xref: /openbmc/linux/arch/s390/kernel/smp.c (revision e8e0929d)
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999, 2009
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *		 Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *		 Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22 
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/spinlock.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/delay.h>
33 #include <linux/cache.h>
34 #include <linux/interrupt.h>
35 #include <linux/irqflags.h>
36 #include <linux/cpu.h>
37 #include <linux/timex.h>
38 #include <linux/bootmem.h>
39 #include <asm/ipl.h>
40 #include <asm/setup.h>
41 #include <asm/sigp.h>
42 #include <asm/pgalloc.h>
43 #include <asm/irq.h>
44 #include <asm/s390_ext.h>
45 #include <asm/cpcmd.h>
46 #include <asm/tlbflush.h>
47 #include <asm/timer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/cputime.h>
51 #include <asm/vdso.h>
52 #include <asm/cpu.h>
53 #include "entry.h"
54 
55 static struct task_struct *current_set[NR_CPUS];
56 
57 static u8 smp_cpu_type;
58 static int smp_use_sigp_detection;
59 
60 enum s390_cpu_state {
61 	CPU_STATE_STANDBY,
62 	CPU_STATE_CONFIGURED,
63 };
64 
65 DEFINE_MUTEX(smp_cpu_state_mutex);
66 int smp_cpu_polarization[NR_CPUS];
67 static int smp_cpu_state[NR_CPUS];
68 static int cpu_management;
69 
70 static DEFINE_PER_CPU(struct cpu, cpu_devices);
71 
72 static void smp_ext_bitcall(int, ec_bit_sig);
73 
74 static int cpu_stopped(int cpu)
75 {
76 	__u32 status;
77 
78 	switch (signal_processor_ps(&status, 0, cpu, sigp_sense)) {
79 	case sigp_order_code_accepted:
80 	case sigp_status_stored:
81 		/* Check for stopped and check stop state */
82 		if (status & 0x50)
83 			return 1;
84 		break;
85 	default:
86 		break;
87 	}
88 	return 0;
89 }
90 
91 void smp_send_stop(void)
92 {
93 	int cpu, rc;
94 
95 	/* Disable all interrupts/machine checks */
96 	__load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
97 	trace_hardirqs_off();
98 
99 	/* stop all processors */
100 	for_each_online_cpu(cpu) {
101 		if (cpu == smp_processor_id())
102 			continue;
103 		do {
104 			rc = signal_processor(cpu, sigp_stop);
105 		} while (rc == sigp_busy);
106 
107 		while (!cpu_stopped(cpu))
108 			cpu_relax();
109 	}
110 }
111 
112 /*
113  * This is the main routine where commands issued by other
114  * cpus are handled.
115  */
116 
117 static void do_ext_call_interrupt(__u16 code)
118 {
119 	unsigned long bits;
120 
121 	/*
122 	 * handle bit signal external calls
123 	 *
124 	 * For the ec_schedule signal we have to do nothing. All the work
125 	 * is done automatically when we return from the interrupt.
126 	 */
127 	bits = xchg(&S390_lowcore.ext_call_fast, 0);
128 
129 	if (test_bit(ec_call_function, &bits))
130 		generic_smp_call_function_interrupt();
131 
132 	if (test_bit(ec_call_function_single, &bits))
133 		generic_smp_call_function_single_interrupt();
134 }
135 
136 /*
137  * Send an external call sigp to another cpu and return without waiting
138  * for its completion.
139  */
140 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
141 {
142 	/*
143 	 * Set signaling bit in lowcore of target cpu and kick it
144 	 */
145 	set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
146 	while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
147 		udelay(10);
148 }
149 
150 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
151 {
152 	int cpu;
153 
154 	for_each_cpu(cpu, mask)
155 		smp_ext_bitcall(cpu, ec_call_function);
156 }
157 
158 void arch_send_call_function_single_ipi(int cpu)
159 {
160 	smp_ext_bitcall(cpu, ec_call_function_single);
161 }
162 
163 #ifndef CONFIG_64BIT
164 /*
165  * this function sends a 'purge tlb' signal to another CPU.
166  */
167 static void smp_ptlb_callback(void *info)
168 {
169 	__tlb_flush_local();
170 }
171 
172 void smp_ptlb_all(void)
173 {
174 	on_each_cpu(smp_ptlb_callback, NULL, 1);
175 }
176 EXPORT_SYMBOL(smp_ptlb_all);
177 #endif /* ! CONFIG_64BIT */
178 
179 /*
180  * this function sends a 'reschedule' IPI to another CPU.
181  * it goes straight through and wastes no time serializing
182  * anything. Worst case is that we lose a reschedule ...
183  */
184 void smp_send_reschedule(int cpu)
185 {
186 	smp_ext_bitcall(cpu, ec_schedule);
187 }
188 
189 /*
190  * parameter area for the set/clear control bit callbacks
191  */
192 struct ec_creg_mask_parms {
193 	unsigned long orvals[16];
194 	unsigned long andvals[16];
195 };
196 
197 /*
198  * callback for setting/clearing control bits
199  */
200 static void smp_ctl_bit_callback(void *info)
201 {
202 	struct ec_creg_mask_parms *pp = info;
203 	unsigned long cregs[16];
204 	int i;
205 
206 	__ctl_store(cregs, 0, 15);
207 	for (i = 0; i <= 15; i++)
208 		cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
209 	__ctl_load(cregs, 0, 15);
210 }
211 
212 /*
213  * Set a bit in a control register of all cpus
214  */
215 void smp_ctl_set_bit(int cr, int bit)
216 {
217 	struct ec_creg_mask_parms parms;
218 
219 	memset(&parms.orvals, 0, sizeof(parms.orvals));
220 	memset(&parms.andvals, 0xff, sizeof(parms.andvals));
221 	parms.orvals[cr] = 1 << bit;
222 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
223 }
224 EXPORT_SYMBOL(smp_ctl_set_bit);
225 
226 /*
227  * Clear a bit in a control register of all cpus
228  */
229 void smp_ctl_clear_bit(int cr, int bit)
230 {
231 	struct ec_creg_mask_parms parms;
232 
233 	memset(&parms.orvals, 0, sizeof(parms.orvals));
234 	memset(&parms.andvals, 0xff, sizeof(parms.andvals));
235 	parms.andvals[cr] = ~(1L << bit);
236 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
237 }
238 EXPORT_SYMBOL(smp_ctl_clear_bit);
239 
240 /*
241  * In early ipl state a temp. logically cpu number is needed, so the sigp
242  * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
243  * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
244  */
245 #define CPU_INIT_NO	1
246 
247 #ifdef CONFIG_ZFCPDUMP
248 
249 /*
250  * zfcpdump_prefix_array holds prefix registers for the following scenario:
251  * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
252  * save its prefix registers, since they get lost, when switching from 31 bit
253  * to 64 bit.
254  */
255 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
256 	__attribute__((__section__(".data")));
257 
258 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
259 {
260 	if (ipl_info.type != IPL_TYPE_FCP_DUMP)
261 		return;
262 	if (cpu >= NR_CPUS) {
263 		pr_warning("CPU %i exceeds the maximum %i and is excluded from "
264 			   "the dump\n", cpu, NR_CPUS - 1);
265 		return;
266 	}
267 	zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
268 	__cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
269 	while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
270 	       sigp_busy)
271 		cpu_relax();
272 	memcpy(zfcpdump_save_areas[cpu],
273 	       (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
274 	       SAVE_AREA_SIZE);
275 #ifdef CONFIG_64BIT
276 	/* copy original prefix register */
277 	zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
278 #endif
279 }
280 
281 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
282 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
283 
284 #else
285 
286 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
287 
288 #endif /* CONFIG_ZFCPDUMP */
289 
290 static int cpu_known(int cpu_id)
291 {
292 	int cpu;
293 
294 	for_each_present_cpu(cpu) {
295 		if (__cpu_logical_map[cpu] == cpu_id)
296 			return 1;
297 	}
298 	return 0;
299 }
300 
301 static int smp_rescan_cpus_sigp(cpumask_t avail)
302 {
303 	int cpu_id, logical_cpu;
304 
305 	logical_cpu = cpumask_first(&avail);
306 	if (logical_cpu >= nr_cpu_ids)
307 		return 0;
308 	for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
309 		if (cpu_known(cpu_id))
310 			continue;
311 		__cpu_logical_map[logical_cpu] = cpu_id;
312 		smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
313 		if (!cpu_stopped(logical_cpu))
314 			continue;
315 		cpu_set(logical_cpu, cpu_present_map);
316 		smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
317 		logical_cpu = cpumask_next(logical_cpu, &avail);
318 		if (logical_cpu >= nr_cpu_ids)
319 			break;
320 	}
321 	return 0;
322 }
323 
324 static int smp_rescan_cpus_sclp(cpumask_t avail)
325 {
326 	struct sclp_cpu_info *info;
327 	int cpu_id, logical_cpu, cpu;
328 	int rc;
329 
330 	logical_cpu = cpumask_first(&avail);
331 	if (logical_cpu >= nr_cpu_ids)
332 		return 0;
333 	info = kmalloc(sizeof(*info), GFP_KERNEL);
334 	if (!info)
335 		return -ENOMEM;
336 	rc = sclp_get_cpu_info(info);
337 	if (rc)
338 		goto out;
339 	for (cpu = 0; cpu < info->combined; cpu++) {
340 		if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
341 			continue;
342 		cpu_id = info->cpu[cpu].address;
343 		if (cpu_known(cpu_id))
344 			continue;
345 		__cpu_logical_map[logical_cpu] = cpu_id;
346 		smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
347 		cpu_set(logical_cpu, cpu_present_map);
348 		if (cpu >= info->configured)
349 			smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
350 		else
351 			smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
352 		logical_cpu = cpumask_next(logical_cpu, &avail);
353 		if (logical_cpu >= nr_cpu_ids)
354 			break;
355 	}
356 out:
357 	kfree(info);
358 	return rc;
359 }
360 
361 static int __smp_rescan_cpus(void)
362 {
363 	cpumask_t avail;
364 
365 	cpus_xor(avail, cpu_possible_map, cpu_present_map);
366 	if (smp_use_sigp_detection)
367 		return smp_rescan_cpus_sigp(avail);
368 	else
369 		return smp_rescan_cpus_sclp(avail);
370 }
371 
372 static void __init smp_detect_cpus(void)
373 {
374 	unsigned int cpu, c_cpus, s_cpus;
375 	struct sclp_cpu_info *info;
376 	u16 boot_cpu_addr, cpu_addr;
377 
378 	c_cpus = 1;
379 	s_cpus = 0;
380 	boot_cpu_addr = __cpu_logical_map[0];
381 	info = kmalloc(sizeof(*info), GFP_KERNEL);
382 	if (!info)
383 		panic("smp_detect_cpus failed to allocate memory\n");
384 	/* Use sigp detection algorithm if sclp doesn't work. */
385 	if (sclp_get_cpu_info(info)) {
386 		smp_use_sigp_detection = 1;
387 		for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
388 			if (cpu == boot_cpu_addr)
389 				continue;
390 			__cpu_logical_map[CPU_INIT_NO] = cpu;
391 			if (!cpu_stopped(CPU_INIT_NO))
392 				continue;
393 			smp_get_save_area(c_cpus, cpu);
394 			c_cpus++;
395 		}
396 		goto out;
397 	}
398 
399 	if (info->has_cpu_type) {
400 		for (cpu = 0; cpu < info->combined; cpu++) {
401 			if (info->cpu[cpu].address == boot_cpu_addr) {
402 				smp_cpu_type = info->cpu[cpu].type;
403 				break;
404 			}
405 		}
406 	}
407 
408 	for (cpu = 0; cpu < info->combined; cpu++) {
409 		if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
410 			continue;
411 		cpu_addr = info->cpu[cpu].address;
412 		if (cpu_addr == boot_cpu_addr)
413 			continue;
414 		__cpu_logical_map[CPU_INIT_NO] = cpu_addr;
415 		if (!cpu_stopped(CPU_INIT_NO)) {
416 			s_cpus++;
417 			continue;
418 		}
419 		smp_get_save_area(c_cpus, cpu_addr);
420 		c_cpus++;
421 	}
422 out:
423 	kfree(info);
424 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
425 	get_online_cpus();
426 	__smp_rescan_cpus();
427 	put_online_cpus();
428 }
429 
430 /*
431  *	Activate a secondary processor.
432  */
433 int __cpuinit start_secondary(void *cpuvoid)
434 {
435 	/* Setup the cpu */
436 	cpu_init();
437 	preempt_disable();
438 	/* Enable TOD clock interrupts on the secondary cpu. */
439 	init_cpu_timer();
440 	/* Enable cpu timer interrupts on the secondary cpu. */
441 	init_cpu_vtimer();
442 	/* Enable pfault pseudo page faults on this cpu. */
443 	pfault_init();
444 
445 	/* call cpu notifiers */
446 	notify_cpu_starting(smp_processor_id());
447 	/* Mark this cpu as online */
448 	ipi_call_lock();
449 	cpu_set(smp_processor_id(), cpu_online_map);
450 	ipi_call_unlock();
451 	/* Switch on interrupts */
452 	local_irq_enable();
453 	/* Print info about this processor */
454 	print_cpu_info();
455 	/* cpu_idle will call schedule for us */
456 	cpu_idle();
457 	return 0;
458 }
459 
460 static void __init smp_create_idle(unsigned int cpu)
461 {
462 	struct task_struct *p;
463 
464 	/*
465 	 *  don't care about the psw and regs settings since we'll never
466 	 *  reschedule the forked task.
467 	 */
468 	p = fork_idle(cpu);
469 	if (IS_ERR(p))
470 		panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
471 	current_set[cpu] = p;
472 }
473 
474 static int __cpuinit smp_alloc_lowcore(int cpu)
475 {
476 	unsigned long async_stack, panic_stack;
477 	struct _lowcore *lowcore;
478 
479 	lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
480 	if (!lowcore)
481 		return -ENOMEM;
482 	async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
483 	panic_stack = __get_free_page(GFP_KERNEL);
484 	if (!panic_stack || !async_stack)
485 		goto out;
486 	memcpy(lowcore, &S390_lowcore, 512);
487 	memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
488 	lowcore->async_stack = async_stack + ASYNC_SIZE;
489 	lowcore->panic_stack = panic_stack + PAGE_SIZE;
490 
491 #ifndef CONFIG_64BIT
492 	if (MACHINE_HAS_IEEE) {
493 		unsigned long save_area;
494 
495 		save_area = get_zeroed_page(GFP_KERNEL);
496 		if (!save_area)
497 			goto out;
498 		lowcore->extended_save_area_addr = (u32) save_area;
499 	}
500 #else
501 	if (vdso_alloc_per_cpu(cpu, lowcore))
502 		goto out;
503 #endif
504 	lowcore_ptr[cpu] = lowcore;
505 	return 0;
506 
507 out:
508 	free_page(panic_stack);
509 	free_pages(async_stack, ASYNC_ORDER);
510 	free_pages((unsigned long) lowcore, LC_ORDER);
511 	return -ENOMEM;
512 }
513 
514 static void smp_free_lowcore(int cpu)
515 {
516 	struct _lowcore *lowcore;
517 
518 	lowcore = lowcore_ptr[cpu];
519 #ifndef CONFIG_64BIT
520 	if (MACHINE_HAS_IEEE)
521 		free_page((unsigned long) lowcore->extended_save_area_addr);
522 #else
523 	vdso_free_per_cpu(cpu, lowcore);
524 #endif
525 	free_page(lowcore->panic_stack - PAGE_SIZE);
526 	free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
527 	free_pages((unsigned long) lowcore, LC_ORDER);
528 	lowcore_ptr[cpu] = NULL;
529 }
530 
531 /* Upping and downing of CPUs */
532 int __cpuinit __cpu_up(unsigned int cpu)
533 {
534 	struct task_struct *idle;
535 	struct _lowcore *cpu_lowcore;
536 	struct stack_frame *sf;
537 	sigp_ccode ccode;
538 	u32 lowcore;
539 
540 	if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
541 		return -EIO;
542 	if (smp_alloc_lowcore(cpu))
543 		return -ENOMEM;
544 	do {
545 		ccode = signal_processor(cpu, sigp_initial_cpu_reset);
546 		if (ccode == sigp_busy)
547 			udelay(10);
548 		if (ccode == sigp_not_operational)
549 			goto err_out;
550 	} while (ccode == sigp_busy);
551 
552 	lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
553 	while (signal_processor_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
554 		udelay(10);
555 
556 	idle = current_set[cpu];
557 	cpu_lowcore = lowcore_ptr[cpu];
558 	cpu_lowcore->kernel_stack = (unsigned long)
559 		task_stack_page(idle) + THREAD_SIZE;
560 	cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
561 	sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
562 				     - sizeof(struct pt_regs)
563 				     - sizeof(struct stack_frame));
564 	memset(sf, 0, sizeof(struct stack_frame));
565 	sf->gprs[9] = (unsigned long) sf;
566 	cpu_lowcore->save_area[15] = (unsigned long) sf;
567 	__ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
568 	asm volatile(
569 		"	stam	0,15,0(%0)"
570 		: : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
571 	cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
572 	cpu_lowcore->current_task = (unsigned long) idle;
573 	cpu_lowcore->cpu_nr = cpu;
574 	cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
575 	cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
576 	cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
577 	eieio();
578 
579 	while (signal_processor(cpu, sigp_restart) == sigp_busy)
580 		udelay(10);
581 
582 	while (!cpu_online(cpu))
583 		cpu_relax();
584 	return 0;
585 
586 err_out:
587 	smp_free_lowcore(cpu);
588 	return -EIO;
589 }
590 
591 static int __init setup_possible_cpus(char *s)
592 {
593 	int pcpus, cpu;
594 
595 	pcpus = simple_strtoul(s, NULL, 0);
596 	init_cpu_possible(cpumask_of(0));
597 	for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
598 		set_cpu_possible(cpu, true);
599 	return 0;
600 }
601 early_param("possible_cpus", setup_possible_cpus);
602 
603 #ifdef CONFIG_HOTPLUG_CPU
604 
605 int __cpu_disable(void)
606 {
607 	struct ec_creg_mask_parms cr_parms;
608 	int cpu = smp_processor_id();
609 
610 	cpu_clear(cpu, cpu_online_map);
611 
612 	/* Disable pfault pseudo page faults on this cpu. */
613 	pfault_fini();
614 
615 	memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
616 	memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
617 
618 	/* disable all external interrupts */
619 	cr_parms.orvals[0] = 0;
620 	cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
621 				1 << 11 | 1 << 10 | 1 <<  6 | 1 <<  4);
622 	/* disable all I/O interrupts */
623 	cr_parms.orvals[6] = 0;
624 	cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
625 				1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
626 	/* disable most machine checks */
627 	cr_parms.orvals[14] = 0;
628 	cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
629 				 1 << 25 | 1 << 24);
630 
631 	smp_ctl_bit_callback(&cr_parms);
632 
633 	return 0;
634 }
635 
636 void __cpu_die(unsigned int cpu)
637 {
638 	/* Wait until target cpu is down */
639 	while (!cpu_stopped(cpu))
640 		cpu_relax();
641 	smp_free_lowcore(cpu);
642 	pr_info("Processor %d stopped\n", cpu);
643 }
644 
645 void cpu_die(void)
646 {
647 	idle_task_exit();
648 	signal_processor(smp_processor_id(), sigp_stop);
649 	BUG();
650 	for (;;);
651 }
652 
653 #endif /* CONFIG_HOTPLUG_CPU */
654 
655 void __init smp_prepare_cpus(unsigned int max_cpus)
656 {
657 #ifndef CONFIG_64BIT
658 	unsigned long save_area = 0;
659 #endif
660 	unsigned long async_stack, panic_stack;
661 	struct _lowcore *lowcore;
662 	unsigned int cpu;
663 
664 	smp_detect_cpus();
665 
666 	/* request the 0x1201 emergency signal external interrupt */
667 	if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
668 		panic("Couldn't request external interrupt 0x1201");
669 	print_cpu_info();
670 
671 	/* Reallocate current lowcore, but keep its contents. */
672 	lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
673 	panic_stack = __get_free_page(GFP_KERNEL);
674 	async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
675 	BUG_ON(!lowcore || !panic_stack || !async_stack);
676 #ifndef CONFIG_64BIT
677 	if (MACHINE_HAS_IEEE)
678 		save_area = get_zeroed_page(GFP_KERNEL);
679 #endif
680 	local_irq_disable();
681 	local_mcck_disable();
682 	lowcore_ptr[smp_processor_id()] = lowcore;
683 	*lowcore = S390_lowcore;
684 	lowcore->panic_stack = panic_stack + PAGE_SIZE;
685 	lowcore->async_stack = async_stack + ASYNC_SIZE;
686 #ifndef CONFIG_64BIT
687 	if (MACHINE_HAS_IEEE)
688 		lowcore->extended_save_area_addr = (u32) save_area;
689 #endif
690 	set_prefix((u32)(unsigned long) lowcore);
691 	local_mcck_enable();
692 	local_irq_enable();
693 #ifdef CONFIG_64BIT
694 	if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
695 		BUG();
696 #endif
697 	for_each_possible_cpu(cpu)
698 		if (cpu != smp_processor_id())
699 			smp_create_idle(cpu);
700 }
701 
702 void __init smp_prepare_boot_cpu(void)
703 {
704 	BUG_ON(smp_processor_id() != 0);
705 
706 	current_thread_info()->cpu = 0;
707 	cpu_set(0, cpu_present_map);
708 	cpu_set(0, cpu_online_map);
709 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
710 	current_set[0] = current;
711 	smp_cpu_state[0] = CPU_STATE_CONFIGURED;
712 	smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
713 }
714 
715 void __init smp_cpus_done(unsigned int max_cpus)
716 {
717 }
718 
719 /*
720  * the frequency of the profiling timer can be changed
721  * by writing a multiplier value into /proc/profile.
722  *
723  * usually you want to run this on all CPUs ;)
724  */
725 int setup_profiling_timer(unsigned int multiplier)
726 {
727 	return 0;
728 }
729 
730 #ifdef CONFIG_HOTPLUG_CPU
731 static ssize_t cpu_configure_show(struct sys_device *dev,
732 				struct sysdev_attribute *attr, char *buf)
733 {
734 	ssize_t count;
735 
736 	mutex_lock(&smp_cpu_state_mutex);
737 	count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
738 	mutex_unlock(&smp_cpu_state_mutex);
739 	return count;
740 }
741 
742 static ssize_t cpu_configure_store(struct sys_device *dev,
743 				  struct sysdev_attribute *attr,
744 				  const char *buf, size_t count)
745 {
746 	int cpu = dev->id;
747 	int val, rc;
748 	char delim;
749 
750 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
751 		return -EINVAL;
752 	if (val != 0 && val != 1)
753 		return -EINVAL;
754 
755 	get_online_cpus();
756 	mutex_lock(&smp_cpu_state_mutex);
757 	rc = -EBUSY;
758 	if (cpu_online(cpu))
759 		goto out;
760 	rc = 0;
761 	switch (val) {
762 	case 0:
763 		if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
764 			rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
765 			if (!rc) {
766 				smp_cpu_state[cpu] = CPU_STATE_STANDBY;
767 				smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
768 			}
769 		}
770 		break;
771 	case 1:
772 		if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
773 			rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
774 			if (!rc) {
775 				smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
776 				smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
777 			}
778 		}
779 		break;
780 	default:
781 		break;
782 	}
783 out:
784 	mutex_unlock(&smp_cpu_state_mutex);
785 	put_online_cpus();
786 	return rc ? rc : count;
787 }
788 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
789 #endif /* CONFIG_HOTPLUG_CPU */
790 
791 static ssize_t cpu_polarization_show(struct sys_device *dev,
792 				     struct sysdev_attribute *attr, char *buf)
793 {
794 	int cpu = dev->id;
795 	ssize_t count;
796 
797 	mutex_lock(&smp_cpu_state_mutex);
798 	switch (smp_cpu_polarization[cpu]) {
799 	case POLARIZATION_HRZ:
800 		count = sprintf(buf, "horizontal\n");
801 		break;
802 	case POLARIZATION_VL:
803 		count = sprintf(buf, "vertical:low\n");
804 		break;
805 	case POLARIZATION_VM:
806 		count = sprintf(buf, "vertical:medium\n");
807 		break;
808 	case POLARIZATION_VH:
809 		count = sprintf(buf, "vertical:high\n");
810 		break;
811 	default:
812 		count = sprintf(buf, "unknown\n");
813 		break;
814 	}
815 	mutex_unlock(&smp_cpu_state_mutex);
816 	return count;
817 }
818 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
819 
820 static ssize_t show_cpu_address(struct sys_device *dev,
821 				struct sysdev_attribute *attr, char *buf)
822 {
823 	return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
824 }
825 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
826 
827 
828 static struct attribute *cpu_common_attrs[] = {
829 #ifdef CONFIG_HOTPLUG_CPU
830 	&attr_configure.attr,
831 #endif
832 	&attr_address.attr,
833 	&attr_polarization.attr,
834 	NULL,
835 };
836 
837 static struct attribute_group cpu_common_attr_group = {
838 	.attrs = cpu_common_attrs,
839 };
840 
841 static ssize_t show_capability(struct sys_device *dev,
842 				struct sysdev_attribute *attr, char *buf)
843 {
844 	unsigned int capability;
845 	int rc;
846 
847 	rc = get_cpu_capability(&capability);
848 	if (rc)
849 		return rc;
850 	return sprintf(buf, "%u\n", capability);
851 }
852 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
853 
854 static ssize_t show_idle_count(struct sys_device *dev,
855 				struct sysdev_attribute *attr, char *buf)
856 {
857 	struct s390_idle_data *idle;
858 	unsigned long long idle_count;
859 	unsigned int sequence;
860 
861 	idle = &per_cpu(s390_idle, dev->id);
862 repeat:
863 	sequence = idle->sequence;
864 	smp_rmb();
865 	if (sequence & 1)
866 		goto repeat;
867 	idle_count = idle->idle_count;
868 	if (idle->idle_enter)
869 		idle_count++;
870 	smp_rmb();
871 	if (idle->sequence != sequence)
872 		goto repeat;
873 	return sprintf(buf, "%llu\n", idle_count);
874 }
875 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
876 
877 static ssize_t show_idle_time(struct sys_device *dev,
878 				struct sysdev_attribute *attr, char *buf)
879 {
880 	struct s390_idle_data *idle;
881 	unsigned long long now, idle_time, idle_enter;
882 	unsigned int sequence;
883 
884 	idle = &per_cpu(s390_idle, dev->id);
885 	now = get_clock();
886 repeat:
887 	sequence = idle->sequence;
888 	smp_rmb();
889 	if (sequence & 1)
890 		goto repeat;
891 	idle_time = idle->idle_time;
892 	idle_enter = idle->idle_enter;
893 	if (idle_enter != 0ULL && idle_enter < now)
894 		idle_time += now - idle_enter;
895 	smp_rmb();
896 	if (idle->sequence != sequence)
897 		goto repeat;
898 	return sprintf(buf, "%llu\n", idle_time >> 12);
899 }
900 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
901 
902 static struct attribute *cpu_online_attrs[] = {
903 	&attr_capability.attr,
904 	&attr_idle_count.attr,
905 	&attr_idle_time_us.attr,
906 	NULL,
907 };
908 
909 static struct attribute_group cpu_online_attr_group = {
910 	.attrs = cpu_online_attrs,
911 };
912 
913 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
914 				    unsigned long action, void *hcpu)
915 {
916 	unsigned int cpu = (unsigned int)(long)hcpu;
917 	struct cpu *c = &per_cpu(cpu_devices, cpu);
918 	struct sys_device *s = &c->sysdev;
919 	struct s390_idle_data *idle;
920 
921 	switch (action) {
922 	case CPU_ONLINE:
923 	case CPU_ONLINE_FROZEN:
924 		idle = &per_cpu(s390_idle, cpu);
925 		memset(idle, 0, sizeof(struct s390_idle_data));
926 		if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
927 			return NOTIFY_BAD;
928 		break;
929 	case CPU_DEAD:
930 	case CPU_DEAD_FROZEN:
931 		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
932 		break;
933 	}
934 	return NOTIFY_OK;
935 }
936 
937 static struct notifier_block __cpuinitdata smp_cpu_nb = {
938 	.notifier_call = smp_cpu_notify,
939 };
940 
941 static int __devinit smp_add_present_cpu(int cpu)
942 {
943 	struct cpu *c = &per_cpu(cpu_devices, cpu);
944 	struct sys_device *s = &c->sysdev;
945 	int rc;
946 
947 	c->hotpluggable = 1;
948 	rc = register_cpu(c, cpu);
949 	if (rc)
950 		goto out;
951 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
952 	if (rc)
953 		goto out_cpu;
954 	if (!cpu_online(cpu))
955 		goto out;
956 	rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
957 	if (!rc)
958 		return 0;
959 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
960 out_cpu:
961 #ifdef CONFIG_HOTPLUG_CPU
962 	unregister_cpu(c);
963 #endif
964 out:
965 	return rc;
966 }
967 
968 #ifdef CONFIG_HOTPLUG_CPU
969 
970 int __ref smp_rescan_cpus(void)
971 {
972 	cpumask_t newcpus;
973 	int cpu;
974 	int rc;
975 
976 	get_online_cpus();
977 	mutex_lock(&smp_cpu_state_mutex);
978 	newcpus = cpu_present_map;
979 	rc = __smp_rescan_cpus();
980 	if (rc)
981 		goto out;
982 	cpus_andnot(newcpus, cpu_present_map, newcpus);
983 	for_each_cpu_mask(cpu, newcpus) {
984 		rc = smp_add_present_cpu(cpu);
985 		if (rc)
986 			cpu_clear(cpu, cpu_present_map);
987 	}
988 	rc = 0;
989 out:
990 	mutex_unlock(&smp_cpu_state_mutex);
991 	put_online_cpus();
992 	if (!cpus_empty(newcpus))
993 		topology_schedule_update();
994 	return rc;
995 }
996 
997 static ssize_t __ref rescan_store(struct sysdev_class *class, const char *buf,
998 				  size_t count)
999 {
1000 	int rc;
1001 
1002 	rc = smp_rescan_cpus();
1003 	return rc ? rc : count;
1004 }
1005 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
1006 #endif /* CONFIG_HOTPLUG_CPU */
1007 
1008 static ssize_t dispatching_show(struct sysdev_class *class, char *buf)
1009 {
1010 	ssize_t count;
1011 
1012 	mutex_lock(&smp_cpu_state_mutex);
1013 	count = sprintf(buf, "%d\n", cpu_management);
1014 	mutex_unlock(&smp_cpu_state_mutex);
1015 	return count;
1016 }
1017 
1018 static ssize_t dispatching_store(struct sysdev_class *dev, const char *buf,
1019 				 size_t count)
1020 {
1021 	int val, rc;
1022 	char delim;
1023 
1024 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1025 		return -EINVAL;
1026 	if (val != 0 && val != 1)
1027 		return -EINVAL;
1028 	rc = 0;
1029 	get_online_cpus();
1030 	mutex_lock(&smp_cpu_state_mutex);
1031 	if (cpu_management == val)
1032 		goto out;
1033 	rc = topology_set_cpu_management(val);
1034 	if (!rc)
1035 		cpu_management = val;
1036 out:
1037 	mutex_unlock(&smp_cpu_state_mutex);
1038 	put_online_cpus();
1039 	return rc ? rc : count;
1040 }
1041 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1042 			 dispatching_store);
1043 
1044 static int __init topology_init(void)
1045 {
1046 	int cpu;
1047 	int rc;
1048 
1049 	register_cpu_notifier(&smp_cpu_nb);
1050 
1051 #ifdef CONFIG_HOTPLUG_CPU
1052 	rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1053 	if (rc)
1054 		return rc;
1055 #endif
1056 	rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1057 	if (rc)
1058 		return rc;
1059 	for_each_present_cpu(cpu) {
1060 		rc = smp_add_present_cpu(cpu);
1061 		if (rc)
1062 			return rc;
1063 	}
1064 	return 0;
1065 }
1066 subsys_initcall(topology_init);
1067