_single_interrupt(); 134 } 135 136 /* 137 * Send an external call sigp to another cpu and return without waiting 138 * for its completion. 139 */ 140 static void smp_ext_bitcall(int cpu, ec_bit_sig sig) 141 { 142 /* 143 * Set signaling bit in lowcore of target cpu and kick it 144 */ 145 set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast); 146 while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy) 147 udelay(10); 148 } 149 150 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 151 { 152 int cpu; 153 154 for_each_cpu(cpu, mask) 155 smp_ext_bitcall(cpu, ec_call_function); 156 } 157 158 void arch_send_call_function_single_ipi(int cpu) 159 { 160 smp_ext_bitcall(cpu, ec_call_function_single); 161 } 162 163 #ifndef CONFIG_64BIT 164 /* 165 * this function sends a 'purge tlb' signal to another CPU. 166 */ 167 static void smp_ptlb_callback(void *info) 168 { 169 __tlb_flush_local(); 170 } 171 172 void smp_ptlb_all(void) 173 { 174 on_each_cpu(smp_ptlb_callback, NULL, 1); 175 } 176 EXPORT_SYMBOL(smp_ptlb_all); 177 #endif /* ! CONFIG_64BIT */ 178 179 /* 180 * this function sends a 'reschedule' IPI to another CPU. 181 * it goes straight through and wastes no time serializing 182 * anything. Worst case is that we lose a reschedule ... 183 */ 184 void smp_send_reschedule(int cpu) 185 { 186 smp_ext_bitcall(cpu, ec_schedule); 187 } 188 189 /* 190 * parameter area for the set/clear control bit callbacks 191 */ 192 struct ec_creg_mask_parms { 193 unsigned long orvals[16]; 194 unsigned long andvals[16]; 195 }; 196 197 /* 198 * callback for setting/clearing control bits 199 */ 200 static void smp_ctl_bit_callback(void *info) 201 { 202 struct ec_creg_mask_parms *pp = info; 203 unsigned long cregs[16]; 204 int i; 205 206 __ctl_store(cregs, 0, 15); 207 for (i = 0; i <= 15; i++) 208 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i]; 209 __ctl_load(cregs, 0, 15); 210 } 211 212 /* 213 * Set a bit in a control register of all cpus 214 */ 215 void smp_ctl_set_bit(int cr, int bit) 216 { 217 struct ec_creg_mask_parms parms; 218 219 memset(&parms.orvals, 0, sizeof(parms.orvals)); 220 memset(&parms.andvals, 0xff, sizeof(parms.andvals)); 221 parms.orvals[cr] = 1 << bit; 222 on_each_cpu(smp_ctl_bit_callback, &parms, 1); 223 } 224 EXPORT_SYMBOL(smp_ctl_set_bit); 225 226 /* 227 * Clear a bit in a control register of all cpus 228 */ 229 void smp_ctl_clear_bit(int cr, int bit) 230 { 231 struct ec_creg_mask_parms parms; 232 233 memset(&parms.orvals, 0, sizeof(parms.orvals)); 234 memset(&parms.andvals, 0xff, sizeof(parms.andvals)); 235 parms.andvals[cr] = ~(1L << bit); 236 on_each_cpu(smp_ctl_bit_callback, &parms, 1); 237 } 238 EXPORT_SYMBOL(smp_ctl_clear_bit); 239 240 /* 241 * In early ipl state a temp. logically cpu number is needed, so the sigp 242 * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on 243 * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1. 244 */ 245 #define CPU_INIT_NO 1 246 247 #ifdef CONFIG_ZFCPDUMP 248 249 /* 250 * zfcpdump_prefix_array holds prefix registers for the following scenario: 251 * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to 252 * save its prefix registers, since they get lost, when switching from 31 bit 253 * to 64 bit. 254 */ 255 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \ 256 __attribute__((__section__(".data"))); 257 258 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) 259 { 260 if (ipl_info.type != IPL_TYPE_FCP_DUMP) 261 return; 262 if (cpu >= NR_CPUS) { 263 pr_warning("CPU %i exceeds the maximum %i and is excluded from " 264 "the dump\n", cpu, NR_CPUS - 1); 265 return; 266 } 267 zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL); 268 __cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu; 269 while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) == 270 sigp_busy) 271 cpu_relax(); 272 memcpy(zfcpdump_save_areas[cpu], 273 (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE, 274 SAVE_AREA_SIZE); 275 #ifdef CONFIG_64BIT 276 /* copy original prefix register */ 277 zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu]; 278 #endif 279 } 280 281 union save_area *zfcpdump_save_areas[NR_CPUS + 1]; 282 EXPORT_SYMBOL_GPL(zfcpdump_save_areas); 283 284 #else 285 286 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { } 287 288 #endif /* CONFIG_ZFCPDUMP */ 289 290 static int cpu_known(int cpu_id) 291 { 292 int cpu; 293 294 for_each_present_cpu(cpu) { 295 if (__cpu_logical_map[cpu] == cpu_id) 296 return 1; 297 } 298 return 0; 299 } 300 301 static int smp_rescan_cpus_sigp(cpumask_t avail) 302 { 303 int cpu_id, logical_cpu; 304 305 logical_cpu = cpumask_first(&avail); 306 if (logical_cpu >= nr_cpu_ids) 307 return 0; 308 for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) { 309 if (cpu_known(cpu_id)) 310 continue; 311 __cpu_logical_map[logical_cpu] = cpu_id; 312 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN; 313 if (!cpu_stopped(logical_cpu)) 314 continue; 315 cpu_set(logical_cpu, cpu_present_map); 316 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED; 317 logical_cpu = cpumask_next(logical_cpu, &avail); 318 if (logical_cpu >= nr_cpu_ids) 319 break; 320 } 321 return 0; 322 } 323 324 static int smp_rescan_cpus_sclp(cpumask_t avail) 325 { 326 struct sclp_cpu_info *info; 327 int cpu_id, logical_cpu, cpu; 328 int rc; 329 330 logical_cpu = cpumask_first(&avail); 331 if (logical_cpu >= nr_cpu_ids) 332 return 0; 333 info = kmalloc(sizeof(*info), GFP_KERNEL); 334 if (!info) 335 return -ENOMEM; 336 rc = sclp_get_cpu_info(info); 337 if (rc) 338 goto out; 339 for (cpu = 0; cpu < info->combined; cpu++) { 340 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type) 341 continue; 342 cpu_id = info->cpu[cpu].address; 343 if (cpu_known(cpu_id)) 344 continue; 345 __cpu_logical_map[logical_cpu] = cpu_id; 346 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN; 347 cpu_set(logical_cpu, cpu_present_map); 348 if (cpu >= info->configured) 349 smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY; 350 else 351 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED; 352 logical_cpu = cpumask_next(logical_cpu, &avail); 353 if (logical_cpu >= nr_cpu_ids) 354 break; 355 } 356 out: 357 kfree(info); 358 return rc; 359 } 360 361 static int __smp_rescan_cpus(void) 362 { 363 cpumask_t avail; 364 365 cpus_xor(avail, cpu_possible_map, cpu_present_map); 366 if (smp_use_sigp_detection) 367 return smp_rescan_cpus_sigp(avail); 368 else 369 return smp_rescan_cpus_sclp(avail); 370 } 371 372 static void __init smp_detect_cpus(void) 373 { 374 unsigned int cpu, c_cpus, s_cpus; 375 struct sclp_cpu_info *info; 376 u16 boot_cpu_addr, cpu_addr; 377 378 c_cpus = 1; 379 s_cpus = 0; 380 boot_cpu_addr = __cpu_logical_map[0]; 381 info = kmalloc(sizeof(*info), GFP_KERNEL); 382 if (!info) 383 panic("smp_detect_cpus failed to allocate memory\n"); 384 /* Use sigp detection algorithm if sclp doesn't work. */ 385 if (sclp_get_cpu_info(info)) { 386 smp_use_sigp_detection = 1; 387 for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) { 388 if (cpu == boot_cpu_addr) 389 continue; 390 __cpu_logical_map[CPU_INIT_NO] = cpu; 391 if (!cpu_stopped(CPU_INIT_NO)) 392 continue; 393 smp_get_save_area(c_cpus, cpu); 394 c_cpus++; 395 } 396 goto out; 397 } 398 399 if (info->has_cpu_type) { 400 for (cpu = 0; cpu < info->combined; cpu++) { 401 if (info->cpu[cpu].address == boot_cpu_addr) { 402 smp_cpu_type = info->cpu[cpu].type; 403 break; 404 } 405 } 406 } 407 408 for (cpu = 0; cpu < info->combined; cpu++) { 409 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type) 410 continue; 411 cpu_addr = info->cpu[cpu].address; 412 if (cpu_addr == boot_cpu_addr) 413 continue; 414 __cpu_logical_map[CPU_INIT_NO] = cpu_addr; 415 if (!cpu_stopped(CPU_INIT_NO)) { 416 s_cpus++; 417 continue; 418 } 419 smp_get_save_area(c_cpus, cpu_addr); 420 c_cpus++; 421 } 422 out: 423 kfree(info); 424 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus); 425 get_online_cpus(); 426 __smp_rescan_cpus(); 427 put_online_cpus(); 428 } 429 430 /* 431 * Activate a secondary processor. 432 */ 433 int __cpuinit start_secondary(void *cpuvoid) 434 { 435 /* Setup the cpu */ 436 cpu_init(); 437 preempt_disable(); 438 /* Enable TOD clock interrupts on the secondary cpu. */ 439 init_cpu_timer(); 440 /* Enable cpu timer interrupts on the secondary cpu. */ 441 init_cpu_vtimer(); 442 /* Enable pfault pseudo page faults on this cpu. */ 443 pfault_init(); 444 445 /* call cpu notifiers */ 446 notify_cpu_starting(smp_processor_id()); 447 /* Mark this cpu as online */ 448 ipi_call_lock(); 449 cpu_set(smp_processor_id(), cpu_online_map); 450 ipi_call_unlock(); 451 /* Switch on interrupts */ 452 local_irq_enable(); 453 /* Print info about this processor */ 454 print_cpu_info(); 455 /* cpu_idle will call schedule for us */ 456 cpu_idle(); 457 return 0; 458 } 459 460 static void __init smp_create_idle(unsigned int cpu) 461 { 462 struct task_struct *p; 463 464 /* 465 * don't care about the psw and regs settings since we'll never 466 * reschedule the forked task. 467 */ 468 p = fork_idle(cpu); 469 if (IS_ERR(p)) 470 panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p)); 471 current_set[cpu] = p; 472 } 473 474 static int __cpuinit smp_alloc_lowcore(int cpu) 475 { 476 unsigned long async_stack, panic_stack; 477 struct _lowcore *lowcore; 478 479 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER); 480 if (!lowcore) 481 return -ENOMEM; 482 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER); 483 panic_stack = __get_free_page(GFP_KERNEL); 484 if (!panic_stack || !async_stack) 485 goto out; 486 memcpy(lowcore, &S390_lowcore, 512); 487 memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512); 488 lowcore->async_stack = async_stack + ASYNC_SIZE; 489 lowcore->panic_stack = panic_stack + PAGE_SIZE; 490 491 #ifndef CONFIG_64BIT 492 if (MACHINE_HAS_IEEE) { 493 unsigned long save_area; 494 495 save_area = get_zeroed_page(GFP_KERNEL); 496 if (!save_area) 497 goto out; 498 lowcore->extended_save_area_addr = (u32) save_area; 499 } 500 #else 501 if (vdso_alloc_per_cpu(cpu, lowcore)) 502 goto out; 503 #endif 504 lowcore_ptr[cpu] = lowcore; 505 return 0; 506 507 out: 508 free_page(panic_stack); 509 free_pages(async_stack, ASYNC_ORDER); 510 free_pages((unsigned long) lowcore, LC_ORDER); 511 return -ENOMEM; 512 } 513 514 static void smp_free_lowcore(int cpu) 515 { 516 struct _lowcore *lowcore; 517 518 lowcore = lowcore_ptr[cpu]; 519 #ifndef CONFIG_64BIT 520 if (MACHINE_HAS_IEEE) 521 free_page((unsigned long) lowcore->extended_save_area_addr); 522 #else 523 vdso_free_per_cpu(cpu, lowcore); 524 #endif 525 free_page(lowcore->panic_stack - PAGE_SIZE); 526 free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER); 527 free_pages((unsigned long) lowcore, LC_ORDER); 528 lowcore_ptr[cpu] = NULL; 529 } 530 531 /* Upping and downing of CPUs */ 532 int __cpuinit __cpu_up(unsigned int cpu) 533 { 534 struct task_struct *idle; 535 struct _lowcore *cpu_lowcore; 536 struct stack_frame *sf; 537 sigp_ccode ccode; 538 u32 lowcore; 539 540 if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED) 541 return -EIO; 542 if (smp_alloc_lowcore(cpu)) 543 return -ENOMEM; 544 do { 545 ccode = signal_processor(cpu, sigp_initial_cpu_reset); 546 if (ccode == sigp_busy) 547 udelay(10); 548 if (ccode == sigp_not_operational) 549 goto err_out; 550 } while (ccode == sigp_busy); 551 552 lowcore = (u32)(unsigned long)lowcore_ptr[cpu]; 553 while (signal_processor_p(lowcore, cpu, sigp_set_prefix) == sigp_busy) 554 udelay(10); 555 556 idle = current_set[cpu]; 557 cpu_lowcore = lowcore_ptr[cpu]; 558 cpu_lowcore->kernel_stack = (unsigned long) 559 task_stack_page(idle) + THREAD_SIZE; 560 cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle); 561 sf = (struct stack_frame *) (cpu_lowcore->kernel_stack 562 - sizeof(struct pt_regs) 563 - sizeof(struct stack_frame)); 564 memset(sf, 0, sizeof(struct stack_frame)); 565 sf->gprs[9] = (unsigned long) sf; 566 cpu_lowcore->save_area[15] = (unsigned long) sf; 567 __ctl_store(cpu_lowcore->cregs_save_area, 0, 15); 568 asm volatile( 569 " stam 0,15,0(%0)" 570 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory"); 571 cpu_lowcore->percpu_offset = __per_cpu_offset[cpu]; 572 cpu_lowcore->current_task = (unsigned long) idle; 573 cpu_lowcore->cpu_nr = cpu; 574 cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce; 575 cpu_lowcore->machine_flags = S390_lowcore.machine_flags; 576 cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func; 577 eieio(); 578 579 while (signal_processor(cpu, sigp_restart) == sigp_busy) 580 udelay(10); 581 582 while (!cpu_online(cpu)) 583 cpu_relax(); 584 return 0; 585 586 err_out: 587 smp_free_lowcore(cpu); 588 return -EIO; 589 } 590 591 static int __init setup_possible_cpus(char *s) 592 { 593 int pcpus, cpu; 594 595 pcpus = simple_strtoul(s, NULL, 0); 596 init_cpu_possible(cpumask_of(0)); 597 for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++) 598 set_cpu_possible(cpu, true); 599 return 0; 600 } 601 early_param("possible_cpus", setup_possible_cpus); 602 603 #ifdef CONFIG_HOTPLUG_CPU 604 605 int __cpu_disable(void) 606 { 607 struct ec_creg_mask_parms cr_parms; 608 int cpu = smp_processor_id(); 609 610 cpu_clear(cpu, cpu_online_map); 611 612 /* Disable pfault pseudo page faults on this cpu. */ 613 pfault_fini(); 614 615 memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals)); 616 memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals)); 617 618 /* disable all external interrupts */ 619 cr_parms.orvals[0] = 0; 620 cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 | 621 1 << 11 | 1 << 10 | 1 << 6 | 1 << 4); 622 /* disable all I/O interrupts */ 623 cr_parms.orvals[6] = 0; 624 cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 | 625 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24); 626 /* disable most machine checks */ 627 cr_parms.orvals[14] = 0; 628 cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 | 629 1 << 25 | 1 << 24); 630 631 smp_ctl_bit_callback(&cr_parms); 632 633 return 0; 634 } 635 636 void __cpu_die(unsigned int cpu) 637 { 638 /* Wait until target cpu is down */ 639 while (!cpu_stopped(cpu)) 640 cpu_relax(); 641 smp_free_lowcore(cpu); 642 pr_info("Processor %d stopped\n", cpu); 643 } 644 645 void cpu_die(void) 646 { 647 idle_task_exit(); 648 signal_processor(smp_processor_id(), sigp_stop); 649 BUG(); 650 for (;;); 651 } 652 653 #endif /* CONFIG_HOTPLUG_CPU */ 654 655 void __init smp_prepare_cpus(unsigned int max_cpus) 656 { 657 #ifndef CONFIG_64BIT 658 unsigned long save_area = 0; 659 #endif 660 unsigned long async_stack, panic_stack; 661 struct _lowcore *lowcore; 662 unsigned int cpu; 663 664 smp_detect_cpus(); 665 666 /* request the 0x1201 emergency signal external interrupt */ 667 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0) 668 panic("Couldn't request external interrupt 0x1201"); 669 print_cpu_info(); 670 671 /* Reallocate current lowcore, but keep its contents. */ 672 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER); 673 panic_stack = __get_free_page(GFP_KERNEL); 674 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER); 675 BUG_ON(!lowcore || !panic_stack || !async_stack); 676 #ifndef CONFIG_64BIT 677 if (MACHINE_HAS_IEEE) 678 save_area = get_zeroed_page(GFP_KERNEL); 679 #endif 680 local_irq_disable(); 681 local_mcck_disable(); 682 lowcore_ptr[smp_processor_id()] = lowcore; 683 *lowcore = S390_lowcore; 684 lowcore->panic_stack = panic_stack + PAGE_SIZE; 685 lowcore->async_stack = async_stack + ASYNC_SIZE; 686 #ifndef CONFIG_64BIT 687 if (MACHINE_HAS_IEEE) 688 lowcore->extended_save_area_addr = (u32) save_area; 689 #endif 690 set_prefix((u32)(unsigned long) lowcore); 691 local_mcck_enable(); 692 local_irq_enable(); 693 #ifdef CONFIG_64BIT 694 if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore)) 695 BUG(); 696 #endif 697 for_each_possible_cpu(cpu) 698 if (cpu != smp_processor_id()) 699 smp_create_idle(cpu); 700 } 701 702 void __init smp_prepare_boot_cpu(void) 703 { 704 BUG_ON(smp_processor_id() != 0); 705 706 current_thread_info()->cpu = 0; 707 cpu_set(0, cpu_present_map); 708 cpu_set(0, cpu_online_map); 709 S390_lowcore.percpu_offset = __per_cpu_offset[0]; 710 current_set[0] = current; 711 smp_cpu_state[0] = CPU_STATE_CONFIGURED; 712 smp_cpu_polarization[0] = POLARIZATION_UNKNWN; 713 } 714 715 void __init smp_cpus_done(unsigned int max_cpus) 716 { 717 } 718 719 /* 720 * the frequency of the profiling timer can be changed 721 * by writing a multiplier value into /proc/profile. 722 * 723 * usually you want to run this on all CPUs ;) 724 */ 725 int setup_profiling_timer(unsigned int multiplier) 726 { 727 return 0; 728 } 729 730 #ifdef CONFIG_HOTPLUG_CPU 731 static ssize_t cpu_configure_show(struct sys_device *dev, 732 struct sysdev_attribute *attr, char *buf) 733 { 734 ssize_t count; 735 736 mutex_lock(&smp_cpu_state_mutex); 737 count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]); 738 mutex_unlock(&smp_cpu_state_mutex); 739 return count; 740 } 741 742 static ssize_t cpu_configure_store(struct sys_device *dev, 743 struct sysdev_attribute *attr, 744 const char *buf, size_t count) 745 { 746 int cpu = dev->id; 747 int val, rc; 748 char delim; 749 750 if (sscanf(buf, "%d %c", &val, &delim) != 1) 751 return -EINVAL; 752 if (val != 0 && val != 1) 753 return -EINVAL; 754 755 get_online_cpus(); 756 mutex_lock(&smp_cpu_state_mutex); 757 rc = -EBUSY; 758 if (cpu_online(cpu)) 759 goto out; 760 rc = 0; 761 switch (val) { 762 case 0: 763 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) { 764 rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]); 765 if (!rc) { 766 smp_cpu_state[cpu] = CPU_STATE_STANDBY; 767 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN; 768 } 769 } 770 break; 771 case 1: 772 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) { 773 rc = sclp_cpu_configure(__cpu_logical_map[cpu]); 774 if (!rc) { 775 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED; 776 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN; 777 } 778 } 779 break; 780 default: 781 break; 782 } 783 out: 784 mutex_unlock(&smp_cpu_state_mutex); 785 put_online_cpus(); 786 return rc ? rc : count; 787 } 788 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store); 789 #endif /* CONFIG_HOTPLUG_CPU */ 790 791 static ssize_t cpu_polarization_show(struct sys_device *dev, 792 struct sysdev_attribute *attr, char *buf) 793 { 794 int cpu = dev->id; 795 ssize_t count; 796 797 mutex_lock(&smp_cpu_state_mutex); 798 switch (smp_cpu_polarization[cpu]) { 799 case POLARIZATION_HRZ: 800 count = sprintf(buf, "horizontal\n"); 801 break; 802 case POLARIZATION_VL: 803 count = sprintf(buf, "vertical:low\n"); 804 break; 805 case POLARIZATION_VM: 806 count = sprintf(buf, "vertical:medium\n"); 807 break; 808 case POLARIZATION_VH: 809 count = sprintf(buf, "vertical:high\n"); 810 break; 811 default: 812 count = sprintf(buf, "unknown\n"); 813 break; 814 } 815 mutex_unlock(&smp_cpu_state_mutex); 816 return count; 817 } 818 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL); 819 820 static ssize_t show_cpu_address(struct sys_device *dev, 821 struct sysdev_attribute *attr, char *buf) 822 { 823 return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]); 824 } 825 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL); 826 827 828 static struct attribute *cpu_common_attrs[] = { 829 #ifdef CONFIG_HOTPLUG_CPU 830 &attr_configure.attr, 831 #endif 832 &attr_address.attr, 833 &attr_polarization.attr, 834 NULL, 835 }; 836 837 static struct attribute_group cpu_common_attr_group = { 838 .attrs = cpu_common_attrs, 839 }; 840 841 static ssize_t show_capability(struct sys_device *dev, 842 struct sysdev_attribute *attr, char *buf) 843 { 844 unsigned int capability; 845 int rc; 846 847 rc = get_cpu_capability(&capability); 848 if (rc) 849 return rc; 850 return sprintf(buf, "%u\n", capability); 851 } 852 static SYSDEV_ATTR(capability, 0444, show_capability, NULL); 853 854 static ssize_t show_idle_count(struct sys_device *dev, 855 struct sysdev_attribute *attr, char *buf) 856 { 857 struct s390_idle_data *idle; 858 unsigned long long idle_count; 859 unsigned int sequence; 860 861 idle = &per_cpu(s390_idle, dev->id); 862 repeat: 863 sequence = idle->sequence; 864 smp_rmb(); 865 if (sequence & 1) 866 goto repeat; 867 idle_count = idle->idle_count; 868 if (idle->idle_enter) 869 idle_count++; 870 smp_rmb(); 871 if (idle->sequence != sequence) 872 goto repeat; 873 return sprintf(buf, "%llu\n", idle_count); 874 } 875 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL); 876 877 static ssize_t show_idle_time(struct sys_device *dev, 878 struct sysdev_attribute *attr, char *buf) 879 { 880 struct s390_idle_data *idle; 881 unsigned long long now, idle_time, idle_enter; 882 unsigned int sequence; 883 884 idle = &per_cpu(s390_idle, dev->id); 885 now = get_clock(); 886 repeat: 887 sequence = idle->sequence; 888 smp_rmb(); 889 if (sequence & 1) 890 goto repeat; 891 idle_time = idle->idle_time; 892 idle_enter = idle->idle_enter; 893 if (idle_enter != 0ULL && idle_enter < now) 894 idle_time += now - idle_enter; 895 smp_rmb(); 896 if (idle->sequence != sequence) 897 goto repeat; 898 return sprintf(buf, "%llu\n", idle_time >> 12); 899 } 900 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL); 901 902 static struct attribute *cpu_online_attrs[] = { 903 &attr_capability.attr, 904 &attr_idle_count.attr, 905 &attr_idle_time_us.attr, 906 NULL, 907 }; 908 909 static struct attribute_group cpu_online_attr_group = { 910 .attrs = cpu_online_attrs, 911 }; 912 913 static int __cpuinit smp_cpu_notify(struct notifier_block *self, 914 unsigned long action, void *hcpu) 915 { 916 unsigned int cpu = (unsigned int)(long)hcpu; 917 struct cpu *c = &per_cpu(cpu_devices, cpu); 918 struct sys_device *s = &c->sysdev; 919 struct s390_idle_data *idle; 920 921 switch (action) { 922 case CPU_ONLINE: 923 case CPU_ONLINE_FROZEN: 924 idle = &per_cpu(s390_idle, cpu); 925 memset(idle, 0, sizeof(struct s390_idle_data)); 926 if (sysfs_create_group(&s->kobj, &cpu_online_attr_group)) 927 return NOTIFY_BAD; 928 break; 929 case CPU_DEAD: 930 case CPU_DEAD_FROZEN: 931 sysfs_remove_group(&s->kobj, &cpu_online_attr_group); 932 break; 933 } 934 return NOTIFY_OK; 935 } 936 937 static struct notifier_block __cpuinitdata smp_cpu_nb = { 938 .notifier_call = smp_cpu_notify, 939 }; 940 941 static int __devinit smp_add_present_cpu(int cpu) 942 { 943 struct cpu *c = &per_cpu(cpu_devices, cpu); 944 struct sys_device *s = &c->sysdev; 945 int rc; 946 947 c->hotpluggable = 1; 948 rc = register_cpu(c, cpu); 949 if (rc) 950 goto out; 951 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group); 952 if (rc) 953 goto out_cpu; 954 if (!cpu_online(cpu)) 955 goto out; 956 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group); 957 if (!rc) 958 return 0; 959 sysfs_remove_group(&s->kobj, &cpu_common_attr_group); 960 out_cpu: 961 #ifdef CONFIG_HOTPLUG_CPU 962 unregister_cpu(c); 963 #endif 964 out: 965 return rc; 966 } 967 968 #ifdef CONFIG_HOTPLUG_CPU 969 970 int __ref smp_rescan_cpus(void) 971 { 972 cpumask_t newcpus; 973 int cpu; 974 int rc; 975 976 get_online_cpus(); 977 mutex_lock(&smp_cpu_state_mutex); 978 newcpus = cpu_present_map; 979 rc = __smp_rescan_cpus(); 980 if (rc) 981 goto out; 982 cpus_andnot(newcpus, cpu_present_map, newcpus); 983 for_each_cpu_mask(cpu, newcpus) { 984 rc = smp_add_present_cpu(cpu); 985 if (rc) 986 cpu_clear(cpu, cpu_present_map); 987 } 988 rc = 0; 989 out: 990 mutex_unlock(&smp_cpu_state_mutex); 991 put_online_cpus(); 992 if (!cpus_empty(newcpus)) 993 topology_schedule_update(); 994 return rc; 995 } 996 997 static ssize_t __ref rescan_store(struct sysdev_class *class, const char *buf, 998 size_t count) 999 { 1000 int rc; 1001 1002 rc = smp_rescan_cpus(); 1003 return rc ? rc : count; 1004 } 1005 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store); 1006 #endif /* CONFIG_HOTPLUG_CPU */ 1007 1008 static ssize_t dispatching_show(struct sysdev_class *class, char *buf) 1009 { 1010 ssize_t count; 1011 1012 mutex_lock(&smp_cpu_state_mutex); 1013 count = sprintf(buf, "%d\n", cpu_management); 1014 mutex_unlock(&smp_cpu_state_mutex); 1015 return count; 1016 } 1017 1018 static ssize_t dispatching_store(struct sysdev_class *dev, const char *buf, 1019 size_t count) 1020 { 1021 int val, rc; 1022 char delim; 1023 1024 if (sscanf(buf, "%d %c", &val, &delim) != 1) 1025 return -EINVAL; 1026 if (val != 0 && val != 1) 1027 return -EINVAL; 1028 rc = 0; 1029 get_online_cpus(); 1030 mutex_lock(&smp_cpu_state_mutex); 1031 if (cpu_management == val) 1032 goto out; 1033 rc = topology_set_cpu_management(val); 1034 if (!rc) 1035 cpu_management = val; 1036 out: 1037 mutex_unlock(&smp_cpu_state_mutex); 1038 put_online_cpus(); 1039 return rc ? rc : count; 1040 } 1041 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show, 1042 dispatching_store); 1043 1044 static int __init topology_init(void) 1045 { 1046 int cpu; 1047 int rc; 1048 1049 register_cpu_notifier(&smp_cpu_nb); 1050 1051 #ifdef CONFIG_HOTPLUG_CPU 1052 rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan); 1053 if (rc) 1054 return rc; 1055 #endif 1056 rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching); 1057 if (rc) 1058 return rc; 1059 for_each_present_cpu(cpu) { 1060 rc = smp_add_present_cpu(cpu); 1061 if (rc) 1062 return rc; 1063 } 1064 return 0; 1065 } 1066 subsys_initcall(topology_init); 1067